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Abstract. The creation and growth of components of a given complexity
in a random graph process are studied. In particular, the expected number
and total size of all such components is found. It follows that the largest
`-component during the process is Op(n2/3) for any given `. The results
also yield a new proof of the asymptotic behaviour of Wright’s coefficients.

1. Introduction

We consider the growth of size and complexity of the components of a ran-
dom graph process {G(n, m)}0≤m≤(n

2)
or {G(n, t)}0≤t≤1. Recall that both pro-

cesses describe a randomly growing graph on n vertices, where edges are added
one by one, and where each new edge is chosen uniformly at random among
all remaining possibilities. The only difference between the two processes is
that in {G(n, m)}, the edges are added at the fixed times 1,2,. . . , so at time
m we have the random graph G(n, m) with m edges, while in {G(n, t)} the
edges are added at random times in such a way that at time t = p, we have
the random graph G(n, p). ({G(n, t)} may be constructed by letting each edge
e in the complete graph Kn appear at a random time Te, with Te independent
and uniformly distributed on (0, 1), and letting G(n, t) contain the edges that
have appeared before t.)

In this paper, we will study random variables that depend on the order the
edges appear in the process, but not on the time scale. All such variables will
thus have the same distribution for both processes (not only asymptotically,
but also for each finite n). Hence all results below are valid for both processes.

We define the complexity of a connected graph to be its number of edges
minus its number of vertices. A component of a graph of complexity ` is called
an `-component. Here ` ≥ −1; a (−1)-component is a tree, a 0-component is
unicyclic, and `-components with ` ≥ 1 are known as complex components.

In the beginning of the random graph process, there are no edges at all,
and thus n components of order 1 and complexity −1; at the end, we have the
complete graph, with a single component of complexity

(
n
2

)
−n. Several authors

have studied what happens in between, see e.g. [4, 9, 6, 7, 11, 8]. We will here
add some results obtained by studying, as in [6], the ways `-components are
created.

Each time a new edge is added, there are two possibilities:
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(i) The edge joins two vertices already in the same component. The
number of components and their orders remain the same, but if the
edge was added to an `-component, it becomes an (` + 1)-component.
We call this a transition ` → ` + 1.

(ii) The edge joins two vertices in different components. If these have
complexities `1 and `2, they will merge to an (`1 + `2 + 1)-component.
We call this a transition `1 ⊕ `2 → `1 + `2 + 1.

We say that an `-component is created by a transition `−1 → ` or `1⊕ `2 → `
with `1, `2 ≥ 0; in contrast, we say (for ` ≥ 0) that an `-component grows
when it swallows a tree by a transition `⊕−1 → `.

We can regard the `-components that appear in the random graph process
{G(n,m)} (or, similarly, {G(n, t)}) in two ways:

The static view: Let C`(m) denote the collection of all `-components in
G(n, m), and consider the family C∗` =

⋃
m C`(m) of every `-component

that appears at some stage of the process, ignoring when it appears.
We sometimes, for emphasis, call the elements of C∗` static `-components.

The dynamic view: For ` ≥ 0, we can regard a component as “the same”
even after it has grown by merging with a tree. In other words, we
identify any two elements of C∗` such that one is contained in the other,
and regard the `-components in the random graph process as functions
of time; these time-dependent subgraphs of Kn are called dynamic `-
components. Each dynamic component thus exists during some time
interval, in which it is created, grows, and disappears. In particular,
a dynamic component does not have a fixed size.

The maximal elements of C∗` (with respect to inclusion) are called maximal
`-components. Note that for ` ≥ 0, the maximal `-components are in one-to-
one correspondence with the dynamic `-components; they are the final forms
of the dynamic components before disappearing. For any `, the maximal `-
components are disjoint, their vertex sets form a partition of the set V` =⋃
{V (C) : C ∈ C∗` } of every vertex that belongs to an `-component at some

stage of the random graph process, and every static `-component is a subgraph
of some maximal `-component.

We further define V` = |V`|, the number of vertices that at some time belong
to an `-component, and V max

` = max{|V (C)| : C ∈ C∗` }, the order of the largest
`-component that ever appears. Note that, trivially, V max

` ≤ V`, and that for
any m or t, each `-component in G(n,m) or G(n, t) has at most V max

` vertices,
while the union of all `-components has at most V` vertices.

Let α(`; k) be the expected number of times that a new edge is added to an `-
component of order k, with both ends of the edge in the component. Similarly
let β(`1, `2; k1, k2) be the expected number of ordered pairs (H1, H2) such that
H1 and H2 are two distinct components at some stage of the process, which are
joined by the next edge, and such that Hi has ki vertices and complexity `i.
(Note that, by considering ordered pairs, every edge joining two components
is counted twice.)
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Our results are based on an evaluation of these expected numbers in Lemma 1
below (Section 2). In the following sections we apply Lemma 1 to, respectively,
complex components, unicyclic components, tree components, and complex
components again. For example, we show that for any fixed ` ≥ −1, the
largest `-component that appears during the evolution is of order Op(n

2/3).
(See e.g. [8] for the definition of Op and op.) In particular, this holds for tree
components and unicyclic components, which extends the well-known result
that for any given m = m(n) or p = p(n), the maximal order of such compo-
nents in G(n, m) or G(n, p) is Op(n

2/3).

Remark 1. In this paper we study only the expectations of various random
variables. In principle, it is possible to compute variances and higher moments
too; see [6], where this is done for the special case ` = 0. Such calculations
might perhaps be used to show that some of the random variables studied
below are concentrated about their means (as we conjecture), but we have not
attempted this.

Remark 2. Although we will not do it in this paper, it is possible to study also
when the transitions occur in the random graph process by keeping track of
the time t in the estimates above, instead of immediately integrating over all
t. Again, see [6], where this is done for ` = 0.

Remark 3. It might be possible to make a similar study of the disappearance of
components of a given complexity, but so far we have not succeeded to deduce
anything useful.

2. The expected number of transitions

Let C(k, k + `) denote the number of connected graphs with k + ` edges on
k labelled vertices. Then C(k, k− 1) = kk−2 (Cayley’s formula for the number
of labelled trees); more generally, by Wright [13], see also [7, 12], for any fixed
` ≥ −1, there exists a constant ρ` such that

C(k, k + `) = ρ`k
k−1/2+3`/2

(
1 + O(k−1/2)

)
. (1)

In particular, ρ−1 = 1, ρ0 =
√

π/8 and ρ1 = 5/24.
We can now state our basic result. We use nk to denote the falling factorial

n(n− 1) · · · (n− k + 1).

Lemma 1. For any ` ≥ −1 and k ≥ 1,

α(`; k) = nk (k + `)!

k!
C(k, k + `)

((
k

2

)
− k − `

)
(nk − k2/2− 3k/2− `− 1)!

(nk − k2/2− k/2)!
,

(2)
and for any k1, k2, `1, `2, with k = k1 + k2 and ` = `1 + `2,

β(`1, `2; k1, k2)

= nk(k + `)!
k1C(k1, k1 + `1)

k1!

k2C(k2, k2 + `2)

k2!

(nk − k2/2− 3k/2− `− 1)!

(nk − k2/2− k/2)!
.

(3)
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Moreover, for fixed `, and all k and n with 1 ≤ k ≤ n,

α(`; k) = 1
2
ρ`k

(3`+1)/2n−`−1e−k3/24n2
(
1 + O

(k

n
+

k4

n3
+ k−1/2

))
, (4)

and if further k1, k2 ≥ 1, `1, `2 ≥ −1, k1 + k2 = k and `1 + `2 = `,

β(`1, `2; k1, k2) = 1√
2π

ρ`1ρ`2k
3`1/2
1 k

3`2/2
2 k−1/2n−`−1e−k3/24n2

·
(
1 + O

(k

n
+

k4

n3
+ k

−1/2
1 + k

−1/2
2

))
, (5)

and also

β(`1,−1; k1, k2) = ρ`1k
3`1/2
1

kk2−1
2 e−k2

k2!
k−1/2n−`1e−k3/24n2

·
(
1 + O

(k

n
+

k4

n3
+ k

−1/2
1

))
. (6)

Proof. We do the calculations for G(n, t), which is more convenient. Similar
calculations can be performed for G(n,m), leading to sums of terms including
several binomial coefficients. By the equivalence discussed above, these sums
must equal the values in (2) and (3), although it seems difficult to show this
directly. (Perhaps, the Gosper–Zeilberger algorithm [5, Section 5.8] can be
used, but we have not tried it.) Asymptotic results are easily derived using
these sums too.

For a transition ` → ` + 1 when a new edge is added to an `-component of
order k, there are

(
n
k

)
C(k, k+`) possible `-components and

(
k
2

)
−k−` possible

edges to add; moreover, the probability that a given one of these possible `-

components actually is a component of G(n, t) is tk+`(1− t)(n−k)k+(k
2)−k−`, and

the conditional probability that a given edge, not in this component, is added
in the time interval (t, t+dt), given that it was not added earlier, is dt/(1− t).
Hence, we obtain, integrating over all times,

α(`; k) =

(
n

k

)
C(k, k + `)

((
k

2

)
− k − `

) ∫ 1

0

tk+`(1− t)(n−k)k+(k
2)−k−`−1 dt.

We obtain (2) by evaluating the beta integral.
Similarly, with k = k1 + k2 and ` = `1 + `2, since there are k1k2 ways to join

two given components of orders k1 and k2,

β(`1, `2; k1, k2) =

(
n

k

)(
k

k1

)
C(k1, k1 + `1)C(k2, k2 + `2)k1k2

·
∫ 1

0

tk+`(1− t)(n−k)k+(k
2)−k−`−1 dt,

which yields (3).
For the asymptotical results we observe that, for fixed ` and k ≤ n,

k(n− k/2) ≥ nk − k2/2− k/2 ≥ nk − k2/2− 3k/2− `− 1

= k
(
n− k/2 + O(1)

)
= k(n− k/2)

(
1 + O

( 1

n

))
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and thus

(nk − k2/2− 3k/2− `− 1)!

(nk − k2/2− k/2)!
=

1

(nk − k2/2− k/2)k+`+1

= k−k−`−1(n− k/2)−k−`−1
(
1 + O

(k

n

))
. (7)

Moreover, we claim that for 1 ≤ k ≤ n,

nk

(n− k/2)k
= e−k3/24n2

(
1 + O

(k

n
+

k4

n3

))
. (8)

Indeed, if k ≤ n3/4, then, by Taylor expansions,

log nk = k log n +
k−1∑
i=1

log(1− i/n) = k log n +
k−1∑
i=1

(
− i

n
− i2

2n2

)
+ O

(k4

n3

)
= k log n− k2

2n
− k3

6n2
+ O

(k

n
+

k4

n3

)
and

log(n− k/2)k = k log n + k log(1− k/2n) = k log n− k2

2n
− k3

8n2
+ O

(k4

n3

)
,

which imply (8).
On the other hand, if n3/4 ≤ k ≤ n, then

0 ≤ nk

(n− k/2)k
≤ 2

k−1∏
i=1

n− i

n− k/2
= 2

k/2∏
i=1

(n− i)(n− (k − i))

(n− k/2)2

= 2

k/2∏
i=1

(
1− (i− k/2)2

(n− k/2)2

)
≤ 2 exp

− k/2∑
i=1

(i− k/2)2

(n− k/2)2


= 2 exp

(
− (k/2)3

3(n− k/2)2
+ O

(k2

n2

))
≤ exp

(
− k3

24n2
+ O(1)

)
,

and again (8) follows (since now k4/n3 ≥ 1).
Combining (2), (7), (8) and (1), we obtain (4). Similarly, from (3), (7), (8),

(1) and Stirling’s formula we obtain (5) and (6) (for the latter using Cayley’s
formula for C(k2, k2 − 1) instead of (1)). �

When using Lemma 1, we will frequently find use for the following simple
asymptotic formulas.

Lemma 2.

(i) If a > −1, then

n∑
1

kae−k3/24n2 ∼ 2a+13(a−2)/3Γ
(a + 1

3

)
n2(a+1)/3

as n →∞.
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(ii) If a, b > −1, then∑
k1+k2=k
k1,k2≥1

ka
1k

b
2 ∼

Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)
ka+b+1

as k →∞.

Proof. For (i) it is easily checked that

n∑
1

kae−k3/24n2 ∼
∫ n

0

xae−x3/24n2

dx = n2(a+1)/3

∫ n1/3

0

yae−y3/24 dy

∼ n2(a+1)/3

∫ ∞

0

ya+1e−y3/24 dy

y
,

where the final integral equals, by the substitution y = (24z)1/3,∫ ∞

0

(24z)(a+1)/3e−z dz

3z
= (24)(a+1)/33−1Γ((a + 1)/3).

For (ii), similarly,

∑
k1+k2=k
k1,k2≥1

ka
1k

b
2 =

k−1∑
k1=1

ka
1(k − k1)

b ∼
∫ k

0

xa(k − x)b dx

= ka+b+1

∫ 1

0

xa(1− x)b dx =
Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)
ka+b+1. �

3. Creation of complex components

It was observed in [6] that a complex component must be created first as a
1-component, i.e. through a transition 0 → 1 or 0⊕ 0 → 1, and the expected
numbers of such transitions were calculated (by the same method as here). As
a warm-up, we rederive this result using Lemma 1.

Indeed, (4) implies by four applications of Lemma 2(i), recalling ρ0 =
√

π/8,
that the expected numbers of transitions 0 → 1 is

n∑
k=1

α(0; k) = 1
2
ρ0n

−1

n∑
k=1

(
k1/2 + O

(k3/2

n
+

k9/2

n3
+ 1

))
e−k3/24n2

= 1
2
ρ02

3/23−1/2Γ(1/2)
(
1 + o(1)

)
+ O(n5/3−2) + O(n11/3−4)

+ O(n2/3−1)

=
π

2
√

3
+ o(1).

Similarly, the expected numbers of transitions 0⊕0 → 1 is, with the factor 1/2
since β counts ordered pairs, by (5) and several applications of Lemma 2(i),(ii)
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(we leave the details to the reader)

1
2

n∑
k1,k2=1

β(0, 0; k1, k2) ∼
1

2

( 1

2π

)1/2π

8

n∑
k=2

k1/2n−1e−k3/24n2 ∼ π

8
√

3
.

Adding these numbers together, we obtain that the expected number of cre-
ations of complex components converges to 5π/8

√
3 ≈ 1.134.

Remark 4. By studying higher moments, it was in [6] further deduced that the
probability that the random graph process never has more than one complex
component converges to a limit strictly between 0 and 1; this limit was shown
to equal 5π/18 in [7].

4. Unicyclic components

Unicyclic components are created by the transition −1 → 0 and grow further
by 0⊕−1 → 0.

Unlike the creation of 1-components studied in the preceding section, the
number of transitions −1 → 0 is large; it follows from Lemma 1 (and Lemma 2
for the error terms), that its expectation is

n∑
k=1

α(−1; k) ∼ 1
2

n∑
k=1

k−1e−k3/24n2 ∼ 1
2

∫ n

1

1

x
e−x3/24n2

dx.

To estimate this integral, we write it as∫ n2/3

1

(
1

x
+ O

(x2

n2

))
dx +

∫ n1/3

1

e−y3/24 dy

y
= log n2/3 + O(1) + O(1),

and thus the expected number of creations is ∼ 1
3
log n. Hence, on the av-

erage, a random graph process has about 1
3
log n different dynamic unicyclic

components during the evolution (and thus about 1
3
log n maximal unicyclic

components in the static view). Equivalently, there are at the end about
1
3
log n cycles that at some time have belonged to unicyclic components. (We

believe that these random numbers are concentrated about their mean, i.e.
that they are

(
1
3

+ op(1)
)
log n, but we have not attempted to verify this.)

It can easily be verified by calculations similar to those in [8, Section 5.3]
that the average number of unicyclic components in G(n, n/2) or G(n, 1/n)
is ∼ 1

6
log n; moreover the actual random number is

(
1
6

+ op(1)
)
log n, so it

is concentrated about its mean (for example by using Corollary 4 below to
show that unicyclic components of size larger than n2/3/ log log n are too few
to matter, and then estimating the variance of the number of smaller unicyclic
components). Hence, roughly 1/2 of all (dynamic) unicyclic components that
appear during the evolution exist at m = n/2 (or at p = 1/n). (I’m grateful to
a referee for pointing out an error in a previous version of the present paper.)

Remark 5. The number of cycles in complex components in G(n, n/2) (or
G(n, 1/n)) is Op(1) (see [8, Theorem 5.19]) and thus the total number of cy-
cles is

(
1
6
+op(1)

)
log n too. On the other hand, it is also easily checked that the

average number of cycles is ∼ 1
4
log n. In other words, the number of cycles
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in G(n, n/2) or G(n, 1/n) is concentrated at 1
6
log n, which is only (asymp-

totically) 2/3 of the average. (The reason is of course that there is a small
probability of having a component with very many cycles.) This is a striking
example of the well-known fact that the average can be misleading.

The number of transitions 0⊕−1 → 0 when the unicyclic components grow
is much larger; its expectation is, by Lemmas 1 and 2 as above (now using (6))
and the well-known formula

∑∞
1 kk−1e−k/k! = 1,∑

k1,k2

β(0,−1; k1, k2) ∼
√

π

8

n∑
k=1

k−1∑
k2=1

kk2−1
2 e−k2

k2!
k−1/2e−k3/24n2

∼
√

π

8

n∑
k=1

k−1/2e−k3/24n2

∼ 2−13−5/6π1/2Γ(1/6)n1/3. (9)

Summarizing, we have:

Theorem 1. The expected number of dynamic 0-components is ∼ 1
3
log n.

The expected number of static 0-components is ∼ 2−13−5/6π1/2Γ(1/6)n1/3 ≈
1.975 n1/3. �

Next, we study V0 = |V0|, the number of vertices that ever belong to unicyclic
components. The expected number of vertices added to V0 by creations of
unicyclic components (transitions 0 → 1) is, by Lemmas 1 and 2,

n∑
k=1

kα(−1; k) ∼ 1
2

n∑
k=1

e−k3/24n2 ∼ 3−2/3Γ(1
3
)n2/3,

and the expected number of vertices added to already existing unicyclic com-
ponents (by transitions 0⊕−1 → 0) is∑

k1,k2

k2β(0,−1; k1, k2) ∼
1√
2π

√
π

8

n∑
k=1

k−1∑
k2=1

k
−1/2
2 k−1/2e−k3/24n2

∼ 1
4

n∑
k=1

2e−k3/24n2 ∼ 3−2/3Γ(1/3)n2/3.

Both types of transitions thus asymptotically contributes the same number of
vertices, and by summing we obtain:

Theorem 2.

E V0 ∼ 2 · 3−2/3Γ(1/3)n2/3 ≈ 2.576 n2/3. �

Since V0 majorizes both V max
0 and the total order of the unicyclic components

at any given stage of the process, we obtain immediate corollaries.

Corollary 3. For any C > 2 · 3−2/3Γ(1/3) and large enough n,

E V max
0 ≤ Cn2/3.
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Thus the largest unicyclic component during the evolution has order Op(n
2/3).

�

Corollary 4. For any given m = m(n) or p = p(n), let Ṽ0 be the total size
of the unicyclic components in G(n, m) or G(n, p). Then, for any C > 2 ·
3−2/3Γ(1/3) and large enough n,

E Ṽ0 ≤ Cn2/3. �

For m = n/2 or p = 1/n,

E Ṽ0 ∼
61/3Γ(1/3)

12
n2/3 = 2−5/33−2/3Γ(1/3)n2/3

[4, Theorem V.23], that is, by Theorem 2,

E Ṽ0 ∼ 2−8/3 E V0.

Thus, on the average, 2−8/3 ≈ 0.157 of the vertices that at some stage of the
random graph process belongs to a unicyclic component, do so when m = n/2.

(The random variables V0 and Ṽ0 are not concentrated in the above sense, which
follows e.g. from the results in [1] or [10, Theorem 9]. In view of the latter
results, it seems highly likely that n−2/3V0 has an asymptotic distribution, but
unlikely that it has a simple form.)

5. Tree components

We cannot estimate the size of the maximal tree components by the method
of the previous section, since each vertex belongs to a tree at the beginning
of the process and thus V−1 = |V−1| = n. Instead, let W−1 be the number of
unordered pairs of vertices {x, y} such that x and y belong to the same tree
component at some stage of the process; equivalently, W−1 is the number of
pairs {x, y} such that x and y belong to the same maximal tree component.
Hence, if the maximal tree components are T1,. . . ,TN ,

W−1 =
∑

i

(
|Ti|
2

)
. (10)

Theorem 5.

E W−1 ∼ 2−13−5/6π1/2Γ(1/6)n4/3 ≈ 1.975 n4/3.

Proof. The number of pairs {x, y} in the same tree is 0 at the beginning of the
process, and increases by k1k2 each time two tree components of orders k1 and
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k2 merge. Consequently, again with the symmetry factor 1/2,

E W−1 = 1
2

∑
k1,k2

k1k2β(−1,−1; k1, k2)

∼ 1

2

∑
k1,k2

1√
2π

k
−1/2
1 k

−1/2
2 k−1/2ne−k3/24n2

∼ π

2
√

2π
n

n∑
k=2

k−1/2e−k3/24n2

∼
(π

8

)1/2

21/23−5/6Γ(1/6)n1+1/3. �

By (10),
(
V max
−1

)2 ≤ 2W−1 + n. Consequently, we can now estimate the size
of the largest tree component.

Corollary 6. At least for large enough n,

E
(
V max
−1

)2 ≤ 4n4/3

and thus E V max
−1 ≤ 2n2/3. In particular, V max

−1 = Op(n
2/3). �

Remark 6. We can similarly consider, for any j ≥ 2,

W
(j)
−1 =

∑
i

(
|Ti|
j

)
,

the number of j-tuples of vertices that at some stage belong to the same tree
component, cf. (10). The argument above extends to

E V
(j)
−1 ∼ C

(j)
−1n

2j/3

for every j ≥ 2 and some constants

C
(j)
−1 = 2j−33j/3−3/2π−1/2 Γ(j/3− 1/2)

Γ(j − 1)

j−1∑
i=1

Γ(i− 1/2)Γ(j − i− 1/2)

i! (j − i)!
.

In particular, this implies that all moments of n−2/3V max
−1 are bounded. We

omit the details.
Moreover, similar results hold for `-components for any ` ≥ 0 too (and any

j ≥ 1). Again, we leave the details to the reader; note that j = 1 gives V`

treated in the next section.

6. Higher complexities

In this final section, we study creations of components of higher complexity.
Let, for ` ≥ 1, U ′

` be the number of creations by transitions ` − 1 → `, and
U ′′

` the number of creations by transitions `1 ⊕ `2 → ` for some `1, `2 ≥ 0 (i.e.
mergers of two cyclic components). Furthermore, let U` = U ′

` +U ′′
` be the total

number of creations of `-components, i.e. the number of dynamic `-components
in the random graph process. We begin by computing the expectations.
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Theorem 7. Let ` ≥ 1. Then, as n →∞,

E U ′
` → u′` = 23`/2−13`/2−1ρ`−1Γ(`/2),

E U ′′
` → u′′` = 23`/2−1/23`/2−1π−1/2 Γ(`/2)

Γ(3`/2 + 1/2)

· 1
2

`−1∑
m=0

ρmρ`−m−1Γ(3m/2 + 1)Γ(3(`−m− 1)/2 + 1)

and thus E U` → u′` + u′′` .

Proof. We argue as for the special case ` = 1 in Section 3. First, by Lemmas
1 and 2,

E U ′
` =

n∑
k=1

α(`− 1; k) ∼ 1
2
ρ`−1n

−`

n∑
k=1

k3`/2−1e−k3/24n2

∼ 23`/2−13`/2−1ρ`−1Γ(`/2).

Secondly,

E U ′′
` = 1

2

`−1∑
m=0

∑
k1,k2

β(m, `−m− 1; k1, k2),

which by a similar computation yields the second formula. �

While the limits in Theorem 7 can be evaluated for any given `, they are
not very illuminating as they stand, but we can connect them to well-known
properties of the evolution of random graphs.

Note first that, as a consequence of [7, Theorem 16], each U` converges in
distribution to some random variable Y`, whose support is {1, 2, . . . } for ` = 1
and {0, 1, 2, . . . } for ` ≥ 2. Furthermore, usually U` = 1 (although thus both
U` ≥ 2 and, for ` ≥ 2, U` = 0 are possible with positive limit probabilities).
Indeed, see Remark 4, with probability approching 5π/18, U` = 1 for all
` = 1, . . . ,

(
n
2

)
− n simultaneously. Moreover, the tendency for U` to equal 1

becomes more pronounced as ` increases, and we have the following result.

Lemma 3. For every ε > 0 there is an L such that, for any n, the probability
that U` = 1 for all ` = L, L + 1, . . . ,

(
n
2

)
− n is at least 1− ε.

Sketch of proof. This is an easy consequence of [7, Theorem 16]. Alternatively
(and simpler), it can be proved as follows; see [8, Theorem V.10] for more
details (in a slightly different case). First, we can find (by methods close to
those used in this paper) A such that the probability that a new complex
component is created after n/2 + An2/3 edges have been added is at most
ε/3. Then we find B such that the probability that there exist two complex
components in G(n, bn/2 + An2/3c) that are not joined by at least one of
the following Bn2/3 edges is at most ε/3. Finally there is an L such that
the probability that there is a component in G(n, bn/2 + (A + B)n2/3c) with
complexity at least L is at most ε/3. If none of these exceptional events occurs,
then U` = 1 for ` ≥ L. �
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We next observe that U` is close to 1 in mean too, using an argument similar
to dominated convergence. Since each complex component must begin as one
or several `-components, we have the majorization U` ≤ U1 for every ` ≥ 1,
and thus, by the Cauchy–Schwarz inequality and the fact that E U2

1 ≤ C for
some constant C [6],

|E U` − 1| ≤
(
E(U1 + 1)2 P(U` 6= 1)

)1/2 ≤ C ′ P(U` 6= 1)1/2.

By Lemma 3, this implies that E U` is close to 1 for large ` (for all n), and
thus, by Theorem 7,

u′` + u′′` → 1 as ` →∞. (11)

Indeed, (11) can also be derived from the well-known asymptotics of Wright’s
constants ([2, 3]; see also [7, Section 8])

25`/2−1/23−`π−1/2 Γ(3`/2)

Γ(`)
ρ` →

1

2π
as ` →∞. (12)

Simple calculations using Stirling’s formula show that (12) is equivalent to
u′` → 1 as ` → ∞, and that it implies u′′` → 0 as ` → ∞. (More precisely,
u′′` = O(`−1); the main contribution for large ` coming from the terms with
m = 0 and m = `− 1, which together yield u′`/(3`− 1) for ` ≥ 2.)

Conversely, our result (11) yields u′` ≤ C for some constant C. The calcula-
tions just mentioned now show first that the left hand side of (12) is bounded
and then that u′′` = O(`−1). Consequently (11) yields u′` → 1, and thus (by
the same calculations again) we obtain a new proof of (12).

Remark 7. The random graph process eventually has a unique complex com-
ponent, and by Lemma 3 this usually happens before the complexity gets very
large. This complex component increases its complexity by receiving new edges
added to it and by merging with unicyclic components. The facts that u′` → 1
and u′′` ∼ u′`/(3`− 1) ∼ 1/3` as ` →∞ show that usually the first case occurs,
although sometimes a unicyclic component is swallowed.

We may also compute the expected number of transitions `⊕−1 → ` when
the `-components grow; this is, using Lemmas 1 and 2 as in (9),∑

k1,k2

β(`,−1; k1, k2) ∼ ρ`2
3`/2+1/23`/2−5/6Γ(`/2 + 1/6)n1/3.

This and Theorem 7 yields an extension of the second part of Theorem 1.

Theorem 8. Let ` ≥ 0. Then the expected number of static `-components is
asymptotically s`n

1/3, where

s` = 23`/2+1/23`/2−5/6Γ(`/2 + 1/6)ρ`.

For large ` we can estimate s` using Stirling’s formula and (12), or by the
identity s` = 3−1/3

(
Γ(`/2 + 1/6)/Γ(`/2 + 1/2)

)
u′`+1; this yields

s` ∼ (3`/2)−1/3 as ` →∞.

Finally we consider the number of vertices in `-components, generalizing the
results for ` = 0 in Section 4.
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Theorem 9. For any ` ≥ 0,

E V` ∼ v`n
2/3

where

v` = 23`/23`/2−2/3Γ(`/2 + 1/3)

·
(

ρ`−1 +
∑̀
m=0

( 2

π

)1/2

ρmρ`−m−1
Γ(3m/2 + 1)Γ(3`/2− 3m/2 + 1/2)

Γ(3`/2 + 3/2)

)
.

(13)

In particular, V` = Op(n
2/3).

Proof. The expected number of vertices contributed by transitions ` − 1 → `
is

∑
k kα(`− 1; k), while the number of vertices contributed by a j-component

(−1 ≤ j ≤ ` − 1) merging with an (` − j − 1)-component is
∑

k1,k2
k1β(j, ` −

j − 1; k1, k2). Thus, with m = `− j − 1,

E V` =
∑

k

kα(`− 1; k) +
∑̀
m=0

∑
k1,k2

k1β(`−m− 1, m; k1, k2),

which yields the result using (4), (5) and Lemma 2 as above. �

Corollary 10. For any ` ≥ 0, E V max
` = O(n2/3), and thus V max

` = Op(n
2/3).

�

The proof of Theorem 9 shows that the different terms in (13) correspond
to the different ways that an `-component can be created or grow (the latter
for m = `).

Example. For ` = 1, Theorem 9 yields

E V1 ∼ 25
16

3−1/6π1/2Γ(5/6)n2/3 ≈ 2.603 n2/3.

Of this asymptotical value, 16/25 comes from transitions 0 → 1, 4/25 from
transitions 0⊕ 0 → 1 and 5/25 from transitions 1⊕−1 → 1 (i.e. from growth
of 1-components).

For large `, straightforward estimates using Stirling’s formula and (12) (or
u′` → 1 and u′′` → 0) show that the first term in (13) dominates, and we have

v` ∼ 23`/23`/2−2/3Γ(`/2 + 1/3)ρ`−1 ∼ (12`)1/3 as ` →∞. (14)

Remark 8. We have in this paper studied `-components for ` fixed, but one
can also let ` increase with n. It follows automatically from Theorem 9 and
(14) that if ` = `(n) → ∞ slowly enough, then E V` ∼ (12`)1/3n2/3; however,
we do not know for which functions `(n) this holds.
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