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Abstract. We study moments and asymptotic distributions of the con-
struction cost, measured as the total displacement, for hash tables using
linear probing. Four different methods are employed for different ranges
of the parameters; together they yield a complete description. This ex-
tends earlier results by Flajolet, Poblete and Viola. The average cost of
unsuccessful searches is considered too.

1. Introduction

Hashing with linear probing is a well-known algorithm that can be described
as follows; here n and m are integers with 0 ≤ n ≤ m. (For a thorough
discussion, see Knuth [15, Section 6.4, in particular Algorithm 6.4.L].)

n items x1, . . . , xn are placed sequentially into a table with m
cells 1, . . . ,m, using n integers hi ∈ {1, . . . ,m}, by inserting xi

into cell hi if it is empty, and otherwise trying cells hi+1, hi+2,
until an empty cell is found; all positions being interpreted
modulo m.

In real applications, hi is computed as h(xi) by some hash function h; in this
paper, as in most theoretical analyses, it is assumed that the hash addresses hi

are random numbers, uniformly distributed on {1, . . . ,m} and independent.
In other words, each of the mn possible hash sequences (hi)

n
1 has the same

probability m−n.
If item xi is inserted into cell qi, then its displacement (qi−hi) mod m, which

is the number of unsuccessful probes when this item is inserted, is a measure
of the cost of inserting it; it is also a measure of the cost of later finding the
item in the table. The total displacement Dmn :=

∑n
i=1(qi−hi) mod m is thus

a measure of both the cost of constructing the table and of using it. (The
average number of probes to find an element in the table is Dmn/n+ 1.) Note
that Dmn is an integer with 0 ≤ Dmn ≤

(
n
2

)
.

With our assumption that the numbers hi be random, Dmn is a random
variable, and the main purpose of the present paper is to give the asymptotic
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distribution of Dmn as m,n → ∞. This has earlier been done by Flajolet,
Poblete and Viola [9] for the two most important cases: full tables (n = m)
(and almost full tables, n = m−1), and sparse tables (n/m→ a, with 0 < a <
1). They found that in the sparse case Dmn is asymptotically normal, with
both variance and expectation growing like n (or m), while in the full case
n−3/2Dmn has a non-normal limiting distribution, which equals the distribution
of the area under a standard Brownian excursion. (This distribution had earlier
been studied by, among others, Louchard [19, 20] and Takács [27]. It is, up
to a factor

√
8, called the Airy distribution in [9].) We extend their results to

other ranges of n as follows.

Theorem 1.1. Suppose that m→∞.

(i) If n/
√
m→ a for some a with 0 ≤ a <∞, then Dmn is asymptotically

Poisson distributed: Dmn
d→ Po(a2/2).

(ii) If n �
√
m and m − n �

√
m, then Dmn is asymptotically normal:

(Dmn − EDmn)/(VarDmn)1/2 d→ N(0, 1).

(iii) If (m − n)/
√
m → a for some a with 0 ≤ a < ∞, then n−3/2Dmn

d→
Wa, for some non-degenerate random variable Wa.

In all cases the result holds with convergence of all moments.

Remark 1.2. By saying that Xk
d→ X with convergence of all moments, we

mean that besidesXk
d→ X, we also have EXr

k → EXr for each positive integer

r. As is well-known, this holds if (and only if) Xk
d→ X and supk EXr

k < ∞
for each r ≥ 1. Moreover, it entails the convergence of all absolute moments
E |Xk|r (r positive real), of all central moments E(Xk − EXk)

r (r positive
integer) and E |Xk −EXk|r (r positive real), and of all semi-invariants κr(Xk)
to the corresponding quantities for X.

Remark 1.3. As in all similar situations, the three cases in Theorem 1.1 do
not exhaust all possibilities, since n might oscillate between, for example, m1/3

and m − m1/3, but they effectively do so since every sequence (mk, nk) with
mk →∞ has a subsequence belonging to one of the cases.

Theorem 1.1 thus exhibits a “phase transition” at m − n �
√
m, where we

lose asymptotic normality. The reason is that less dense hash tables consist
of many small blocks, each of which is negligible, but for m − n �

√
m, the

largest block is of order n and contributes significantly; see the proofs below
and Remark 4.2.

The limit random variable W0 can by [9] be described as the area under a
Brownian excursion. We give a related formula for Wa in terms of a Brownian
bridge (or a Brownian excursion) in Section 2, and explicit (but complicated)
formulae for its moments in Section 3. However, there does not seem to be any
simple expression for the distribution of Wa, and we do not know any simple
relation with other distributions.

It is a consequence of Theorem 1.1 that the distribution of Wa approaches
a normal distribution as a→∞. This is an instance of a simple general result
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on continuity of the limits in this type of situations, but since it apparently is
not well-known, we give the details (together with some moment asymptotics)
in Section 6.

The expectation of Dmn is n
2

(
Q0(m,n−1)−1

)
[9, 16], cf. [14], [15, Theorem

6.4.K]. (See [15] or [16] for the definition of Qr.) A similar exact formula for
the variance is given by Flajolet, Poblete and Viola [9, Theorem 4], see also
[15, Exercise 6.4-68], [16] and (3.16)–(3.17) below.

It follows readily from the exact formula above and the bounds (6.4-43) in
[15] that EDmn ∼ n2/2(m − n) as n → ∞, provided m − n �

√
m; this

was found for fixed m/n already by Knuth [14]. For the variance, Flajolet,
Poblete and Viola [9, Theorem 5] found in the case n/m = α ∈ (0, 1) fixed the
asymptotic formula (1.2) below (in a sharper form with a second-order term
too). We can extend that to other ranges of m and n as follows. (Note that
the cases (i) and (ii) overlap.)

Theorem 1.4. Suppose that n,m→∞.

(i) If n/m→ 0, then EDmn ∼ VarDmn ∼ n2/2m.
(ii) If n�

√
m and m− n�

√
m, then, with α := n/m,

EDmn ∼
α

2(1− α)
n =

n2

2(m− n)
, (1.1)

VarDmn ∼
6α− 6α2 + 4α3 − α4

12(1− α)4
n =

6n2m3 − 6n3m2 + 4n4m− n5

12(m− n)4
. (1.2)

In particular, if n/m→ 1 and m− n�
√
m, then

VarDmn ∼ n5/4(m− n)4.

(iii) If (m − n)/
√
m → a for some a with 0 ≤ a < ∞, then EDmn ∼

n3/2 EWa and VarDmn ∼ n3 VarWa, where EWa and VarWa are
given by Corollary 3.4.

Remark 1.5. Alternatively, (1.2) can be shown by the method in [9]. It can be
verified that the asymptotic expansion [9, (7)] for Q0 is valid also if α = n/m is
not constant, provided the error term O(m−5) is changed to O((1−α)−11m−5);
(1.2) then follows by some algebra involving lots of cancellations. Our method
has the advantage, however, of yielding the main term directly. On the other
hand, the method in [9] yields any desired number of terms in an asymptotic
expansion, while our method, in the present version, yields only the leading
term.

A common variation of hashing problems is to consider confined hashing
only, meaning that we consider only hash sequences that leave the last position
empty (thus we assume n < m). (In particular, there is no wrapping around
from m to 1; indeed, confined hashing can equivalently be described as hashing
into m− 1 cells, conditioned on never wrapping around.) Confined hashing is
also known as the parking problem [18], [15, Exercise 6.4-29].
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As is well-known, symmetry and the fact that the hashing table always has
m− n empty locations show that the number of confined hash sequences is

m− n

m
mn = (m− n)mn−1, (1.3)

and that the distribution of the total displacement is the same for the confined
case as for the unrestricted case. Hence Theorem 1.1 and the other results
in this paper are valid for confined hashing too. Moreover, when proving any
result we can choose between the confined and unrestricted versions. This
is very advantageous; it turns out that some of our arguments work for one
version and some for the other.

There are also variations of the hashing algorithm above, such as “last-come-
first-served” and “Robin Hood” [15, Answer 6.4-67], where the displacements
of individual items may differ from the version above but the total displacement
is the same; the results in this paper are thus valid for these versions too.

We will prove the three parts of Theorem 1.1 (in reverse order) by four dif-
ferent methods in the next four sections, giving two different proofs of part
(iii). There are two reasons for giving both proofs: First, we find both in-
teresting; secondly, they give different information about the limit Wa, see
Theorems 2.2 and 3.3. The proofs will as a byproduct yield Theorem 1.4(i)(ii)
too (Theorem 1.4(iii) is an immediate consequence of Theorem 1.1).

As mentioned above, the average cost of searching for an element in the table
(after it has been constructed) is given byDmn/n+1, and is thus asymptotically
described by the results above. On the other hand, let Umn be the average cost
of an unsuccessful search, i.e. the average number of probes used until giving
up when searching for an element not in the table, beginning at a random
cell h; we average over h so Umn becomes a function of the table, and thus a
random variable. (This average is relevant in applications where a hash table
is constructed once, and then used for many searches. The distribution of
individual search costs will not be considered in this paper.) Note that Umn is
the same as the average number of probes needed to extend the table by one
item.

The expectation of Umn is EUmn = 1
2
Q1(m,n) + 1

2
[15, Theorem 6.4.K]. We

give a corresponding exact formula for the variance in Theorem 7.3. (Higher
moments could be obtained by the same method.)

For asymptotics, we have the following companion results to Theorems 1.1
and 1.4. The asymptotics for EUmn in Theorem 1.7(i)(ii) follow easily from
the exact formula above, using [15, (6.4-43)] for (ii). The other results are
proved in Section 7.

Theorem 1.6. Suppose that m→∞.

(i) If n/
√
m → a for some a with 0 ≤ a < ∞, then mUmn − m − n

d→
Po(3a2/2).

(ii) If n �
√
m and m − n �

√
m, then Umn is asymptotically normal:

(Umn − EUmn)/(VarUmn)1/2 d→ N(0, 1).
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(iii) If (m − n)/
√
m → a for some a with 0 ≤ a < ∞, then 2

m
Umn

d→ Va

for some random variable Va, which is non-degenerate for 0 < a <∞
while V0 = 1.

In all cases the result holds with convergence of all moments.

The normalizations in (i) and (iii) are partly explained by the fact, which
is an easy consequence of (7.1) below, that mUmn is an integer with m+ n ≤
mUmn ≤

(
m
2

)
, and thus 2

m
Umn ≤ 1 + 1

m
.

Theorem 1.7. Suppose that n,m→∞, with n < m.

(i) If n/m → 0, then EUmn = 1 + n
m

+ 3n(n−1)
2m2 + o( n2

m2 ) and VarUmn ∼
3n2/2m.

(ii) If n�
√
m and m− n�

√
m, then, with α := n/m,

EUmn ∼
1

2
+

1

2(1− α)2
=

2m2 − 2mn+ n2

2(m− n)2
,

VarUmn ∼
3α2

2(1− α)6
m−1 =

3n2m3

2(m− n)6
.

In particular, if n/m→ 1 and m−n�
√
m, then EUmn ∼ n2/2(m−

n)2 and VarUmn ∼ 3n5/2(m− n)6.
(iii) If (m − n)/

√
m → a for some a with 0 ≤ a < ∞, then EUmn ∼

1
2
n EVa and VarUmn ∼ 1

4
n2 VarVa, where EVa and VarVa are given

by Theorem 7.4.

Finally, in Section 8 we discuss the joint distribution of Dmn and Umn.

Acknowledgements. I thank Donald Knuth for drawing my attention to
the study of hashing with linear probing, and Philippe Flajolet for helpful
comments.

2. The dense case: Brownian limits

In this section we give our first proof of the limit theorem forDmn when (m−
n)/

√
m → a <∞. The convergence in distribution is an easy consequence of

a limit theorem for the profile of hashing in terms of some stochastic processes
related to Brownian motion [5, Theorem 4.1]; since that result is given in a
technically more complicated context than used here, we sketch the argument
in a slightly simpler version.

Let, for i = 1, . . . ,m, Xi be the number of items xk with hash address hk = i,
and let Si :=

∑i
j=1Xj, 0 ≤ i ≤ m. Thus S0 = 0 and Sm =

∑m
1 Xj = n.

Moreover, let Hi be the number of items that make an attempt to be inserted
in cell i, whether they succeed or not. We call (Hi)

m
i=1 the profile of the hashing.

Since the total displacement equals the number of unsuccessful probes and the
total number of probes is

∑
iHi, of which n are successful,

Dmn =
m∑

i=1

Hi − n. (2.1)
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It is convenient to extend the definition of Xi, Si and Hi to all integers i, with
Xi+m = Xi, Hi+m = Hi, Si+m = Si + n for all i. (Thus Si =

∑i
j=1Xj for all

i ≥ 0 and Si = −
∑0

i+1Xj for i < 0; in any case Si = Xi +Si−1.) Then Hi can
be computed as follows [5, Proposition 5.3], cf. [15, Exercise 6.4-32].

Lemma 2.1. With Xi, Si, Hi defined for all integers i as above,

Hi = max
j≤i

( i∑
k=j

Xk − (i− j)

)
= max

j≤i
(Si − Sj−1 − i+ j)

= Si − i−min
k<i

(Sk − k) + 1.

Proof. For i − m < j ≤ i, there are
∑i

k=j Xk items that first try one of the

cells {j, . . . , i}, and at most i−j of them can be accomodated in {j, . . . , i−1},
so at least

∑i
k=j Xk − (i − j) try cell i; hence, Hi ≥

∑i
k=j Xk − (i − j). The

periodicity shows that this holds for j ≤ i−m too.
Conversely, if j = j0 + 1, where j0 is the largest integer less than i where

there are no unsuccessful probes, it is easily seen that Hl =
∑l

k=j Xk − (l− j)

for j ≤ l ≤ i; in particular Hi =
∑i

k=j Xk − (i− j). �

Consider the random function Sbmtc − nt, 0 ≤ t ≤ 1; note that it vanishes
for both t = 0 and t = 1. This function equals n(βmn(t) − t), where βmn

is the empirical distribution function of {hk/m}n
k=1. Letting U1, . . . , Un be

independent random variables with a uniform distribution on [0, 1], we can
take hk = dmUke, and then βmn(t) = β′n(bmtc/m), where β′n is the empirical
distribution function of {Uk}n

k=1. Now, it is well-known [4, Theorem 16.4]

that
√
n(β′n(t)− t)

d→ b(t), where b(t) is a standard Brownian bridge, and the
convergence is in the Skorohod topology on D[0, 1]. It follows that

1√
n

(Sbmtc − nt) =
√
n(βmn(t)− t))

=
√
n
(
β′n(bmtc/m)− bmtc/m+O(1/m)

)
d→ b(t).

Multiplying by
√
n/m→ 1 and adding (nt− bmtc)/

√
m→ −at, we obtain

1√
m

(Sbmtc − bmtc) d→ b(t)− at.

Hence, using Lemma 2.1 and the mapping theorem [4, Theorem 5.1], extending
b periodically to a function on (−∞,∞), we have in D[0, 1]

1√
m
Hbmtc

d→ b(t)− at−min
s≤t

(
b(s)− as

)
= max

s≤t

(
b(t)− b(s)− a(t− s)

)
. (2.2)

Consequently, by the mapping theorem again,

1

m3/2

m∑
i=1

Hi =

∫ 1

0

1√
m
Hbmtc dt

d→
∫ 1

0

max
s≤t

(
b(t)− b(s)− a(t− s)

)
dt. (2.3)
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Together with (2.1) and n/m → 1, this proves that n−3/2Dmn converges in
distribution as asserted, with the following description of the limit distribution.

Theorem 2.2. The limit Wa in Theorem 1.1(iii) can be constructed by

Wa :=

∫ 1

0

max
s≤t

(
b(t)− b(s)− a(t− s)

)
dt

for a Brownian bridge b on [0, 1], periodically extended to (−∞,∞).

In order to show moment convergence, it suffices by Remark 1.2 to show
that each moment E(Dmn/n

3/2)r is bounded, and since Dmn increases with
n, it suffices to prove this for n = m. Moreover, by Lemma 2.1, maxiHi ≤
2 maxi |Si − i|+ 1, and thus by (2.1),

m−3/2Dmm ≤ 2m−1/2 max
i
|Si − i| = 2m1/2 max

i
|βmm(i/m)− i/m|

= 2m1/2 max
i
|β′m(i/m)− i/m| ≤ 2m1/2 max

t
|β′m(t)− t|,

and all moments of the latter variable are bounded, for example by the (much
stronger) Dvoretzky-Kiefer-Wolfowitz inequality [8], which completes the first
proof of Theorem 1.1(iii). We omit the details, since we give another proof of
moment convergence in the next section.

Remark 2.3. If a = 0, then W0 equals the integral of the stochastic process
maxs(b(t) − b(s)) = b(t) −mins b(s), which by a theorem by Vervaat [28] has
the same distribution as a standard Brownian excursion e(t) up to a random

shift. The shift does not affect the integral, and thus we can take W0 =
∫ 1

0
e(t),

the Brownian excursion area, as found by [9]. More generally, it follows from
Vervaat’s result that we can take

Wa :=

∫ 1

0

max
0≤s≤t

(
e(t)− e(s)− a(t− s)

)
dt

too [5]. (This can also be derived by arguing as above with confined hashing
instead of the unconfined version, but the details become technically more
complicated, cf. [5, 6, 7].) Furthermore, it follows from [5, Theorem 2.2] that
Wa also can be defined as the integral of a reflecting Brownian bridge |b|
conditioned on having local time at 0 equal to a.

3. The dense case: moments

Our second proof of Theorem 1.1(iii) is based on expressions for generating
functions given by Knuth [16] (see also [9]). We work with the confined version,
and thus assume n < m; the results for n = m follow from the case n = m−1,
since the displacement of the last item is less than n and thus Dm,m−1 ≤
Dm,m < Dm,m−1 +m.

Following [16], we let Fmn(x) be the generating function for the total dis-
placement in the confined version of the problem; thus

ExDmn = Fmn(x)/Fmn(1), (3.1)
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where, see (1.3),

Fmn(1) = (m− n)mn−1. (3.2)

Next, using the bivariate generating function

F (x, z) :=
∞∑

n=0

Fn+1,n(x)zn/n!, (3.3)

Knuth [16, (1.5)] showed that

Fmn(x) = n![zn]F (x, z)m−n. (3.4)

By (3.1) and (3.4) we have

E
(
Dmn

k

)
= [wk] E(1 +w)Dmn = [wkzn]F (1 +w, z)m−n/[zn]F (1, z)m−n. (3.5)

Knuth [16, (4.2)] further showed that

F (1 + w, z) =
∞∑

k=0

wkW ′
k(z), (3.6)

where Wk is the exponential generating function for the number of connected
labelled graphs with k− 1 more edges than vertices, which by Wright [29] can
be expressed in terms of the tree function

T (z) :=
∞∑
i=1

ii−1zi

i!
. (3.7)

In the notation of [13] we have Wk = Ĉk−1, where by [13, (8.13)], for r ≥ 1,

Ĉr(z) =
3r+2∑
d=0

ĉrd
T (z)3r+2−d(

1− T (z)
)3r−d

.

Expanding T 3r+2−d = (1− (1− T ))3r+2−d by the binomial theorem, this yields

Ĉr(z) =
3r∑

j=−2

c∗rj

(
1− T (z)

)−j

with the leading coefficient c∗r,3r = ĉr0 = cr, where cr is as in [13, §8]. Conse-

quently, using the fact that T ′(z) = T (z)/z
(
1− T (z)

)
, for r ≥ 1,

Ĉ ′
r(z) =

3r∑
−2

jc∗rj

(
1− T (z)

)−j−1
T ′(z) =

T (z)

z

3r∑
−2

jc∗rj

(
1− T (z)

)−j−2
. (3.8)
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For r < 1 we instead have, by [13, §3], Ĉ−1(z) = U(z) = T (z) − 1
2
T (z)2 and

Ĉ0(z) = V̂ (z) = 1
2
ln
(
1− T (z)

)−1 − 1
2
T (z)− 1

4
T (z)2, which yield

Ĉ ′
−1(z) = T ′(z)

(
1− T (z)

)
=
T (z)

z
,

Ĉ ′
0(z) =

T ′(z)

2
(
1− T (z)

) − 1
2
T ′(z)− 1

2
T (z)T ′(z)

=
T (z)

z

(
1
2

(
1− T (z)

)−2 −
(
1− T (z)

)−1
+ 1

2

)
. (3.9)

Hence, for all k ≥ 0,

W ′
k(z) = Ĉ ′

k−1(z) =
T (z)

z
fk

(
T (z)

)
, (3.10)

where fk(t) is a polynomial in (1 − t)−1. Here f0(t) = 1, while for k ≥ 1, fk

has degree 3(k − 1) + 2 = 3k − 1 in (1− t)−1; more precisely

fk(t) = ωk(1− t)−(3k−1) + . . . , (3.11)

where the leading coefficient is given by ω1 = 1
2

and

ωk = 3(k − 1)c∗k−1,3(k−1) = 3(k − 1)ck−1, k ≥ 2. (3.12)

(These are the same ωk as in [9], as follows e.g. from (3.22) below.) For future
use we note that ω2 = 3c1 = 5/8; this and further numerical values are given
in [9, Table 1], see also the table of ĉkd in [13, §8]. We record also, see [16,
(4.5)],

f1(t) =
t2

2(1− t)2
, f2(t) =

24t3 − 11t4 + 2t5

24(1− t)5
. (3.13)

Let f(w, t) :=
∑∞

0 wkfk(t). Then (3.6) and (3.10) yield that [16, (4.4)]

F (1 + w, z) =
T (z)

z
f(w, T (z)), (3.14)

which using Lagrange inversion leads to, as shown by [16, (5.1)], cf. [9, (31)],

[zn]F (1 + w, z)m−n = [tn]emt(1− t)f(w, t)m−n. (3.15)

Consequently, for k ≥ 1, using f0 = 1,

[wkzn]F (1 + w, z)m−n = [wktn]emt(1− t)f(w, t)m−n

= [tn]emt(1− t)
k∑

j=1

(
m− n

j

) ∑
k1,...,kj≥1∑

ki=k

j∏
i=1

fki
(t).

Moreover, by (3.15), or by (3.4) and (3.2),

[zn]F (1, z)m−n = [tn]emt(1− t) =
mn−1

n!
(m− n).
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Hence, by (3.5),

E
(
Dmn

k

)
=
m1−nn!

m− n

k∑
j=1

(
m− n

j

) ∑
k1,...,kj≥1∑

ki=k

[tn]emt(1− t)

j∏
i=1

fki
(t), (3.16)

where, as shown above, fki
is a polynomial in (1− t)−1. Now, cf. [16, (5.3)],

[tn]emt(1− t)−r−1 = mnQr(m,n)/n! (3.17)

where

Qr(m,n) =
n∑

j=0

(
r + j

j

)
n!

mj(n− j)!
. (3.18)

The right hand side of (3.16) can thus be expressed as a linear combination
of a number of different Qr. (See [16, (5.4)–(5.5)] for the first two cases.) We
need the following straightforward asymptotics for Qr in our range.

Lemma 3.1. If r ≥ 0 is a fixed integer, and n,m→∞ with (m− n)/
√
m→

a ≥ 0, then

Qr(m,n) ∼ qr(a)n
(r+1)/2,

with

qr(a) :=
1

r!

∫ ∞

0

xre−ax−x2/2dx. (3.19)

Moreover, Q−1(m,n) = 1 and Q−2(m,n) = 1− n/m = O(n−1/2).

Proof. Denote the terms in the sum in (3.18) by bj. If j ∼ xn1/2 for some
x > 0, then

bj =

(
j + r

r

)
m−j n!

(n− j)!
=

(j +O(1))r

r!

(
1− m− n

m

)j

exp
( j−1∑

i=0

ln
(
1− i

n

))
=
jr

r!
exp
(
−jm− n

m
− j2

2n
+ o(1)

)
∼ nr/2xr

r!
e−ax−x2/2.

Moreover, for all j ≤ n,

bj =

(
j + r

r

)
m−j n!

(n− j)!
≤ (1 + rjr) exp

( j−1∑
i=0

ln

(
1− i

n

))
≤ (1 + rjr) exp

(
−j(j − 1)

2n

)
and dominated convergence yields

n−(r+1)/2Qr(m,n) = n−(r+1)/2

n∑
j=0

bj =

∫ (n+1)n−1/2

0

n−(r+1)/2bbn1/2xcn
1/2 dx

→
∫ ∞

0

xr

r!
e−ax−x2/2 dx = qr(a).

The formulae for Q−1 and Q−2 are immediate. �
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Lemma 3.1 and (3.17) show that the leading terms in (3.16) come from the

highest powers of (1− t)−1. More precisely, since by (3.11)
∏j

1 fki
has degree∑

i(3ki − 1) = 3k− j with leading term
∏j

i=1 ωki
(1− t)j−3k, (3.16), (3.17) and

Lemma 3.1 yield, for some akjl,

E
(
Dmn

k

)
=

m

m− n

k∑
j=1

(
m− n

j

)( ∑
k1,...,kj≥1∑

ki=k

j∏
i=1

ωki
·Q3k−j−2(m,n)

+

3k−j−1∑
l=0

akjlQl−2(m,n)

)

= m

k∑
j=1

(
(m− n)j−1

j!
+O(n(j−2)/2)

)

·

 ∑
k1,...,kj≥1∑

ki=k

j∏
i=1

ωki
· q3k−j−2(a)n

(3k−j−1)/2 + o(n(3k−j−1)/2)



= mn3k/2−1

k∑
j=1

(
aj−1

j!
+ o(1)

) ∑
k1,...,kj≥1∑

ki=k

j∏
i=1

ωki
· q3k−j−2(a) + o(1)

 .

Thus, if we define, for k ≥ 1,

ψk(a) := k!
k∑

j=1

( ∑
k1,...,kj≥1∑

ki=k

j∏
i=1

ωki

)
aj−1

j!
q3k−j−2(a), (3.20)

we have shown

E
(
Dmn

k

)
= n3k/2

(
1
k!
ψk(a) + o(1)

)
, k ≥ 1,

which implies

n−3k/2 EDk
mn → ψk(a), k ≥ 1. (3.21)

We have thus shown that all moments of n−3/2Dmn converge. This gives a proof
of Theorem 1.1(iii) by the method of moments, and shows that EW k

a = ψk(a),
provided we can show that the moments ψk(a) determine a unique distribution.

A sufficient condition for this is that the sum
∑

k
λk

k!
ψk(a) converges for all real

λ (the sum then equals E eλWa − 1). We observe that Dmn and thus EDk
mn are

increasing in n for fixed m, and thus (3.21) implies that ψk(a) is a decreasing
function of a. In particular, ψk(a) ≤ ψk(0), so it suffices to consider a = 0.
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Moreover, (3.20) yields, using the doubling formula for the gamma function,

ψk(0) = k!ωkq3k−3(0) =
k!

(3k − 3)!
ωk

∫ ∞

0

x3k−3e−x2/2dx

=
k!

(3k − 3)!
ωk · 23k/2−2Γ(3k/2− 1)

= 21−3k/2π1/2k!ωk/Γ((3k − 1)/2), (3.22)

which by (3.12), the asymptotics cr ∼ (3/2)r(r − 1)!/2π as r → ∞ [13, (8.7)]
and Stirling’s formula easily implies

∑
k λ

kψk(0)/k! <∞.

Remark 3.2. The fact that E eλWa < ∞ for every real λ is perhaps more
simply verified using the results of Section 2; Theorem 2.2 yields 0 ≤ Wa ≤
2 maxt |b(t)|, and it is well-known that E exp(2λmaxt |b(t)|) < ∞, cf. e.g. [4,
(11.39) or (11.40)].

The relation (3.22) shows further, since ψk(0) = EW k
0 > 0, that ωk > 0 for

all k ≥ 1; hence ψk(a) > 0 for all a ≥ 0.
We summarize the results obtained on Wa.

Theorem 3.3. The limit random variables Wa have the moments EW k
a =

ψk(a), k ≥ 1, with ψk defined in (3.20). In particular,

EWa = ω1q0(a) = 1
2
q0(a)

and

EW 2
a = 2ω2q3(a) + ω2

1aq2(a) = 5
4
q3(a) + 1

4
aq2(a).

Moreover, the moment generating function E eλWa is finite for each λ, and thus
the distribution of Wa is determined by the moments ψk(a). �

The functions qk(a), and thus the moments EW k
a = ψk(a), can be expressed

in terms of the normal distribution function Φ. Indeed, by the change of
variable x+ a = y,

q0(a) =

∫ ∞

0

e−ax−x2/2dx = ea2/2

∫ ∞

a

e−y2/2dy =
√

2πea2/2(1− Φ(a))

=
√

2πea2/2Φ(−a).

Moreover,

q1(a) =

∫ ∞

0

(x+ a)e−ax−x2/2dx− aq0(a) = 1− aq0(a)

and, for k ≥ 2, by integration by parts,

kqk(a) =

∫ ∞

0

xk−1

(k − 1)!
(x+ a)e−ax−x2/2dx− aqk−1(a) = qk−2(a)− aqk−1(a).
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By induction, any qk can thus recursively be expressed as αk(a) + βk(a)q0(a),
where α and β are polynomials of degree k−1 and k, respectively. For example,

q2(a) = 1
2

(
(1 + a2)q0(a)− a

)
,

q3(a) = 1
6

(
(2 + a2)− (3a+ a3)q0(a)

)
.

Hence, the expressions for the first two moments of Wa in Theorem 3.3 can be
rewritten:

Corollary 3.4. For any a ≥ 0,

EWa = 1
2
q0(a) =

√
π
2
ea2/2Φ(−a),

EW 2
a = 5

4
q3(a) + 1

4
aq2(a) = 1

12

(
5 + a2 − (6a+ a3)q0(a)

)
= 1

12

(
5 + a2 − (6a+ a3)

√
2πea2/2Φ(−a)

)
. �

Asymptotics as a→∞ are considered in Section 6.

4. The sparse case: normality

We exploit, as several other authors [6, 9, 16] the simple fact that a confined
hash table with n items in m cells decomposes into m− n blocks, each ending
with an empty cell, where each block can be regarded as a separate almost
full confined hash table. More precisely, a hash sequence {hi} giving a hash
table with block lengths `1, . . . , `N , where N = m− n and

∑
i `i = m, can be

constructed by first partitioning {1, . . . , n} into subsets {Aj}N
j=1 with |Aj| =

`j − 1, and then for each j choosing (hi)i∈Aj
that after a simple relabelling

corresponds to a hash sequence yielding a confined hash table with `j − 1
items and `j cells. (Note that we define the block lenghts to include the final,
empty cell.)

Since, by (1.3), there are ``−2 confined hash sequences for `− 1 items and `
cells, it follows that the number of confined hash sequences for n items in m
cells yielding block lengths `1,. . . ,`N equals(

n

`1 − 1, . . . , `N − 1

) N∏
j=1

`
`j−2
j = n!

N∏
j=1

`
`j−2
j

(`j − 1)!
= n!

N∏
j=1

`
`j−1
j

`j!
.

Consequently, the probability that a random confined hash table has block

lengths `1, . . . , `N is proportional to
∏

j `
`j−1
j /`j! .

However, if λ is any real number with 0 < λ ≤ e−1, so that T (λ) defined
by (3.7) is finite, and X1, . . . , XN are independent random variables with the
common Borel distribution

P(Xj = `) =
1

T (λ)

``−1

`!
λ`, ` = 1, 2, . . . , (4.1)

then the conditional probability that (X1, . . . , XN) = (`1, . . . , `N) given that∑
j Xj = m is also proportional to

∏
j `

`j−1
j /`j! . Consequently, the propor-

tionality factors have to agree, and the sequence of block lengths in a random
confined hash table has the same distribution as (X1, . . . , XN) conditioned on
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j Xj = m. Moreover, given the block lengths, the blocks can be regarded

as independent almost full confined hash tables; in particular, the sums of
displacements inside the blocks are distributed as the total displacements for
independent almost full hash tables of sizes equal to the given block lengths,
and we obtain the following result.

Lemma 4.1. Suppose 0 ≤ n < m and let N = m − n. Let 0 < λ ≤ e−1 and
let (X1, Y1), . . . , (XN , YN) be independent random vectors with a common dis-
tribution obtained by first selecting Xj according to (4.1) and then, if Xj = `,
letting Yj be distributed as the total displacement D`,`−1. Then, for a random
hash table with n items and m cells, the block lengths and the sums of displace-
ments inside each block are distributed as (X1, Y1), . . . , (XN , YN) conditioned

on
∑N

j=1Xj = m. In particular, the distribution of the total displacement Dmn

equals the conditional distribution of
∑N

j=1 Yj given
∑N

j=1Xj = m. �

Remark 4.2. Lemma 4.1 is closely related to the relation (3.4) for generating
functions derived in [9, 16], and our proof partly repeats arguments there, but
we use a more probabilistic formulation.

There is further a one-to-one correspondence between hash tables and rooted
forests, see e.g. [15, Exercise 6.4-31] and [6], and the lemma is essentially the
same as a result used by Pavlov [17, 21, 22] to study random rooted forests. In
particular, the distribution of the length of the largest block is given by [21].

We will use Lemma 4.1 together with the following general asymptotic result
for conditioned distributions, which is proved (in a slightly more general form)
in [12]. (The method of proof is similar to the saddle point method analysis of a
generating function in [9], but in more probabilistic terms. Related conditional
limit theorems, proved by the same method, are given in, for example, [10, 11].)

Lemma 4.3. Suppose that, for each k, (X, Y ) = (X(k), Y (k)) is a pair of
random variables such that X is integer valued, and that N = N(k) and m =
m(k) are integers. Suppose further that for some γ and c (independent of k),
with 0 < γ ≤ 2 and c > 0, the following hold, where σ2

X := VarX, σ2
Y := VarY

and all limits are taken as k →∞:

(i) EX = m/N .
(ii) 0 < σ2

X <∞.
(iii) For every integer r ≥ 3, E |X − EX|r = o(N r/2−1σr

X).
(iv) σ2

X = O(N2/γ−1).
(v) ϕX(s) := E eisX satisfies 1− |ϕX(s)| ≥ cmin(|s|γ, s2σ2

X) for |s| ≤ π.
(vi) 0 < σ2

Y <∞.
(vii) For every integer r ≥ 3, E |Y − EY |r = o(N r/2−1σr

Y ).
(viii) The correlation ρ := Cov(X,Y )/σXσY satisfies lim sup |ρ| < 1.

Let, for each k, (Xi, Yi) be i.i.d. copies of (X, Y ), and let SN :=
∑N

1 Xi,

TN :=
∑N

1 Yi and τ 2 := σ2
Y (1− ρ2) = σ2

Y −Cov(X, Y )2/σ2
X . Then, as k →∞,

the conditional distribution of (TN −N EY )/N1/2τ given SN = m converges to
a standard normal distribution. In other words, if U = Uk is a random variable
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whose distribution equals the conditional distribution of TN given SN = m, then

U −N EY
N1/2τ

d→ N(0, 1). (4.2)

Moreover, EU = N EY + o(N1/2τ) and VarU ∼ Nτ 2, and thus also

U − EU
(VarU)1/2

d→ N(0, 1). (4.3)

The limits (4.2) and (4.3) hold with convergence of all moments.

Remark 4.4. Since E |X − EX|r ≤ 2r E |X − a|r for any real a and r ≥ 1
(a consequence of Minkowski’s inequality), it suffices in (iii) to estimate any
E |X − a|r, for example E |X|r, and similarly in (vii).

Note further that (viii) is equivalent to τ 2 = Θ(σ2
Y ), and that τ 2 is unchanged

if Y is replaced by Y + aX + b for any real constants a and b (which changes
U by the constant am+ bN only).

It remains to show that the assumptions of Lemma 4.3 are satisfied with
(X, Y ) as in Lemma 4.1 for a suitable choice of λ. We begin with some esti-
mates; we state them in greater generality than needed here (although we do
not strive for maximal generality), partly in order to stress the properties of
the random variables that really are important in our proof.

Lemma 4.5. Let X be an integer valued random variable and let pj = P(X =
j). Suppose that η > 0 is such that there exists a j0 with pj0 ≥ η and pj0+1 ≥ η.
Then |E eisX | ≤ 1− ηs2/5 for |s| ≤ π.

Proof. Let θ = arg E eisX . Thus, for |s| ≤ π,

1− |E eisX | = 1− Re E eisX−iθ = 1− Re
∑

j

pje
isj−iθ =

∑
j

pj

(
1− cos(js− θ)

)
≥ η
(
1− cos(j0s− θ) + 1− cos((j0 + 1)s− θ)

)
= 2η

(
1− cos s

2
cos((j0 + 1

2
)s− θ)

)
≥ 2η

(
1− cos s

2

)
≥ 2η

s2

π2
. �

Lemma 4.6. Let 0 < γ < 1, κ > 0 and λ0 > 0, and let a0, a1, . . . , be non-
negative real numbers such that

aj ∼ κj−γ−1λ−j
0 as j →∞. (4.4)

Let, for 0 < λ ≤ λ0, Xλ be a random variable with the distribution

P(Xλ = j) = ajλ
j/F (λ),

where F (λ) =
∑∞

j=0 ajλ
j. Then EXλ0 = ∞, but if λ < λ0, then 0 < EXr

λ <∞
for every r > 0. Asymptotically, if r > γ is fixed, then as λ ↑ λ0, with
κ0 = κ/F (λ0),

EXr
λ ∼ κ0Γ(r − γ)(1− λ/λ0)

−(r−γ). (4.5)

In particular, defining µλ := EXλ and σ2
λ := VarXλ,

µλ ∼ κ0Γ(1− γ)(1− λ/λ0)
−(1−γ) (4.6)
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and thus

σ2
λ ∼ EX2

λ ∼ κ
−1/(1−γ)
0 (1− γ)Γ(1− γ)−1/(1−γ)µ

(2−γ)/(1−γ)
λ (4.7)

and more generally, for every r > γ,

EXr
λ ∼ κ

(1−r)/(1−γ)
0 Γ(r − γ)Γ(1− γ)−(r−γ)/(1−γ)µ

(r−γ)/(1−γ)
λ . (4.8)

Moreover, there exists a positive constant c such that for λ0/2 ≤ λ ≤ λ0 and
|s| ≤ π,

1− |E eisXλ| ≥ cmin
(
|s|γ, s2σ2

λ

)
. (4.9)

Proof. The assertions about existence of moments are immediate.
Replacing aj by ajλ

j
0 and λ by λ/λ0, we may assume that λ0 = 1. Further,

let δ = − lnλ; note that δ ∼ 1 − λ as λ ↑ λ0 = 1. Then, by dominated
convergence,

δr−γ EXr
λ = δr−γF (λ)−1

∞∑
j=0

jraje
−δj

= F (λ)−1

∫ ∞

0

δr−γbx/δcrabx/δce
−δbx/δcδ−1 dx

→ F (λ0)
−1

∫ ∞

0

κxr−γ−1e−x dx = κ0Γ(r − γ).

This proves (4.5) and, as a special case, (4.6); together these yield (4.8). It
follows further that (EXλ)

2/EX2
λ � (1−λ)γ → 0 as λ ↑ 1, whence σ2

λ ∼ EX2
λ

and (4.7) holds.
To prove (4.9), let ϕλ(s) = E exp(isXλ). Let j0 ≥ 1 be such that aj > 0 for

j ≥ j0, and let c1 := infj≥j0 j
γ+1aj > 0, s0 := j−1

0 , λ1 := exp(−s0). First, for
any λ ∈ [1/2, 1], we can apply Lemma 4.5 with η = min(aj0 , aj0+1)2

−j0−1/F (1),
which implies that for 1/2 ≤ λ ≤ λ1 and |s| ≤ π,

1− |ϕλ(s)| ≥ 1
5
ηs2 ≥ 1

5
η(EX2

λ1
)−1s2σ2

λ,

and for any λ ≥ 1/2 and s0 ≤ s ≤ π,

1− |ϕλ(s)| ≥ 1
5
ηs2 ≥ 1

5
ηs2−γ

0 sγ;

in both cases verifying (4.9) for a suitably small c > 0. It remains to consider
the case λ1 < λ ≤ 1 and |s| < s0; we may further assume 0 < s < s0 because
|ϕλ(−s)| = |ϕλ(s)| and the case s = 0 is trivial. Let θ = argϕλ(s). Then

1− |ϕλ(s)| = 1− Re
(
ϕλ(s)e

−iθ
)

=
∞∑

j=0

F (λ)−1e−jδaj Re(1− eijs−iθ). (4.10)

Let J = min
(

1
s
, 1

δ

)
≥ j0, I1 = [J, 2J ] and I2 = [4J, 5J ]. The sets {eits−iθ : t ∈

Ik}, k = 1, 2, are two intervals of length Js ≤ 1 on the unit circle, separated
by 2Js (note that 6Js ≤ 2π); hence at least one of them is disjoint from
{eiu : |u| < Js}, which implies that for some choice of k (1 or 2) and every
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t ∈ Ik, cos(ts − θ) ≤ cos(Js) ≤ 1 − 1
3
J2s2. Consequently, (4.10) yields, for

some c2, c3 > 0,

1− |ϕλ(s)| ≥
∑
j∈Ik

e−jδaj

(
1− cos(js− θ)

)
/F (λ) ≥

∑
j∈Ik

e−5aj
1
3
J2s2/F (λ0)

= c2J
2s2
∑
j∈Ik

aj ≥ c2J
2s2c1

∑
j∈Ik

j−γ−1 ≥ c1c2J
2s2bJc(5J)−γ−1

≥ c3s
2J2−γ = c3 min

(
sγ, s2δγ−2

)
.

Since σ2
λ � δγ−2 by (4.5), (4.9) holds in this case too if c > 0 is small enough.

�

Proof of Theorem 1.1(ii). We change the notation slightly, and let, for 0 < λ <
e−1, (Xλ, Yλ) be a random vector with the distribution defined in Lemma 4.1
(there denoted (Xj, Yj)). Thus Xλ has the Borel distribution (4.1), with prob-
ability generating function E zXλ = T (λz)/T (λ), where T is the tree function
(3.7).

It is a well-known fact (also for much more general exponential families of
distributions) that λ 7→ EXλ is a continuous, strictly increasing function of
λ ∈ (0, e−1). [Sketch of proof: EXλ = λT ′(λ)/T (λ) which shows continuity,
and if 0 < λ < λ1 < e−1 and b = λ1/λ > 1, then EXλ1 = EXλb

Xλ/E bXλ >
EXλ by the FKG-inequality (calculate E(X ′ − X ′′)(bX

′ − bX
′′
) > 0 for two

independent copies X ′ and X ′′ of Xλ).] Since further EXλ → 1 as λ ↓ 0 and
EXλ → ∞ as λ ↑ e−1, there exists for every µ > 1 a unique λ(µ) ∈ (0, e−1)
such that EXλ(µ) = µ, and the function µ 7→ λ(µ) is continuous.

Similarly, also higher moments EXr
λ are continuous (and increasing) func-

tions of λ.
For n and m with 0 < n < m, we apply Lemma 4.3 with N = m − n and

(X, Y ) = (Xλ, Yλ) for λ = λ(m/N). Thus condition (i) holds by construction.
(Actually, (4.32) below implies the explicit formula λ = (n/m)e−n/m, but we
do not need this.) Lemma 4.1 shows that Dmn has the same distribution as
U , so we may take U = Dmn.

In order to verify the remaining conditions, we consider three subcases sep-
arately: n/m → 0, n/m → a with 0 < a < 1 (the case studied by [9]), and
n/m → 1. (It suffices to consider these three subcases, although they do not
exhaust all possibilities, since every sequence (mk, nk) with mk → ∞ has a
subsequence belonging to one of the subcases; cf. Remark 1.3.)

Case 1: n/m→ 0; m/N → 1.
We verify the conditions of Lemma 4.3 with γ = 2.

In this case λ = λ(m/N) → 0, and thus T (λ) ∼ λ. We have

P(X = 1) = λ/T (λ) → 1,

P(X = 2) = λ2/T (λ) ∼ λ,

P(X = 3) = 9
6
λ3/T (λ) ∼ 3

2
λ2.
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Hence,
n

N
=
m

N
− 1 = E(X − 1) ∼ P(X = 2) ∼ λ

and thus λ ∼ n/N ∼ n/m. Moreover,

E |X − 1|r ∼ P(X = 2) ∼ λ ∼ n/m

for every r > 0; in particular

VarX = Var(X − 1) ∼ E(X − 1)2 ∼ n/m,

which implies conditions (ii) and (iv) (with γ = 2), and further, for any r > 2,
using λ−1 ∼ m/n = o(m),

E |X − 1|r/σr
X ∼ λ/λr/2 = λ−(r/2−1) = o(mr/2−1) = o(N r/2−1),

which yields (iii), cf. Remark 4.4. Since min
(
P(X = 1),P(X = 2)

)
∼ λ ∼ σ2

X ,
Lemma 4.5 shows that (v) holds too.

For Y we have, from the definition, Y = 0 when X ≤ 2, and P(Y = 0 | X =
3) = 2/3, P(Y = 1 | X = 3) = 1/3; thus, for every r > 0,

EY r = 1
3

P(X = 3) +O(λ3) ∼ 1
2
λ2. (4.11)

Hence, σ2
Y ∼ 1

2
λ2 ∼ 1

2
(n/m)2, and for every r > 2, now using λ−1 ∼ m/n =

o(m1/2) (by the assumption n� m1/2)

EY r/σr
Y = O(λ−(r−2)) = o(mr/2−1) = o(N r/2−1),

so (vi) and (vii) hold.
Finally, E(XY ) ∼ 1

3
P(X = 3) · 3 ∼ 3

2
λ2 and thus

ρ = Cov(X,Y )/σXσY = O(λ2/λ1/2λ) = O(λ1/2),

so ρ→ 0 and (viii) holds.

Consequently, Lemma 4.3 applies and shows (Dmn−EDmn)/(VarDmn)1/2 d→
N(0, 1), with convergence of all moments. Note, for future use, that

τ 2 ∼ σ2
Y ∼ 1

2
λ2 ∼ n2

2m2
. (4.12)

Case 2: n/m→ a, 0 < a < 1; m/N → b := 1/(1− a).
Again we take γ = 2. In this case λ = λ(m/N) → λ(b), and thus the dis-
tribution of (X, Y ) converges to (Xλ(b), Yλ(b)), together with all moments; in
particular, σ2

X → Var(Xλ(b)) > 0. It is easily verified that all assumptions of
Lemma 4.3 hold, cf. [12, Corollary 2.1]; note that (v) follows from Lemma 4.5
and that (viii) follows because the correlation coefficient ρ(Xλ(b), Yλ(b)) does
not equal ±1 since both {Xλ(b) = 3, Yλ(b) = 0} and {Xλ(b) = 3, Yλ(b) = 1} have
positive probabilities. Thus the result follows from Lemma 4.3.

Case 3: n/m→ 1; m/N →∞.
In this case, λ→ λ0 = e−1 and we verify the conditions with γ = 1/2.

We are in the set-up of Lemma 4.6, with aj = jj−1/j!, j ≥ 1, and F (λ) =
T (λ), the tree function in (3.7). By Stirling’s formula, aj ∼ (2π)−1/2j−3/2ej as
j → ∞, so (4.4) holds with γ = 1/2, κ = (2π)−1/2 and λ0 = e−1; we further
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have, as is well-known, F (λ0) = T (e−1) = 1, so κ0 = κ. Hence, Lemma 4.6
applies, which by (4.9) yields (v). Moreover, it shows that for every r > 1/2,

EXr
λ ∼

Γ(r − 1/2)√
2π

(1− eλ)1/2−r. (4.13)

In particular, cf. the exact formulae (4.25), (4.30) below,

µλ = EXλ ∼ 2−1/2(1− eλ)−1/2, (4.14)

σ2
λ ∼ EX2

λ ∼ 2−3/2(1− eλ)−3/2 ∼ µ3
λ = (m/N)3. (4.15)

By assumption, N2 � n, and thus µλ = m/N ∼ n/N � N , which yields
σ2

λ = O(µ3
λ) = O(N3), i.e. (iv). Similarly, for r > 2,

EXr
λ/σ

r
λ = O(µ2r−1

λ /µ
3r/2
λ ) = O(µ

r/2−1
λ ) = o(N r/2−1),

which verifies (iii).
Next, by the construction of Yλ,

E(Y r
λ | Xλ = `) = EDr

`,`−1,

and by the already proved Theorem 1.1(iii), for every r > 0,

`−3r/2 EDr
`,`−1 → EW r

0 as `→∞.

Hence, fixing r, for every ε > 0 there exists `ε such that

|EDr
`,`−1 − `3r/2 EW r

0 | < ε`3r/2 for ` ≥ `ε;

letting Cε be the maximum of the left hand side for 1 ≤ ` < `ε, we see that
for every `

(EW r
0 − ε)`3r/2 − Cε ≤ E(Y r

λ | Xλ = `) = EDr
`,`−1 ≤ (EW r

0 + ε)`3r/2 + Cε

and thus

(EW r
0 − ε)X

3r/2
λ − Cε ≤ E(Y r

λ | Xλ) ≤ (EW r
0 + ε)X

3r/2
λ + Cε, (4.16)

which yields, by taking the expectation,

(EW r
0 − ε) EX3r/2

λ − Cε ≤ EY r
λ ≤ (EW r

0 + ε) EX3r/2
λ + Cε.

Together with (4.8) this easily implies that for every r > 1/3, as λ→ e−1,

EY r
λ ∼ EW r

0 EX3r/2
λ ∼ EW r

0 κ
2−3r
0 Γ(3r/2− 1/2)Γ(1/2)1−3rµ3r−1

λ

= 23r/2−1π−1/2Γ(3r/2− 1/2) EW r
0 µ

3r−1
λ . (4.17)

More generally, by first multiplying (4.16) by Xs
λ, it follows similarly that if

s, r ≥ 0 with 3r/2 + s > 1/2, then

EXs
λY

r
λ ∼ EW r

0 EXs+3r/2
λ

∼ κ2−2s−3r
0 Γ(s+ 3r/2− 1/2)Γ(1/2)1−2s−3rµ2s+3r−1

λ EW r
0

= 2s+3r/2−1π−1/2Γ(s+ 3r/2− 1/2) EW r
0µ

2s+3r−1
λ . (4.18)
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In particular, using EW0 =
√
π/8 and EW 2

0 = 5/12 [20, 9],

EYλ ∼
√

2/π EW0µ
2
λ = 1

2
(m/N)2 (4.19)

σ2
Y ∼ EY 2

λ ∼ 4π−1/2Γ(5/2) EW 2
0 µ

5
λ = 3 EW 2

0 µ
5
λ = 5

4
(m/N)5 (4.20)

and, by (4.18),

EXλYλ ∼ 23/2π−1/2Γ(2) EW0µ
4
λ = µ4

λ = (m/N)4.

Thus, Cov(Xλ, Yλ) ∼ EXλYλ ∼ µ4
λ = (m/N)4 and

ρ ∼ EXλYλ

(EX2
λ EY 2

λ )1/2
∼ µ4

λ

(µ3
λ

5
4
µ5

λ)
1/2

=
√

4
5
,

which shows (viii). Furthermore,

τ 2 ∼
(
3 EW 2

0 − 8
π
(EW0)

2
)
µ5

λ = 1
4

(m
N

)5

. (4.21)

Finally, for r ≥ 3, by (4.20) and (4.17),

EY r
λ /σ

r
Y = O(µ3r−1

λ /µ
5r/2
λ ) = O(µ

r/2−1
λ ) = o(N r/2−1),

which verifies (vii), and again the result follows by Lemma 4.3. �

Proof of Theorem 1.4 (ii). In the case n/m→ 0, Lemma 4.3 and (4.11), (4.12)
show that

EDmn = N EY + o(N1/2τ) ∼ n2

2m
,

VarDmn ∼ Nτ 2 ∼ n2

2m
,

verifying Theorem 1.4(i) and (ii) when m1/2 � n� m.
Similarly, when n/m→ 1 and m− n� m1/2, Lemma 4.3 and (4.19), (4.21)

yield Theorem 1.4(ii) for this case.
In the case α = n/m → a ∈ (0, 1), finally, it follows from Lemma 4.3 that

EDmn and VarDmn are asymptotically proportional to N , and thus to n. In
order to obtain explicit expressions, we argue as follows, using the generating
functions explored in Section 3. (As stated in Section 1, these asymptotics
were found by [14] and [9], respectively, directly from the exact formulae.
Nevertheless, we find the alternative proof given here interesting.)

By the definition of Yλ, (3.1), (4.1), (3.2) and (3.3),

EwYλ =
∞∑

`=1

EwD`,`−1 P(Xλ = `) =
∞∑

`=1

F`,`−1(w)

F`,`−1(1)

``−1λ`

`!T (λ)

=
∞∑

`=1

F`,`−1(w)
λ`

(`− 1)!T (λ)
=

λ

T (λ)
F (w, λ)

and thus, by (3.6) and (3.10), for k = 0, 1, . . . ,

E
(
Yλ

k

)
= [wk] E(1 + w)Yλ =

λ

T (λ)
[wk]F (1 + w, λ) =

λ

T (λ)
W ′

k(λ) = fk(T (λ)).

(4.22)
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More generally, we similarly obtain, for j = 0, 1, . . . ,

E
(
wYλXj

λ

)
=

∞∑
`=1

F`,`−1(w)`j
λ`

(`− 1)!T (λ)
=

1

T (λ)

(
λ
d

dλ

)j(
λF (w, λ)

)
and thus

E
((

Yλ

k

)
Xj

λ

)
= [wk]

1

T (λ)

(
λ
d

dλ

)j(
λF (1 + w, λ)

)
=

1

T (λ)

(
λ
d

dλ

)j(
T (λ)fk(T (λ))

)
. (4.23)

For any differentiable function h, we have

λ
d

dλ

(
h(T (λ)

)
= λT ′(λ)h′(T (λ)) =

T (λ)

1− T (λ)
h′(T (λ)); (4.24)

in other words, λ d
dλ

= T
1−T

d
dT

. Hence, (4.22), (4.23) and (3.13) yield by simple
calculations, dropping the λ from the notation,

EX =
1

T

(
λ
d

dλ

)
T =

1

T

T

1− T

d

dT
T =

1

1− T
, (4.25)

EX2 =
1

T

( T

1− T

d

dT

)2

T =
1

(1− T )3
, (4.26)

EY = f1(T ) =
T 2

2(1− T )2
, (4.27)

EY 2 = 2 E
(
Y

2

)
+ EY = 2f2(T ) + f1(T ) =

6T 2 + 6T 3 + 7T 4 − 4T 5

12(1− T )5
,

(4.28)

EXY =
1

T

T

1− T

d

dT

(
Tf1(T )

)
=

3T 2 − T 3

2(1− T )4
, (4.29)

which by further straightforward calculations lead to

VarX = EX2 − (EX)2 =
T

(1− T )3
, (4.30)

τ 2 = VarY − Cov(X, Y )2/VarX =
6T 2 − 6T 3 + 4T 4 − T 5

12(1− T )5
. (4.31)

The condition EX = m/N and (4.25) yield 1− T = N/m and thus

T = n/m = α. (4.32)

Lemma 4.3 and (4.27), (4.31), (4.32) now yield (1.1) and (1.2). �

5. The very sparse case: Poisson behaviour

Theorem 1.1(i) is much simpler than the other parts and is given mainly for
completeness. It too can be shown using Lemma 4.1 (for example using Holst
[11, Corollary 3.5]), but we prefer a direct approach, using a related occupancy
problem.
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Let D′
mn be the number of cells where at least two items make their first try,

i.e. using the notation of Section 2, the number of j with Xj ≥ 2. It is easily
seen that if Xj +Xj+1 ≤ 2 for all j, then no item is displaced more than one
step and Dmn = D′

mn. Consequently, using symmetry,

P(Dmn 6= D′
mn) ≤ mP(X1 +X2 ≥ 3) ≤ mn3 P(h1, h2, h3 ∈ {1, 2}) = 8

n3

m2
→ 0.

(5.1)
Moreover, it is easy to check by the method of moments or by Stein’s method,

see for example [2, Theorem 6.B], that D′
mn

d→ Po(a2/2). By (5.1), then

Dmn
d→ Po(a2/2) too.

Remark 5.1. The argument shows more generally Poisson convergence in
the form dTV

(
Dmn,Po(n2/2m)

)
→ 0, where dTV denotes the total variation

distance [2], even for n2/2m→∞ as long as n = o(m2/3).

Remark 5.2. Instead of approximating Dmn by D′
mn, we could just as well

use the number of pairs (i, j), i < j with hi = hj; this is a variable arising
in birthday problems, and again it is easy to prove that it is asymptotically
Poisson distributed, see e.g. [2, Theorem 5.G (with Γ the complete graph Kn)].

To show moment convergence, it suffices by Remark 1.2 to show that EDr
mn =

O(1) for each r. This can presumably be verified by a direct combinatorial
analysis, but we argue instead as follows.

Suppose to the contrary that there is an integer r ≥ 1 such that EDr
mn

is unbounded; then there is a sequence (mk, nk) with n2
k/mk → a2 and a

sequence ωk → ∞ such that EDr
mknk

≥ ω2r
k for all k. We can further assume

ωk � √
mk. Define n′k = bωkm

1/2
k c. Then n′k > nk for large k, and thus

EDr
mkn′k

≥ EDr
mknk

≥ ω2r
k . On the other hand, Theorems 1.1(ii) and 1.4(ii)

apply to Dmkn′k
, and it follows from the moment convergence that

EDr
mkn′k

∼ (EDmkn′k
)r ∼

((n′k)
2

2mk

)r

∼ 2−rω2r
k .

This yields the desired contradiction, proving EDr
mn = O(1) and completing

the proof of Theorem 1.1(i).
The moment estimates in Theorem 1.4(i) now follow for the case n/m1/2 →

a > 0. The case n/m1/2 → ∞ was treated in Section 4, but it remains to
consider the rather trivial case n/m1/2 → 0, when P(Dmn 6= 0) ∼ n2/2m→ 0.
As remarked in the introduction, the exact formula for EDmn easily yields
EDmn ∼ n2/2m in this case. We do not know any simple argument for
the variance, but the exact formula for ED2

mn in [9, Theorem 4] yields after
straightforward (but tedious) calculations ED2

mn ∼ n2/2m too, as required.

6. Asymptotics for the limits Wa

In this section we study the asymptotics of the distribution of the limit
variables Wa as a→∞.
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Theorem 6.1. As a→∞, we have EWa ∼ 1
2
a−1, VarWa ∼ 1

4
a−4 and

Wa − EWa

(VarWa)1/2

d→ N(0, 1) (6.1)

with convergence of all moments.

Proof. In this proof we use the notation X̃ := (X − EX)/(VarX)1/2 for the
standardization of a random variable X.

Theorem 1.1(iii) shows that, for any a > 0, m−3/2Dm,m−bam1/2c
d→ Wa with

convergence of all moments, and thus also

D̃m,m−bam1/2c =
(
m−3/2Dm,m−bam1/2c

)∼ d→ W̃a. (6.2)

The space of all probability distributions on R is metrizable (see e.g. [4, Ap-
pendix III]); let d denote a metric on this space (for example the well-known
Lévy metric, but any metric will do). If X and Y are random variables,
we write d(X,Y ) for the distance between their distributions. Then (6.2)
shows that for every a > 0, there is an integer m(a) such that defining
n(a) := m(a)− bam(a)1/2c we have

d(D̃m(a),n(a), W̃a) < a−1. (6.3)

We may further assume m(a) > 4a2, and thus m(a) − n(a) ≤ am(a)1/2 ≤
1
2
m(a).

Now let a → ∞. Then m(a) → ∞, n(a) ≥ 1
2
m(a) and m(a) − n(a) �

m(a)1/2, and thus by Theorem 1.1(ii)

d(D̃m(a),n(a), N(0, 1)) → 0. (6.4)

Combining (6.3) and (6.4) yields d(W̃a, N(0, 1)) → 0, which proves (6.1).
To prove moment convergence, we use the same argument, now taking

d(X, Y ) := |EXr − EY r| for a fixed integer r.
Finally, Theorem 1.4(iii) shows that if m→∞ and n = m− bam1/2c, then

(m− n)n−2 EDm,n → aEWa

and

(m− n)4n−5 VarDm,n → a4 VarWa,

which by a similar argument and Theorem 1.4(ii) yield aEWa → 1/2 and
a4 VarWa → 1/4 as n→∞. �

More precise estimates of the moments of Wa are easily obtained using the
formulae in Section 3. Indeed, a Taylor expansion of e−x2/2 in the definition
(3.19) yields

qr(a) =
1

r!

∫ ∞

0

xre−ax
(
1− x2/2 +O(x4)

)
dx

= a−r−1 − (r + 1)(r + 2)

2
a−r−3 +O(a−r−5). (6.5)
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Consequently, Theorem 3.3 yields

EWa = 1
2
q0(a) = 1

2
a−1 − 1

2
a−3 +O(a−5), (6.6)

EW 2
a = 5

4
q3(a) + 1

4
aq2(a) = 1

4
a−2 − 1

4
a−4 +O(a−6), (6.7)

and thus

VarWa = EW 2
a − (EWa)

2 = 1
4
a−4 +O(a−6). (6.8)

The same method yields further terms in (6.5)–(6.8), giving asymptotic ex-
pansions of EWa and VarWa in powers of a−1 up to an arbitrary degree, but
we leave the details to the reader. The method yields asymptotics for higher
moments too.

Note that by (6.6) and (6.8), the distributional limit (6.1) can be written

2a2(Wa − 1/2a)
d→ N(0, 1), as a→∞.

7. Unsuccessful search

In an unsuccessful search, we start searching at a random cell h and probe
successive cells until we reach an empty cell when we give up. (We assume
throughout this section that n < m so that there is at least one empty cell.)
The number of probes used when starting in a block of length ` thus ranges
from 1 to `, and if the hash tables have block lengths `1, . . . , `N , withN = m−n
and

∑
i `i = m, the average unsuccessful search time Umn is given by

Umn =
1

m

N∑
j=1

`j∑
i=1

i =
1

m

N∑
j=1

(
`j + 1

2

)
=

1

2m
Ûmn +

1

2
, (7.1)

where we for convenience define

Ûmn :=
N∑

j=1

`2j .

Note that for given m and n, Ûmn, and thus Umn, is largest when one block
has length n+ 1 and the others length 1, and smallest when all block lengths
are as equal as possible, i.e. when all are bm/(m− n)c or dm/(m− n)e.

Brownian limits. First, we adapt the Brownian approach in Section 2, as-
suming n < m and (m − n)/

√
n → a ≥ 0. The empty cells occur when

Hi = 0, and thus the block lengths, normalized as (`i − 1)/m, are the lengths
of the excursions (i.e. the zero-free intervals) of the random function Hbmtc or

m−1/2Hbmtc. By (2.2), the latter random function converges in distribution to

Ya(t) := maxs≤t

(
b(t)− b(s)− a(t− s)

)
, and it is reasonable to conjecture that

the lengths of its excursions converge to the lengths of the excursions of Ya.
(We consider the excursions in an interval [t0, t0 + 1] with Ya(t0) = 0; equiv-

alently, we consider [0, 1] but allow an excursion to wrap around from 1 to 0.)
It follows from a result by Vervaat [28], see Remark 2.3, that these have the
same distribution as the lengths of the excursions of Za(t) := max0≤s≤t

(
e(t)−

e(s)− a(t− s)
)

in [0, 1].
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However, the convergence of the lengths does not follow from the argument
above alone, since taking the excursion lengths is not a continuous operation;
nevertheless, it has been verified by Chassaing and Louchard [6]. More pre-
cisely, they show in [6] that if (Li)

∞
i=1 is the sequence consisting of the block

lengths `1, . . . , `N arranged in decreasing order, followed by infinitely many
zeroes, and (Ji)

∞
i=1 is the sequence of the excursion lengths of Za arranged in

decreasing order, then (Li/m)∞1
d→ (Ji)

∞
1 as random elements of `1. Since

(xi) 7→
∑
x2

i is a continuous functional on `1, this immediately yields

Ûmn/m
2 =

∞∑
1

(Li/m)2 d→
∞∑
1

J2
1 ,

which by (7.1) yields Theorem 1.6(iii) with the following description of the

limit. (Moment convergence is immediate since 0 ≤ Ûmn/m
2 ≤ 1.)

Theorem 7.1. The limit Va can be constructed as the sum of the squares of
the excursion lengths of the stochastic process

Za(t) := max
0≤s≤t

(
e(t)− e(s)− a(t− s)

)
, 0 ≤ t ≤ 1. Λ

As remarked above, Za can here be replaced by Ya defined above. Moreover,
the excursion lengths of Za or Ya have several different, equivalent descriptions,
which lead to the following alternative characterizations of Va, see further
[1, 3, 5, 6, 23, 24]. (We exclude the trivial case a = 0 when Va = 1.)

Theorem 7.2. Let 0 < a <∞. The limit Va can be constructed as any of the
following random variables.

(i) The sum of the squares of the excursion lengths of a Brownian bridge
on [0, 1] conditioned on having local time a at 1.

(ii) The sum of the squares of the excursion lengths of a Brownian motion
on [0, 1] conditioned on having local time a at 1.

(iii) The sum of the squares of the jumps of a standard stable subordinator
of index 1/2 on [0, a] conditioned on having value 1 at a. (Note that
this value equals the sum of the jumps.)

(iv) The sum of the squares of a2 times the jumps of a standard stable
subordinator of index 1/2 on [0, 1] conditioned on having value a−2 at
1.

(v) The sum
∑
x2

i of the squares of the points in a Poisson process {xi}∞1
on (0,∞) with intensity a/

√
2πx3, conditioned on

∑
xi = a.

(vi) The sum of the squares of the component sizes of X(− log a), where
X(t) denotes the standard additive coalescent [1].

(vii) Let ξ1, ξ2, . . . be independent standard normal variables and define

Sk =
∑k

1 ξ
2
i (with S0 = 0) and Rk = a2

Sk−1+a2 − a2

Sk+a2 ; then define

Va =
∑∞

1 R2
k.

Proof. The equivalence of the seven constructions is well-known, also on the
level of random sequences of lengths, jumps, etc. More specifically, first it is
well-known, cf. [25, §VI.2 and §XII.2], that the excursion lengths of a Brownian
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motion in [0, 1] are the jumps of the inverse τs := inf{t : Tt > s} of the local
time process Tt in the interval 0 ≤ s ≥ T1, that τs is a stable subordinator
of index 1/2, and that the sizes of the jumps of τs for 0 ≤ s ≤ a are given

by a Poisson process on (0,∞) with intensity a/
√

2πx3. The equivalence of
(i), (iii) and (v) now follows easily, cf. e.g. [24]. Moreover, a simple rescaling
yields the equivalence of (iii) and (iv). By [24, Theorem 5.1], (i) and (ii) are
equivalent. The equivalence of (iv), (vi) and (vii) follows by [1, Theorems 3, 4
and Corollary 5].

Finally, these constructions may be connected to Theorem 7.1 in several
ways. First, [6] gives a direct proof that the normalized block lengths Li/m,
taken in order of arrival of the first item, converge to the the sequence (Rk) in

(vii), which implies Ûmn/m
2 d→

∑
R2

k and thus (vii). Secondly, the equivalence
of (i) and Theorem 7.1 follows by [5]. Thirdly, by the equivalence between
random hash tables and random forests mentioned in Remark 4.2, (vi) follows
easily from the limit result [1, Proposition 2]. �

Moments. For the generating function approach in Section 3, we let F̂mn be

the generating function for Ûmn in the confined version; thus

ExÛmn = F̂mn(x)/F̂mn(1), (7.2)

where F̂mn(1) = Fmn(1) = (m−n)mn−1 by (3.2). In the case m = n+1, there

is only a single block of length n+ 1, and thus Ûmn = (n+ 1)2 is non-random,
so

F̂n+1,n(x) = x(n+1)2F̂n+1,n(1) = (n+ 1)n−1x(n+1)2 .

We define, as in (3.3),

F̂ (x, z) =
∞∑

n=0

F̂n+1,n(x)
zn

n!
=

∞∑
n=0

(n+ 1)n−1

n!
x(n+1)2zn =

∞∑
m=1

mm−1

m!
xm2

zm−1,

(7.3)

and (3.4) holds with F̂ . It is this time somewhat more convenient to study

F̂ (ew, z) instead of F̂ (1 + w, z). Then, by (7.2) and (3.4), (3.5) is replaced by

1
k!

E Ûk
mn = [wk] E ewÛmn = [wk]F̂mn(ew)/F̂mn(1)

= [wkzn]F̂ (ew, z)m−n/[zn]F̂ (1, z)m−n. (7.4)

Moreover, we write F̂ (ew, z) =
∑∞

0 wkŴk(z), where the power series Ŵk are
given by, cf. (7.3) and (3.7),

Ŵk := [wk]F̂ (ew, z) =
∞∑

m=1

mm−1

m!
[wk]em2wzm−1 =

1

k!

∞∑
m=1

mm−1+2k

m!
zm−1

=
1

k!
z−1
(
z
d

dz

)2k

T (z). (7.5)
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By (4.24), for j = 0, 1, . . . ,

z
d

dz
T (1− T )−j =

T

1− T

(
(1− T )−j + jT (1− T )−j−1

)
= jT (1− T )j−2 − (j − 1)(1− T )−j−1.

It follows by induction that(
z
d

dz

)k
T (z) = T (z)gk

(
T (z)

)
, (7.6)

where g0(t) = 1 and, for k ≥ 1, gk(t) is a polynomial in (1 − t)−1 of degree
2k − 1 with leading coefficient (2k − 3)!! = (2k − 2)!/2k−1(k − 1)! . For future
use we record the first cases:

g0(t) = 1,

g1(t) = (1− t)−1,

g2(t) = (1− t)−3,

g3(t) = 3(1− t)−5 − 2(1− t)−4,

g4(t) = 15(1− t)−7 − 20(1− t)−6 + 6(1− t)−5.

(7.7)

Consequently, (7.5) shows that we now have, instead of (3.10),

Ŵk(z) =
T (z)

z
f̂k

(
T (z)

)
,

where f̂k(t) = 1
k!
g2k(t) is a polynomial in (1− t)−1; if k ≥ 1, then f̂k has degree

4k − 1 and leading coefficient

ω̂k =
(4k − 3)!!

k!
=

(4k − 2)!

22k−1k! (2k − 1)!
.

In particular, ω̂1 = 1, ω̂2 = 15/2 and, more precisely,

f̂1(t) = g2(t) = (1− t)−3,

f̂2(t) = 1
2
g4(t) = 15

2
(1− t)−7 − 10(1− t)−6 + 3(1− t)−5.

(7.8)

Defining f̂(w, t) :=
∑∞

0 wkf̂k(t), the arguments of Section 3 now yield (3.15)

with F (1 +w, z) and f(w, t) replaced by F̂ (ew, z) and f̂(w, t), and then (3.16)

with E
(

Dmn

k

)
and fki

replaced by 1
k!

E(Ûmn)k and f̂ki
.

We pause to observe that (3.17) now yields explicit expressions for the mo-

ments of Ûmn. In particular, for k = 1 and 2 we obtain, using (7.8),

E Ûmn = m1−nn! [tn]emt(1− t)f̂1(t) = m1−nn! [tn]emt(1− t)−2 = mQ1(m,n)

and

E Û2
mn = m1−nn! [tn]emt(1− t)

(
2f̂2(t) + (m− n− 1)f̂1(t)

2
)

= 15mQ5(m,n) +m(m− n− 21)Q4(m,n) + 6mQ3(m,n).

Returning to Umn by (7.1), we obtain the following exact results; the expecta-
tion was found already by Knuth [14], [15, Theorem 6.4.K].
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Theorem 7.3. If 0 ≤ n < m, then EUmn = 1
2
Q1(m,n) + 1

2
and

VarUmn =
1

4m2
Var Ûmn

=
1

4m

(
15Q5(m,n) + (m− n− 21)Q4(m,n) + 6Q3(m,n)−mQ1(m,n)2

)
.

�

For asymptotics when (m−n)/
√
m→ a ≥ 0, we use Lemma 3.1 and obtain

in analogy with (3.21)

n−2k E Ûk
mn → ψ̂k(a), k ≥ 1, (7.9)

where

ψ̂k(a) := k!
k∑

j=1

( ∑
k1,...,kj≥1∑

ki=k

j∏
i=1

ω̂ki

)
aj−1

j!
q4k−j−2(a). (7.10)

Since 0 ≤ m−2Ûmn ≤ 1, the moment convergence (7.9) implies convergence

in distribution m−2Ûmn
d→ Va, for some Va with 0 ≤ Va ≤ 1. This shows

Theorem 1.6(iii) with the following characterization of the limit, as well as
Theorem 1.7(iii).

Theorem 7.4. The limit random variables Va have the moments EV k
a =

ψ̂k(a), k ≥ 1, with ψ̂k defined in (7.10). In particular,

EVa = ω̂1q1(a) = q1(a),

EV 2
a = 2ω̂2q5(a) + ω̂2

1aq4(a) = 15q5(a) + aq4(a).

Moreover, 0 ≤ Va ≤ 1, and thus the distribution of Va is determined by the

moments ψ̂k(a). �

Again, the moments can be expressed in terms of the normal distribution
function Φ, but we leave the details to the reader.

The normal case. We obtain immediately the following analogue and con-
sequence of Lemma 4.1.

Lemma 7.5. Suppose 0 ≤ n < m and let N = m − n. Let 0 < λ ≤ e−1

and let X1, . . . , XN be independent random variables with the common distri-

bution (4.1). Then the distribution of Ûmn equals the conditional distribution

of
∑N

j=1X
2
j given

∑N
j=1Xj = m. �

In the cases n/m → a ∈ (0, 1) and n/m → 1, m − n � m1/2, we apply

Lemma 4.3 as before, still with X = Xλ but now taking Y = Ŷ := X2. The
verification of the conditions is essentially as before; in the case n/m→ 1, and
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thus µ = m/N →∞, we use that, by (4.13), (4.14) and (4.15),

E Ŷ = EX2 ∼ µ3,

σ2
Ŷ
∼ E Ŷ 2 = EX4 ∼ 15µ7,

Cov(X, Ŷ ) ∼ EXŶ = EX3 ∼ 3µ5,

τ 2 ∼ 15µ7 − (3µ5)2/µ3 = 6µ7,

and for any r ≥ 3

E Ŷ r/σr
Ŷ

= O(µ4r−1/µ7r/2) = O(µr/2−1) = o(N r/2−1).

This yields Theorem 1.6 in these cases.
In the case n/m → 0, n � m1/2, we cannot use Lemma 4.3 as stated with

Y = X2, since then ρ → 1. Instead we take Y = Ŷ ′ := (X − 1)(X − 2) =
X2 − 3X + 2, which again vanishes for X = 1 or 2 yielding ρ → 0; the
conditions of Lemma 4.3 are easily verified. Note that if

∑j
1Xj = m, then∑N

1 Yj =
∑N

1 X
2
j−3m+2N , and thus this Y yields results for Ûmn−3m+2N =

Ûmn −m− 2n, which is just as good.
For the moment estimates in Theorem 1.7(ii), we obtain from Lemma 4.3

in the case n/m → 1, by the estimates above, E Ûmn ∼ Nµ3 and Var Ûmn ∼
6Nµ7, which by (7.1) imply the corresponding estimates for Umn in Theo-
rem 1.7.

To treat also the other cases, we note that by (4.1) and (7.6), for any λ ∈
(0, 1),

EXk =
1

T (λ)

∞∑
`=1

``−1+k

`!
λ` =

1

T (λ)

(
λ
d

dλ

)k

T (λ) = gk

(
T (λ)

)
; (7.11)

in particular EX = g1(T (λ)) = (1 − T (λ))−1, and substituting µ = EX =
m/N for (1 − T (λ))−1 in (7.11), we obtain EXk as a polynomial in µ. By
(7.7), we have explicitly

E Ŷ = EX2 = g2

(
T (λ)

)
=
(
1− T (λ)

)−3
= µ3,

E Ŷ 2 = EX4 = g4

(
T (λ)

)
= 15µ7 − 20µ6 + 6µ5,

EXŶ = EX3 = g3

(
T (λ)

)
= 3µ5 − 2µ4,

and thus

σ2
X = EX2 − µ2 = µ3 − µ2,

σ2
Ŷ

= E Ŷ 2 − (E Ŷ )2 = 15µ7 − 21µ6 + 6µ5,

Cov(X, Ŷ ) = EXŶ − EX E Ŷ = 3µ5 − 3µ4,

τ 2 = σ2
Ŷ
− (Cov(X, Ŷ ))2/σ2

X = 6µ7 − 12µ6 + 6µ5. (7.12)

Consequently, for α→ a > 0 and m− n� m1/2, Lemma 4.3 yields

E Ûmn ∼ N E Ŷ = Nµ3 =
m3

(m− n)2
,
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(as is more easily obtained directly from the exact formula mQ1(m,n)) and

Var Ûmn ∼ Nτ 2 = 6N(µ− 1)2µ5 = 6N
( n
N

)2(m
N

)5

= 6
n2m5

(m− n)6
, (7.13)

which yields the corresponding claims in Theorem 1.7 by (7.1).
In the case n/m→ 0, n� m1/2, with Y = (X − 1)(X − 2) = X2 − 3X + 2,

we still have (7.12), cf. Remark 4.4, and thus (7.13).

Poisson limits. Let M` be the number of blocks of length `. It is easily
seen that if Xj + Xj+1 + Xj+2 ≤ 2 for all j, then all blocks have lengths at
most 3 (i.e. they have at most 2 occupied cells), so M` = 0 for ` ≥ 4; the
constraints

∑
M` = m − n and

∑
`M` = m then yield M1 = m − 2n + M3

and M2 = n− 2M3, and thus, by (7.1),

mUmn = M1 + 3M2 + 6M3 = m+ n+M3.

Moreover, in this case, M3 equals the number V of pairs of items that make
their first try in the same cell or in adjacent ones, i.e. V equals the number of
pairs (i, j), i < j, such that |hi − hj| ≤ 1 (mod m), cf. Remark 5.2.

Assume now that n/
√
m→ a ≥ 0. Arguing as in (5.1) we then find

P(mUmn −m− n 6= V ) ≤ mP(X1 +X2 +X3 ≥ 3) = O
( n3

m2

)
→ 0.

Furthermore, it is easy to check by the method of moments or by Stein’s

method that V
d→ Po(3a2/2) (this can be regarded as a generalized birthday

problem), and Theorem 1.6(i) follows. Moment convergence can be verified as
in Section 5.

Asymptotics of Va. The same proof as for Theorem 6.1 now yields the cor-
responding result for Va.

Theorem 7.6. As a→∞, we have EVa ∼ a−2, VarVa ∼ 6a−6 and

Va − EVa

(VarVa)1/2

d→ N(0, 1) (7.14)

with convergence of all moments. �

More refined moment asymtotics follow from Theorem 7.4 and (6.5); for
example EVa = a−2 − 3a−4 +O(a−6).

8. Joint limits

The methods in this paper easily yield joint convergence of Dmn and Umn

(after appropriate normalizations) in all cases. In the normal case, this leads
to the following result. (We leave the other cases to the reader.)

Theorem 8.1. If n�
√
m and m− n�

√
m, then Dmn and Umn are jointly

asymptotically normal. Moreover, if α := n/m, then their covariance and
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correlation have the asymptotics

Cov(Dmn, Umn) ∼ α2

2(1− α)5
=

n2m3

2(m− n)5
, (8.1)

Corr(Dmn, Umn) ∼ (3− 3α+ 2α2 − 1
2
α3)−1/2. (8.2)

In other words, if further n/m→ a ∈ [0, 1], then (Dmn−EDmn)/(VarDmn)1/2

and (Umn − EUmn)/(VarUmn)1/2 converge jointly in distribution to a pair of
normal variables with means 0, variances 1 and covariance

ρ = (3− 3a+ 2a2 − 1
2
a3)−1/2. (8.3)

Proof. Joint normal convergence follows easily from Lemma 4.3 by the Cramér–
Wold device, see [12, Corollary 2.2].

For the asymptotic covariance, this yields, with Y as in Section 4,

Cov(Dmn, Ûmn) ∼ N
(
Cov(Y,X2)− Cov(Y,X) Cov(X2, X)/VarX

)
,

which yields (8.1) by straightforward calculations using (4.23) and (4.32) (most
terms are already evaluated in Sections 4 and 7); we omit the details. Finally,
(8.2) follows from (8.1) and the asymptotic variances given in Theorems 1.4
and 1.7. �

Remark 8.2. It is easily verified that the limiting correlation (or covariance)

in (8.3) is an increasing function of a, which is
√

1/3 for a = 0 and
√

2/3 for
a = 1.

References

[1] D.J. Aldous & J. Pitman, The standard additive coalescent. Ann. Probab. 26 (1998),
1703–1726.

[2] A.D. Barbour, L. Holst & S. Janson, Poisson Approximation. Oxford University Press,
Oxford, 1992.

[3] J. Bertoin, A fragmentation process connected to Brownian motion. Probab. Th. Rel.
Fields 117 (2000), 289–301.

[4] P. Billingsley, Convergence of Probability Measures. Wiley, New York, 1968.
[5] P. Chassaing & S. Janson, A Vervaat-like path transformation for the reflected Brownian

bridge conditioned on its local time at 0. Ann. Probab., to appear.
[6] P. Chassaing & G. Louchard, Phase transition for parking blocks, Brownian excursion

and coalescence. Rand. Struct. Alg., to appear.
[7] P. Chassaing & J.F. Marckert, Parking functions, empirical processes and the width of

rooted labelled trees. Electronic J. Combin. 8 (2001), #R14.
[8] A. Dvoretzky, J. Kiefer & J. Wolfowitz, Asymptotic minimax character of the sample

distribution function and of the classical multinomial estimator. Ann. Math. Statist. 27
(1956), 642–669.

[9] P. Flajolet, P. Poblete & A. Viola, On the analysis of linear probing hashing. Algorith-
mica 22 (1998), 490–515.

[10] L. Holst, Two conditional limit theorems with applications. Ann. Statist. 7 (1979),
551–557.

[11] L. Holst, Some conditional limit theorems in exponential families. Ann. Probab. 9
(1981), 818–830.

[12] S. Janson, Moment convergence in conditional limit theorems. J. Appl. Probab. 38
(2001), 421–437.



32 SVANTE JANSON

[13] S. Janson, D.E. Knuth, T.  Luczak & B. Pittel, The birth of the giant component. Rand.
Struct. Alg. 4 (1993), 233–358.

[14] D.E. Knuth, Notes on “open” addressing. Unpublished notes, 1963. Available at
http://www.wits.ac.za/helmut/first.ps

[15] D.E. Knuth, The Art of Computer Programming. Vol. 3: Sorting and Searching. 2nd
ed., Addison-Wesley, Reading, Mass., 1998.

[16] D.E. Knuth, Linear probing and graphs. Algorithmica 22 (1998), 561–568.
[17] V.F. Kolchin, Random Mappings. Nauka, Moscow, 1984 (Russian). English transl.: Op-

timization Software, New York, 1986.
[18] A.G. Konheim & B. Weiss, An occupancy discipline and applications. SIAM J. Appl.

Math. 14 (1966), 1266–1274.
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