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Abstract

We describe a Vervaat-like path transformation for the reflected Brownian bridge
conditioned on its local time at 0: up to random shifts, this process equals the two
processes constructed from a Brownian bridge and a Brownian excursion by adding
a drift and then taking the excursions over the current minimum. As a consequence,
these three processes have the same occupation measure, which is easily found.

The three processes arise as limits, in three different ways, of profiles associated to

hashing with linear probing, or, equivalently, to parking functions.

Introduction

o f(t) = f(t)—at— inf (f(s)—as)

—oo<s<t

= sup(f(t) — f(s) —a(t - s)).

s<t

We regard the Brownian bridge b(¢) and the normalized (positive) Brownian excursion
e(t) as defined on the circle R/Z, or, equivalently, as defined on the whole real line, being
periodic with period 1. We define, for ¢ > 0, the operator ¥, on the set of bounded
functions on the line by

(1.1)

If f has period 1, then so has ¥, f; thus we may also regard ¥, as acting on functions on
R/Z. Evidently, ¥, f is nonnegative.

In this paper, we prove that, for every a > 0, the three following processes can be

obtained (in law) from each other by random shifts, that we will describe explicitly:

e X,, which denotes the reflecting Brownian bridge |b| conditioned to have local time

at level 0 equal to a;
e Y, =U,b;

e 7,=Y,e.

We will find convenient to use the following formulas for Y, and Z,:

Yo(t) = b(t) —at+ sup (as—b(s)),
t—1<s<t

Z4(t) = e(t)—at+ sup (as—e(s)).
t-1<s<t

nstitut Elie Cartan, BP 239, 54 506 Vandoeuvre Cedex, France.

2Uppsala University, Department of Mathematics, PO Box 480, 751 06 Uppsala, Sweden



For ¢ € [0, 1], we also have

Z4(t) = e(t) —at + sup (as —e(s)), (1.4)
0<s<t
consistently with the notations of [13].
Given a stochastic process X and a positive number ¢, we let L;(X) denote the local
time of the process X at level 0, on the interval [0,¢], defined as in [10, p.154] by:

1 st
LX) = tim o= [ 1oy ds
with this convention, e.g., b and |b| have the same local time at 0, while, according to the
usual convention [28, §VI.2], the local time at 0 of || is twice the local time at 0 of b. When
possible, we extend L(X) to t € (—00,0), in such a way that L,(X) — L,(X) is the local
time of the process X at level 0, on the interval [a, b], for any choice —oo < a < b < +00.

The definition above of X, is formally not precise enough, since it involves conditioning
on an event of probability 0. However, there exists on C0, 1] a unique family of conditional
distributions of |b| (or b) given L;(b) = a which is weakly continuous in a > 0 [25, Lemma
12], and this can be taken as defining the distribution of X,. The process X, has been an
object of interest in a number of recent papers in the domain of stochastic calculus: its
distribution is described in [27, Section 6] by its decomposition in excursions. The sequence
of lengths of the excursions is computed in [7], using [24]. The local time process of X,
is described through an SDE in a recent paper [25] by Pitman, who in particular proves
that, up to a suitable random time change, the local time process of X, is a Bessel(3)
bridge from a to 0 [25, Lemma 14]. (See also [5], where a Brownian bridge conditioned on
its whole local time process is decribed.)

While X, appears as a limit in the study of random forests [25], Z, appears as a
limit in the study of parking problems, or hashing (see [13]), an old but still hot topic
in combinatorics and analysis of algorithms, these last years [1, 14, 17, 19, 26, 31, 32].
The fragmentation process of excursions of Z, appears in the study of coalescence models
[8, 9, 13], an emergent topic in probability theory and an old one in physical chemistry,
astronomy and a number of other domains [4, Section 1.4]. See [4] for background and an
extensive bibliography, and also [3, 6, 16] among others. As explained later, Y, is tightly
related to Z, through a path transformation, due to Vervaat [33], connecting e and b.

aw

Remark 1.1 For a = 0, we have X law [25, Lemma 12] and, trivially, Yy = b—minb
and Zy = e, and the identity up to shift of these reduces to the result by Vervaat [33].

For a positive, the three processes X, Y, and Z, do not coincide without shifting. This
can be seen by observing first that a.s. Y, > 0, while X,(0) = Z,(0) = 0, and secondly
that Z, a.s. has an excursion beginning at 0, i.e. inf{t > 0 : Z,(¢t) = 0} > 0 (see [8],
where the distribution of this excursion length is found), while this is false for X, (as a
consequence of [27, Section 6]). It also follows that Z, is not invariant under time reversal
(while X, and Y, are).

We mention two further constructions of the processes above. First, let B be a standard
one-dimensional Brownian motion started at 0, and define:

7 =inf{s >0 : Ls(B) =t}.



Then X, can also be seen as the reflected Brownian motion |B| conditioned on 7, = 1, see
e.g. [25, the lines following (11)] or [27, identity (5.a)].

Secondly, define b(t) = b(t) — fol b(s)ds. Tt is easily verified that b is a stationary
Gaussian process (on R/Z or on R), for example by calculating its covariance function

165 —t|(1 —|s — 1)
- 12 ’

Cov(b(s), b(t)) |s —t] < 1.
Since b and b differ only by a (random) constant, Y, = U, (b) too. This implies that Y, is
a stationary process. (X, and Z, are not, again because they vanish at 0.)

We may similarly define é(t) = e(t) — fol e(s) ds, and obtain Z, = ¥,(€), but we do
not know any interesting consequences of this.

Precise statements of the relations between the three processes X,, Y, and Z, are
given in Section 2. The three processes arise as limits, under three different conditions,
of profiles associated with parking schemes (also known as hashing with linear probing).
This is described in Sections 3 and 4. The proofs are given in the remaining sections.

2 Main results

In this section we give precise descriptions of the shifts connecting the three processes X,
Y, and Z,, in all six possible directions. Let a > 0 be fixed.

First, assume that the Brownian bridge b is built from e using Vervaat’s path trans-
formation [10, 11, 33]: given a uniform random variable U, independent of e,

b(t) = e(U +t) — e(U). (2.1)

Then
Web(t) = Woe(U + 1),

so that:
Theorem 2.1 For U uniform and independent of Z,,
Zy(U + ) "2y,

As a consequence, Y, is a stationary process on the line, or on the circle R/Z, as was seen
above in another way. A far less obvious result is:

Theorem 2.2 For U uniform on [0,1] and independent of X,,
X, (U +) 'y,

The proof will be given later. The case a = 0 of Theorem 2.2 is just Vervaat’s path
aw

transformation, since, as remarked above, X "W In [10], one can find a host of similar

path transformations connecting the Brownian bridge, excursion and meander.



Corollary 2.3 The occupation measures of X,, Y, and Z, coincide, and have the

distribution function
1— 8721117212

This is also the distribution function of Yy (t) for any fized t.

Recall that a random variable W is Rayleigh distributed if Pr(W > ) = e=%"/2. The
occupation measure of X, (or Yy, Z,) is then the law of half the residual life at time a of
W: Pr(W —a)/2 > 2| W > a) = e~ 209=2”  For q = 0 we recover the Durrett-Iglehart
result for the occupation measure of the Brownian excursion: it is the law of W/2 [15].

Proof of Corollary 2.3. By definition, the occupation measure of X, is the law of
X, (U), so, from Theorem 2.2, it is also the law of Y,(0). The same is true for Z, by
Theorem 2.1, and for Y, because it is stationary. We have

V0 = sw (s b(s)
C1<s<
o sup (b(t) — at)
0<t<1
" up ((1— t)B_ —at)
0<t<1
B, —au
ey Su —_— | .
Uguglioo( I1+u )

For positive numbers A and p, set
Ty = inf{u > 0; B, > Au+ p}.

Using the exponential martingale exp(2AB, — 2)\?u), it is easy to derive that

Pr(Th, < +00) = e 2,
see [28, Exercise I1.3.12]. We have thus:
Pr(Y,(0) >z) = Pr(ﬂ u > 0 such that By —au > x)
a - - - 1 + U il
= Pr(Totzn < +00)
— 6721117212_ <>

Problem 2.4 What are the laws of X,(t) and Z,(t) (which depend on t)?

We need an additional notation to define a random shift from Y, or Z, to X,: let
T(X) denote the inverse process of L(X).

Theorem 2.5 Suppose a > 0. Let U be uniformly distributed on [0,1] and independent
of Zg or Yy. Set

T = TaU(Za)a
T = TaU(Ya)-



We have:
X, ' Z.(r+)
"Wy 5+ ).

Note that as a difference with Theorems 2.1 and 2.2, here 7 (resp. 7) depends on Z, (resp.
Ya).

Thus we obtain X, by shifting any of the processes uniformly in local time, while we
have seen above that we obtain Y, by shifting uniformly in real time.

Theorem 2.6 Suppose a > 0.

(). Almost surely, t — Li(X,) — at reaches its mazimum at a unique point V in [0,1)
and
X, (V +)'% 7,

(ii). Almost surely, t — L;(Y,) — at reaches its mazimum at a unique point V in [0,1)
and } l
Ya(v + ) = Za-

Moreover, V is uniform on [0,1] and independent of Y,(V + -).

In contrast, and as an explanation, ¢t — L;(Z,) — at reaches its maximum at 0, see the
proof in Section 11. It is easily verified that V is not uniformly distributed.

Remark 2.7 For g = 0, Theorems 2.5 and 2.6 hold if we instead define 7 =0, V' =0
and 7 =V as the unique points where Zj, Xy and Yy, respectively, attain their minimum
value 0, see Remark 1.1.

Finally, we observe that it is possible to invert ¥, and recover the Brownian bridge b
from Y, = ¥,b and the excursion e from Z, = U,e using local times.

Theorem 2.8 For any t,
b(t) = Ya(t) — Ya(0) — Ly(Ya) + at

and
e(t) = Zo(t) — Li(Z,) + at.

Combining Theorems 2.6 and 2.8, we can construct Brownian excursions from X, and
Y, too.

Corollary 2.9 Let V and V be as in Theorem 2.6. Then
e (t) = Xo(V +1t) +at — Ly4(X,) + Ly (Xa)

and
e"(t) = Yo(V +1) +at — Ly, (Ya) + L (Ya),

respectively, define normalized Brownian excursions.
In the case of Yy, in addition, €’ and V are independent.

The problem of possible other shifts is adressed in the concluding remarks.



3 Parking schemes and associated spaces

A parking scheme w describes how m cars ¢, cg, ...park on n places {1,2,...,n}. We
write
W= (wk)1gk§ma

where each wy € {1,...,n}. According to w, car ¢; parks on place w;. Then car ¢y parks
on place wo if wy is still empty, else it tries wy + 1, ws + 2, ..., until it finds an empty
place, and so on. We adopt the convention that n + 1 = 1, and more generally n + k = k.
We consider only the case 1 < m < n.
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Figure 1: Elements of Pos,, m = 20,---,24.

The interest of combinatorists to parking schemes is born from a paper by Konheim
& Weiss [21], in 1966, about hashing with linear probing, a popular search method, that
had also been studied, notably, by Don Knuth, in 1962 (see the historical notes in his 1999
paper [19], or pages 526-539 in his book [18]). The metaphore of parking was already used
by Konheim & Weiss. The two recent and beautiful papers by Flajolet, Poblete & Viola
[17] and Knuth [19] drew the attention of the authors to the connection between parking
schemes and Brownian motion (see also [13, 14]). For a similar connection between trees
and Brownian motion, see [2, 6, 25, 30], among others.

Let P, denote the set of all parking schemes of m cars on n places, and let C'P, ,
denote the subset of confined parking schemes, confined meaning that the last place is



assumed to be left empty. We have
#Pym =n" and #CP, , = n™ ' (n — m);
the last can be seen as follows. For w € P, ,,, we define the shift (rotation)

rw = (=1 + wk)1<k<m,

moving all cars back one place (modulo n); the action of 7 on P, ,, draws n™ ! orbits of
n elements, each of them containing n — m elements of C'P, ,,.

Let Y} (w) be the number of cars whose first try is on place k, according to w € Py, p,.
For any natural integer k, set

Sk1(w) = Sp(w) + Yiq1(w),

with Sp(w) = 0. Our convention extends to Yy, = Yi, so that Sy, = Sk + m. Set:

W(w,i) = Si(w) —i2, (3.1)

n

and note that W(w,k +n) = W(w, k). We have

Proposition 3.1 There ezists at least an element of CP, n, x(k), in each orbit k,
such that W(z(k),-) is nonnegative.

Proof. Let w denote an element of P, . Since S(riw,k) = S(w,k + j) — S(w, k)
and thus W(riw, k) = W(w,k + j) — W(w,k), W(riw,-) is nonnegative if and only if
W (w,5) = ming W (w, k). This proves that z(x) = r/w exists in P, . We postpone the
proof that in fact rw € C P, m to Proposition 5.4 (see also [13]). O

In general, in the same orbit x , there are several elements z such that W(z,-) is
nonnegative: we let z(x) be one particular choice, and let E, , be the set of the n™ !
elements (k). (This set is thus to some extent arbitrary, but the results below hold for
any choice.)

4 Convergence results

For w in P, ,, let Hy(w) denote the number of cars that try, successfully or not, to park
on place k. (We regard Hj, as defined for all integers k, with Hy, = Hy.) We rescale Hy,
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Figure 2: Profile.



and define hy, (k/n,w) = Hi(w)/+/n; hy, is then extended to a continuous periodic function
on R, that we call the profile of w, by linear interpolation, i.e.

1y < 0 118 O H ) (0) it [t i (0
n ) \/ﬁ .
Let pine (resp. fine, fin,e) denote the law of (h,(t))o<i<1 when w is drawn at random in

Pn,nfl (TeSP- CPn,nffa En,nff)-
Central to our results are the following theorems:

Theorem 4.1 If¢/\/n — a >0, then

weakly
Une — Ya-

Theorem 4.2 If{/\/n — a > 0, then

Fone ekl X,
Theorem 4.3 If¢/\/n — a >0, then

fon e veakly Zy.

Theorem 4.3 was also proved, by similar methods, in [13, Lemma 5.11].
As will be seen in detail later, Theorems 2.1 and 2.2 can be seen as consequences of
the preceding convergence results, combined with the evident relation

o (t, 1 w) = hn(t—l- %,w)

and with the following obvious statement: the random rotation of a random element of
CP, m or of E, ,,, gives a random element of P, ,,,. More formally:

Proposition 4.4 If w is random uniform on P, ., CP,py or on Ey .y, and U is
uniform on [0,1] and independent of w, then rI"Ulw is random uniform on P .

A different kind of random rotation gives Theorem 2.5: let w be random in P, ,, or in
E, m and choose randomly an empty place j of w. Then rJw is random in CP, m. More
formally, let us define an operator R from P, ,, to CP, ,, as shifting to the next empty
place:

Rw = 1w,

where j > 1 is the first place left empty by w. Thus RI("=™Uly, (with U random uniform)
is a rotation of w to a random empty place, i.e. to a random element of the corresponding
orbit in CP, ;,, and we have:

Proposition 4.5 If w is random uniform on P, ., CPypm or on Eyy, and U is
uniform on [0,1] and independent of w, then RI(=m)Ul 4, s random uniform on CPym.



For Theorem 2.5 we use also the convergence of the number of empty places in a given
interval of {1,2,...,n} to the local time of X,, Y, or Z, in the corresponding interval of
[0, 1].

More precisely, let Vj;(w) denote the number of empty places in the set {j + 1,5 +
2,...,k}, according to the parking scheme w, and define, in analogy with h, above, a
corresponding continuous function v, on [0,1] by rescaling and linear interpolation so
that v, (k/n) = Vy i /+/n for integers k, i.e.

oty = P =PVl g @)+ (0= Vo)

NG

We then have the following extension of Theorems 4.1-4.3, yielding joint convergence of
the processes h, and v,.

Theorem 4.6 Suppose £/\/n — a > 0. On [0,1], the following hold:

(i). If w is drawn at random in P, , 4, then (hy(-,w),vp (-, w)) law (Ya, L(Yy,)).

(ii). If w is drawn at random in C'P, g, then (hy(-,w), v, (-, w)) Law, (X, L(X,)).

law

(iii). If w is drawn at random in E, g, then (hp(-,w),vn(-,w)) — (Z4, L(Za)).

5 Results on parking schemes

Consider a fixed w € P, y,. As remarked above, we regard the functions Yy, Sk, W(w, k)
and Hy as defined for all integers k; Sk, = Sk + m and the three others have period n.
Note that, among the cars that visit place &, only one will not visit place k& + 1, so:

Proposition 5.1
Hpy1 = (Hk — 1)+ + Yiq1.

This recursion does not define fully Hy, given (Y;)o<r<n. as the recursion starts nowhere.
In order to circumvent this difficulty, we have to find a place left empty by w. Let

Ay = I?Sakx(z -S) = _nrﬁcaéSk(z - S)). (5.1)

Proposition 5.2 For a given w and place k, there are two cases:
(). k is left empty, Hp =0, k — Sy = Ag—1 + 1 and A = Ap_1 + 1.
(ii). k is occupied, Hy, > 1, k — Sk < Ag_1 and Ap = Ap_1.

Proof. Clearly k is left empty if and only if H, = 0.

Next, observe that if S;, —S; > k— j for some j < k, then at least £ — j cars have tried
to park after j, and there is not room enough for all of them to park on {j +1,...,k—1},
so one of them will park on k. Conversely, suppose that some car parks on k, and let j be
the last empty place before k. Then the k& — j places {j + 1,...,k} are all occupied, and
the cars on them must all have made their first try in the same set, so Sy — S; > k — j.



Consequently, k is empty if and only if Sy —S; < k—j for all j < k, which is equivalent
to k — S > max;,(j — S;) = Ap_1 and thus also to Ap > Ay_;.

Finally, note that always k—S; < k—Sp_1 < 1+Aj_1,and thus Ap_1 < Ay < Ap_1+1.
¢

This leads to an explicit formula for Hy, given Y.

Proposition 5.3 For any integer k,
H,=1+85,—k+ Ap_1.

Proof. First observe that by Proposition 5.2, both sides vanish if &k is empty. We then
proceed by induction, beginning at any empty place (both sides have period n). Going
from k to k + 1, if k£ is occupied, then the left hand side increases by Proposition 5.1 by
Hy1 — Hy = Y1 — 1 while the right hand side increases by Y11 — 1+ Ap — Ag_1, which
by Proposition 5.2 equals Y11 — 1 too. Similarly, if k£ is empty, then both sides increase
by Yj;. Hence the equality holds for every k. &

We can also now complete the proof of Proposition 3.1.

Proposition 5.4 If W(w, j) = ming W (w, k), then place j is empty.
Proof. For every i < j,

m m

Sj = Si = W(w,) = W(w,i) +(j i) < (=) <j—i

and thus j—S; > max;;(i—S;) = Aj, so the result follows by Proposition 5.2. O
Let Vj (w) denote the number of empty places in the set {j+1,j+2,...,k}, according
to the parking scheme w. As another immediate consequence of Proposition 5.2 we obtain:

Proposition 5.5 For j <k,
Vik = Bk — A

Further similar results are given in [13, Section 5.

We end this section with a discrete analog of Theorem 2.6, which would lead to a proof
of Theorem 2.6 through the convergence theorems of Section 4. The proof of Theorem 2.6
that we give is however more direct, and we will not use this result in the sequel.

For w in P, ,, and k > 0, let C(w, k) be defined by:

k(n —m)

C(w, k) = -

— Vor(w).

Clearly C(w,k+n) = C(w, k), and we may use this to extend the definition to all integers
k.

Proposition 5.6 For w in P, ,, assertions C(w,j) = min; C(w,k) and W(w,j) =
ming W(w, k) are equivalent. For w in E, ,,, C(w,-) is nonnegative.

10



Proof. According to Proposition 5.4, W (w,7) = ming W (w, k) insures that place j is
empty. The first assertion also insures that place j is empty, since it implies C'(w,j — 1) >
C(w,j) and thus Vo ; > Vo ;1.

As a simple consequence of Propositions 5.2 and 5.5, see also [13], for an empty place
j and for k > j, we have:

Vik = jrg%xk(z—si)—j-l-sj
. . . S —m
= max (W(w,9) = W(w,i) + (i =)= —).

As a consequence, for k£ > j, we have:

Clw, k) — Clw,j) = W — Vi k
— min ((k —1i)(n —m)
j<i<k n
S W(wak) - W(waj)

+ W (w,4) = W(w,5))

By periodicity, the inequality persists for all integers j and k. This shows first that if
j is a minimum point for C, so that the left hand side is nonnegative for all &, then j
is a minimum point for W too. Moreover, if there is another minimum point k& for W,
then W (w, k) = W(w, j), and the inequality shows that C(w, k) = C(w, j), so k is another
minimum point for C too.

The final assertion follows because if w € E,, ;,, then 0 is a minimum point for W, and
thus also for C, and C(w,0) = 0. &

6 Convergence results: proofs

6.1 Proof of Theorem 4.1.

Let UM = (U,Em))lgkgm denote a sequence of m independent random variables, uniform
on [0,1]. For m < n, the sequence U™ generates the parking scheme w(™) € P, m defined
by

w,gm) = fnU,Em)].

The n™ possible parking schemes generated this way are clearly equiprobable.
Consider the empirical process a,(t) associated with U™, defined on [0, 1] by

am(t) = m™ P (#{k : U™ <t} — ma). (6.1)

As m — oo, the processes a,,, converge in distribution, as random elements of the space
DJ0,1], to a Brownian bridge [12, Theorem 16.4]. Due to the Skorohod representation
theorem, see e.g. [29, I1.86.1], we may thus assume that the variables U(™) are such that,

as m — oo,
am () — b(t), uniformly on [0, 1]. (6.2)

11



We have m = n — ¢ = n — ap/m, where a,, — a. Then, by (3.1), for any integer j
(extending av, periodically),

W(w™,j) = \/T_nam(%) (6.3)
Si—j = vm (am(%)—anl). (6.4)

Hence, as n — oo and thus m — oo too,

1
NG

uniformly on [—1, 1], say. By (5.1), this implies

(Sint) — nt]) = b(t) — at,

1
Ay = —b(s)) = —b(s)), 6.5
Tt tj‘;&’g(“s (s) S;;It)(as (s)) (6.5)

uniformly on [0, 1], and thus by Proposition 5.3 and (1.2) we obtain:

T (™) = b0) = at-+ 5up(b(s) = a5) = Y, (0,

uniformly for all real ¢ (by periodicity), which implies that:

Proposition 6.1 With the assumptions above, there is almost surely uniform conver-

gence of hyn(-,w™) to Yy (-).

6.2 Proof of Theorem 4.3.

We draw a random element w(™ in P, ,, using U™, as in Subsection 6.1. Let p(w(™) =
r7w(™) be its projection in E, ,,. Thus J is one of the points where W(w(m), -) attains its
minimum, and by (6.1) and (6.3), it follows that o, almost attains its minimum at J/n;
more precisely,

O (/) = inf e, (/) < inf o, (1) + m=/2, (6.6)

We can always assume that 1 < J < n.

Moreover, we may assume that b is constructed from a Brownian excursion e by Ver-
vaat’s relation (2.1). This entails that b has almost surely a unique minimum in [0, 1] at
the point 1 — U. Still assuming m = n — ¢ = n — a,+/m, the uniform convergence (6.2) of
am(t) to b(t) and (6.6) imply that

lim = =1-"U. (6.7)

Since Hy,(p(w™)) = Hyy7(w™) and thus hy, (¢, p(w™)) = hp(t + J/n w(™), which by
Proposition 6.1 and (6.7) converges uniformly to W,b(t + 1 — U) = W,e(t), we have

Proposition 6.2 With the assumptions above, there is almost surely uniform conver-

gence of (-, p(w™)) to Zq(-).

See Subsections 5.1 and 5.2 of [13] for more details.

12



6.3 Proof of Theorem 4.2.

The sequence S; — j may be seen as a certain random walk (with fixed endpoint S,, —
n = m — n.) Considering only parking sequences means conditioning the random walk
S; — j on ending at a minimum at S, — n. This random walk should, after rescaling,
converge to a Brownian bridge b(t) — at from 0 to —a, conditioned on its minimum being
—a, or, equivalently, a Brownian motion B(t) conditioned on B(1) = M(1) = —a, with
M (t) = min,<; B(s); the corresponding process h,, would then, through Proposition 5.3,
converge to B — M with the same condition. By Lévy [28, Theorem VI.2.3], (B — M, —M)
equals (in law) (|B|, L), so this is the same as |B(#)| conditioned on B(1) = 0, L(1) = a,
or, equivalently, |b(¢)| conditioned on L(1) = a.

However we have not been able to make such an argument rigorous, and we rather
proceed as in [6, Section 5]: we use the fact that the sequence of excursion lengths of X, is
the weak limit of the sequence of block lengths, suitably normalized, in a random confined
parking scheme of CP, ,_,. Then we take advantage of the fact that the excursions of
X, appear in random order, independently of their shape and length, as explained in
[27, Section 6], while the blocks of a random confined parking scheme have the same
property. This allows us to build on the same space a sequence of random variables
gn = (9n(t))o<i<1, distributed according to fi, ¢, and a random variable X = (X (t))o<¢<1,
with the same distribution as X,, in such a way that we can prove ¢, — X.

Sizes of blocks and lengths of excursions

For y € Py m, let us define R(y) = (R® (y))k>1 as the sequence of block lengths when the
blocks are sorted by increasing date of birth (in increasing order of first arrival of a car:
for instance, on the next figure, for n = 25 and m = 16, R(y) = (2,5,5,1,2,1,0,...)).
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Figure 3: Elements of P»5,,, m = 13,---,19.

Let 0, denote the law of R(y)/n when y is drawn at random in P, ,_, or in CP, ,_4.
Theorems 1.1 and 1.2 of [13] assert that, assuming i//n — a,

weakly
5n —7 T = (J]:)kzl,
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in which J* is defined, for k£ > 1, given a sequence of independent standard Gaussian
distributed random variables (Nj)i>1, by

N+ Nj+---+ N}
>+ N+ N3 +---+ N

S+ B+ + = (6.8)
Assume a > 0 and let 7, = T, (B), where B is the standard linear Brownian motion started
at 0. It is well known that (7;);>0 is a stable subordinator with index 1/2, meaning that,
for any k and any k-tuple of positive numbers (t;)1<i<:

law t% t% t2
daw oty by
(Tt1+t2+...+ti)1§2§k - (N12 + N22 + + Nl?)lﬁ’igk.

Setting 7, = 74/ a?, an immediate consequence is

- !
(Tt)tzo = (Tt)tzo-

It is also well known that (7;);>¢ is a pure jump process, whose jump-sizes in the interval
[0,t] are precisely the lengths of excursions, of the underlying Brownian motion, that end
before time 7 [28, §XII.2].

Let J; > Jy > --- (resp. J; > Jy > -+ and J > Jy > -++) be the ranked jump-sizes
of 7 over the interval [0, 1] (resp. the ranked jump-sizes of 7 over the interval [0, a] and
the ranked excursion lengths of X, over the interval [0,1]). As we have 7y = 7,/a? and
jk = Jk/a’Qa

(Bl |n=d) e (B2 |ne)

Ta”Ta’
[
= (T Jaye | Ta=1)

Gy gy,

the last identity due to the fact that, as remarked in Section 1, X, has the same distribution
as the reflected Brownian motion conditioned on 7, = 1 [27, (5.a)]. In view of these
identities, [7, Corollary 5] asserts that the size-biased random permutation of (Ji, Jo, )
has the same distribution as J* given by (6.8).

Incidentally, Theorem 1.4 of [13] shows that the sequences of excursion lengths of X,
and Z, have the same distribution, suggesting partly Theorems 2.5 and 2.6 of this paper.
The fact that the sequence of lengths of excursions has the same distribution for Z, as for
X, was noticed simultaneously in [8, 13], and leads to conjecture an interesting alternative
(through the fragmentation process of excursions of W,e) for the original construction,
given by Aldous and Pitman in [6], of the additive coalescent (see [8, 2nd version] for the
proof). In [13], it is shown that the process, with time parameter a, of blocks lengths of
a random element w € P, , |, /7|, converges to the same fragmentation process. This
parallels the behavior observed in [3] for the sizes of connected components of the random
graph during the phase transition.
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Order of excursions

Let us adopt the notation of [34, Lecture 4] for the Brownian scaling of a function f over

the interval [a, b]:
1
[a,b] _
f (\/b —a

According to the theory of excursions (see [27, Section 6] for details and references), we can
build a copy X of X, by applying the infinite analog of a random shuffle to the excursions
of X,.

More formally, let (ex)r>1 be a sequence of independent random variables distributed
as the normalized Brownian excursion e, and let (Ug)r>1 be a sequence of independent
random variables, uniform on [0, 1]. Moreover J*, (ek)kgl and (Ug)p>1 are assumed to be
independent. Set

fla+tb—a), 0<t<1).

ak)y = S It (6.9)

i U;<Uy
D) = > J. (6.10)
i: U;<Uy,
With probability 1, U; = U; = ¢ = j and the terms of J* add up to 1, so the stochastic
process X that is zero outside kL>J1 [G(k), D(k)], and satisfies
xIGRLDK)] — ¢,
for k > 1, is well defined and continuous, and has the same distribution as X, [27]. Note

that a.s.
Lawy(X) = Lpgy (X) = aUy,

with the notations of Theorem 2.6. The definition of G(k) and D(k) reflects the fact that
the excursions of X are ranked from left to right in increasing order of their number Uy,
generating thus a random shuffle of the excursions, independently of their shapes e; and
their lengths J}.

Order of blocks

Let us give a different formulation, more convenient for our purposes, of the well known
fact that a random shuffle of the blocks of a random confined parking scheme still produces
a random confined parking scheme: we only keep track of this shuffle on the profile of the
parking scheme.

Let Hy, = (hgk)) j>1 be independent sequences of possibly dependent random variables

h(-k), distributed according to fi;1. Assuming y is drawn at random in C'P, ,,_y, indepen-
dently of the sequences Hy, let us add 1 to each of the ¢ first coordinates of R(y): this
operation produces a new sequence of random variables j,, = (jn(k))r>1, whose terms add
up to n; these can be regarded as lengths of blocks including a final empty place (allowing
empty blocks consisting only of one empty place). Note that j, (k) > 0 if and only if & < £,
and that J, (k) = jn(k)/n still satisfies

weakl
J, Y g
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Let, in analogy with (6.9) and (6.10),

G(k,n) = .Z T () (6.11)
D(k,n) = .Z Jn(3), (6.12)

and let g, be defined by:

The hg.i)(k) are thus sorted by increasing order of the attached Uj. It is easily seen that
a random shuffle of the blocks (including a trailing empty place) in a random confined
parking scheme produces a new random confined parking scheme with the same distribu-
tion, and that the structure of each block of length j is distributed according to C'P; ;_;.

Hence, checking that our scalings match properly, g, is distributed according to fiy s

Proof of Theorem 4.2

From [14] (or as a very special case of Theorem 4.3, since CP, ,, 1 = E, 1), we know
that

~ weakly

Bn1 — €,
so the Skorohod representation theorem provides the existence, on some probability space
Q, of a Brownian excursion e and of a sequence H = (hj);>1 of possibly dependent random
variables h;, distributed according to fi; 1, such that, almost surely, h; converges uniformly
to e. The same Theorem provides the existence, on some probability space Q, of random
variables J, and J*, distributed as above, and such that, almost surely, for any k& > 1,

lim J, (k) = Jf. (6.13)

Finally, by a denumerable product of copies of [0, 1], Q and Q, we build on some
space (2, simultaneously, random variables ey, Hp = (hg-k))jzl, Ug, Jn and J*, where
k,n = 1,2,..., with the distributions given above, such that for each & > 1 (6.13) holds
and )

plk) wmformly o s < oo (6.14)
moreover, the variables (ey, Hy), Uy, and ((Jp)n>1,J*) are all independent of each other.

Define X and g, as above, and define further, for N > 1, X and g, n in the same
way, but using only excursions (blocks) with index & < N. Thus e.g. Xy = X on
UN[G(k), D(k)], while X ;v = 0 outside this set. Since the excursion lengths D (k) —G (k) —
0, and X is (uniformly) continuous on [0, 1], Xy — X in C[0, 1] (i.e. uniformly) as N — oo.

Note that as both J, and J* have nonnegative terms that add up to 1, (6.13) yields
¢'-convergence of J, to J*; and thus by (6.9), (6.10), (6.11), (6.12), G(n,k) — G(k) and
D(n,k) — D(k) for every k, which together with (6.14) and j,(k) = nJ,(k) — oo easily
implies that, for fixed N, g, v = Xn a.s. in C[0,1] as n — oo.

Informally, we now let N — oo. In order to justify this, we need the following estimate,
which will be proved below.
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Proposition 6.3 For every e > 0,

lim limsup Pr(||gn,n — gnl > €) =0,

N> n—oco
where || f|| = sup, | f(t)| denotes the norm in C[0,1].

Now, let € > 0. Then
Pr(llgn — X|| > 3¢) < Pr(llgn — gn,nll > €) + Pr(llgn,y — Xn [l > €) + Pr(| Xn — X|[| > ¢),

where by Proposition 6.3 and the comments above, all three terms on the right hand side
can be made arbitrarily small by first choosing IV and then n large enough. Consequently,
gn — X (uniformly) in probability, which completes the proof of Theorem 4.2. (See
also [12, Theorem 4.2] where the same type of argument is stated for convergence in
distribution.)

Proof of Proposition 6.3. The Dvoretsky-Kiefer-Wolfowitz inequality implies

sup B|hy||* < oo
J

(see [14, Section 3.2]). Denote this supremum by A. Then, given .J,, by Chebyshev’s

inequality,
Pr(llgn.y —gnll > €) = Pr(max/Jn IIh il > €)

< Zpr,/ ||h pll > e
k>N

< Y e AT (k)
k>N

and thus, unconditionally,

Pr(|lgn,n — gnll > €) < E(min(l,Ae_2 Z Jn(k))).
k>N

Hence, by dominated convergence,

lim sup Pr — >¢) < lim E(min(l, Ae 2 In(
moPr(lany ol > ) < Jim Bmin(l A 52

= E(min(1,4¢ ) J}))
k>N

which tends to 0 as N — oo by dominated convergence again. O

7 Proof of Theorem 2.2

Due to the Skorohod representation theorem, and to Theorem 4.2, there exist on some
probability space, a sequence f, of random variables distributed according to fon,|ay/m|+10
and a continuous copy X of X, such that, almost surely, f,(¢) converges, uniformly for
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t € [0,1], to X(¢). Possibly at the price of enlarging the probability space, consider a
random variable U, uniform on [0, 1] and independent of (f,)n>1 and X.
On the one hand, almost surely:

[nU]

fu(b 4+ ) M X (14 U).

On the other hand, according to Proposition 4.4, f, ( + @) is distributed according to
Pin,|ay/m)+1- Thus, owing to Theorem 4.1,

X('+U) lgﬂYa- <>

8 Proof of Theorem 2.8

Theorem 2.8 follows from (1.1)-(1.4) and the following formulas for the local times of Y,
and Z,.

Proposition 8.1 With Y, = U.b, for any t,

Li(Y,) = sup {as—0b(s)} — sup {as—b(s)}. (8.1)

—o00<s<t —00<s5<0

With Z, = Wye, for any t,

Li(Z,) = _;gr:q{as —e(s)} (8.2)
and for t € [0,1],
Li(Z,) = Oiggt{as —e(s)}. (8.3)

Proof. By a well known theorem of Paul Lévy [28, Theorem VI.2.3], a.s., on [0, 4+00)

Lu(By = jinf By) =~ inf B,

or, with the notation ®o(X); = —infoc,<; Xy,
Li(B + ®o(B)) = ®o(B):-

On any interval [0, 1 — §], the Brownian bridge b has an absolutely continuous distribution
w.r.t. the distribution of B, and so has b(t) — at. Consequently, for 0 < ¢ < 1, writing
b(®) = b(t) — at,

Ly (b + Do (b)) = o (b)), (8.4)

This extend by continuity to £ = 1. Now, define

o)== Ko

and observe that
@o(b(a))t < @(b(“))t
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with equality if and only if £ is larger or equal than the first nonnegative zero ¢y of the
process Y, = b(® 4+ &(b(®). On [ty, 1], we have thus

Yo (1) = b (1) + 3o (b@),.
As a consequence, on [tg, 1], (8.4) yields

Li(Ya) = Li(Ya) — Lty (Ya)

= B(b), — Bo(b\V)y,
= ®(b@W), — (b)),
= (@), — 3(),. (8.5)

This proves (8.1) for ¢ € [ty, 1]. The formula extends easily to [0, 1], since both sides vanish
on [0,tp], and due to the periodicity of Y, and b, to the whole line.

For the assertions on Z,, let b(t) = e(t + U) — e(U), where as usual U is uniform on
[0,1] and independent of e. Then, Z,(t) = Y,(t — U) and thus, using (8.1) or (8.5) and
o)) =Y, — @,

Lt(Za) = Lth(Ya) - LfU(Ya)
= b))y -0V _y
= Y,(t-U)=b(t—-U)+a(t—U)—=Ye(-U)+b(-U) —aU
= Z4(t) —e(t) + at,
which yields (8.2) and (8.3). &

9 Proof of Theorem 4.6(i,iii)

We assume that a random parking scheme w(™) in P, p, is constructed as in Subsection

6.1, so that the processes oy, defined there converge a.s. uniformly to a Brownian bridge

b(t). Then, by Proposition 6.1, Ay, (-, w(™) converges a.s. uniformly to Y, = W,b.
Moreover, by Proposition 5.5 and (6.5),

Vo, int)  Alnt) — Ao
: = — sup(as — b(s)) — sup(as — b(s)),
N0 NG Sgt( (s)) SSO( (s))
uniformly on [0,1], and thus v, (t,w(™)) has the same uniform limit. By Proposition
8.1, the right hand side equals the local time L.(Y,), and we have proved the following
complement to Proposition 6.1:

Proposition 9.1 With the assumptions above, there is almost surely uniform conver-
gence of vy (-, w™) to L(Y,) on [0,1].

Propositions 6.1 and 9.1 together yield Theorem 4.6(i).

For Part (iii), we use the additional assumptions of Subsection 6.2, and obtain then
easily from Proposition 9.1, using v, (t, p(w(™)) = v, (t + J/n,w™) — v, (J/n,w™), the
following analogue for Z,:

Proposition 9.2 With the assumptions above, there is almost surely uniform conver-
gence of vy (-, p(w™)) to L(Z,) on [0,1].
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10 Proofs of Theorem 2.5 and 4.6(ii)

In view of Theorem 4.2, the proof of Theorem 2.5 reduces to the proof of

Theorem 10.1 If a > 0, and 7 and T are defined as in Theorem 2.5, then

3 ki
fin lavi]  —  Za(T+)

WYL (7 4.
Proof. Set m = n — |ay/n| and define M, and M, € [0,1] by

Rl(=-m)U1 , _ My

By the definition of R and r on P, ;,, we have

oV, ) = 0 (M pfe)) = (=,

Due to Proposition 8.1, s — £(s) = Ls(Z,), s € [0,1], is continuous and nondecreasing
from 0 to a, with the consequences that the set A = {z € [0,a] : #£7'(z) > 1} is
denumerable, and that, furthermore, for = ¢ A, £~! is uniquely defined and continuous: if
Yn € [0,1] with £(y,) = z ¢ A, then y,, — £~'(z). Assume again that w = w(™ is as in
Subsections 6.1 and 6.2. Due to (10.1),

(10.1)

2
[6(My) — aU| < N lon (- p(w)) = oo
which a.s. converges to zero as n — oo by Proposition 9.2, and thus, if aU ¢ A, that is,
almost surely,

lim M, = ¢ (aU) = 7.

n—o0

For the same reasons
limM, =7 a.s..

As a consequence, using Propositions 6.1 and 6.2 again, almost surely, hn(R[(”*m)mw, )
[resp. hn(RI"=™Ulp(w), )] converges uniformly to Y, (7 +-) [resp. Zq(7+-)]. On the other
hand, according to Proposition 4.5, R[(»=Uly and RI("=™Ulp () are random uniform
on CP, ,, with the consequence that both B (RI=mU1 4 ) and by, (R[0T p(w), )
are distributed according to fi,, |4./n|- &

Similarly, for Theorem 4.6 (1i), we consider a copy X = Y (T + -) of X,, and we note
that, due to Proposition 9.1, v, (R[("=™U1y t) converges uniformly to Lz 4(Y,)—Lz(Y,) =
Li(X). ¢
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11 Proof of Theorem 2.6

If 0 < t < 1, Proposition 8.1 yields

Li(Z,) = sup {as —e(s)} < at,
0<s<t
since s — as — e(s) is a continuous function and as — e(s) < at for every s € [0,¢]. As a
consequence, t — x(t) = L;(Z,) — at, which has period 1, reaches its maximum 0 exactly
at the integers.
By Theorem 2.1, we can assume that Y, = Z,(U + -), and then

Li(Y,) —at = Ly(Zs) — Ly(Za) —at
= x(U+1t)—x(U).

Hence L;(Y,) — at reaches its maximum exactly at {n — U :n € Z}, s0 V. =1 —U and
Y,(V +t) = Z,(t), which proves (ii).

The proof for X, is done the same way, using either Theorem 2.5, or the result just
proved for Y, and Theorem 2.2. &

12 Concluding remarks

Concerning the problem of possible other shifts, note that there exist only one shift from
X, orY, to Z,. Actually there is no nontrivial shift from Z, to itself, while Y, is stationary,
i.e. invariant under any nonrandom shift, and X, is invariant under shifts T;,(X,) for any
z. This last point follows from Theorem 2.5, but it can also be seen more directly on the
definition of X, based on the sequences (e, J,U) of shapes, lengths and sorting numbers
of its excursions: if we replace the sorting numbers U = (U;);>1 by U™ = ({U; — z});>1,
it produces a new process which is just X, (7, (X,) + -). But

Ul @),

This paper deals with more or less the same stochastic processes as [6, 7, 25]. Maybe
less apparent, but somewhat expected, they deal with combinatorial notions that are
tightly related: the one-to-one correspondence between labeled trees and elements of
CP, n—1 (see [14] and the references therein) extends easily to a one-to-one correspondence
between random forests & la Pavlov [20, 22, 23] with n—m roots and m leaves and elements
of CP, , in which trees are in correspondence with parking blocks (see Figure 4). These
random forests can be seen as the set of genealogical trees of a Galton-Watson branching
process started with n — m individuals, with Poisson offspring, conditioned to have total
progeny equal to n [20]. As such, they are also considered in [6, Lemma 18] and [25,
Section 3].

Finally we remark that the shifts studied in this paper, together with the construction
in Section 6, imply the following improved version of Theorem 4.1 in [13].

Let U be a random variable uniformly distributed on [0, 1] and independent of a process
X that stands indifferently for X,, Y, or Z,. Let D (resp. F') denote the last zero of X
before U (resp. the first zero of X after U), and let = = F — D. Set, using Brownian
scaling as in Section 6, f = X!”Fl and r = X[FP+1],
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Figure 4: Correspondence C'Pj3 21 <+ Pavlov’s forests.

Theorem 12.1 We have:
(i). E has the same distribution as ‘IQIX—QNQ, in which N is standard Gaussian;
(ii). f is a normalized Brownian excursion, independent of (F,D);

(iii). Given (2, f), r is distributed as X, /i==-
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