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Abstract. Consider a sum
∑N

1 Yi of random variables conditioned on a
given value of the sum

∑N
1 Xi of some other variables, where Xi and Yi are

dependent but the pairs (Xi, Yi) form an i.i.d. sequence.
We consider here the case when each Xi is discrete. We prove, for a tri-

angular array ((Xni, Yni)) of such pairs satisfying certain conditions, both
convergence of the distribution of the conditioned sum (after suitable nor-
malization) to a normal distribution, and convergence of its moments.

The results are motivated by an application to hashing with linear prob-
ing; we give also some other applications to occupancy problems, random
forests, and branching processes.

1. Introduction

Many random variables arising in different areas of probability theory, com-
binatorics and statistics turn out to have the same distribution as a sum of
independent random variables conditioned on a specific value of another such
sum. More precisely, we are concerned with variables with the distribution of∑N

1 Yi conditioned on
∑N

1 Xi, where the pairs (Xi, Yi) form a sequence of i.i.d.
random vectors; in general, the variables Xi can be discrete or continuous, or
even vector-valued. Some examples are given in Section 3 below, and many
others in, for example, [5, 6, 7, 11, 12].

General limit theorems yielding the asymptotic behaviour of the conditioned
sum under suitable assumptions are given by, among others, Steck [21], Holst
[5, 7] and Kudlaev [13]. (See also results on asymptotic expansions in [2, 14,
4, 8] and on rates of convergence in [15].)

The purpose of this paper is to give a set of sufficient conditions for conver-
gence of not only the distribution of the conditioned sum but also its moments.
We consider only the case when the variables Xi are discrete; we expect that
extensions to the continuous case are possible but not trivial. For simplic-
ity we further only consider the case when the limit distribution is normal.
(Asymptotics of the mean and variance in a case overlapping with ours has
earlier been studied by Swensen [22] in a somewhat different formulation. The

mean, in the equivalent form E(Y1 |
∑N

1 Xi), has been studied by Portnoy [19]
and Zabell [25, 26].)
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The theorem is stated, in several versions, in Section 2 and proved in Sec-
tion 4. The results in this paper were motivated by an application to hashing
with linear probing. This application is described in Section 3 (Example 3.2)
together with some other applications.

2. Main results

We state our main result in the following form. The large number of condi-
tions in the theorem is perhaps not so elegant, but we have chosen to state a
version that is easy to apply; all conditions are easily verified in the applica-
tions of interest to us. Some alternative versions of the conditions are discussed
in the remarks after the statement.

We use the notation σ2
X := VarX for a random variable X.

Theorem 2.1. (a) Suppose that, for each n, (Xn, Yn) is a pair of random
variables such that Xn is integer valued, and that Nn and mn are integers.
Suppose further that for some γ and c (independent of n), with 0 < γ ≤ 2 and
c > 0, the following hold, where all limits are taken as n→∞:

(i) EXn = mn/Nn.
(ii) 0 < σ2

Xn
<∞.

(iii) E |Xn − EXn|3 = o(N
1/2
n σ3

Xn
).

(iv) σ2
Xn

= O(N
2/γ−1
n ).

(v) ϕXn(s) := E eisXn satisfies 1−|ϕXn(s)| ≥ cmin(|s|γ, s2σ2
Xn

) for |s| ≤ π.
(vi) 0 < σ2

Yn
<∞.

(vii) E |Yn − EYn|3 = o(N
1/2
n σ3

Yn
).

(viii) The correlation ρn := Cov(Xn, Yn)/σXnσYn satisfies lim sup |ρn| < 1.

Let (Xni, Yni), i = 1, 2, . . . , be i.i.d. copies of (Xn, Yn), and let SnN :=
∑N

1 Xni,

TnN :=
∑N

1 Yni and τ 2
n := σ2

Yn
(1 − ρ2

n) = σ2
Yn
− Cov(Xn, Yn)2/σ2

Xn
. Then, as

n→∞, the conditional distribution of (TnNn −Nn EYn)/N
1/2
n τn given SnNn =

mn converges to a standard normal distribution. In other words, if Un is a
random variable whose distribution equals the conditional distribution of TnNn

given SnNn = mn, then

Un −Nn EYn

N
1/2
n τn

d→ N(0, 1). (2.1)

Moreover, EUn = Nn EYn + o(N
1/2
n τn) and VarUn ∼ Nnτ

2
n, and thus also

Un − EUn

(VarUn)1/2

d→ N(0, 1). (2.2)

(b) Assume furthermore that for each even integer r ≥ 4

(ix) E(Xn − EXn)r = O(N
r/2−1
n σr

Xn
),

(x) E(Yn − EYn)r = O(N
r/2−1
n σr

Yn
).

Then the limits (2.1) and (2.2) hold with convergence of all moments too.

Remark 2.1. Note that using the Lebesgue space norm ‖X‖r = (E |X|r)1/r,
the assumptions (iii), (vii), (ix) and (x) can be written
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(iii′) ‖Xn − EXn‖3 = o(N
1/6
n σXn),

(vii′) ‖Yn − EYn‖3 = o(N
1/6
n σYn),

(ix′) ‖Xn − EXn‖r = O(N
1/2−1/r
n σXn),

(x′) ‖Yn − EYn‖r = O(N
1/2−1/r
n σYn).

Since Minkowski’s and Hölder’s inequalities yield ‖Xn −EXn‖3 ≤ ‖Xn‖3 +

|EXn| ≤ 2‖Xn‖3, it is for (iii) sufficient that ‖Xn‖3 = o(N
1/6
n σXn), or E |Xn|3 =

o(N
1/2
n σ3

Xn
). More generally, it is sufficient that E |Xn− an|3 = o(N

1/2
n σ3

Xn
) for

some sequence of constants an. The same applies, mutatis mutandis, to (vii),
(ix) and (x).

In other words, the theorem holds also if EXn and EYn in (iii), (vii), (ix)
and (x) are omitted or replaced by any other numbers.

Remark 2.2. It is immediate that (viii) is equivalent to lim inf τ 2
n/σ

2
Yn
> 0,

and thus also to

(viii′) τ 2
n = Θ(σ2

Yn
).

(This notation means that lim sup τ 2
n/σ

2
Yn

and lim supσ2
Yn
/τ 2

n both are finite.)
In cases where this fails, one might apply the theorem to a suitable modification
Yn + anXn + bn instead, for example to the projection Y ′

n in (4.1); note that
this changes Un by the constant anmn + bnNn only.

Remark 2.3. τ 2
n equals min{Var(Yn−aXn) : a ∈ R} (the residual variance in

linear regression). Hence τ 2
n is unchanged if Yn is replaced by Yn + anXn + bn

for any real constants an and bn.

Remark 2.4. We consider here, for simplicity, only the central case when (i)
holds; equivalently, mn = ESnNn and thus we condition on SnNn = ESnNn .
In applications we usually take Xn from an exponential family and adjust the
parameter so that (i) holds. Nevertheless, it is interesting to consider other
cases too, and we give a generalization in Theorem 2.3 below.

Remark 2.5. The conditions (iv) and (v) are connected through the choice of
γ. They are used in the proof only to provide suitable dominations and may
be combined and weakened, for example to

|ϕXn(s)| ≤ 1− 2

Nn

ln(Nnσ
2
Xn
s2) +

c

Nn

, |s| ≤ π, (2.3)

but the version given above seems more convenient in our applications. Con-
dition (v) (or (2.3)) is the most technical and least intuitive of our conditions,
and it would be interesting to find other conditions not explicitly involving
the characteristic function that could replace it. (See Corollary 2.1 for a sim-
ple case.) Unfortunately, the condition cannot be eliminated completely, as is
shown by Example 3.7.

Remark 2.6. The powers of Nn in (iii), (vii), (ix) and (x) may look strange
at first, but the conditions turn out to be sharp in many cases; moreover, the o
in (iii) and (vii) cannot be replaced by O. See Examples 3.1, 3.2, 3.5 and 3.6.
(There may be room for improvements of (ix), however.)
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Remark 2.7. It follows from the proof below that if the extra conditions in
(b) are satisfied for a specific even r ≥ 4 only, then all moments of order less
than r converge; moreover, a minor modification of the proof shows that if the
O in (ix) and (x) is strengthened to o, then also the r:th moment converges.
(It is shown in Example 3.5 that (ix) and (x) are not sufficient for convergence
of the r:th moment.) The same holds for odd r ≥ 3 if we use absolute moments
in (ix) and (x).

The result simplifies considerably in the special case when (Xn, Yn) does not
depend on n, so we consider a single sequence instead of a triangular array.
This is included in the following, more general, corollary.

Corollary 2.1. Suppose that
(
Xn, Yn

) d→ (X, Y ) as n → ∞, and that, for
every fixed r > 0, lim supn→∞ E |Xn|r < ∞ and lim supn→∞ E |Yn|r < ∞.
Suppose further that the distribution of X has span 1, and that Y is not a.s.
equal to a linear function c+ dX.

If mn and Nn are integers such that EXn = mn/Nn and Nn →∞, then all
conclusions of Theorem 2.1 hold, with τ 2

n → VarY − Cov(X, Y )2/VarX > 0.

Remark 2.8. The assumptions of Corollary 2.1 imply that mn/Nn → EX.
Conversely, in the important case of an exponential family of distributions,
when the set of possible values of EX is an interval I, under weak additional
assumptions, the corollary applies when limmn/Nn exists and lies in the inte-
rior of I.

The results above easily extend to joint convergence for several random
variables conditioned on the same sum. Note that the conditions on Xn in the
next theorem, (i)–(v) and (ix), are exactly the same as in Theorem 2.1, while we
have chosen a slightly different formulation of the conditions for Yn, involving
somewhat arbitrary normalization constants bnj. This version is sometimes
more convenient even in the case of a single variable Yn; for example, in the
situation in Corollary 2.1, we may take bn1 = 1.

Theorem 2.2. (a) Suppose that, for each n, (Xn, Yn) is a pair of random

variables such that Xn is integer valued and Yn = (Y
(1)
n , . . . , Y

(l)
n ) is a random

vector (l does not depend on n). Suppose further that Nn and mn are integers
and bnj, j = 1, . . . , l, are positive real numbers, and that for some γ and c
(independent of n), with 0 < γ ≤ 2 and c > 0, the following hold, where all
limits are taken as n→∞:

(i) EXn = mn/Nn.
(ii) 0 < σ2

Xn
<∞.

(iii) E |Xn − EXn|3 = o(N
1/2
n σ3

Xn
).

(iv) σ2
Xn

= O(N
2/γ−1
n ).

(v) ϕXn(s) := E eisXn satisfies 1−|ϕXn(s)| ≥ cmin(|s|γ, s2σ2
Xn

) for |s| ≤ π.

(vi) VarY
(j)
n = O(b2nj).

(vii) E |Y (j)
n − EY (j)

n |3 = o(N
1/2
n b3nj).
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(viii) For some numbers σjk, 1 ≤ j, k ≤ l,

b−1
nj b

−1
nl

(
Cov(Y (j)

n , Y (l)
n )− Cov(Y

(j)
n , Xn) Cov(Y

(l)
n , Xn)

VarXn

)
→ σjk. (2.4)

Let (Xni, Yni), i = 1, 2, . . . , be i.i.d. copies of (Xn, Yn), and let SnN :=
∑N

1 Xni

and TnN :=
∑N

1 Yni. If Un = (U
(1)
n , . . . , U

(l)
n ) is a random vector whose distri-

bution equals the conditional distribution of TnNn given SnNn = mn, then, as
n→∞, (

N−1/2
n b−1

nj (U (j)
n −Nn EY (j)

n )
)l

j=1

d→ N(0,Σ) (2.5)

and (
N−1/2

n b−1
nj (U (j)

n − EU (j)
n )

)l

j=1

d→ N(0,Σ), (2.6)

where the covariance matrix Σ := (σjk). Moreover, the mean and covariance
matrix of the left hand sides converge to 0 and Σ, respectively.
(b) Assume furthermore that for each even integer r ≥ 4

(ix) E(Xn − EXn)r = O(N
r/2−1
n σr

Xn
),

(x) E(Y
(j)
n − EY (j)

n )r = O(N
r/2−1
n brnj).

Then the limits (2.5) and (2.6) hold with convergence of all (mixed) moments.

We can condense the conditions as follows (in a rather general special case).

Corollary 2.2. Suppose that, for each n, (Xn, Yn) is as in Theorem 2.2 and

that each pair (Xn, Y
(j)
n ), j = 1, . . . , l, satisfies the assumptions of Theorem 2.1

(or Corollary 2.1). Suppose further that bnj are positive numbers such that
(2.4) holds. Then the conclusions of Theorem 2.2 hold.

As said in Remark 2.4, it is also interesting to consider the casemn 6= ESnNn .
In the central region mn = ESnNn + O

(
(VarSnNn)1/2

)
the results above hold

with only minor modifications; for simplicity we state only an extension of
Theorem 2.1, leaving the special case in Corollary 2.1 and the vector-valued
case to the reader. (We will not consider the case when mn is in the more
distant tails of the distribution of SnNn . See [25] for the expectation in such a
situation.)

Theorem 2.3. Let the conditions in Theorem 2.1 be satisfied except that (i)
is replaced by

(i′) mn = Nn EXn +O(N
1/2
n σXn).

Then (2.2) still holds, with moment convergence as before if (ix) and (x) hold,
but

EUn = Nn EYn + ρn
σYn

σXn

(mn −Nn EXn) + o(N1/2
n τn) (2.7)

and thus (2.1) has to be correspondingly modified.

In particular, this implies results of the type of Swensen [22], under some-
what different conditions.

Remark 2.9. It follows from Theorem 2.3 that the conclusions of Theorem 2.1
are valid without modifications if (i) is weakened to
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(i′′) mn = Nn EXn + o(N
1/2
n σXn).

The same holds for Corollary 2.1, Theorem 2.2 and Corollary 2.2.

3. Applications

Example 3.1 (Occupancy). In the classical occupancy problem, m balls are
distributed at random into N urns. The resulting numbers of balls Z1, . . . , ZN

have a multinomial distribution, and it is well-known that this equals the
distribution of (X1, . . . , XN) conditioned on

∑N
1 Xi = m, where X1, . . . , XN

are i.i.d. with Xi ∈ Po(λ), for an arbitrary λ > 0 [12, 6].
The classical occupancy problem studies the number W of empty urns; this

is thus
∑N

1 1[Xi = 0] conditioned on
∑N

1 Xi = m. Now suppose that m =
mn → ∞ and N = Nn → ∞. Then, W = Wn can thus be taken as Un in
Theorem 2.1 with Xn ∈ Po(λn) and Yn := 1[Xn = 0] for any λn; we choose
λn = mn/Nn so that (i) holds.

If mn, Nn → ∞ such that mn/Nn → a ∈ (0,∞), then Corollary 2.1 imme-
diately yields asymptotic normality of Wn, with moment convergence.

In the case mn/Nn →∞, simple calculations, using known moment asymp-
totics and the explicit formula |ϕXn(s)| = exp

(
−λn(1 − cos s)

)
, show that

Theorem 2.1 applies with any γ < 2, provided Nne
−mn/Nn → ∞. This con-

dition is necessary for (vii), but it is also necessary for asymptotic normality
because Wn is asymptotically Poisson distributed and not asymptotically nor-
mal if Nne

−mn/Nn → µ <∞ [12]. Hence Theorem 2.1 is sharp in this case.
In the case mn/Nn → 0, finally, Theorem 2.1 cannot be applied as stated,

because Yn = 1[Xn = 0] yields ρn → −1. Instead we choose, cf. Remark 2.2,
Yn := 1[Xn = 0] + Xn − 1 = (Xn − 1)+, and it is easily verified that Theo-
rem 2.1 applies (with γ = 2) provided m2

n/Nn → ∞. Again, this condition is
necessary both for (vii) and for asymptotic normality, because Wn−(Nn−mn)
is asymptotically Poisson distributed if m2

n/Nn → µ <∞ [12].
Theorem 2.1 thus proves asymptotic normality of Wn in all cases where it

holds, together with moment convergence.
Actually, asymptotic normality in the case mn/Nn → a ∈ (0,∞) was first

proved by Weiss [23] using the method of moments, i.e. by first showing mo-
ment convergence. His estimates of the moments uses a complicated combina-
torial analysis, however, and the proof here seems simpler. (For other proofs of
asymptotic normality, not treating moments, see [20, 12, 5]; the last reference
uses the same method as this paper.)

Asymptotic normality in the other cases was shown by Rényi [20, 12]; we do
not know any earlier proof of moment convergence in these cases. (It is easy
to show that EW r

n ∼ (Nne
−mn/Nn)r for every r > 0, but we are discussing the

moments after normalization, or equivalently the central moments, which are
much smaller and thus much more difficult to estimate properly.)

By instead defining Yn := 1[Xn = k], we similarly obtain asymptotic nor-
mality, with moment convergence, for the number of urns with exactly k balls,
if mn, Nn → ∞ in a suitable range. Moreover, Theorem 2.2 yields joint con-
vergence for several k. We can also let k depend on n.
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We can similarly treat sums
∑N

1 f(Zi) for other functions f , for example

the χ2-statistic (N/m)
∑N

1 (Zi −m/N)2.

Further similar applications, where we now can add moment convergence,
can be found in Holst [6].

Example 3.2 (Hashing). Hashing with linear probing (see Knuth [10, Section
6.4] for the computer science background) can be regarded as throwing n balls
sequentially into m urns at random; the urns are arranged in a circle and a
ball that lands in an occupied urn is (before the next ball is thrown) moved
to the next empty urn, always moving in a fixed direction. The length of the
move, if any, is called the displacement of the ball, and we are interested in
the sum of all displacements. We assume n < m.

After throwing all balls, there are m − n empty urns. These divide the
occupied urns into blocks of consecutive urns; for convenience we consider the
empty urn following such a block as belonging to the block, and we regard
an empty urn following another empty urn as a block with zero occupied
urns. Thus there are N := m − n blocks, and it can be shown, see [9] for
details, that the lengths of the blocks (counting the empty urn) and the sums
of displacements inside each block are distributed as (X1, Y1), . . . , (XN , YN)

conditioned on
∑N

i=1Xi = m, where (Xi, Yi) are i.i.d. copies of a pair (X,Y )
of random variables, X has the Borel distribution

P(X = `) =
1

T (λ)

``−1

`!
λ`, ` = 1, 2, . . . , (3.1)

where T (λ) :=
∑

` `
`−1λ`/`! is the well-known tree function and λ is an ar-

bitrary number with 0 < λ ≤ e−1, and the conditional distribution of Y
given X = ` is the same as the distribution of the total displacement in
the case m = `, n = ` − 1. Consequently, the distribution of the total dis-
placement equals the conditional distribution of

∑N
j=1 Yj given

∑N
j=1Xj = m,

and we are in the situation studied in this paper. It is easily shown that
EX = 1/(1− T (λ)).

Assume now that n → ∞ with m = mn → ∞ and Nn = mn − n > 0.
We define λn = n

mn
exp(−n/mn) which satisfies T (λn) = n/mn and thus

EXn = 1/(1 − n/mn) = mn/Nn, where Xn is as in (3.1) with λ = λn. If
n/mn → α ∈ (0, 1), so mn/Nn → 1/(1 − α) and λn → λ ∈ (0, e−1), Corol-
lary 2.1 immediately shows that that the total displacement is asymptotically
normal, as previously shown by Flajolet, Poblete and Viola [3]; we further ob-
tain moment convergence. Moreover, straightforward estimates, see [9] for de-
tails, show that Theorem 2.1 applies also when n/mn → 0 or n/mn → 1 (with
γ = 2 and γ = 1/2, respectively), provided n �

√
mn and mn − n � √

mn.
(When one of these conditions fails, the distribution is not asymptotically
normal, see [9]; hence Theorem 2.1 is sharp in this application too.)

Example 3.3 (Random forests). Consider a uniformly distributed random
labelled rooted forest with m vertices and N < m roots. (We may assume
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that the vertices are 1, . . . ,m and, by symmetry, that the roots are 1, . . . , N .)
Let n := m−N be the number of non-roots.

The sizes of the N trees in the forest are distributed as X1, . . . , XN condi-
tioned on

∑N
i=1Xi = m, where Xi are i.i.d. with the Borel distribution (3.1)

for some λ [16, 11, 17]. Thus, the distribution of the tree sizes is the same as
the distribution of the block lengths in Example 3.2, cf. [10, Exercise 6.4-31]
and [1].

Let N = Nn and m = mn = n+Nn and consider the number Wnk of trees of
size k. Pavlov [16, 17] has shown, using similar methods, asymptotic normality
of Wnk for every fixed k ≥ 1, provided n,Nn →∞ and Nn(n/Nn)max(k,2) →∞.
(He also gave local limit theorems, which are not treated here.) Unfortunately,
we do not recover the full result by our theorems, but under the additional
assumption mn � N2

n, we can show asymptotic normality. The case Nn/mn →
a ∈ (0, 1) follows by Corollary 2.1, choosing Xn as in Example 3.2 and Yn =
1[Xn = k]. Similarly, the case Nn � mn � N2

n follows by Theorem 2.1 (with
γ = 1/2), using the calculations in [9] for Xn together with simple estimates
for Yn. Finally, when Nn/mn → 1 (and Nn(n/Nn)max(k,2) →∞), we can apply
Theorem 2.1 (with γ = 2), but this time we take Yn = 1[Xn = k] for k ≥ 3
only; for k = 1 and k = 2 we use the modifications 1[Xn = 1] + Xn − 2 and
1[Xn = 2]−Xn + 1, respectively, cf. Remark 2.2. We omit the details.

We thus obtain moment convergence too, and Theorem 2.2 yields joint as-
ymptotic normality of Wn1,Wn2, . . . ,Wnl, for any l.

Other additive characteristics of the random forest can be studied similarly.
For example, we obtain immediately (by Corollary 2.1) asymptotic normality
of the total path length when N/m → a ∈ (0, 1). This can be extended (by
Theorem 2.1) to other ranges of N,m → ∞, but we have not worked out the
precise conditions.

Example 3.4 (Branching processes). Consider a Galton–Watson process, for
simplicity beginning with one individual, where the number of children of an
individual is given by a random variable X having finite moments. Assume
further that EX = 1, i.e. that the process is critical, and that the span of X
is 1.

Number the individuals as they appear, and let Xi be the number of chil-
dren of the i:th individual; we can continue with fictitious individuals after
extinction, so that Xi is defined for all i ≥ 1, forming an i.i.d. sequence.

The total progeny is n ≥ 1 if and only if

Sk :=
k∑
1

Xi ≥ k for 0 ≤ k < n but Sn = n− 1. (3.2)

This is a different type of conditioning than the one studied in this paper,
but we observe that if x1, . . . , xn are any non-negative integers such that∑n

1 (xi − 1) = −1, then there is exactly one cyclical shift x′i := xi+l (mod n)

such that
∑k

1(x
′
i − 1) ≥ 0 for 1 ≤ k < n [24, 18] (l is the smallest number

for which
∑l

1 xi = −1). Consequently, if we ignore (or randomize) the order



MOMENT CONVERGENCE IN CONDITIONAL LIMIT THEOREMS 9

of X1, . . . , Xn, they have the same distribution conditioned on (3.2) as condi-
tioned on Sn = n−1, and we are back in the situation studied in this paper; we
can thus use our results to study variables of the type

∑n
1 f(Xi) conditioned

on having exactly n individuals in the process. (In this example we have a
single sequence rather than a triangular array: Xni = Xi and we drop the
index n from X and Y .)

Note that we take Nn = n and mn = n− 1, so ESnNn = Nn differs from mn

(although only by 1), and we have to use Theorem 2.3 instead of Theorem 2.1.
On the other hand, Remark 2.9 shows that the conclusions remains the same.

For example, taking Y := 1[X = k] for some k = 0, 1, . . . , we obtain
by Corollary 2.1 and Remark 2.9 that given that the total progeny of the
process (up to extinction) is n, the number of individuals with k children is
asymptotically normal. More precisely, if this number is denoted by Wnk and

pk := P(X = k), then n−1/2(Wnk − npk)
d→ N(0, σ2

k) as n→∞, with moment
convergence, where σ2

k := pk(1−pk)− (k−1)2p2
k/VarX. Joint convergence for

several k follows too, by Corollary 2.2 with bnj := 1; the asymptotic covariances
are σjk := −pjpk − (j − 1)(k − 1)pjpk/VarX, j 6= k.

Finally, we give three artificial counter-examples that illuminate the condi-
tions in the theorems.

Example 3.5. Let α, β ≥ 0 be two fixed real numbers. Take Xn and Yn

independent, so that Un = TnNn =
∑Nn

1 Yni. Further, let Nn = mn = n,
Xn ∈ Po(1) and let Yn take the values −1, 1 and nα+1/2 with probabilities 1/2,
1/2− pn and pn := n−1−β, respectively.

All conditions in Theorem 2.1 except (vii) and (x) are readily verified.
If α = β = 0, then τ 2

n = σ2
Yn
→ 2, and E |Yn−EYn|3 ∼ E |Yn|3 ∼ n1/2. Since

the number of terms in
∑Nn

1 Yni that equal n1/2 is Bi(n, 1/n), it is easily seen

that Un/
√
Nn

d→ W + Z where W ∈ Po(1) and Z ∈ N(0, 1) are independent.

This shows that the factor N
1/2
n in (vii) is sharp, and moreover that o cannot

be relaxed to O.
Assume now that β > 0. It is then easily seen that Un/

√
Nn

d→ N(0, 1).

If further β > 2α, then Nn EYn = o(N
1/2
n ) and τ 2

n → 1 so (2.1) holds. In
this case, VarUn ∼ Nn, so (2.2) holds too. However, with probability ≈ n−β,

Un/
√
Nn has a value ≈ nα, and it is easily verified that convergence of the r:th

moments in (2.1) or (2.2) holds if and only if β > rα. Moreover, (vii) holds if
and only if β > 3α. Similarly, (x) holds if and only if β ≥ rα, and the O can
be strengthened to o if and only if β > rα.

This shows that the results in Remark 2.7 are sharp.

Example 3.6. Let an ≥ 2 be an integer and let (for n > 4) P(Xn = 0) = 1/2,
P(Xn = ±1) = 1/4−1/n, P(Xn = ±an) = 1/n. Further, let Zn be independent
of Xn with P(Zn = ±1) = 1/2 and define Yn := Xn1[|Xn| ≤ 1] + Zn. We take
Nn = n and mn = 0.

It is easily verified that Theorem 2.1 applies when an = o(
√
n).
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Now take an := b
√
nc. Then all conditions in Theorem 2.1 except (iii) still

hold, but E |Xn − EXn|3 = E |Xn|3 ∼ 2n1/2 = Θ(n1/2σ3
Xn

). Note that, if
SnNn = mn, then

TnNn =
Nn∑
1

Zni −
Nn∑
1

Xni1[|X| = an] =
Nn∑
1

Zni − an(Ln+ − Ln−), (3.3)

where Ln+ and Ln− are the numbers of terms Xni equal to an and −an, re-
spectively. Without conditioning, these numbers converge in distribution to
independent Poisson variables, and it is easily seen that even when condition-
ing on SnNn = 0, Ln+ −Ln− converges in distribution to some non-degenerate

random variable L̃, supported on the integers. Since {Zni} is independent of

{Xni}, it follows from (3.3) that Un/
√
Nn

d→ W − L̃, where W ∈ N(0, 1) is

independent of L̃. Consequently, the limit is not normal, which shows that
assumption (iii) cannot be weakened to O.

Example 3.7. Let P(Xn = 0) = P(Xn = 2) = 1
2
− pn and P(Xn = 1) = 2pn,

where pn := e−n, say. Let further W and Z be random variables independent
of {Xn} with P(Z = 1) = P(Z = −1) = 1

2
while W has any distribution with

finite moments, and define Yn := Z if Xn = 0 or Xn = 2, and Yn :=
√

2n+ 1W
if Xn = 1. Finally, let N = mn = 2n+ 1.

Clearly, (Xn, Yn)
d→ (X,Y ) as n → ∞, with convergence of all moments,

where 1
2
X ∈ Be(1

2
), Y = Z, and X and Y are independent, and the conditions

of Theorem 2.1 except (v) are satisfied. Indeed, this is an instance of Corol-
lary 2.1 except that the span of the distribution of X is 2. We will see that,
nevertheless, the conclusions of Theorem 2.1 do not hold; thus showing that
the conditions (v) and ‘span=1’, respectively, cannot be eliminated. Note that
Nn EYn → 0, ρn → 0 and τ 2

n → 1.
Let Ln be the number of Xn1, . . . , XnNn that equal 1. Then SnNn ≡ Ln

(mod 2), so if SnNn = mn then Ln is odd. Moreover, since pn → 0 rapidly,
P(Ln ≥ 3 | SnNn = mn) � P(Ln = 1 | SnNn = mn) and thus P(Ln = 1 |
SnNn = mn) → 1.

If Ln = 1 and j is the index with Xnj = 1, then Yni = Zi for i 6= j and thus

TnNn =
√
NnWj +

∑
i6=j Zi (with the obvious meanings of Wj and Zi). Since

{Wi} and {Zi} are independent of {Xni}, it follows that the conditional dis-
tribution of TnNn given SnNn = mn, Ln = 1 and Xj = 1 equals the distribution

of
√
NnWj +

∑
i6=j Zi. Furthermore, by symmetry, the latter distribution does

not depend on j. Hence, letting dTV denote the total variation distance of the
distributions,

dTV(Un,
√
NnW1 +

Nn∑
i=2

Zi) ≤ P(Ln ≥ 3 | SnNn = mn) → 0,

and it follows, applying the central limit theorem to {Zi}Nn
2 , that

Un/
√
Nn

d→ W + V, (3.4)
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where V ∈ N(0, 1) is independent of W . Moreover, simple estimates show that
all moments converge in (3.4).

For example, taking W := 1 we find Un/
√
Nn

d→ N(1, 1) and EUn =
√
Nn+

o(N
1/2
n ) 6= Nn EYn + o(N

1/2
n τn); hence (2.1) does not hold.

For another simple example, take W := Z. Then EYn = EXnYn = 0, so Xn

and Yn are uncorrelated. We have EUn = 0 but VarUn ∼ Nn Var(W + V ) =
2Nn, and neither (2.1) nor (2.2) holds.

4. Proofs

Lemma 4.1. If X is an integer valued random variable, then

VarX ≤ 4 E |X − EX|3.

Proof. Let k := bEX + 1/2c be the integer closest to EX. Then

E
(
|X − EX|1[X = k]

)
=

∣∣ E
(
(X − EX)1[X = k]

)∣∣
=

∣∣ E
(
(X − EX)1[X 6= k]

)∣∣ ≤ E
(
|X − EX|1[X 6= k]

)
.

Moreover, |X −EX| ≤ 1/2 if X = k and |X −EX| ≥ 1/2 if X 6= k, and thus

E
(
|X − EX|21[X = k]

)
≤ 1

2
E

(
|X − EX|1[X = k]

)
≤ 1

2
E

(
|X − EX|1[X 6= k]

)
≤ E

(
|X − EX|21[X 6= k]

)
.

Consequently,

E |X − EX|2 ≤ 2 E
(
|X − EX|21[X 6= k]

)
≤ 4 E |X − EX|3. �

Proof of Theorem 2.1. We first replace Yn by the projection

Y ′
n := Yn − EYn −

Cov(Xn, Yn)

σ2
Xn

(Xn − EXn). (4.1)

Then EY ′
n = 0 and Cov(Xn, Y

′
n) = EXnY

′
n = 0, and, using (viii′),

σ2
Y ′

n
:= VarY ′

n = VarYn − Cov(Xn, Yn)2/σ2
Xn

= τ 2
n = Θ(σ2

Yn
). (4.2)

It follows by this (or Remark 2.3) that τ 2
n remains the same. Moreover, by

Minkowski’s inequality, (iii′), (vii′) and (4.2)

‖Y ′
n‖3 ≤ ‖Yn − EYn‖3 +

|ρn|σXnσYn

σ2
Xn

‖Xn − EXn‖3 = o(N1/6
n σYn) = o(N1/6

n σY ′
n
)

so (vii′), and thus (vii), holds for Y ′
n too. Similarly, for part (b), if (ix′) and

(x′) hold, then (x′) and (x) hold for Y ′
n too. Consequently, all conditions hold

for (Xn, Y
′
n) too.

Finally,

T ′nNn
:=

Nn∑
1

Y ′
ni = TnNn −Nn EYn −Cov(Xn, Yn)σ−2

Xn
(SnNn −Nn EXn), (4.3)

so conditioned on SnNn = mn = Nn EXn we have T ′nNn
= TnNn − Nn EYn.

Hence, the conclusions for (Xn, Yn) and (Xn, Y
′
n) are equivalent.
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Consequently it suffices to prove the theorem for (Xn, Y
′
n); in other words,

we may henceforth assume that EYn = EXnYn = 0. Note that then τ 2
n = σ2

Yn
.

We introduce some convenient notation. Let

ϕn(s, t) := E eis(Xn−E Xn)+itYn = e−ismn/Nn E eisXn+itYn ,

i.e., e−ismn/Nn times the bivariate characteristic function of (Xn, Yn). Thus

ϕNn
n (s, t) = E eis(SnNn−mn)+itTnNn .

Let further

ψn(t) :=

∫ π

−π

ϕNn
n (s, t) ds = E

∫ π

−π

eis(SnNn−mn)+itTnNnds

= E
(
2π1[SnNn = mn]eitTnNn

)
= 2π P(SnNn = mn) E

(
eitTnNn | SnNn = mn

)
= 2π P(SnNn = mn) E eitUn , (4.4)

where we used the fact that
∫ π

−π
eiskds = 0 for every non-zero integer k. (This

standard Fourier inversion argument is the main reason for the assumption
that Xn is discrete.) Consequently,

E eitUn = E
(
eitTnNn | SnNn = mn

)
= ψn(t)/ψn(0). (4.5)

Introduce the scaling constants βnX = N
−1/2
n σ−1

Xn
and βnY = N

−1/2
n σ−1

Yn
, and

define

Ψn(t) :=

∫ π/βnX

−π/βnX

ϕNn
n (βnXs, βnY t) ds = β−1

nXψn(βnY t). (4.6)

We claim that, for every fixed real t,

Ψn(t) =

∫ ∞

−∞
1[|s| ≤ π/βnX ]ϕNn

n (βnXs, βnY t) ds

→
∫ ∞

−∞
e−s2/2−t2/2 ds =

√
2πe−t2/2. (4.7)

This then yields, by (4.5) and (4.6), E eitβnY Un = Ψn(t)/Ψn(0) → e−t2/2 for

each t, and thus by the continuity theorem βnYUn
d→ N(0, 1), which is (2.1).

(Remember that we now assume EYn = 0 and τ 2
n = σ2

Yn
.)

We prove (4.7) by dominated convergence. First, Lemma 4.1 and (iii) yield

σ2
Xn

= o(N
1/2
n σ3

Xn
), so β−1

nX = N
1/2
n σXn →∞ and 1[|s| ≤ π/βnX ] → 1 for every

fixed s.
Next, let s and t be fixed and set Zn := βnXs(Xn − EXn) + βnY tYn. As

is well-known, the Taylor estimate |eiZn − 1 − iZn + 1
2
Z2

n| ≤ |Zn|3 yields by
integration

ϕn(βnXs, βnY t) = E eiZn = 1 + iEZn − 1
2

EZ2
n +O(E |Zn|3). (4.8)

Now, using our assumption EYn = EXnYn = 0, EZn = 0 and

EZ2
n = β2

nXs
2σ2

Xn
+ β2

nY t
2σ2

Yn
=
s2 + t2

Nn

,
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while, by Minkowski’s inequality with (iii′) and (vii′) again,

‖Zn‖3 ≤ N−1/2
n σ−1

Xn
|s|‖Xn − EXn‖3 +N−1/2

n σ−1
Yn
|t|‖Yn‖3 = o(N−1/3

n ).

Thus E |Zn|3 = ‖Zn‖3
3 = o(N−1

n ).
Consequently, (4.8) yields

ϕn(βnXs, βnY t) = 1− s2 + t2

2Nn

+ o
( 1

Nn

)
(4.9)

and thus, since (iii) and Hölder’s (or Lyapunov’s) inequality imply Nn →∞,

1[|s| ≤ π/βnX ]ϕNn
n (βnXs, βnY t) → e−(s2+t2)/2. (4.10)

This shows pointwise convergence of the integrand in (4.7); it remains to
show that the left hand side of (4.10) is dominated by an integrable function
g(s), which may depend on t (which is fixed during the argument) but not on
n.

First consider t = 0, when we have |ϕn(s, 0)| = |ϕXn(s)|. We write δn(s) :=
1− |ϕXn(s)|; thus assumption (v) yields

δn(βnXs) ≥ cmin
(
|βnXs|γ, s2β2

nXσ
2
Xn

)
, |βnXs| ≤ π.

Now, by (iv), β−2
nX = Nnσ

2
Xn

= O(N
2/γ
n ), so βnX ≥ c1N

−1/γ
n and |βnXs|γ ≥

c2N
−1
n |s|γ, with c1, c2 > 0. Moreover,

s2β2
nXσ

2
Xn

+N−1
n =

1

Nn

(s2 + 1) ≥ 1

Nn

|s|γ.

Consequently, assuming as we may c2 ≤ 1,

min(|βnXs|γ, s2β2
nXσ

2
Xn

) ≥ c2
1

Nn

|s|γ − 1

Nn

and thus, with c3 = c2 min(c, 1) > 0,

δn(βnXs) = 1− |ϕXn(βnXs)| ≥ c3
1

Nn

|s|γ − 1

Nn

, |βnXs| ≤ π. (4.11)

Next, for a general t,

ϕn(s, t) = ϕn(s, 0) + itE
(
eis(Xn−E Xn)Yn

)
+ E

(
eis(Xn−E Xn)(eitYn − 1− itYn)

)
and thus

|ϕn(s, t)| ≤ |ϕn(s, 0)|+ |t||E
(
eisXnYn

)
|+ E

∣∣eitYn − 1− itYn

∣∣. (4.12)

We estimate the terms separately. First, |ϕn(s, 0)| = |ϕXn(s)| = 1 − δn(s).
Secondly, let θ = argϕXn(s). Then, since EYn = 0, by the Cauchy–Schwarz
inequality,

|E(eisXnYn)|2 = |E
(
(eisXn − eiθ)Yn

)
|2

≤ EY 2
n E

∣∣eisXn − eiθ
∣∣2 = σ2

Yn
(2− 2 Re E eisXn−iθ)

= σ2
Yn

(2− 2|ϕXn(s)|) = 2σ2
Yn
δn(s) (4.13)

and thus, by the arithmetic-geometric inequality,

|t||E(eisXnYn)| ≤
√

2|t|σYnδn(s)1/2 ≤ t2σ2
Yn

+ 1
2
δn(s).
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Thirdly,
∣∣eitYn − 1− itYn

∣∣ ≤ 1
2
t2Y 2

n .
Consequently, (4.12) yields

|ϕn(s, t)| ≤ 1− δn(s) + 1
2
δn(s) + 2t2σ2

Yn
= 1− 1

2
δn(s) + 2t2σ2

Yn
.

Using (4.11) we obtain, with c4 = c3/2 > 0,

|ϕn(βnXs, βnY t)| ≤ 1− 1
2
δn(βnXs) + 2t2β2

nY σ
2
Yn
≤ 1 + 1

Nn
(−c4|s|γ + 1 + 2t2)

≤ exp
(

1
Nn

(−c4|s|γ + 1 + 2t2)
)
, |βnXs| ≤ π,

and thus

|ϕNn
n (βnXs, βnY t)| ≤ exp(1 + 2t2 − c4|s|γ), |s| ≤ π/βnX .

This yields the desired domination and completes the proof of (4.7), and thus
of (2.1).

Turning to mean and variance, we obtain by differentiating (4.5) and (4.4)
twice at t = 0 (differentiation under the integral sign is easily justified using
ET 2

nNn
<∞, which follows from (vi))

− EU2
n = ψ′′n(0)/ψn(0)

= ψn(0)−1

∫ π

−π

[
Nn∂

2
t ϕn(s, 0)ϕNn−1

n (s, 0) +Nn(Nn − 1)
(
∂tϕn(s, 0)

)2
ϕNn−2

n (s, 0)
]
ds

and thus, by a change of variables and (4.6),

1

Nnσ2
Yn

EU2
n = Ψn(0)−1

∫ π/βnX

−π/βnX

σ−2
Yn

[
−∂2

t ϕn(βnXs, 0)ϕNn−1
n (βnXs, 0)

− (Nn − 1)
(
∂tϕn(βnXs, 0)

)2
ϕNn−2

n (βnXs, 0)
]
ds. (4.14)

Again we apply dominated convergence. First,

−∂2
t ϕn(βnXs, 0) = E

(
eiβnXs(Xn−E Xn)Y 2

n

)
and thus, using Hölder’s inequality and (iii), (vii), for fixed s,

|∂2
t ϕn(βnXs, 0) + σ2

Yn
| =

∣∣E(
(1− eiβnXs(Xn−E Xn))Y 2

n

)∣∣
≤ βnX |s|E

(
|Xn − EXn|Y 2

n

)
≤ βnX |s|‖Xn − EXn‖3‖Yn‖2

3

= o(βnXN
1/6
n σXnN

2/6
n σ2

Yn
) = o(σ2

Yn
).

Similarly,

∂tϕn(βnXs, 0) = iE
(
eiβnXs(Xn−E Xn)Yn

)
= iE

((
eiβnXs(Xn−E Xn) − 1− iβnXs(Xn − EXn)

)
Yn

)
and thus,

|∂tϕn(βnXs, 0)| ≤ E |β2
nXs

2(Xn − EXn)2Yn| ≤ β2
nXs

2‖Xn − EXn‖2
3‖Yn‖3

= o(β2
nXN

2/6
n σ2

Xn
N1/6

n σYn) = o(N−1/2
n σYn).

Together with (4.9), this shows that the integrand in (4.14) tends to e−s2/2 for
every s.
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To obtain a suitable domination, we observe that

|∂2
t ϕn(s, 0)| ≤ EY 2

n = σ2
Yn

and, by (4.13),

|∂tϕn(s, 0)|2 = |E eisXnYn|2 ≤ 2σ2
Yn
δn(s).

Consequently, using (4.11) in the final step,∣∣∣σ−2
Yn

[
−∂2

t ϕn(βnXs, 0)ϕNn−1
n (βnXs, 0)− (Nn − 1)

(
∂tϕn(βnXs, 0)

)2
ϕNn−2

n (βnXs, 0)
]∣∣∣

≤ (1− δn(βnXs))
Nn−1 + 2Nnδn(βnXs)(1− δn(βnXs))

Nn−2

≤ e−(Nn−1)δn(βnXs) + 2Nnδn(βnXs)e
−(Nn−2)δn(βnXs)

≤ C1e
−Nnδn(βnXs)/2 ≤ C2e

−c4|s|γ ,

for some C1, C2. It now follows from (4.14), and Ψn(0) →
√

2π by (4.7), that

1

Nnσ2
Yn

EU2
n →

1√
2π

∫ ∞

−∞
e−s2/2 ds = 1.

In other words, E(Un/N
1/2
n σYn)2 → 1. In particular, the random variables

Un/N
1/2
n σYn are uniformly integrable, and it follows from the already shown

Un/N
1/2
n σYn

d→ N(0, 1) that E(Un/N
1/2
n σYn) → 0. Thus also Var(Un/N

1/2
n σYn)

→ 1.
This proves the estimates of mean and variance in the theorem, and shows

further that (Un−EUn)/N
1/2
n σYn and (Un−EUn)/(VarUn)1/2 too converge in

distribution to N(0, 1), which completes the proof of (a).
For part (b) we have that, still assuming EYn = EXnYn = 0,

E |Yn|r = O(N r/2−1
n σr

Yn
) (4.15)

holds by assumption for even r ≥ 4, and trivially for r = 2, while if r = 2s+1 ≥
3 is an odd integer, then Hölder’s inequality yields E |Yn|r ≤ (EY 2s

n EY 2s+2
n )1/2,

which by (4.15) for r = 2s and r = 2s+2 implies that (4.15) holds for r = 2s+1
too. Thus (4.15) holds for each integer r ≥ 2.

Now, let r be a positive integer. Differentiating (4.5) and (4.4) r times we
find

ir EU r
n = ψ(r)

n (0)/ψn(0) = ψn(0)−1

∫ π

−π

∂r
tϕ

Nn
n (s, 0) ds,

and thus, by a change of variable,

E(Un/N
1/2
n σYn)r = i−rΨn(0)−1

∫ π/βnX

−π/βnX

N−r/2
n σ−r

Yn
∂r

tϕ
Nn
n (βnXs, 0) ds. (4.16)

As in the special case r = 2 in (4.14), we can, by differentiating ϕNn
n r times

and expanding, write the integrand as a sum of terms

ϕn(βnXs, 0)Nn−j

j∏
i=1

(Nn + 1− i)N−ri/2
n σ−ri

Yn
∂ri

t ϕn(βnXs, 0), (4.17)

where 1 ≤ j ≤ r, ri ≥ 1 and
∑

i ri = r.
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We write the product in (4.17) as
∏

i

(
1− (i− 1)/Nn

)
gri

(βnXs), where

gr(s) := N1−r/2
n σ−r

Yn
∂r

tϕn(s, 0) = N1−r/2
n σ−r

Yn
ir E(eis(Xn−E Xn)Y r

n ).

By (4.13),

|g1(s)| ≤
√

2N1/2
n δn(s)1/2

and for r ≥ 2, by (4.15),

|gr(s)| ≤ N1−r/2
n σ−r

Yn
E |Yn|r = O(1).

Consequently, the integrand in (4.16) is bounded by, using (4.11) again,

Cr(1−δn(βnXs))
Nn−r

r∑
i=0

|g1(βnXs)|i ≤ C ′
re
−(Nn−r)δn(βnXs)

r∑
i=0

(Nnδn(βnXs))
i/2

≤ C ′′
r e

−Nnδn(βnXs)/2 ≤ C ′′′
r e

−c4|s|γ ,

and thus the integral is bounded by a constant (depending on r). Since further

Ψn(0) →
√

2π > 0, (4.16) now shows that E(Un/N
1/2
n σYn)r is bounded for each

r, i.e. all moments stay bounded in (2.1).
As is well-known, this implies uniform r:th power integrability of the left

hand side in (2.1) for all r > 0, and thus convergence of all moments to the
corresponding moments of the limiting normal distribution.

Finally, this easily implies moment convergence in (2.2) too. �

Proof of Corollary 2.1. The assumptions imply that EXr
n → EXr and EY r

n →
EY r for every r ≥ 1, which immediately implies all conditions except (v) in
Theorem 2.1. To verify (v), with γ = 2, we observe that

|ϕXn(s)|2 = E eis(Xn1−Xn2) = 1− s2 VarXn +O(s3 E |Xn|3).
Since VarXn → VarX > 0 and E |Xn|3 → E |X|3 <∞, it follows that for some
δ > 0 that does not depend on n and |s| ≤ δ, we have |ϕXn(s)| ≤ 1− 1

4
s2 VarX.

On the other hand, ϕXn(s) converges uniformly to ϕX(s), and max{|ϕX | : δ ≤
|s| ≤ π} < 1 because X has span 1; hence |ϕXn(s)| ≤ 1 − ε ≤ 1 − ε(s/π)2

for δ ≤ |s| ≤ π, some ε > 0, and large enough n. This implies (v) (for large
enough n), and the result follows by Theorem 2.1. �

Proof of Theorem 2.2. First, replacing Y
(j)
n by Y

(j)
n /bnj, we may assume that

bnj = 1. Secondly, by the Cramér–Wold device, i.e. considering Yn = t1Y
(1)
n +

· · ·+tlY (l)
n where t1, . . . , tl are fixed real numbers, it is easily seen that it suffices

to consider the case l = 1, i.e. when Yn = Y
(1)
n is real-valued. In this case, with

τ 2
n as in Theorem 2.1, (2.4) may be written

τ 2
n → σ11. (4.18)

Assume first that σ11 = lim τ 2
n > 0. Since τ 2

n ≤ σ2
Yn

and, by (vi), σ2
Yn

= O(1),
we see that (vi), (vii) and (viii′) in Theorem 2.1 hold (and in part (b) (x) too).
The result now follows by Theorem 2.1 and (4.18).

It remains to prove that if τ 2
n → 0, then N

−1/2
n (Un − Nn EYn)

d→ 0 (with
moment convergence). This can be proved by replacing Yn by Yn + Z, where
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Z ∈ N(0, 1) is independent of (Xn, Yn), and then applying the case τ 2
n → 1;

alternatively, one can modify the proof of Theorem 2.1 (redefining βnY :=

N
−1/2
n ). We omit the details. �

Proof of Theorem 2.3. In this case, (4.3) shows that, conditioned on SnNn =
mn, T ′nNn

= TnNn−Nn EYn−ρn
σYn

σXn
(mn−Nn EXn). This yields the extra term

in (2.7); it further shows that the general case again follows from the special
case EYn = EXnYn = 0.

By considering subsequences, we may further assume that

vn := (mn − EXn)/N1/2
n σXn → v

for some real v. The proof of (2.1) and moment convergence is now as before
with minor modifications: We now take ψn(t) :=

∫ π

−π
e−i(mn−Nn E Xn)sϕNn

n (s, t) ds

in (4.4); (4.5) still holds but we get an extra factor e−ivns in the integral in (4.6),

and thus the limit in (4.7) becomes
∫∞
−∞ e−isv−s2/2−t2/2 ds =

√
2πe−v2/2−t2/2,

whence Ψn(t)/Ψn(0) → e−t2/2 still holds. Similarly, we get a factor e−ivns

in the integrals in (4.14) and (4.16). The result follows using the previously
established limits and bounds of the integrands. �
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