
The Infamous Upper Tail ∗

Svante Janson
Uppsala University

Sweden

Andrzej Ruciński†
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Abstract

Let Γ be a finite index set and k ≥ 1 a given integer. Let further S ⊆ [Γ]≤k be an arbitrary
family of k element subsets of Γ. Consider a (binomial) random subset Γp of Γ, where p = (pi :
i ∈ Γ) and a random variable X counting the elements of S that are contained in this random
subset.

In this paper we survey techniques of obtaining upper bounds on the upper tail probabilities
P(X ≥ λ + t) for t > 0. Seven techniques, ranging from Azuma’s inequality to the purely
combinatorial deletion method, are described, illustrated and compared against each other for
a couple of typical applications.

As one application, we obtain essentially optimal bounds for the upper tails for the numbers
of subgraphs isomorphic to K4 or C4 in a random graph G(n, p), for certain ranges of p.

1 Introduction

Let Γ be a finite index set and k ≥ 1 a given number, and let [Γ]≤k be the family of all subsets

A ⊆ Γ with |A| ≤ k. Suppose that IA, A ∈ [Γ]≤k, is a family of non-negative random variables such

that each IA is independent of {IB : B ∩A = ∅}. Let X :=
∑
A IA and λ := EX =

∑
A E IA.

In this paper we survey techniques of obtaining upper bounds on the upper tail probabilities

P(X ≥ λ + t) for t > 0. In many instances such inequalities come together with their lower

tail counterparts as a two-sided concentration result. This is the case of celebrated Azuma’s and

Talagrand’s inequalities (see next section). The simplest situation takes place when k = 1. Then

X is a sum of independent summands, and if these happen to be 0–1 random variables, Chernoff’s
∗This is a preprint of an article accepted for publication in Random Structure & Algoritms c© 2002 John Wiley &
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bounds apply. With φ(x) = (1 +x) log(1 +x)−x, x ≥ −1 (and φ(x) = ∞ for x < −1), we have, see

e.g. [1], [7] and [9, Theorem 2.8]

P(X ≥ λ+ t) ≤ exp
(
−λφ

( t
λ

))
≤ exp

(
− t2

2(λ+ t/3)

)
, t ≥ 0; (1)

P(X ≤ λ− t) ≤ exp
(
−λφ

(−t
λ

))
≤ exp

(
− t2

2λ

)
, t ≥ 0. (2)

There is a little asymmetry between the lower and upper tail, but for t ≤ λ the order of magnitude

of the exponents is the same.

For arbitrary k, a special case of our general framework can be described as follows. Suppose

that ξi, i ∈ Γ, is a family of independent 0–1 random variables, and that IA =
∏
i∈A ξi when A ∈ S

for a given family S ⊆ [Γ]≤k, while IA = 0 when A /∈ S. In other words, the indicator random

variables ξi describe a (binomial) random subset Γp of Γ, where p = (pi : i ∈ Γ), pi = P(ξi = 1) [we

write Γp if pi = p for all i], and X is the number of elements of S that are contained in this random

subset. For the lower tail of the distribution of X, the following analogue of the Chernoff bound

holds [8], [9, Theorem 2.14].

Theorem 0. LetX =
∑
A∈S IA as above, and let λ = EX =

∑
A E IA and ∆̄ =

∑∑
A∩B 6=∅ E(IAIB).

Then, with φ(x) = (1 + x) log(1 + x)− x, for 0 ≤ t ≤ λ,

P(X ≤ λ− t) ≤ exp
(
−φ(−t/λ)λ2

∆̄

)
≤ exp

(
− t2

2∆̄

)
.

It follows from the FKG inequality (see for example [9]) that the above bound is tight: if t = λ,

∆̄− λ = o(λ) and max pi = o(1), then

P(X = 0) = exp{−λ(1 + o(1))}.

However, an upper tail analogue cannot be true in general. One slightly artificial counterexample

is presented in [9, Remark 2.17]. A more natural one is the following from [20] (here slightly adapted).

(Counter)Example. Let Γ = [n]2, k = 3, and S be the family of the edge sets of all triangles in

Kn, the complete graph on [n]. Furthermore, let pi = p = p(n) for all i ∈ [n]2. Then X is simply

the number of triangles in the random graph G(n, p). Assuming logn
n � p = o(1), fix three disjoint

subsets of vertices, each of order v = (2λ)1/3, where recall λ = EX. Then with probability p3v2

there is a complete tripartite subgraph on the three sets, yielding v3 = 2λ triangles in G(n, p), and
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thus

− log P(X ≥ 2λ) ≤ 3v2 log
1
p
≤ 3(2λ)2/3 log n� λ

so P(X ≥ 2λ) � e−cλ for every c > 0.

In the next section we present several techniques of obtaining exponential bounds on the upper

tail of X. Then, in the last section we illustrate them by a few examples and based on these examples,

we compare them against each other. For X being the number of copies of K4 in a random graph

G(n, p), one of our methods yields in a range of p an optimal bound, that means a bound which up

to a logarithmic factor in the exponent matches the lower bound obtained by Vu’s (counter)example.

For the number of copies of C4, two of the methods yield an optimal bound for certain ranges of p.

We use ck to denote various positive constants depending on k only.

This paper is meant to be an extension of Section 2.6 of [9]. We hope that the examples treated

here can serve as inspiration and suggestions for future applications of the methods.

2 Methods

2.1 Inequalities based on Lipschitz condition

The first method is a version of Azuma’s inequality [7] tailored for combinatorial applications, see

e.g. [12], [13] and [9, Remark 2.28].

Theorem 1. Let Z1, . . . , ZM be independent random variables, with Zj taking values in a set Λj.

Assume that a function f : Λ1 × Λ2 × · · · × ΛM → R satisfies, for some constants bj, j = 1, . . . ,M ,

the following Lipschitz condition:

(L) If two vectors z, z′ ∈ Λ1×Λ2×· · ·×ΛM differ only in the jth coordinate, then |f(z)−f(z′)| ≤ bj.

Then, the random variable X = f(Z1, . . . , ZM ) satisfies, for any t ≥ 0,

P(X ≥ λ+ t) ≤ exp
{
−2t2

/ M∑
1

b2j

}
, (3)

P(X ≤ λ− t) ≤ exp
{
−2t2

/ M∑
1

b2j

}
. (4)
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Returning to the random set Γp, one typically defines the random variables Zj via the random

indicators ξi, i ∈ Γ. Given a partition A1, . . . , AM of Γ, each Zj is then taken as the random vector

(ξi : i ∈ Aj) ∈ {0, 1}Aj , and for a given function f : 2Γ → R, the Lipschitz condition (L) in Theorem

1 is equivalent to saying that for any two subsets A,B ⊆ Γ, |f(A) − f(B)| ≤ bj whenever the

symmetric difference of the sets A and B is contained in Aj .

When Γ = [n]2 and so Γp = G(n, p), there are two common choices of the partition [n]2 = A1 ∪

· · · ∪AM . The vertex exposure martingale corresponds to the choice M = n and Aj = [j]2 \ [j− 1]2.

The edge exposure martingale is one in which M =
(
n
2

)
and |Aj | = 1 for each j. E.g., with bj = 1,

edge exposure is applicable provided the random variable X changes by at most 1 if a single edge

is added or deleted, while vertex exposure is applicable provided X changes by at most 1 if any

number of edges incident to a single vertex are added and/or deleted.

Talagrand [17] found another method that yields similar results. A combinatorial version of the

Talagrand inequality requires, besides the Lipschitz condition, one more, quite technical condition,

but in return it yields very often stronger bounds than Azuma’s inequality. (For proof, see e.g. [17]

or [9, Theorem 2.29].)

Theorem 2 (Talagrand). Let Z1, . . . , ZM be independent random variables, with Zj taking values

in a set Λj. Assume that a function f : Λ1 × Λ2 × · · · × ΛM → R satisfies, for some constants bj,

j = 1, . . . ,M , and some function ψ, the following two conditions:

(L) If two vectors z, z′ ∈ Λ1, . . . ,ΛM differ only in the jth coordinate, then |f(z)− f(z′)| ≤ bj.

(C) If z ∈ Λ and r ∈ R with f(z) ≥ r, then there exists a set J ⊆ {1, . . . ,M} with
∑
j∈J b

2
j ≤ ψ(r),

such that for all y ∈ Λ with yj = zj when j ∈ J , we have f(y) ≥ r.

Then, the random variable X = f(Z1, . . . , ZM ) satisfies, for any r ∈ R and t ≥ 0,

P(X ≤ r − t) P(X ≥ r) ≤ e−t
2/4ψ(r). (5)

In particular, if m is a median of X, then for every t ≥ 0,

P(X ≤ m− t) ≤ 2e−t
2/4ψ(m) (6)

and

P(X ≥ m+ t) ≤ 2e−t
2/4ψ(m+t). (7)
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Remark 1. A recent inequality of Boucheron, Lugosi and Massart [2] is sometimes an interesting

alternative to Talagrand’s inequality; in several applications it yields essentially the same result

(with better constants). We do not, however, see any way to use their inequality in the set-up

treated here.

2.2 Kim–Vu concentration via average smoothness

Inequalities from the previous section become weaker when the Lipschitz coefficient are large. Kim

and Vu in [11] developed a method yielding concentration bounds which depend only on the “av-

erage” Lipschitz coefficients, typically much smaller than the “worst-case” ones. Very recently Vu

wrote an excellent expository paper on that method [21].

Their setup is less general than that of Azuma’s and Talagrand [though, still more general than

that of Theorem 0]. Let X = X(ξi : i ∈ Γ = [N ]) be a polynomial of degree k, where again ξi are

independent random 0–1 variables. For a nonempty set A ∈ Γ[k] let ∂AX be the partial derivative of

X with respect to the variables in A and define, for j = 0, . . . , k, Ej(X) = max|A|≥j E(∂AX). (Thus

E0(X) = E(X) = λ.)

We begin with the Main Theorem of [11], the first main theorem proved by this method.

Theorem 3A (Kim and Vu). For any ` ≥ 1, if λ ≥ E1(X), then

P
(
|X − λ| ≥ ck`

k
√
λE1(X)

)
≤ exp{−`+ (k − 1) logN}. (8)

The above theorem is derived from a more general, but more technical, concentration result, also

proved in [11]. Let, for each i = 1, . . . ,M ,

Ei =
∣∣∣E(X|ξ1, . . . , ξi−1, ξi = 1)− E(X|ξ1, . . . , ξi−1, ξi = 0)

∣∣∣.
[Note that, as a conditional expectation, Ei is a random variable which is a function of (ξ1, . . . , ξi−1).]

Let further M = maxiEi, W =
∑
i piEi and V =

∑
i piqiE

2
i .

Theorem 3B (Kim and Vu). Let a, v, ` be positive numbers such that 0 < ` < v/a2. Then

P
(
|X − λ| >

√
`v
)
< 2 exp{−`/4}+ P(M > a or V > v)

≤ 2 exp{−`/4}+
∑
i

P(Ei > a) + P(W > v/a). (9)
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These results have been developed further and successfully applied to a variety of problems by

Kim and Vu, see for example [11, 18, 19, 20] and the survey [21], where also further references are

given. In particular, Vu [21, Corollary 3.4] has proved the following general and widely applicable

result, using Theorem 3B and induction. For further similar results see [18, 21]. It is easily seen

that Theorem 3C always yields at least as strong bounds as Theorem 3A; this is illustrated by the

examples in Section 3.

Theorem 3C (Vu). Let E0 > E1 > · · · > Ek and ` be positive numbers such that Ej ≥ Ej(X),

0 ≤ j ≤ k, and Ej/Ej+1 ≥ `+ j log n, 0 ≤ j ≤ k − 1. Then

P
(
|X − λ| ≥

√
`E0E1

)
≤ Ck exp{−ck`}. (10)

2.3 Combinatorial techniques

In this subsection we collect techniques that require only an elementary, combinatorial argument.

We will be assuming throughout that all elements of S have the same size k, and that for all i,

pi = p for some 0 < p ≤ 1. Thus λ = EX = |S|pk. For convenience, the deviation parameter t will

be expressed here in the form t = ρEX = ρλ, though ρ, in general, is not necessarily a constant,

and we will for simplicity only consider the case 0 < ρ ≤ 1. Finally, set |Γ| = N .

2.3.1 Converting to the lower tail

Here we aim to convert an upper tail probability into a lower tail and then to apply Theorem 0.

This approach works mainly for dense families S.

Theorem 4. Let k ≥ 1 be an integer, and assume that S ⊆ [Γ]k, |S| = η
(
N
k

)
, 0 < η ≤ 1, 0 < p < 1

and 0 < ρ ≤ 1. Then there exists a constant ck > 0, depending on k only, such that

P
(
X ≥ (1 + ρ)λ

)
≤ 2e−ckρ

2η2Np.

Proof. Set Z = |Γp|, S̄ = [Γ]k \ S, and

X̄ =
∑
A∈S̄

IA =
(
Z

k

)
−X,
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and choose δ = ρη/3k. Then, by Chernoff’s bound (1),

P
(
X ≥ (1 + ρ)λ

)
= P

(
X̄ ≤

(
Z

k

)
− (1 + ρ)λ

)
≤ P

(
X̄ ≤

(
(1 + δ)Np

k

)
− (1 + ρ)λ

)
+ e−δ

2Np/3,

Now, kδ ≤ 1/3 and thus

(1 + δ)k < ekδ < 1 + e1/3kδ < 1 + 1
2ρη. (11)

Moreover, we may assume that (1 + ρ)λ ≤ |S|, since otherwise the probability in question is 0.

Hence (1 + ρ)pk ≤ 1, which in combination with (11) yields (1 + δ)kpk < 1, or (1 + δ)p < 1, and

thus
(
(1+δ)Np

k

)
< (1 + δ)k

(
N
k

)
pk. Consequently, using (11) again,

P
(
X̄ ≤

(
(1 + δ)Np

k

)
− (1 + ρ)λ

)
≤ P

(
X̄ ≤

[
(1 + δ)k − η(1 + ρ)

](N
k

)
pk
)

≤ P
(
X̄ ≤

(
1− η − 1

2ρη
)(N

k

)
pk
)

= P
(
X̄ ≤ E X̄ − 1

2ρη

(
N

k

)
pk
)
.

In order to apply Theorem 0 to X̄, assume that Np ≥ 1 (otherwise the inequality is trivial if

ck ≤ log 2) and note that then the quantity ∆̄ corresponding to the family S̄ is smaller than

kN2k−1p2k−1. Hence, by Theorem 0,

P
(
X̄ ≤ E X̄ − 1

2ρη

(
N

k

)
pk
)
≤ exp

−
(
ρη
(
N
k

)
pk
)2

8∆̄

 ≤ e−c
′
kρ

2η2Np,

for some c′k. The theorem follows with ck = min(1/27k2, c′k).

2.3.2 Breaking into disjoint matchings

The underlying idea is to break the family S into disjoint subfamilies of disjoint sets, and apply

Chernoff’s bound to one subfamily. Set L = L(S) for the standard dependency graph of the family

of indicators {IA : A ∈ S}, where an edge joins A and B if and only if A ∩ B 6= ∅. Note that the

maximum degree ∆(L) can be as large as |S| − 1. The following result has appeared in a slightly

more complicated form in [14].

Theorem 5. Let t = λρ, where ρ > 0. Then

P(X ≥ λ+ t) ≤ (∆(L) + 1) exp
(
− ρ2λ

4(∆(L) + 1)(1 + ρ/3)

)
.
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Proof. A matching in S is a subfamily M⊆ S consisting of pairwise disjoint sets.

By the well known Hajnal–Szemerédi Theorem [6], the vertex set of the graph L can be partitioned

into ∆(L) + 1 independent sets, each of size equal to either d|S|/(∆(L) + 1)e or b|S|/(∆(L) + 1)c.

These sets correspond to matchings Mi, i = 1, . . . ,∆(L) + 1, in S. Note that for each i, |Mi| >

|S|/2(∆(L) + 1). If X ≥ λ + t, then, by simple averaging, there exists a matching Mi such that

|[Γp]k ∩ Mi| ≥ pk|Mi| + t|Mi|/|S|. Since |[Γp]k ∩ Mi| is a random variable with the binomial

distribution Bi(|Mi|, pk), we conclude by (1) that

P(X ≥ λ+ t) ≤
∆(L)+1∑
i=1

exp
(
− t2|Mi|

2|S|(λ+ t/3)

)
≤ (∆(L) + 1) exp

(
− t2

4(∆(L) + 1)(λ+ t/3)

)
.

As our later examples show, Theorem 5 can be applied to quite sparse families S.

2.3.3 The deletion method

The next idea for establishing a bound on the upper tail of X resembles the tactic of sweeping

under the rug. We delete some elements of Γp and claim the concentration of X in the remainder.

Originally, this approach was used in the context of partition properties of random graphs [15].

Recently, it was developed further in [10], where it is shown to often yield essentially the same

results as the method of Section 2.2.

Lemma 1. Let S ⊆ [Γ]k and 0 < p < 1. Then, for every pair of positive real numbers r and t, with

probability at least 1− exp
(
− rt
k(λ+t)

)
, there exists a set E0 ⊂ Γp of size r such that Γp \E0 contains

fewer than λ+ t sets from S.

Proof. Given r and t, let A be the event that for each set E ⊂ Γp of size r, Γp \E contains at least

λ+ t sets from S. Let Z be the number of κ = dr/ke-element sequences of disjoint sets from S in Γp.

If the event A holds, then Z ≥ (λ+ t)κ, since we may choose κ elements sequentially with at least

λ+ t choices each time. On the other hand, E(Z) ≤ |S|κpkκ = λκ and thus, by Markov’s inequality,

P(A) ≤ P
(
Z ≥ (λ+ t)κ

)
≤ E(Z)

(λ+ t)κ
≤
(

λ

λ+ t

)r/k
≤ exp

(
− rt

k(λ+ t)

)
.
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In subsection 3.3 we show a direct application of Lemma 1. Now we derive from it a genuine

bound on the upper tail of X in terms of the maximum degree in the subhypergraph Sp = S ∩ [Γp]k.

Let, for I ⊂ Γ, YI :=
∑
J⊇I XJ and

Y ∗
1 := max

i∈Γ
Y{i}.

Clearly, Y ∗
1 = ∆(Sp) and there are at most rY ∗

1 elements of Sp which could have been destroyed by

removing r elements from Γp.

Theorem 6A. Let t = ρλ, 0 < ρ ≤ 1. Then, for every real r > 0,

P(X ≥ λ+ t) ≤ exp{−ρr/3k}+ P(Y ∗
1 > t/2r).

Proof. If X ≥ λ+ t and Y ∗
1 ≤ t/2r then for every set E ⊂ Γp with |E| ≤ r, Γp \E contains at least

X − rY ∗
1 ≥ λ+ t/2

sets from S. By Lemma 1 the probability of the latter event is at most

exp
(
− rt/2
k(λ+ t/2)

)
≤ exp{−ρr/3k}.

The probability P(Y ∗
1 > t/2r) can be annihilated by choosing r = t

2∆(S) . This gives as a corollary

a bound in terms of maximum degree in S.

Theorem 6B. Let t = ρλ, 0 < ρ ≤ 1. Then

P(X ≥ λ+ t) ≤ exp{−ρ2λ/(6k∆(S))}.

Since ∆(S)− 1 ≤ ∆(L(S)) ≤ k∆(S), this theorem yields almost the same bound as Theorem 5.

Alternatively, one can bound P(Y ∗
1 > t/2r) ≤

∑
P(Y{i} > t/2r) in Theorem 6A and hope for the

best. For k = 2, Y{i} is the number of surviving neighbors of vertex i, which is a sum of independent

random variables, so Chernoff’s inequality can be applied. For k > 2 each Y{i} is a sum of dependent

random variables but of the same type as X, which gives room for induction. One way of doing it

leads to the following result, the proof of which is presented in [10] (cf. Corollary 4.1 there). Let

∆j = ∆j(S) be the maximum number of elements of S containing a given j-element set, j = 0, . . . , k.

Theorem 6C. Let λ∗j = ∆jp
k−j [thus λ∗0 = λ]. Then, with ck = 1/12k, and for all 0 < ρ ≤ 1,

P(X ≥ (1 + ρ)λ) ≤ 2Nk−1 exp

−ck min
1≤j≤k

(
ρ2λ

λ∗j

)1/j
 .
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2.3.4 Approximating by a disjoint subfamily

Our last method originates in Spencer [16] (cf. Example 1, below). Let X0 be the largest number

of disjoint sets of S which are present in Γp. Clearly, X ≥ X0, but sometimes X is not much larger

than X0. Intuitively, X0 should have a distribution similar to that of a sum of independent random

variables, and thus a Chernoff-type bound could be true. Our next lemma makes it precise.

Lemma 2. If t ≥ 0, then, with φ(x) = (1 + x) log(1 + x)− x and λ = EX,

P(X0 ≥ λ+ t) ≤ exp
(
−λφ

( t
λ

))
≤ exp

(
− t2

2(λ+ t/3)

)
.

For the proof of Lemma 2, which is similar to the proof of Lemma 1, see [9, Lemma 2.46].

In order to relate X to X0 we invoke a simple graph theoretic fact. For an arbitrary graph G

set α(G) for its independence number, β(G) for the size of the largest induced matching in G, and

∆e(G) for the maximum of |NG(v) ∪ NG(v′)| over all pairs (v, v′) of adjacent vertices of G. Note

that ∆e(G) ≤ 2∆(G).

Lemma 3. For every graph G, we have |V (G)| ≤ α(G) + β(G)∆e(G).

Proof. Let M be the set of edges in a maximal induced matching of G. The vertices outside M can

be divided into two groups: those adjacent to M [at most β(G)(∆e(G)−2) of them] and those which

are not. The latter group of vertices form an independent set in G and the lemma follows.

Consider the intersection graph Lp = L(Sp) of Sp = S ∩ [Γp]k, in which every vertex represents

one set of Sp, and the edges join pairs of vertices representing pairs of intersecting sets. (Note that

Lp is an induced subgraph of L defined above.) Then X is the number of vertices and X0 is the

independence number of Lp. Thus Lemma 3 implies that

X ≤ X0 + β(Lp)∆e(Lp) ≤ X0 + 2β(Lp)∆(Lp). (12)

We have already estimated the probability that X0 is large; hence estimates of β(Lp) and ∆(Lp)

yield bounds on the upper tail of X. This leads to the following result. Recall that ∆j = ∆j(S) is

the maximum number of elements of S containing a given j-element set, j = 0, . . . , k.
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Theorem 7. Define R = λmax1≤j≤k−1

(
k
j

)
∆′
jp
k−j, where ∆′

j = ∆j − 1. Then, for every t > 0 and

r ≥ R,

P(X ≥ λ+ t) ≤ exp
(
− t2

8λ+ 2t

)
+ (k − 1) exp{−r}+ P

(
Y ∗

1 >
t

12k(k − 1)r

)
. (13)

Remark 2. Very often the third term can be bounded (e.g. by a Chernoff inequality, see the

examples in Section 3) by exp (−Θ(t/r)). Then, if, in addition, t = Θ(λ) → ∞, the first term is

smaller than the sum of the other two (either r or t/r is not greater than
√
t), and therefore can

be ignored. Also, note that for fixed ρ, if we ignore the first term, we are up to constants in the

exponents left with the same bound as Theorem 6A, although now only for r ≥ R. Hence the above

bound then is never better (up to constants in the exponent) than that from Theorem 6A, and it

yields essentially the same result when the optimal r for Theorem 6A satisfies r ≥ R.

Proof. By (12), for any ` > 0,

P(X ≥ λ+ t) ≤ P(X0 ≥ λ+ t/2) + P(β(Lp) > `) + P(∆(Lp) > t/(4`)).

By Lemma 2, the first term is smaller than exp
(
− t2/4

2(λ+t/6)

)
≤ exp

(
− t2

8λ+2t

)
. For the third term

observe that ∆(Lp) ≤ k∆(Sp) = kY ∗
1 , so P(∆(Lp) > t/4`) ≤ P(Y ∗

1 > t/(4k`)).

It remains to estimate P(β(Lp) > `). First note that an induced matching in Lp with m edges

corresponds to 2m distinct sets Ai, Bi ∈ Sp, 1 ≤ i ≤ m, such that Ai ∩ Bi 6= ∅, but Ai ∩ Aj =

Ai ∩ Bj = Bi ∩ Bj = ∅, i 6= j. Consequently, if S̃ = {A ∪ B : A,B ∈ S, A 6= B,A ∩ B 6= ∅}, then

β(Lp) is the maximum size of a disjoint subfamily of S̃p, i.e. β(Lp) = α(L(S̃p)). Thus, β(Lp) is a

random variable of the same type as X0, except that S̃ is not a uniform hypergraph. To overcome

this mild difficulty, we write S̃ =
⋃k−1
j=1 S̃j , where S̃j = {A ∪ B : A,B ∈ S, |A ∩ B| = j}, and thus

have, with Y j0 = α(L(S̃jp)),

β(Lp) = α

L
k−1⋃
j=1

S̃jp

 ≤
k−1∑
j=1

Y j0 .

Hence,

P(β(Lp) > `) ≤
k−1∑
j=1

P
(
Y j0 > `/(k − 1)

)
.

In order to apply Lemma 2 to Y j0 , we need to estimate the expected size of S̃jp . For each A ∈ S

there are at most
(
k
j

)
∆′
j choices of B ∈ S with |A ∩B| = j. Hence, setting Y j = |S̃jp |,

EY j ≤
(
k

j

)
∆′
j |S|p2k−j =

(
k

j

)
∆′
jp
k−jλ ≤ R ≤ r

11



and, by Lemma 2, with ` = 3(k − 1)r,

P
(
Y j0 > `/(k − 1)

)
= P(Y j0 > 3r) ≤ P(Y j0 > EY j + 2r) ≤ e−r.

Sometimes, β(Lp) and ∆(Lp) (or ∆e(Lp)) can be estimated with more ease. This is the case of

the next example from [16] where this technique originated.

Example 1. Let X(v) be the number of triangles of G(n, p) containing a given vertex v, where

p = (ω log n)1/3n−2/3 and ω → ∞ with ω ≤ log n, say. The problem is to estimate minvX(v) and

maxvX(v). Set X = X(1). A standard application of Chebyshev’s inequality yields that X/λ
p→ 1,

and for example 0.9λ < X < 1.1λ with probability 1−O(1/λ), where λ = Θ(ω log n). This, however,

is not enough to claim that such a concentration of the number of triangles holds for every vertex

of G(n, p). For this to be true, we need to decrease the error probability down to o(1/n). Of course,

there is no problem with the lower tail. By Theorem 0, P
(
X ≤ 0.9λ

)
≤ exp{−Ω(λ)} = o(1/n).

It turns out that with probability 1 − o(1/n), we have X ≤ X0 + 12. This follows quite easily

by the first inequality in (12). Indeed, with that probability β(Lp) ≤ 3 and ∆e(Lp) ≤ 4. [The right

hand side of (12) gives only X ≤ X0 + 18, as, with probability 1 − o(1/n), we may only bound

∆(Lp) ≤ 3.] Hence, for large enough n, by Lemma 2,

P(X ≥ 1.1λ) ≤ P(X0 ≥ 1.1λ−12)+o(1/n) ≤ P(X0 ≥ 1.05λ)+o(1/n) ≤ exp{−cλ}+o(1/n) = o(1/n).

3 Applications

In this section we illustrate all methods introduced earlier by a couple of pivotal applications and

compare the results. We will refer to the methods via the following numbers and/or nicknames:

1) Azuma (Theorem 1), 2) Talagrand (Theorem 2), 3A,B,C) Kim–Vu (Theorems 3A, 3B, 3C), 4)

Complement (Theorem 4), 5) Break-up (Theorem 5), 6A,B,C) Deletion (Theorems 6A, 6B, 6C), 7)

Approximation (Theorem 7).

We always express t = ρλ, 0 < ρ ≤ 1, and always compare bounds on P(X > λ + t) (except for

Method 2 where we have the median m in place of λ), ignoring insignificant constants. We denote

insignificant constants (that may be made explicit) by c; the value of c may depend on k and other

parameters, and may change from one occurence to the next.
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3.1 Random induced subhypergraphs

The following problem about a random subgraph obtained by a random deletion of vertices of a

given graph was studied in [14]. Here we state it for k-uniform hypergraphs.

Let H = (V,E) be a k-uniform hypergraph with |V | = N and |E| = η
(
N
k

)
, 0 < η ≤ 1, and let

Vp be a binomial random subset of the vertex set V , 0 < p < 1. Here every vertex i is associated

with a 0–1 random variable ξi, where P(ξi = 1) = p. Thus, Y = |Vp| has the binomial distribution

Bi(N, p), and S is the family of all hyperedges of H. We let ∆H denote the maximum degree of

H, i.e. the maximum number of hyperedges containing a given vertex. Note that |E| ≤ N∆H/k.

Moreover, ∆j = ∆j(H) is the maximum number of hyperedges of H containing a given j-element

set, j = 0, . . . , k; thus ∆1 = ∆H .

We want to show that with probability very close to 1, the random variable X = |[Vp]k ∩ E| is,

say, not larger than 2η
(
Np
k

)
, i.e., that the density of the random subgraph is not much larger than

the density of the initial hypergraph. Note that λ = EX = η
(
N
k

)
pk ∼ η

(
Np
k

)
, and so this problem

falls into our general framework of estimating upper tails. In fact, this is precisely the setup of our

combinatorial methods 4–7 described in general terms in Section 2. Below, we study asymptotics

as N → ∞, where η, p and ρ may depend on N , with ρ ≤ 1, while k ≥ 2 is fixed. Throughout we

assume that Np→∞, and in particular Np ≥ 1.

We will try all seven methods in two basic cases. In the general case, where no assumption is made

on H, we will use the trivial bounds ∆j(H) ≤ Nk−j , j = 1, . . . , k. In the highly regular case (and

presumably sparse, meaning η → 0) we will be assuming that ∆j = Θ(ηNk−j), j = 1, . . . , k − 1.

(The unspecified constants c below may depend on the constants implicit in this Θ.) Note that

∆0 = |E| = Θ(ηNk) by definition, while ∆k = 1 unless H is empty.

As a warm-up consider first the special case in which H is the complete k-uniform hypergraph

Kk
N , i.e. η = 1. Then X =

(
Y
k

)
< Y k/k!, and λ = (Np)k

(
1/k! + o(1/Np)

)
. Hence, assuming ρNp is

large enough,

P (X > (1 + ρ)λ) ≤ P
(
Y k > (1 + ρ/2)(Np)k

)
= P

(
Y > (1 + ρ/2)1/kNp

)
≤ P

(
Y >

(
1 +

ρ

3k

)
Np
)
,

and by Chernoff’s bound (1), we obtain

P (X > (1 + ρ)λ) ≤ exp{−cρ2Np}. (14)

13



This bound is essentially sharp and we will use it to measure the accuracy of all our methods applied

to the general case.

1) Azuma. Adding/deleting a vertex may change the value of X by at most the degree of that

vertex. Thus, applying Theorem 1 with bi = degH(i) we obtain the bound

exp
{
−cρ

2η2N2k−1p2k

∆2
H

}
.

2) Talagrand. Here again the Lipschitz condition is satisfied with bi = degH(i). However, the

obvious choice ψ(r) = N∆2
H yields only the same bound as Azuma, with an inferior constant. To

get a better estimate we have to modify X by a sort of truncation. Let

X ′ = max{|[V ′]k ∩ E| : V ′ ⊆ Vp, |V ′| ≤ 2Np}.

Clearly, X ′ satisfies condition (L) with the same constants bi as X does, and condition (C) with

ψ(r) = 2Np∆2
H . By Chernoff’s bound (1),

P(X 6= X ′) ≤ P(|Vp| > 2Np) ≤ e−cNp.

This and (7) yield the bound

exp
{
−cρ

2η2N2k−1p2k−1

∆2
H

}
+ e−cNp < 2 exp

{
−cρ

2η2N2k−1p2k−1

∆2
H

}
.

3A) Kim–Vu A. We can write

X =
∑
A∈S

∏
i∈A

ξi.

Thus,

∂AX =
∑

A⊆B∈S

∏
i∈B\A

ξi,

and,

E1(X) = max
1≤j≤k

∆j(H)pk−j ≤ max
1≤j≤k

(Np)k−j = (Np)k−1. (15)

Hence, (8) with l = c
−1/k
k ρ1/kλ1/2k(E1(X))−1/2kimplies (the case E1(X) > λ is trivial here, since

then ` is bounded)

P (|X − λ| ≥ ρλ) ≤ Nk−1 exp{−cρ1/k(ηNp)1/2k}. (16)

In the highly regular case, E1(X) = Θ
(
max[1, η(Np)k−1]

)
and the exponent in (16) is improved to

−cρ1/k(Np)1/2k if η(Np)k−1 ≥ 1 and −cρ1/kη1/2k(Np)1/2 otherwise.
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3B) Kim–Vu B. Observe that

Ei =
k−1∑
j=0

∑
i∈A∈E, |A\[i]|=j

pj
∏

l∈A∩[i−1]

ξl.

This is a polynomial of degree k − 1, so in principle one could apply induction here. However, as

this approach seems to be quite complicated, we refer instead to Theorem 3C, see below, where the

work with the induction already has been done, in a general setting, by Vu [21].

We here thus focus on the case k = 2, i.e. the case of graphs, because only then Ei becomes a

sum of independent variables (j = 0) and a constant term (j = 1). Indeed, for k = 2,

Ei =
∑
j<i

{i,j}∈E

ξj +
∑
j>i

{i,j}∈E

p ≤ Z + p∆H ,

where Z ∈ Bi(∆H , p). Also,

W = p
∑
i

Ei ≤ p∆HY + p2|E|.

By Chernoff’s bound (1), P(Y ≥ 3Np) < e−Np, and so, with probability at least 1− e−Np, we have

W < 4∆HNp
2. Now, choose a = bp∆H , where b ≥ 9, and v = 4a∆HNp

2. By (1), with EZ = ∆Hp,

P(Ei > a) ≤ P
(
Z ≥ (b− 1) EZ

)
= P

(
Z − EZ ≥ (b− 2) EZ

)
≤ exp

(
−φ(b− 2) EZ

)
,

where φ(b−2) = (b−1) log(b−1)−b+2 ≥ b, because log(b−1) > 2. Hence, by Theorem 3B, setting

` = ρ2λ2/v and checking that ` < v/a2 (this follows from λ < N∆Hp
2), we obtain the estimate

P
(
X ≥ (1 + ρ)λ

)
≤ 2e−`/4 +Ne−bp∆H + e−Np. (17)

We have to choose b optimally. We would like `/4 = bp∆H , i.e. b = 1
8ρη(N − 1)N1/2∆−3/2

H , but

also b ≥ 9. Thus, choosing b = max
(

1
8ρη(N/∆H)3/2, 9

)
in (17) we find, since then `/4 < v/(4a2) =

Np/b < Np,

P
(
X ≥ (1 + ρ)λ

)
≤ (N + 3)e−`/4 ≤

2N exp
{
−cρηN

3/2p

∆
1/2
H

}
if ρη(N/∆H)3/2 ≥ 72,

2N exp
{
−cρ

2η2N3p
∆2

H

}
otherwise.

3C) (Kim–)Vu C. We have, generalizing (15),

Ej(X) = max
i≥j

∆i(X)pk−i.
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We thus need to find ` and E0, . . . , Ek such that
√
`E0E1 ≤ ρλ, Ej ≥ ∆j(H)pk−j , 0 ≤ j ≤ k, and

Ej/Ej+1 ≥ `+ j logN , 0 ≤ j ≤ k − 1.

It is easily checked that if Np ≥ 2k logN , then these conditions are satisfied with E0 = λ =

Θ(η(Np)k), Ej = (Np)k−j , 1 ≤ j ≤ k, and ` = ρ2λ2/E0E1 = ρ2λ/E1 = Θ(ρ2ηNp). (It is also easily

checked that these choices are essentially optimal without further assumptions.) Hence,

P
(
X ≥ (1 + ρ)λ

)
≤ C exp(−c`) ≤ C exp (−cρ2ηNp), Np ≥ 2k logN.

As a trivial consequence, for any N and p,

P
(
X ≥ (1 + ρ)λ

)
≤ N exp (−cρ2ηNp).

In the highly regular case, we instead choose Ej = C max
(
(2`)k−j , η(Np)k−j

)
, 0 ≤ j ≤ k, and

` = cmin(ρ2/kη1/kNp, ρ2Np); it is easily checked that the conditions then are satisfied, provided C

is large, c is small and ` ≥ k logN . Consequently, in the highly regular case,

P
(
X ≥ (1 + ρ)λ

)
≤ N exp

(
−cmin(ρ2/kη1/kNp, ρ2Np)

)
.

4) Complement. By Theorem 4,

P
(
X ≥ (1 + ρ)λ

)
≤ 2e−cρ

2η2Np.

5) Break-up. By Theorem 5, with ∆(L) < k∆H ,

P
(
X ≥ (1 + ρ)λ

)
≤ k∆H exp

{
− ρ2λ

4k∆H(1 + ρ/3)

}
.

6A) Deletion A. As for Theorem 3B, we consider only the case k = 2; for larger k one can

use induction, but we refer instead to Theorem 6C, where the induction already is done. If k = 2,

Theorem 6A yields

P
(
X ≥ (1 + ρ)λ

)
≤ e−ρr/6 +

∑
i

P(Y{i} > t/2r),

where Y{i} = ξiZi with Zi ∈ Bi(degH(i), p). Hence, if t/2r ≥ 7, (1) implies P(Y{i} > t/2r) ≤

exp(−t/2r), see [9, Corollary 2.4], and thus

P
(
X ≥ (1 + ρ)λ

)
≤ e−ρr/6 +Ne−ρλ/2r.
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Choosing the optimal (ignoring polynomial factors) r = min
(√

3λ, t/14∆Hp
)
, we find

P
(
X ≥ (1 + ρ)λ

)
≤ (N + 1)e−ρr/6 ≤ exp

(
−cmin

(
ρ
√
λ,

ρ2λ

∆Hp

))
.

6B) Deletion B. By Theorem 6B,

P
(
X ≥ (1 + ρ)λ

)
≤ exp

{
− ρ2λ

6k∆H

}
.

This is essentially the same bound as the one given by Method 5.

6C) Deletion C. It follows from Theorem 6C, using ∆j ≤ Nk−j , that

P
(
X ≥ (1 + ρ)λ

)
≤ 2Nk−1 exp{−cηρ2Np}.

In the highly regular case we obtain the (sometimes) better

P
(
X ≥ (1 + ρ)λ

)
≤ 2Nk−1 exp{−cmin(ρ2, ρ2/kη1/k)Np}.

7) Approximation. This method is useless for dense hypergraphs H. Indeed, for it to be

successful one needs that the ratio t/r should be at least of the order of EY ∗
1 = Θ((Np)k−1).

However, if η is constant, we have r ≥ R = Θ((Np)2k−1) while only t = Θ((Np)k). Hence, the

estimate (13) does not tend to 0.

Yet, the method can still yield good bounds for sparse and highly regular H. To avoid dependence

in Y ∗
1 , we consider only the special case of graphs, i.e. k = 2, and assume for simplicity that ρ is

constant. Let us assume that ∆1 = ∆H = Θ(ηN). Then R = Θ(η2(Np)3), EY ∗
1 = Θ(ηNp), and

via the Chernoff bound (1), the three terms on the right hand side of (13) are exp
(
−Θ(η(Np)2)

)
,

(k − 1) exp(−r) and exp
(
−Θ(t/r)

)
, where we need r ≥ R and t/r ≥ CηNp. A perfect choice would

be r =
√
t = Θ(

√
ηNp) which satisfies the above constraints provided η ≤ c(Np)−4/3. Then

P
(
X ≥ (1 + ρ)λ

)
≤ 3 exp{−c√ηNp}.

For larger η, the best choice is r = R = Θ(η2(Np)3), which yields the bound e−c/(ηNp) which is

meaningful if ηNp < 1. In conclusion we find, for fixed ρ and with c = c(ρ),

P
(
X ≥ (1 + ρ)λ

)
≤ 3 exp{−cmin(η1/2Np, (ηNp)−1)}.

Summary of subsection 3.1.
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fixed η η → 0 η → 0, H highly regular

1) Azuma ρ2Np2k ρ2η2Np2k ρ2Np2k

2) Talagrand ρ2Np2k−1 ρ2η2Np2k−1 ρ2Np2k−1

3A) Kim–Vu A ρ1/k(Np)1/2k ρ1/kη1/2k(Np)1/2k ρ1/k min
(
(Np)1/2k, η1/2k(Np)1/2

)
3B) Kim–Vu B, k = 2 ρ2Np ρ2η2Np min(ρ2, ρ

√
η)Np

3C) (Kim–)Vu C ρ2Np ρ2ηNp min(ρ2, ρ2/kη1/k)Np
4) Complement ρ2Np ρ2η2Np ρ2η2Np

5) Break-up ρ2Npk ρ2ηNpk ρ2Npk

6A) Deletion A, k = 2 ρ2Np ρ2ηNp min(ρ2, ρ
√
η)Np

6B) Deletion B ρ2Npk ρ2ηNpk ρ2Npk

6C) Deletion C ρ2Np ρ2ηNp min(ρ2, ρ2/kη1/k)Np
7) Approximation, k = 2 — — c(ρ) min(

√
ηNp, (ηNp)−1)

Table 1: Exponents for upper tail bounds in the subhypergraph problem

We first summarize the obtained results in Table 1. An entry F means a boundO(N c1) exp(−c2F )

for some positive constants c1 and c2 (c1 might be 0). Hence the larger F , the better, i.e. (asymp-

totically) smaller, bound.

Consider first the case in which both ρ and η are constants. In this case ∆H = Θ(Nk−1), and

we see that Methods 3C (Vu), 4 (Complement), and 6C (Deletion) all yield the optimal value of

Np. For k = 2, Methods 3B and 6A too yield this value; as indicated above, with induction and

more effort, they yield estimates of the same order in the exponent for higher k too. Note that

the truncated Talagrand (Np2k−1) is better than Azuma (Np2k), and, most interestingly, Break-up

(Npk) is better than both of them.

Now allow η → 0 with ρ constant. Then, in the worst case ∆H = Θ(Nk−1), Methods 3B and 4

give only an exponent of order η2Np, while Methods 3C and 6C (and 6A for k = 2) are now the

best with ηNp.

Finally, assume that H is highly regular, still keeping ρ constant. If η � pk(k−1), then Methods

3C and 6C, and for k = 2 at least, 3B, 6A and 7 too, tie up with the exponent Θ(λ1/k) = Θ(η1/kNp)

(Method 7 only in a restricted range of η). Method 4 is unaffected by the improvement in ∆H . On

the other hand, if η � pk(k−1), then Methods 5 (Break-up) and 6B (Deletion) are the best with

Npk.
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If also ρ → 0, we see that most methods give a factor ρ2 in the exponent, except for Methods

3A (with only ρ1/k, but here the main term is very weak and the exponent is never better than the

one given by 3C), 7 (not investigated), and, in the highly regular case, 3B, 3C, 6A and 6C (with ρ

for k = 2, as long as ρ ≥ η1/2). A detailed analysis of this case, with η fixed or decaying to 0, is left

to the eager reader.

3.2 Small subgraphs of random graphs

Let G(n, p) be a binomial random graph. It can be viewed as a random subset of the set [n]2 of all

pairs formed by the set {1, . . . , n}. Thus, N =
(
n
2

)
. We denote the numbers of vertices and edges of

a graph G by v(G) and e(G), respectively.

Let G be a fixed graph, and let XG be the number of copies of G in the random graph G(n, p).

Let k = v(G) and assume n ≥ k. Then

EXG =
k!

|Aut(G)|

(
n

k

)
pe(G) � nkpe(G),

where Aut(G) is the set of automorphisms of G and � means that the quotient of the two sides

is bounded from above and below by positive constants. The subgraph counts XG have received a

lot of attention from the pioneering paper by Erdős and Rényi [3] to the present day. Bounds for

the upper tail (in the more general context of extensions) were considered by Spencer [16], but the

break-through with general exponential bounds came with Vu [20].

In this subsection we try our techniques on estimates of the upper tail of XG for three small

subgraphs: G = K3, G = K4 and G = C4. Throughout we for simplicity assume that ρ = 1, i.e.

t = λ, and leave the case ρ→ 0 to the reader. As a test of how good these results are, we compare

them with the exponential lower bound on P(XG ≥ (1 + ρ)λ) obtained by Vu [20], see Section 1 for

the case K3 (see also [10, (6.2)]). For our three cases, G = K3, G = K4 and G = C4, Vu’s lower

bound has the exponent −cn2p2 log n, −cn2p3 log n and −cn2p2 log n, resp.

1) Azuma. Having a choice between vertex- and edge-exposure, we realize that the latter is

better. Indeed, although the martingale is longer, the Lipschitz constants tend to be smaller, as

fixing one edge leaves less freedom for creating a copy of a given graph than when fixing just a single

vertex. Ignoring constants, for G = K3, G = K4, and G = C4, we have bi = n, bi = n2 and again

bi = n2, resp. Thus, the exponents in the estimates are of the order n2p6, n2p12, and n2p8, resp.
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2) Talagrand. A truncation similar to that in 3.1.2, restricting the number of edges to, say, n2p,

plus a Chernoff inequality, allows us to apply (7) with bi as for Azuma and ψ(r) = n2p(max bi)2. This

provides the exponents n2p5, n2p11 and n2p7, resp., thus, by one power of p better than Method 1.

In the case G = K3, for p � n−1/3, a direct application of the Talagrand inequality, with the

certificate being the set of all edges of G(n, p) (they all a.a.s. belong to the copies of K3), yields

only the exponent n2p6. For K4 and C4 too, a similar direct approach yields the same exponents as

Method 1.

3A) Kim–Vu A. For G = K3, we have k = 3 and E1(X) = max{np2, 1}. Hence, by Theorem 3A

P(XK3 ≥ 2λ) ≤ n4

{
exp

{
−cn1/3p1/6

}
if p ≥ n−1/2

exp
{
−cn1/2p1/2

}
otherwise.

Similarly, with k = 6 and E1(X) = max{n2p5, 1},

P(XK4 ≥ 2λ) ≤ n10

{
exp

{
−cn1/6p1/12

}
if p ≥ n−2/5

exp
{
−cn1/3p1/2

}
otherwise.

and, with k = 4 and E1(X) = max{n2p3, 1},

P(XC4 ≥ 2λ) ≤ n6

{
exp

{
−cn1/4p1/8

}
if p ≥ n−2/3

exp
{
−cn1/2p1/2

}
otherwise.

3B, C) Kim–Vu. To apply Theorem 3B even to XK3 we have to use induction. As we already

know, one induction scheme leads to Theorem 3C. It is easily verified that for our three examples,

and more generally for any balanced graph G, Theorem 3C applies with k = e(G), ` = λ1/k and

Ej = (Cλ)1−j/k, provided λ1/k ≥ log n, which leads to

P(XG ≥ 2λ) ≤ n exp
{
−cλ1/e(G)

}
= n exp

{
−cnv(G)/e(G)p

}
.

For K3, K4 and C4 this yields the exponents np, n2/3p and np, resp.

The induction used to prove Theorem 3C means in this case adding one edge at a time to G.

However, there are better induction schemes. Vu [20, Theorem 3] has shown, using Theorem 3B and

an induction adding vertices one by one, the better estimate

P(XG ≥ 2λ) ≤ n exp
{
−cλ1/(v(G)−1)

}
.

for every balanced G. (The induction hypothesis is actually stated more generally for extension

counts, see [20] for details.) In our three cases, this yields the exponents n3/2p3/2, n4/3p2 and

n4/3p4/3, resp.
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4) Complement. This method works well for dense families S, which is not the case here.

There are Θ(n6) 3-element subsets of [n]2 and only Θ(n3) triangles. Thus, η = Θ(n−3) and so, the

exponent in Theorem 4 is η2Np = O(p/n) = o(1). Things get only worse for G = K4 and G = C4.

5) Break-up. By Theorem 5, with ∆(L) ≤ e(G)∆H and ∆H equal to the Lipschitz constants

from 3.2.1 (Azuma), we obtain exponents n2p3, n2p6 and n2p4, resp.

6) Deletion. First, note that (ignoring constants in the exponent) Theorem 6B gives the same

bounds as Theorem 5, and that Theorem 6C gives the same bounds as Theorem 3C. For K3, K4

and C4 this yields the exponents n2p3, n2p6 and n2p4, resp., for 6B and np, n2/3p and np, resp., for

6C.

Recall that Theorem 6C is based on Theorem 6A and induction; in this case the induction is over

the number of edges in the graph G. Just as for the Kim–Vu method, there are better induction

schemes, and an induction over the number of vertices in G yields the better estimate

P(XG ≥ 2λ) ≤ n exp
{
−cλ1/(v(G)−1)

}
for every balanced G, exactly as for Method 3. (Again the induction hypothesis is more general.

See [10] for details and a general theorem.) In our three cases, this yields the exponents n3/2p3/2,

n4/3p2 and n4/3p4/3, resp.

There are even more efficient ways to use Theorem 6A, although they so far require more effort

and ad hoc arguments. First, Theorem 6A can be used directly for K3. In this case Y{i} = ξiZi,

where Zi ∈ Bi(n − 1, p2) is the number of paths of length 2 between the endpoints of edge i. The

Chernoff bound (1) thus yields, see [9, Corollary 2.4], that if λ/2r ≥ 7np2, then

P(Y{i} > λ/2r) ≤ P(Zi > λ/2r) ≤ exp {−λ/2r} .

Consequently Theorem 6A yields, for any r such that λ/2r ≥ 7np2,

P(XK3 ≥ 2λ) ≤ exp{−r/9}+N exp{−λ/2r}.

Choosing r = c
√
λ, we obtain

P(XK3 ≥ 2λ) ≤ n2 exp
{
−cn3/2p3/2

}
,

as obtained above from [10]. This can be slightly improved by choosing instead r = c
√
λ log n, and
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using (1) more carefully, leading to

P(XK3 ≥ 2λ) ≤ n2 exp
{
−cn3/2p3/2

√
log n

}
;

for details see [10]. Note also that choosing r = λ/2n in Theorem 6A leads to Theorem 6B, and

thus the exponent n2p3, which is better when p� n−1/3.

For G = K4, as shown in detail in [10], the term P(Y{i} > λ/2r) can be estimated using a two-fold

application of the Chernoff bound (1), which results in the estimates

P(XK4 ≥ 2λ) ≤

{
n2 exp

{
−cn2p3

}
if np2 ≤ 1,

n2 exp
{
−cn4/3p5/3

}
otherwise.

(Actually, for p ≤ n−1/2−ε, the exponent can be improved to cn2p3
√

log n [10].) For p ≤ n−1/2, the

exponent here differs by only a logarithmic factor from the exponent n2p3 log n in Vu’s lower bound,

so this estimate is essentially optimal. Here the advantage of the direct Chernoff application over

induction is striking.

The case G = C4 was not treated in [10], but a two-fold application of the Chernoff bound (1) as

for K4 yields an essentially optimal bound here too for a certain range of p. In this case Y{i} = ξiZi,

where Zi is the number of paths of length 3 between the endpoints of edge i. Note that each such

path is determined by the middle edge and its orientation in the path. Thus, if U is the set of

vertices adjacent to at least one of the endpoints of i, and W is the number of edges with both

endpoints in U , then Y{i} ≤ 2W , and thus, for any a > 0,

P
(
Y{i} >

λ

2r

)
≤ P

(
W >

λ

4r

)
≤ P

(
|U | > a

)
+ P

(
Bi
((

dae
2

)
, p

)
>

λ

4r

)
,

where |U | ∈ Bi(n− 2, 2p− p2).

If we choose r and a such that a ≥ 14np > 7 E |U | and λ/4r > 7a
2

2 p, then by (1), see [9, Corollary

2.4], this yields

P(Y{i} > λ/2r) ≤ exp(−a) + exp(−λ/4r)

and hence Theorem 6A yields

P(XC4 ≥ 2λ) ≤ e−cr +
(
n

2

)(
e−a + e−λ/4r

)
.

If p ≥ n−2/3, we choose (for a small c) a = r = cn4/3p and obtain

P(XC4 ≥ 2λ) ≤ n2 exp
{
−cn4/3p

}
, p ≥ n−2/3.
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For p ≤ n−2/3, we choose a = cnp1/2 and r = cn2p2, and obtain

P(XC4 ≥ 2λ) ≤ n2 exp
{
−cn2p2

}
, p ≤ n−2/3.

Just as for K4, for small p (here p ≤ n−2/3), the obtained exponent matches Vu’s lower bound up

to a logarithmic factor.

7) Approximation. As we already know, Theorem 7 is never better than Theorem 6A (for

ρ constant as here, at least), see Remark 2. Here they actually sometimes yield the same result.

Indeed, for K3 we have R = λ · 3∆′
1p

2 = Θ(n4p5), since ∆1 = n− 2 and ∆2 = 1, and thus ∆′
2 = 0.

We apply the Chernoff bound (1) to Y ∗
1 as for Method 6A. Since we now need r ≥ R, we see that

the essentially optimal choice r = c
√
λ = Θ(n3/2p3/2) used above for Method 6A now is allowed

if p ≤ cn−5/7; otherwise, we must be content with the choice r = R. This yields the following

estimates.

P(XK3 ≥ 2λ) ≤

{
2 exp

{
−cn3/2p3/2

}
if p ≤ n−5/7,

exp
{
−c/(np2)

}
otherwise.

For G = K4, Method 7 fares worse. Since ∆3 = n− 3, we have R ≥ npλ� λ, provided λ ≥ 1 to

avoid trivialities, and thus r ≥ R implies λ/r → 0 and we do not get any meaningful bound.

For G = C4 we have, assuming λ ≥ 1 and thus np ≥ 1, R = Θ(λn2p3) = Θ(n6p7). If p ≤ n−4/5,

this allows the essentially optimal choice r = cn2p2 used for Method 6A above, and the same double

application of the Chernoff bound yields again the optimal bound

P(XC4 ≥ 2λ) ≤ n2 exp
{
−cn2p2

}
, p ≤ n−4/5,

although now for a smaller range of p only. For n−4/5 ≤ p ≤ cn−2/3 we have to take r = R, and can

estimate the tail of Y{i} as for Method 6A, now using a = c/np2. We obtain

P(XC4 ≥ 2λ) ≤ n2 exp
{
−c/n2p3

}
, p ≥ n−4/5,

which is meaningful for p� n−2/3.

Summary of subsection 3.2. The results of this subsection are summarized in Table 2 and in

Figures 1–3. A point (x, y) in the figures signifies a bound of the type c1 exp(−c2ny) when p = n−x;

in other words, the figures plot the asymptotic value of log | log(bound)|/ log n as a function of

| log p|/ log n. Thus, the bigger y, the better bound. Note that along the x-axis, p decreases from

constant values at the left end down to 1/n at the right end. The dotted line shows Vu’s lower

bound.
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K3 K4 C4

1) Azuma n2p6 n2p12 n2p8

2) Talagrand n2p5 n2p11 n2p7

3A) Kim–Vu A min(n1/3p1/6, n1/2p1/2) min(n1/6p1/12, n1/3p1/2) min(n1/4p1/8, n1/2p1/2)
3B) Kim–Vu B [20] n3/2p3/2 n4/3p2 n4/3p4/3

3C) (Kim–)Vu C np n2/3p np

4) Complement — — —
5) Break-up n2p3 n2p6 n2p4

6A) Deletion A [10] max(n3/2p3/2, n2p3) min(n2p3, n4/3p5/3) min(n2p2, n4/3p)
6B) Deletion B n2p3 n2p6 n2p4

6C) Deletion C np n2/3p np

7) Approximation min(n3/2p3/2, 1/(np2)) — min(n2p2, 1/n2p3)

Vu’s lower bound n2p2 n2p3 n2p2

Table 2: Exponents for upper tails in the small subgraphs problem, ignoring logarithmic factors.
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We leave the direct comparison of the results obtained by various methods to the anxious reader.

Instead, we check how close these estimates get to the lower bound mentioned earlier. For G = K3,

none of them achieves it. The nearest are the bounds obtained by Methods 5 and 6 for rather

dense graphs and Methods 3, 6 and 7 for sparser graphs. In the cases G = K4 and G = C4, quite

surprisingly, Methods 6 and 7, together with the double Chernoff argument used above, both achieve

the lower bound in some range of p = p(n). (This can also be achieved by Method 3 [Vu, personal

communication].)

Note also that the simple combinatorial Method 5 (Break-up) again beats both Azuma and

Talagrand, and together with 6B is the best for rather dense graphs.

3.3 How many pairs support tepees?

Our last example is very special, but still worth mentioning. It shows the strength of Lemma 1 which

gave rise to the Deletion Method 6, but so far has not been illustrated by any direct application.

In the following problem we would like to obtain an upper bound on the upper tail of XC4 for

p = Θ(n−1/2), which is of the order exp(−Θ(n)), just as Vu’s lower bound (ignore the logarithm,

again). However, none of the Methods 1–7 gives that, and we do not know whether such a bound

holds or not. Nevertheless, it turns out that if we apply Lemma 1 directly, and instead of proving a

genuine bound on the tail allow ourselves to discard some edges, we will achieve our task.

The problem itself arose in the study of the width of the threshold for a Ramsey property of

random graphs [4]. The solution, however, has originated in [15], where the Deletion Method traces

back its roots.

Let G be a graph. The base of G, denoted by Base(G), is the set of all pairs of vertices of G

with a common neighbor in G. Thus, Base(G) is a graph with the vertex set V (G), but typically

not a subgraph of G. It is a subgraph of G2, though.

In [4] the following lemma is needed.

Lemma 4. For every c > 0 and a > 0 there exists a′ such that a.a.s. for any (spanning) subgraph F

of the random graph G(n, cn−1/2) with |E(F )| > acn3/2, the graph Base(F ) contains at least a′n3

triangles.
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In the proof which we only outline here (for details see [5]), an application of a sparse regularity

lemma (see [9, Lemma 8.19, page 216]) to F yields, for a suitably chosen ρ > 0, the existence of a pair

of disjoint subsets of vertices, U and V with an/2 ≤ |U | ≤ an, |V | = n/k, where k ≤ K = K(ρ, a),

such that for every W ⊂ V , |W | = ρ|V |, all but at most ρ|U | vertices of U have each at least

(1− ρ′)ap|W |/2 = (1− ρ′)acρ
√
n/2k (18)

neighbors in W , where ρ′ = ρ′(ρ, a) > ρ.

The next and last step is to show that a.a.s. every such W induces a subgraph BW of Base(F )[V ]

with at least a′′
(|W |

2

)
edges, where a′′ = min{a3c2/20, a4/400} does not depend on ρ. This will easily

imply (see [15, Lemma 2]) that Base(F )[V ] itself contains at least a′′′|V |3 triangles, which proves

Lemma 4 with a′ = a′′′/K3. The same Lemma 2 of [15] determines ρ = ρ(a′′).

We will underestimate the edges of BW by counting only pairs of vertices of W with a common

neighbor in U . So, let H = F [U,W ], i.e. H is the bipartite subgraph of F with the bipartition sets U

and W and all the edges of F with one endpoint in U and the other in W . Then BW ⊇ Base(H)[W ].

How to count the edges of Base(H)[W ]? Let us number the pairs of vertices in W by 1, . . . ,
(|W |

2

)
and denote by xi the number of paths of length two in H connecting the vertices of the i-th pair

(such paths are called in [4] tepees). Set L for the number of those i ∈ {1, . . . ,
(|W |

2

)
} for which

xi > 0, i.e. for the sought number of pairs of vertices of W with a common neighbor in U . Assume

that x1, . . . , xL > 0.

Observe that, denoting by du the degree of vertex u ∈ U in H,

L∑
i=1

xi =
∑
u∈U

(
du
2

)
and

L∑
i=1

(
xi
2

)
= XC4(H),

where XC4(H) is the number of copies of C4 in H.

If L ≥
∑L
i=1 xi/2, then by (18) (for ρ small)

L ≥ 1
2

∑
u∈U

(
du
2

)
≥ 1

33
(1− ρ′)3a3c2ρ2(n/k)2 ≥ 1

20
a3c2

(
|W |

2

)
.

Otherwise, by the Cauchy–Schwarz inequality,∑
i

(
xi
2

)
≥ L

(∑
i xi/L

2

)
≥

(
∑
i xi)

2

4L
,
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and a decent upper bound on XC4(H) will give a lower bound on L and thus on the number of edges

of Base(H)[W ].

To get back to the genuine random graph not affected by a malicious choice of the subgraph

H, we may bound XC4(H) by XC4(U,W ) – the number of copies of C4 contained in the bipartite

subgraph G(n, p)[U,W ] of G(n, p) spanned by U and W . Obviously, the expectation of XC4(U,W )

is equal to
(|U |

2

)(|W |
2

)
p4 = Θ(n4p4) = Θ(n2).

To accommodate the number of choices of the sets U and W , which is bounded by 4n, we would

need an upper tail estimate on XC4(U,W ) which is close to the lower bound established by Vu.

None of our methods provides such a bound. Fortunately, we may use Lemma 1.

Define a random variable Y−k(U,W ) = minE0⊂E(G(n,p)), |E0|≤kX−E0(U,W ), where X−E0(U,W )

is the number of copies of C4 in the subgraph G(n, p)[U,W ]−E0. It follows quickly from Lemma 1

that a.a.s. for all U and W we have

Y−n logn(U,W ) < 2 EXC4(U,W ) = 2
(
|U |
2

)(
|W |

2

)
p4 <

a2ρ2c4n2

2k2
.

The bottom line of this argument is that even after deleting the edges of E0 = E0(U,W ), still

all but, say, at most 2ρ|U | vertices of U have each at least (1 − 2ρ′)ap|W |/2 = (1 − 2ρ′)acρ
√
n/2k

neighbors in W . Indeed, as |E0| = n log n, at most, say, n2/3 vertices of U may have each more than

n1/3 log n edges of E0 incident to them.

Let d0
u be the degree of u in H − E0, u ∈ U , and similarly, let x0

i and L0 be modifications of

the previously introduced quantities. Note that |E(Base(H)[W ])| ≥ L0 and consider two cases. If

L0 ≥
∑L0

i=1 x
0
i /2, then, as before, (for ρ small)

L0 ≥ 1
2

∑
u∈U

(
d0
u

2

)
≥ 1

20
a3c2

(
|W |

2

)
.

If, on the other hand, L0 ≤
∑L0

i=1 x
0
i /2, then∑

i

(
x0
i

2

)
≥ L0

(∑
i x

0
i /L

0

2

)
≥

(
∑
i x

0
i )

2

4L0

and, so

L0 ≥
1

400a
6c4ρ4(n/k)4

2a2c4ρ2(n/k)2
≥ a4

400

(
|W |

2

)
,

as required.
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armed bandit. In preparation.
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