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ABSTRACT. We consider the class of integral operators @, on L*(R.) of the
form (Q,f)(z) = [ p(max{z,y})f(y)dy. We discuss necessary and sufficient
conditions on ¢ to insure that @), is bounded, compact, or in the Schatten—von
Neumann class S, 1 < p < oco. We also give necessary and sufficient conditions
for Q), to be a finite rank operator. However, there is a kind of cut-off at
p =1, and for membership in S, 0 < p < 1, the situation is more complicated.
Although we give various necessary conditions and sufficient conditions relating
to @, € S, in that range, we do not have necessary and sufficient conditions.
In the most important case p = 1, we have a necessary condition and a sufficient
condition, using L' and L? modulus of continuity, respectively, with a rather
small gap in between. A second cut-off occurs at p = 1/2: if ¢ is sufficiently
smooth and decays reasonably fast, then (), belongs to the weak Schatten-von
Neumann class S /3 o, but never to Sy, unless ¢ = 0.

We also obtain results for related families of operators acting on L?(R) and
*(Z).

We further study operations acting on bounded linear operators on L?(R, )
related to the class of operators (),. In particular we study Schur multipliers
given by functions of the form ¢ (max{x,y}) and we study properties of the
averaging projection (Hilbert—Schmidt projection) onto the operators of the form
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1. Introduction

For a function ¢ € L] (R, ), which means that ¢ is a locally integrable function

on Ry = (0,00), we define the operator ), on the set of bounded compactly
supported functions f in L*(R,) by
Quf)@) = [ ¢ (max{z,y)) fw)dy (11)
0
equivalently,

(Qf) /f dy+/ o(y)f(y)dy. (1.2)

We are going to study when Q,, is (i.e., extends to) a bounded operator in L*(R;),
and when this operator is compact, or belongs to Schatten—von Neumann classes
S,.

We will also consider the corresponding Volterra operators Q; and (), defined
by

Q) / F(w)dy,

Q. f)(x) = / o) F () dy;
thus Q, = QF + Q.

It is straightforward to see (and proved more generally in Theorem 2.4) that

if any of these three operators is bounded on L*(R.), then [ |p|*> < oo for any
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a > 0, and thus the integrals above converge for any f € L*(R,) and define all
three operators on L*(R,).

We find in §3 simple necessary and sufficient conditions for @), to be bounded or
compact, and for Q, € S,, 1 < p < co. The conditions are p € X, p € X2 and
¢ € X, respectively, where the spaces X,,, X, and X2 are defined as follows.

Definition. If 0 < p < oo, let X, be the linear space of all measurable functions
on R, that satisfy the equivalent conditions

on+1 p/2
> 2 ( / |so<x>|2dx) < oo (13)
nez 2n
00 2
on/? 24 i : 1.4
> lp(@)[*dx | < oo (1.4)
neZ 2n

72 ( / ) |¢(y)|2dy) " e Daafe). (15)

Similarly, let X, be the linear space of all measurable functions on R, that satisfy
the equivalent conditions

an+l
sup 2" </ |g0(a:)|2d:c> < 00; (1.6)
nez 2n
supa [ Jp(y)Pdy < . (1.7)

Let X2 be the subspace of X, consisting of the functions that satisfy the equiv-
alent conditions

an+l
lim 2" (/ ](p(x)|2dx> = 0; (1.8)
n—too on
}cigg)x/ o(y)|*dy = mliggox/ |o(y)[*dy = 0. (1.9)

The equivalence of the different conditions is an exercise. For 1 < p < oo, X,, is
a Banach space with the norm

22 ([ ey ) "

for 0 < p < 1, this is a quasi-norm and X, is a quasi-Banach space. X2 is a
closed subspace of X, and thus a Banach space too. Note that X, C X, if
0<p<qg<oo

Y

LP(dz/x)

lellx, =
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Remark. It is well known [Pee| that ¢ € X, if and only if the Fourier transform

/2

F¢ belongs to the homogeneous Besov space 321 »

function extended to R by zero on R_).

(here we identify ¢ with the

Note that the operators @), appear in a natural way in [MV] when studying the

boundedness problem for the Sturm-Liouville operator £ from L}(R,) — Ly (R)
defined by Lu = —u” + qu. To be more precise, Maz’'ya and Verbitsky studied in
[MV] the problem of identifying potentials ¢ for which the inequality

/R+ !u(t)IQq(t)dt‘ < const /R+ (1) Pt

holds for any C'*° compactly supported function u on (0,00). This inequality is in
turn equivalent to the boundedness of the quadratic form

/R w(tyolDa(t)dt

In [MV] under the assumption that the limit

< const ||| 2 [V || 2Ry )- (1.10)

Y

lim [ q(t)dt = / g(t)dt % ()

Y=o T x

exists for any z > 0 the problem of boundedness (compactness) of the quadratic

form (1.10) was reduced to the problem of boundedness (compactness) of the oper-

ator Q, on L?*(R, ). Note that in [MV] the authors also obtained boundedness and

compactness criteria for the operators @), in terms of conditions (1.7) and (1.9).
We also mention here the papers [OP] and [AO] where the authors study the

properties of the imbedding operators from L () to LP(Q2), where Q is a domain
in R". There results also lead to certain estimates of s,(Q7) for ¢ supported on
0,a], a € Ry.

The conditions in the above definition are conditions on the size of ¢ only, and
define Banach lattices of functions on R;. Thus, if || < |¢| and @, is bounded,
compact, or belongs to S, p > 1, then (),, has the same property and, for example,
1Qulls, < Cpl|Qylls,- Moreover, we will see that the same conditions are necessary
and sufficient for these properties for the operators Q;f and @ too; thus, if one of
the three operators has one these properties, then all three have it. These results
for QF are not new, see for example [ES, EEH, No, NeS, St], and the results for @,
can easily be derived. Nevertheless we give complete proofs, by another method,
as a background for the case p < 1.

At p =1, there is a kind of threshold, and for S,, p < 1, the situation is much
more complex. First, Q:g and (), never belong to Sy, except in the trivial case
¢ = 0 a.e., when the operators vanish (Theorem 6.6). Secondly, although ¢ € X;

is a necessary condition for @, € Sy, it is not sufficient. Indeed, for p < 1, we
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have not succeeded in finding both necessary and sufficient conditions for @, € S,
and any such conditions would have to be fairly complicated. For one thing, the
property @, € S, does not depend on the size of ¢ only; although ¢o(x) = x[0,1]
the characteristic function of the unit interval, yields an operator @, of rank 1,
we show (see the example following Theorem 6.5) that there exists a function v
with |¢| = |po| such that @y ¢ S;. In the positive direction we show (§5 and
§10) that if ¢ is sufficiently smooth and decays sufficiently rapidly at infinity, then
Q, €8, 1/2 < p < 1. Conversely, we give in §15 (Theorem 15.22) a necessary
condition on the L' modulus of continuity for Q, € S;.

At p = 1/2 there is a second threshold. We prove in §8 and §9, by two different
methods, that if ¢ is smooth (locally absolutely continuous is enough), then @,
never belongs to S/, except when ¢ = 0 a.e. More precisely, if ¢ is sufficiently
smooth and decays sufficiently rapidly at infinity, and does not vanish identically,
then the singular numbers s, (Q,) decay asymptotically exactly like n=2 (Theo-
rem 9.3).

On the other hand, (), may belong to S/, for non-smooth functions: It is easily
seen that if ¢ is a step function, then @), has finite rank, and thus @, € S, for
every p > 0. Taking suitable infinite sums of step functions we find also other
functions in S, p < 1/2.

The role of smoothness is thus complicated and not well understood. It seems
to be a help towards @, € S, for 1/2 < p < 1, but it is not necessary and it
completely prevents @, € S, for p < 1/2. On the other hand, it is irrelevant for
p>1.

As said above, @), has finite rank when ¢ is a step function. We show in
Theorem 12.2 that this is the only case when (), has finite rank.

The kernel in Definition (1.1) is symmetric, and thus @, is self-adjoint if and only
if  is real. In §4 we show that @), is a positive operator if and only if ¢ is a non-
negative non-increasing function. In this special case, for each p > 1/2, Q, € S, if
and only if ¢ € X,,. In this case we also give an even simpler necessary and sufficient
conditions for boundedness, compactness and Q, € S,, p > 1/2 (Theorem 4.6).
In particular, for positive operators we have a necessary and sufficient condition
for p =1 too.

When ¢ is real and thus @, is self-adjoint, the singular values are the absolute
values of the eigenvalues. In §9, we study the eigenvalues, which leads to a Sturm-—
Liouville problem that we study. We include one example (see §9), where the
singular values can be calculated exactly by this method. We give also another
example (Theorem 6.5) where the singular values are calculated within a constant
factor by Fourier analysis.

In §13 and §14, we consider related families of operators acting on L?(R) and
(*(Z); the latter operators include some given by weighted Hankel matrices.



We further study operations acting on bounded linear operators on L?(R, ) re-
lated to the class of operators ),. We study Schur multipliers given by functions
of the form ¢ (max{z,y}) in §7 and properties of the averaging projection onto
the operators of the form @), in §11.

We give in this paper several necessary conditions and sufficient conditions for
properties such as @), € S,. In all cases there are corresponding norm estimates,
which follow by inspection of the proofs or by the closed graph theorem, although
we usually do not state these estimates explicitly.

We denote by |I| the length of an interval I. We also use |S| for the cardinality
of a finite set S; there is no danger of confusion.

We use ¢ and C, sometimes with subscripts or superscripts, to denote various
unspecified constants, not necessarily the same on different occurrences. These
constants are universal unless we indicate otherwise by subscripts.

2. Preliminaries

Definition (1.1) shows that the adjoint Q7 = Qg; in particular, @, is self-adjoint
if and only if ¢ is real. Similarly, (QF)" = Qz; which has the same norm and
singular numbers as ;. Hence, we will mainly consider Q;f; all results obtained
in this paper for Q7 immediately holds for Q) too.

Schatten classes. We denote the singular numbers of a bounded operator 7' on

a Hilbert space (or from one Hilbert space into another) by s,(7), n =0,1,2,...;

thus s,(7) o inf {||7" — R|| : rank(R) < n}. We will frequently use the simple

facts
Sman(T 4+ R) < $u(T) + sn(R), m,n >0, (2.1)
and
Sman(TR) < 5, (T)sn(R), m,n >0, (2.2)
Recall that the Schatten-von Neumann classes S,, 0 < p < oo are defined by

S, = {T: an(T)p < oo},

n>0

and the Schatten—Lorentz classes S, 4 are defined by

Spq = {T ) (5a(T)7(1 + )17 < oo} L 0<p<oo, 0<q< oo,

n>0

Spoo ={T: s,(T) < const(1 + n)fl/p} , 0<p<oo.
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See for example [GK1]| and [BS].

Other intervals. We have defined our operators for the interval R, = (0, c0).
More generally, for any interval I C R and a function ¢ € L (1), we define Qi to

loc
be the integral operator on L*(I) with kernel ¢ (max(z,y)).

It is easily seen that if I = (—o00,a) with —oco < a < oo, then Qé is bounded
only for ¢ = 0 a.e. By translation invariance, it remains only to consider the cases
I = (0,00), as above, and I = (0, a) for some finite a. The latter case will be used
sometimes below, but it can always be reduced to the case (0,00). Indeed, if we
extend ¢ to (0,00) letting ¢ = 0 on (a,00), then Qé and @, may be identified.
(Formally, they are defined on different spaces, and Qé is the restriction of @, to
L?(I), but the complementary restriction to L*(a, 00) vanishes. In particular, @
and @), have the same singular numbers.)

The case of a finite interval can also be reduced to [0,1] by the following simple
homogeneity result.

Lemma 2.1. If t > 0, and ¢i(z) = tp(tz), then Q, and Q,, are unitarily
equivalent. Similarly, for a subinterval I C (0,00), Qé and pr_tll are unitarily
equivalent.

Proof. The mapping T, : f(z) — tY/2f(tx) is a unitary operator in L?(R,),
and (g, = TthoTtil' u

Note that the spaces X, have the homogeneity property exhibited in this lemma:
if p € X, then ¢, € X, with the same norm. Of course, it is natural to have this
property for any necessary or sufficient condition for @, € S,,.

Distributions. We can also define the operators @), Q:;, and (), in the case
when ¢ is a distribution.

For an open subset G of R™ we denote by D(G) the space of compactly supported
C* functions in G and denote by D’(G) the space of distributions on G, i.e.,
continuous linear functionals on D(G). We refer the reader to [Sch] for basic facts
about distributions. We use the notation (g, f) for ¢(f), where ¢ € D'(G) and
f € D(G).

Suppose now that ¥ and {2 are open subsets of R. In this paper we usually
consider the case when ¥ = Q@ = R, or ¥ = Q = R. Let & € D'(¥ x Q).
We say that @ determines a bounded linear operator from L?(Q) into L*(X) if

there exists a constant C' such that [(®(z,y), f(v)g(z))| < C| fllr2llgllr2 for any
f € D) and any g € D(X); the corresponding operator 7' then is given by
(Tf,g9) = (®(z,y), f(y)g(z)) and ® is called the kernel of T. We say that ®
determines an operator in S, if this operator is an operator from L*(Q) into L?(X)
of class S,. Note that for any bounded operator T': L*(Q) — L*(X) there exists
a distribution ® € D’(X x Q) which determines the operator T' (a special case of

Schwartz’s kernel theorem). Indeed, it is easy to see that any function in D(Q2 x X)
7



defines an operator from L?*(X) into L*(Q) of class S;, and we have a continuous
imbedding j : D(Q x ¥) — S1(L*(X), L*(Q)). We may define the distribution
O € D'(X x Q) by the following formula (®7(x,y), f(x,y)) = trace(T'A), where
f € DX xQ) and A is the integral operator with kernel function f(y,x). Clearly,
& determines the operator T

We also consider the space S(R") of infinitely smooth functions whose derivatives
of arbitrary orders decay at infinity faster than (1+ |x|)~™ for any n € Z, and the
dual space S’'(R") of tempered distributions (see [Sch| for basic facts). Recall that
the Fourier transform

f o (Ff)() < / F(t)e 20 dy (2.3)

where (¢,z) is the scalar product of z and ¢ in R”, is an isomorphism of S(R")
onto itself, and that it can be extended to S'(R™) by duality.
We need the following elementary facts.

Lemma 2.2. Suppose that a distribution ® € D'(R?) determines a bounded
operator on L*(R). Then ® is a tempered distribution.

Proof. It is easy to see that any function ® € S(R?) determines an operator
of class S; and that the corresponding imbedding of S(R?) into S is continuous.
The result follows now by duality. B

Lemma 2.3. Let ® € S'(R?). Consider the distribution U on R? defined by

U(x,y) o (F®)(x,—y). Then ® determines a bounded operator on L*(R) if and
only if ¥ does. Moreover, these two operators are unitarily equivalent.

Proof. It suffices to observe that

(U(z,y), fW)g(x)) = (B(x,y), F(f(—y)g(x)))

= (®(z,9), (FN(-y)Fy(=x))). W

Now we are ready to define the operators @, Q;’j and @), in the case where ¢
is distribution.

x
It is not hard to see that the operator f — [ f(z,y)dy is a continuous operator
0

from D(R; x Ry) into D(R,). Hence, with any ¢ € D’(R) we can associate the
8



distributions Af, AZ,and A, in D'(R; x Ry) defined by

T

<A$,f@ay»§§<¢:/fﬂmyﬁw% (2.4)
(A2, ) 2 (o / £y, 2)dy) (2.5)

and
A, €AY+ A (2.6)

For a distribution ¢ in D'(Ry), we can consider now the operators QS‘;, Qg
and (), determined by the distributions A;, A ,and A, respectively. It is easy
to see that in case ¢ € Li (Ry), the new definition coincides with the old one.
The following theorem shows however that if one of those operators is bounded on
L*(R,), then ¢ must be a locally integrable function on R, , and so we have not

enlarged the class of bounded operators of the form @).,.

Theorem 2.4. Let o € D'(R). Suppose that at least one of the distributions
AL, A7, or Ay, determines a bounded operator on L*(Ry). Then ¢ € Li (Ry).

Proof. We consider the cases of the distributions A:; and A,. For Aj the
proof is the same as for AY. Let @ € R,. Fix a function f; € D(Ry) such that
supp fo C [0,a] and [; fo(z)dz = 1. We have

(AL, fo)g(@)) = (Ap. fo(y)g(x)) = (#,9)
for any g € D(R,) with supp g C [a,+00). Therefore
e, )| < Cllfollz@ollgll 2wy
for any g € D(a, 00). Thus, cp‘(a, ) € L*(a,0). W

Triangular projection. On the class of operators on S,(L*(R;)), p < oo, we
define the operator of triangular projection P as follows. Consider first the case
p < 2. Let T be an operator on L*(R,) of class S,, p < 2. Then T is an integral
operator with kernel function kr:

(Tf)(x) = / k(o) f) dy. f € IA(RL).

Then by definition

(PTf)(x) = / Cke(ey)f()dy, [ e L(RL). 2.7)

9



It is well known that
|PTs, < cpllTls,, 1<p<2, (2.8)

where ¢, depends only on p. This allows one to extend by duality the definition
of P and inequality (2.8) to the case 2 < p < 0o. Note also that P has weak type
(1,1), i.e.,

$n(PT) < const(1 +n) | T|ls,, T € S:. (2.9)

We will need these results on the triangular projection P in a more general
situation. Let p and v be regular Borel measures on R,. As above we can as-
sociate with any operator T from L*(u) to L?*(v) of class Sy the operator PT
by multiplying the kernel function of T" by the characteristic function of the set
{(z,y) eRZ: 0 <y <z}

Theorem 2.5. P is a bounded linear projection on S,(L*(u), L*(v)) for

1 < p < oo and P has weak type (1,1), i.e., P is a bounded linear operator
from Sy(L*(p), L*(v)) to Syeo(L? (1), L*(v)).

Theorem 2.5 is well known at least when p = v. Let us explain how to reduce
Theorem 2.5 to the case of the triangular projection onto the upper triangular
matrices. ot

e

Let {K;},;>0 and {Hy}x>0 be Hilbert spaces. Put K o @D K; and H = P Hy.

>0 k>0
We identify operators A € B(H, K) with its block matrix representation {A;},; x>0,

where Aj; € B(Hy, ;). We define the triangular projection P by (PA) o Ajy,

for j > k and (PA); < 0 for j < k.

Lemma 2.6. Let 1 < p < oco. Then P is bounded on S,(H,K) and has weak
type (1,1). Moreover, the norms of P can be bounded independently of H and K.

In the case dimK; = dimH;, = 1, this is the Krein-Matsaev theorem (it is
equivalent to Theorems II1.2.4 and II1.6.2 of [GK2], see also Theorem IV.8.2 of
[GK1]). In general the result can be reduced easily to this special case. Indeed, it
is easy to reduce the general case to the case when dim’H; = dim K; < co. Then it
is easy to see that if A € §,, 1 < p < oo, then the diagonal part of A also belongs
to S,, and so we may assume without loss of generality that A;; = 0, j € Z,.
We can take an orthonormal basis in each H; and consider the orthonormal basis
of H that consists of those basis vectors of H;, j € Z,. Then we can consider
the matrix representation of A with respect to this orthonormal basis. We have
now two triangular projections: with respect to the orthonormal basis and the

projection P, the triangular with respect to the the decomposition H = € Hj.
k>0
It is not hard to check that since the diagonal part of A is zero, both triangular
10



projections applied to A give the same result. This reduces the general case to the
Krein—Matsaev theorem mentioned above. B

Now it is easy to deduce Theorem 2.5 from Lemma 2.6.

Proof of Theorem 2.5. Let T" be an integral operator with kernel function k.

For £ > 0 we put k.(x,y) o k(z, y)x{(x7y)eRz+:[g}€>y>0}, where [a] denote the largest
integer that is less than or equal to a. Suppose that p > 1. It is sufficient to

consider the case 1 < p < 2 and then use duality. Let 7. be the integral operator
with kernel function k.. It follows easily from Lemma 2.6 that

ITells, z2u)22w)) < Sl T\l sp(L200).2200))

for any € > 0. Clearly, T. — T in the weak operator topology as ¢ — 0. It follows
that |PT||s, 2, .20)) < l|T||s,(£2(u),22(v))- The case p = 1 may be considered
in the same way. W

We have Qs‘; = PQ,, which together with the equivalence

Q,eS, <= Q, €8,

yields
Q,eS, «—= Q,€8,
for 1 < p < co. We will give a direct proof of this in Theorem 3.3.

We introduce a more general operation. Let A be a measurable subset of
R, x R,. For an operator T on L*(R,) of class S, with kernel function kr
we consider the integral operator P41 whose kernel function is y akr, where x 4 is
the characteristic function of A. In other words,

(PATf)(x) = / (e, ke (e, ) f(y)dy.

If 0 < p <2 and Py maps S, into itself, it follows from the closed graph theorem
that the linear transformation P4 is a bounded linear operator on S,. If 1 <p <2
and P4 is a bounded linear operator on S,, then by duality we can define in a
natural way the bounded linear operator P4 on S,. If P4 is bounded on Si,
we can define by duality P4 on the space B(L*(R,)) of bounded linear operators
on L*(R,). Note that the projection P defined by (2.7) is equal to P4 with
A={(z,y): zeRy, y <z}

3. Boundedness, compactness, and p > 1

Recall the spaces X, defined in the Introduction.

Theorem 3.1. Let o € L (Ry). The following are equivalent:
11



(1) Q, is bounded on L*(R.);
(i) QF is bounded on L*(R,);
(iii) ¢ € Xo.
Recall that the equivalence of (i) and (iii) was also established in [MV] by a

different method.

Proof. Let us show that (ii) implies (i). If Q7 is bounded, then the integral

operator () def — @7 is also bounded, since its kernel function is the reflection
@ ¢ ¢

of the kernel function of QF with respect to the line {z = y}. Hence, Q, is
bounded.
Let us deduce now (iii) from (i). For n € Z put

A, =27, 2" x 2771 2m).
Certainly, if @), is bounded, then

sup [|Pa, Q|| < oo.
neZ

It is easy to see that P, Q) is a rank one operator and

2n+1 1/2
1P, Q] = (2 / |so<x>|2da:>
271
which implies (1.6).

It remains to prove that (1.6) implies (ii). Put

B =] B., (3.1)

nez
where
B, ={(z,y): 2" <z <2" 2" <y <z} (3.2)
We also define the sets
AP = [on, 2nH1] x [2nk 2n i (3.3)
and
AB = | ] AP, (3.4)
nez
Clearly,
{(z,y) : >0, 0<y<x}:BUUA(k),
k>1
and so
QL < IPsQull + D IPawQull- (3.5)

k>1
12



Since the projections of the B,, onto the coordinate axes are pairwise disjoint, it
is straightforward to see that

|PsQ|l = sup | Ps, Q7|
neZ

Let R,, be the integral operator with kernel function
kg, (2,y) = () X[2n 2n1) (T) X (20 20411 (1) (3.6)
. on+1 1/2 )
Obviously, rank R, = 1 and ||Ry||s, = || Ral = (2n > |cp(x)|2dx) . Tt is also
evident that PR,, = PBnQ:g, and since P an orthogonal projection on S5, we have

1Pe.Qll = PRl < [[PRulls, < || Rulls,

27L+1

1/2
_ (2“ / |¢(@|2d93> < const ¢l x...
271

Next, it is also easy to see that

[Paw Q|| = sup ||PA§Lk>Q<pH-
nez

. 1/2
Also, P, Q, has rank one and norm (2”"C s . \go(:c)Pd:c) , and so

on+1 1/2
D IPaw@ell = 3 sup (2"’“ / IsO(l‘)\Qde)
ne n

k>1 k>1

gn+1 1/2
= Y2 (2“ / |so<x>\2dx)
E>1 nez 2n

2n+1 1/2
= constsup 2”/ lo(x)|*dx .
nez 2n

The result follows now from (3.5). W
Theorem 3.2. Let p € Ll _(Ry). The following are equivalent:

loc

(i) Q, is compact on L*(Ry);
(i) QF is compact on L*(Ry);
(iii) o € X2,
Recall that the equivalence of (i) and (iii) was also established in [MV] by a

different method.
13



Proof. It is easy to see that the estimates given in the proof of Theorem 3.1
actually lead to the proof of Theorem 3.2; for the step (i) = (iii) we observe that
if @, is compact, then liril P4, @yl =0. B

Theorem 3.3. Let 1 < p < oo and let ¢ € LL .(Ry). Then the following
conditions are equivalent:

(i) Q, € Sy;
(ii) QF € Sy
(iii) ¢ € X,.

Note that the fact that (ii)<(iii) was proved in [No] by a different method, see
also [NeS] and [St] for the case of more general Volterra operators.
Proof. The fact that (ii)=-(i) can be proved exactly as in the proof of Theorem

3.1. Let us show that (i) implies (iii). Consider the sets A4, = AP introduced in

the proof of Theorem 3.1 (see (3.3)). Recall that A = J AP Tt is easy to see
nez
that

[Pa0Qylls, < 11Q0ls,-
Clearly,

1Pa0Qells, = D P4, Qells,.
nez
the operator Py, (), has rank one and

2n+1 1/2
1Pa,Qolls, = (2"_1/ |<P($)|2dx> :
217,
This implies (1.3).

Let us show that (1.3) implies (ii). Consider the sets, B, B, AP A®) defined
in (3.2), (3.1), (3.3), and (3.4). Clearly,

Q% Is, < IPsQlls, + D IPawQfls,-
k>1
Let us first estimate [|[PQF||s,. Clearly,
1PsQ5 I, = > I1P5. QL Il
nez

Consider the rank one operators R,, defined in (3.6). As in the proof of Theorem
3.1 we have PR, = PBan‘g and since P is bounded on S, we obtain

n

on+1 1/2
1P5,Q5 ls, = [PR.lls, < const, || Ry|s, = const, (2"/ |90($)|2dl‘> ,
2

14



and so

on+1 p/2
PRSI, < constpz <2n/ |90(90)\2dx> .
2

nel "

It is also easy to see that

1P QI = IP,w@5 %,

neL

and, since P,k @, has rank 1,
n

2n+1 1/2
r\PAg>@;|rsp=H%@@nspz(2"’“ / \¢<x>|2dx> ,

n

and so

on+1 P/2 1/p

1PanQElls, = | D (2"’“ / \90(56)!%>
27’!,
nez (37)
2n+1 p/2 1/p
=27k (Z <2”/ |so(a:)\2dx> )
nez 2n

and

on+1 P/2 1/P
Y IPaw @ s, < const (Z (2” / Iso(x)IQdfc> ) (3-8)
2

k>1 nez "

which completes the proof. B

Remark. The same proof shows that for p = 1, (ii) = (i) = (iii), but the final
part of it fails because the triangular projection is not bounded on S;. We will see
later that, indeed, none of the implications can be reversed for p = 1.

In the Hilbert—Schmidt case p = 2, the result simplifies further. Indeed, we have
the equalities

1QENIs. = 2721 Qulls. = llz"20(2) 12 = Il x,-

and

15



4. Positive operators

We consider the special case when @), is a positive operator, i.e., (Q,f, f) > 0
for every f € L?*(R.). In this case we obtain rather complete results. We first
characterize the corresponding symbols .

Theorem 4.1. Suppose that ¢ € LL (Ry) is such that Q, is a bounded operator.
Then Q, 1is a positive operator if and only if ¢ is a.e. equal to a non-increasing,
non-negative function.

Proof. Suppose that Q,, is positive. Define, for z,h > 0, f., = h™ Xz .4n) and
let Leb(y) be the set of Lebesgue points of ¢. Then, if z € Leb(y),

/Z+ / (o{max(z,y)} — ¢(2)) dz dy
2/’2+ / (le(@) = (2)| + lo(y) — @(2)]) dv dy

z+h
—op! / o) — pl2)] dz — 0

as h — 0. Since (Qufn, f2n) = 0 for all A > 0, this implies ¢(z) > 0.
Moreover, if z1,20 € Leb(y) are two Lebesgue points with 23 < 2z and
0 < h < 29 — 21, then, similarly,

zo+h
<Q<Pf21,h> f227h> = <Q<Pf22,h7 f21,h> = hl/ @(y) dy - 90(22)

22

‘<Q<pfz hafz h>

as h — 0, and thus, with g, = f., 0 — fan,

(Qugns gn) — p(21) + @(22) — 2¢(22) = ¢(21) — p(22).

Hence, ¢(21) > ¢(22).

It follows that the function ¢(z) = sup {¢(z) : z > x, z € Leb(y)} is non-negative
and non-increasing, and that ¢ = ¢ a.e.

Conversely, if ¢ is non-negative and non-increasing, then lim ¢(x) = 0, since a

positive lower bound is impossible by Theorem 3.1. Thus there exists a measure
w on (0,00) such that o(z) = p(z,00) a.e. If, say, f is bounded with compact
support in (0,00), then by Fubini’s theorem

@ut.) = [ [ elmaxte. ) @i sy = [[[ f@)7) dzayautz)

max{x y}<Z
/OO
0

2
x)dx| dp > 0.

16



Hence, @), is a positive operator. B
We have used the fact that ), is a sum of the Volterra operators Q;j and Q.
Operators of the type (), also appear as the composition of Volterra operators.

Theorem 4.2. Suppose that 1y and s are functions on Ry such that Qy, and
Qy, are bounded linear operators. Let ¢ be the function defined by

o) = [ itisar (1.1
Then the operator Q, is bounded a;d admits a factorization
Qe = Qy, Q5
Proof. Let k1 be the kernel function of @, and k the kernel function of Q:/;

We have
>
k(e ) = {Wt)’ o
0, t<x
and
0 t<vy
ka(t,y) =4

Then the kernel function k of the product @, Q;;z is given by

k(x,y)sz kl(M)kz(t,y)dt:/oo P1(t)a(t)dt = p(max{z, y})

max{z,y}

by the hypotheses; the integrals converge by Theorem 3.1 and the Cauchy—Schwarz
inequality. Il

The function ¢ in (4.1) is always locally absolutely continuous. In order to treat
more general non-increasing ¢, we define, for a positive measure p on (0, 00), the
operator Qf : L?(0,00) — L?(p) by Qi f(z) = [ f(y)dy. (Thus, the operator
itself does not depend on p; only its range space does.) We have the following
analogues of Theorems 3.1 and 3.3. (We leave the corresponding criterion for
compactness to the reader.)

Theorem 4.3. Let i1 be a positive measure on Ry. The following are equivalent:
(i) Qf is bounded operator from L*(R) to L*(u);

(ii) sup2"pu[2",2") < oo;
nez

(iii) sup zulr,o0) < 0o.
x>0
Theorem 4.4. Let 1 < p < oo and let v be a positive measure on R,. The

following conditions are equivalent:
17



() Q€ Sp;

(11) ZQﬂp/?(u[2n’2n+l>)p/2 < 00;

nez

(i) Y 272 (u[2", 00))"* < oo

(iv) 2% (u(x, 00))"* € L7 (du /).

The proofs of Theorems 4.3 and 4.4 are almost the same as the proofs of The-
orems 3.1 and 3.3. The main difference is that we have to apply the theorem on
the boundedness of the triangular projection on S,, 1 < p < oo, in the case of
weighted L? spaces (see Theorem 2.5). B

Furthermore, the factorization in Theorem 4.2 extends.

Theorem 4.5. Suppose that p is a positive measure on Ry such that Q: 15 a
bounded linear operator. Let ¢ be the function defined by p(x) = pu(x,00). Then
the operator Q, is bounded and Q, = (Q}) Q.

Proof. By Theorem 4.3, 0 < ¢(z) < C,/x, and thus @, is bounded by Theo-
rem 3.1.
If, say, f,g € L?(R,) are non-negative, then by Fubini’s theorem

() Qif0) = (Qi1.Qfa) = [ [ fw)de [ atw) dyduts
~ ] t@swdedyan) = @.1.).
max{e,y}<z

For positive operators @),,, we have a simple result, Theorem 4.6 below. (For (i),
cf. the discussion of the Hille condition in [MV].)

Theorem 4.6. Suppose that ¢ is a non-negative, non-increasing function on
R, .
(i) Q, is bounded if and only if xp(x) is bounded.
(i) Qy is compact if and only if zp(x) — 0 as x — 0 and as x — oo.
(iii) If 1/2 < p < 00, then the following are equivalent:
(a) Qp € Sp;
(b) ¢ € X,;
(c) zp(z) € LP(dx/x).
Proof. The equivalence of ¢ € X, and x¢(z) € LP(dz/x) for non-increasing,
non-negative ¢ is elementary, using p(2")? > 27" f;:H || > @(2711)2. Hence, (i)
follows from Theorem 3.1, and (iii) for p > 1 from Theorem 3.3; furthermore, (ii)

follows similarly from Theorem 3.2.
18



For (iii) for a general p > 1/2; we first note that any of the three conditions
(a), (b) and (c) implies that zp(z) is bounded. (This follows by (i) for (a),
and by elementary estimates for (b) and (c).) We can assume without loss of
generality that ¢ is right-continuous on (0,00). If we let u be the measure on
Ry with p(r,00) = ¢(z), then by Theorems 4.3 and 4.5, Q; is bounded and
Q. = (Q))*Q}. Hence, Q, € S, & Q € Sy, and the result follows by Theo-
rem 4.4. W

We will see in the example given at the beginning of §9 that Theorem 4.6 (iii)
does not extend to p < 1/2.

5. A sufficient condition, 1/2 < p <1

By linearity, we immediately obtain from Theorem 4.6 a sufficient, but not
necessary, condition for general symbols ¢.

Definition. Y), is the subspace of X, spanned by non-increasing functions. Le.,
¢ €Y, if and only if Re ¢ and Im ¢ both are differences of non-increasing functions
in X,,.

Theorem 5.1. Letp > 1/2. If p €Y, then Q, € S,. B

The condition ¢ € Y, can be made more explicit and useful as follows. We
denote by [[¢]/sy(;) the total variation of a function ¢ over an interval I, and let

el By dof ||¢’|/BV(I)-|—SL11P |o|. Moreover, we let V,,(z) denote the total variation of

a function ¢ over the interval [z, 00). Note that if ¢ is locally absolutely continuous,
then Vi (z) = [ ¢'(y)| dy.
Lemma 5.2. Let 0 < p < co. If ¢ is non-increasing, then

o d
§0€Y13<:>Q0€Xp<=>/ |xgo(x)|p?x<oo.
0

Proof. For non-increasing ¢, the first equivalence follows from the definition of
Y, while the second equivalence was noted in the proof of Theorem 4.6. B

Theorem 5.3. Let ¢ be a function on Ry and let 0 < p < oo. The following
are equivalent:

(1) p €Yy
(i) V, € X, and lim ¢(z) = 0;

(iii) 2V, (2) € LP(dz/7) and lim (z) = 0;
19



(iv) ¢ has locally bounded variation, lim ¢(x) =0 and
2, 2" (Jom ldeo(@)])" < o0;
ne

(v) ¢ has locally bounded variation, lim ¢(x) =0 and

" on+1 p e
S 2 (fo ' ldg(@)]) < oo;

neL

(Vl) 26322np”<10||%v[2n’2n+1} < 00;

(vii) ZE:Z 20 (@) By gn gnig < 00

Proof. To show that (i) implies (ii), it suffices to consider a non-increasing
© € X,; it is easily seen that then lim p(x) =0 and V, = ¢, whence (ii) follows.

Conversely, suppose that (ii) holds. By considering real and imaginary parts,
we may assume that ¢ is real. Then ¢ =V, — (V, — ¢), where V,, and V,, — ¢
are non-increasing functions in X,; note that 0 < V,, — ¢ < 2V,,. Consequently (i)
holds.

Since V,, is non-increasing, (ii)<>(iii) follows by Lemma 5.2.

Next, (iii)«<(iv) follows easily because Vy(z) = [ |dp(y)|, and (iv)<(v) is
easily verified. 1

If (iv) holds, then || o]l py e ane) = for \d(p(a:)|+[28121p+ . | < 2[5 |dip(x)| and

(vi) follows. Conversely, (vi) immediately implies (v).

Finally, for any functions ¢ and 1 on an interval I, |[v¢| gy < ||¥] v el By,
and the equivalence (vi)<(vii) follows by taking ¢ (z) = z and ¢ (z) = 1/z. B

We can define a norm in Y, (a quasi-norm for p < 1) by

el (2 ( [ 4:0)1)’) " 51)

ne”L "

([ ers)™,

which yields an equivalent (quasi-)norm.
We obtain as corollaries to Theorems 5.1 and 5.3 the following simple sufficient
conditions for @, € Sp.

an alternative is

Corollary 5.4. If ¢ is absolutely continuous on [0,00), lim ¢p(x) = 0 and
SUp,-o & |¢ (z)| < oo for some v > 2, then ¢ € Y, for every p > 0 and thus
Q, € S, for everyp > 1/2.

Proof. V,(z)is bounded and |V,,(z)| < const -z'~7, and thus 2V,,(z) € LF(dz/x)
for every p > 0. B
20



Corollary 5.5. If ¢ has bounded variation and support in a finite interval, then
p €Y, for every p > 0 and thus Q, € S, for everyp >1/2. B

6. p =1, first results

Let us now consider the case p = 1. We know already that ¢ € X; is a necessary
and ¢ € Y; a sufficient condition for @, € §;. We will later see that neither
condition is both necessary and sufficient (see the example following Theorem
6.5). We restate these results as follows.

Theorem 6.1. If ¢ has locally bounded variation, [;° xldp(z)| < oo and
lim, .o ¢(z) =0, then Q, € S;.

Proof. It follows from Theorem 5.3 and the calculation

/0°° Velo)dr = /0°° /:O dip(y)] dz = /OOO ylde(y)|

that the assumption is equivalent to ¢ € Yj, so the result follows from Theorem
5.1. 1

Theorem 6.2. If Q, € S1, then ¢ € X,. Furthermore, p € L'(0,00) and

tracerp:/ o(x) du.
0

Proof. By the Remark at the end of §3, Q, € §; = ¢ € X;. Next,
X C L'(0,00), since by the Cauchy-Schwarz inequality and (1.3)

2n,+1

/Ooo EESIPLs (/2 |¢(f€)|2d56> N < o0.

nel

Finally, the trace formula follows from Theorem 6.3 below, since with
k(z,y) = p(max{z,y}) for z,y > 0,

o (0. )
/ k(x,x +a)dx :/ o(x)de. N
—o0 lal

Remark. This theorem gives a formula for the trace of @), if that operator has
a trace; i.e., if it is in the trace class, §;. The theorem also shows that if (), is in
the trace class then we must have ¢ € X;. We will see later in this section that
¢ € X is not enough to insure that @), is in the trace class. However, we will
see later, Corollary 10.2, that ¢ € X is sufficient to insure that @), and related

operators do have a Dixmier trace.
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In the previous theorem we used following fact from [A], improving an earlier
result in [B]:

Theorem 6.3. If T is an integral operator on L*(R) of class S1 with kernel
function k, then the function

r— k(x,z+a), z€R,
is in L'(R) for almost all a € R and the function

ar—>/k:(x,x+a)dx, a € R,
R

is almost everywhere equal to the Fourier transform Fh of a function h € L'(R),
in particular, it coincides a.e. with a continuous function on R. Moreover,

trace T = (Fh)(0).

Proof. It issufficient to prove the result when k(z,y) = f(z)g(y) with f and g in
L?*(R), in which case it can be verified straightforwardly, with

h(E) = (FFE(Fg)(=¢). B
We can reduce the estimation of [|Q,||s, to the estimation of [|QL||s, for dyadic
intervals 1.

Theorem 6.4. Let p € L (Ry) and let I, = [2",2""']. Then Q, € Sy if and
only if ¢ € X1 and

> 1Rk s, < oo (6.1)
neL

Proof. Consider the sets A%) defined by (3.4) and consider their symmetric
images A% about the line {(z,%) : = = y}. Asin (3.8) we have

gn+1 1/2
> IPaw@plls, < const (2” / |¢(I)|2drv) :
2

k>1 nez "

Similarly,

gn+1 1/2
D IPacoQplls, < const ) (2”/ |s0(fv)!2dx) :

k>1 nez 2"
It thus follows from ¢ € X; that
PAQ(p €S, and 'PAQ@ €S.

where
A=[JA® and A= [ A®.

k>1 k<-1
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Consequently, using Theorem 6.2, @), € S; if and only if ¢ € X; and P@Q, € S,
where B is defined by (3.1). Since the projections of the sets B,, onto the coordinate
axes are disjoint, and Pp,Q, = Qi,", it follows that Pp(Q), € S; if and only if (6.1)
holds. W

Let n € Z. It is easy to see that Qi" € S, if and only if @, € S, where

([l?) def QO(I + 2"), S [O, 2”]
" 0, otherwise.

Hence, the question of when @), belongs to S reduces to the question of estimating
Q] s, for functions ¢ supported on finite intervals.

Remark. For 0 < p < 1, it can similarly be shown that if ¢ € X, and
> onez 1QF s, < o0, then Q, € S, We do not know whether the converse holds.

We next show that ¢ € X; is not sufficient for @, € S;.
Theorem 6.5. Let on(z) = e2™Nx(o(z) for N =1,2,... Then

, 1 N
50(@uy) =min{

and so

Qe lls) = Tog(N +1). (6.2)

Note that < means that the ratio of the two sides are bounded from above and
below by positive constants (not depending on n or N). Clearly,

lenllx = Ixpallx, =C
is independent of N. This shows, by the closed graph theorem, that

peXi# Q,€8;

a concrete counterexample is given in the example following the proof of Theorem
6.5. Moreover, ¢n € X, for any p > 0, again with norm independent of IV, so for
every p <1

peX,ZQ, €8 and pcX,# Q, <S8,
It also follows from Theorem 6.5 that

1Quylls, = NUP/P L <p<l. (6.3)

Proof of Theorem 6.5. Since multiplication by a unimodular function is a
unitary operator, the singular values of ()., are the same as the singular values
$n(Ty), where Ty is the integral operator on L?[0, 1] with kernel

e "N o (max(z, y))e’”iNy = exp(27iN max(z,y) — miNz — wiNy)
= exp(miN|z — yl).
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Let gn(z) = e™Nl for |z| < 1, and extend gy to a function on R with period 2.
Let T} be the integral operator on L?[—1,1] with kernel gy(z —y). If I, = [0, 1],
I_=[-1,0] and Anp = I x I3, o, f € {+, =}, then Py, T} = T and thus

5n(Qpy) = sn(Tiv) < sn(Ty)- (6.4)

Moreover, each Py, Ty is by a translation unitarily equivalent to either Ty or the

integral operator on L2[0,1] with kernel gy(z —y — 1) = exp(7iN(1 — |z — y|)) =
(—=1)Mgn(x — y), which has the same singular values. Hence, by (2.1),

san(Ty) < dsn(Tn) = 480 (Quy )- (6.5)

T} is a convolution operator on the circle R/27Z, so the elements of the orthonor-

mal basis {272 exp(rikz)},____ in L?[—1,1] are eigenvectors with eigenvalues
1

1
gN(k’) déf/ gN(l,)e—ﬂikacdl, — / 67riN|a:|—7rik;:L’ dr
71 _

1
0 ] r
_ / 6—7r1(N+k:)ac dr +/ e7r1(N—k):c dx
-1 0
0, k=N (mod2), k# +N,
= ]_7 k ::j:ﬁﬁ

m(;/ik) + m(;/%k) = ﬂ(]\%}ikz), k=N+1 (mod 2).

Consequently, the singular values s,(7%) are the absolute values |gn(k)|, k € Z,
arranged in decreasing order. This easily yields
1 N
(1% = mi
sn(T) mm{n—i—l’ (n%—l)?}7
and the result follows by (6.4) and (6.5). W

Remark. A related method is used in a more general context in §14. Indeed,
the estimates (6.2) and (6.3) follow easily from Theorem 14.10 (with the norm
estimates implicit there).

Moreover, (6.2) and (6.3) also follow from the results in §16, obtained by a
different method.

Example. For a concrete counterexample we let N > 2 be integers and define

0 = Z eXp(27Ti2kax)X(27k721—k)(l’).
k=1
Then |p| = xp,1; in particular, ¢ € X, for every p > 0.
On the other hand, for every k, by Lemma 2.1 and Theorem 6.5,

—k 91—k
Qlls, > |[Q2 "2

7

o =27 1Quy,lls, = €2 log N
1

24



Choosing Ny = 23", we find that Q, ¢ S1.

Other choices yield further interesting examples. Thus, N, = 2¥ yields a symbol
¢ € X but ¢ ¢ Y such that, by Theorem 6.4, Q, € S;. In fact, using the Remark
followed by Theorem 6.5, we can conclude that @, € S, for every p > 1/2.

The choice Nj, = 2 yields a symbol ¢ € X1\Y; such that Q, € S; but Q, ¢ S,
for p < 1.

Remark. Theorem 6.5 implies also that ¢ € X; does not imply @, € S, for
any Schatten-Lorentz space S, with ¢ < oc.

Let us prove now that the condition @, € S; does not imply that QF € S;.
Moreover, as previously shown by Nowak [No], we show that there are no non-zero
operators Q:g of class S1. (A more refined result will be given in Theorem 10.1.)

Theorem 6.6. Suppose that ¢ € L _(Ry). If Q; € Sy, then ¢ is the zero
function.

Proof. Suppose that ng € S;1. Let k be the kernel function of ng, extended
by 0 to R?, i.e.

k(2. y) = p(x), 0<y<zx
U= 0, otherwise.

Let A C R, be a compact interval. Consider the operator PAQ;PA, where Pa
is multiplication by ya. Clearly, PAQ;PA is an integral operator with kernel

function ka def Xaxak, (recall that x4 is the characteristic function of a set A)
and PAQ;PA € S;. It follows from Theorem 6.3 that the function u

u(a) o / ka(z,x 4 a)dx
R
is a.e. equal to a continuous function R. Clearly, u(a) = 0 if a > 0. And
u(a) — / o(x) dx
A
when a T 0. Hence,
/ o(x)dxr =0, for any interval A C R,
A

Consequently, o =0.
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7. Schur multipliers of the form v (max{x,y}),
LyY S R-i—

Let 0 < p < 2. Recall that a function w on R? is called a Schur multiplier of S,
if the integral operator on L?(R) with kernel function wk belongs to S, whenever
the integral operator with kernel function k does. If 2 < p < oo, the class of Schur
multipliers of S, can be defined by duality: w is a Schur multiplier of S, if w is a

Schur multiplier of S,/, where p/ o p/(p—1). We say that w is a Schur multiplier
of weak type (p,p), 0 < p < 2, if the integral operator with kernel function wk
belongs to S~ whenever the integral operator with kernel function k& belongs to
S,. Note that in a similar way one can define Schur multipliers for an arbitrary
measure space (X, u).

In this section for a function ¢ € L>(R) we find a sufficient condition for the
function (z,y) — ¥ (max{z,y}), (z,y) € R? to be a Schur multiplier of S,. We
also obtain a sufficient condition for this function to be a Schur multiplier of weak

type (1/2,1/2).
Theorem 7.1. Let 1 < p < oo and let 1p € L>°(R). Then the function
(z,y) = Y(max{z,y}), (z.y) €R?,
is a Schur multiplier of S,,.

Proof. Since the triangular projection P is bounded on S,, the characteristic
function of the set {(x,y): x>y} is a Schur multiplier of S,. It remains to
observe that

w(maX{x> y}) = z/}(aj)X{(;c,y):x>y} + w(y)X{(ac,y)x<y} | (71)

Theorem 7.2. Let ¢p € L>(R). Then the function

(z,y) = Y(max{z,y}), (z,y) € R?,
is a Schur multiplier of weak type (1,1).

Proof. The result follows from (7.1) and the fact that the triangular projection
P has weak type (1,1) (see (2.9)). B

Theorem 7.3. Let 1/2 < p < oo and let ¢ be a function of bounded variation.
Then the function (z,y) — Y(max{x,y}) on R? is a Schur multiplier of S,,.

Proof. By Theorem 7.1 we may assume that p < 1.
We consider first the case when 1 is absolutely continuous, i.e.,

U(x) = /h(t) dt +C, he L'(R). (7.2)

x
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We may assume that C' = 0.
Let € and 7 be functions in L? and let T be the integral operator defined by

@nwwjéa@mwmeMwnﬂw@,feme. (7.3)
We have to prove that

1Tls, < Cp, €Nl 2@ 1]l 22wy

where C'(p, h) may depend only on p and h.
We can factorize the function h in the form h = uv, where u, v € L?(R). Put

det | O, y<ux,
““W”—{a@mw,y>@

and

def v(x), <@,
R

Let T} and Ty be the integral operators on L*(R) with kernel functions k; and k.
It follow from the boundedness of the triangular projection that if 1 < ¢ < oo,
then [[Thf|s, < C(g)ll¢llz2llullzz and |T2lls, < C(g)lnl 2|0l 2, where C(g) may

depend only on ¢. It is also easy to verify that T'= T,7T5. It follows that
ITs, < 715, 1Tl 5, < (C(20))2 1] 20l 22 [l 2 |v]] 2.

To reduce the general case to the case of an absolutely continuous function ,
we can consider a standard regularization process. H
We complete this section with the following result.

Theorem 7.4. Suppose that 1 is a function of bounded variation. Then the
function (x,y) — p(max{z,y}) is a Schur multiplier of weak type (1/2,1/2).

We need two lemmata.

Lemma 7.5. Let0<p<1landlet A€ S, . Set

1/p
* def -1 .
A = sup | #* min{t, s, (A .
IA[lS, .. t>g< > {t, sn( )}>

n>0
Then
IAlls, .. <lAlls, . <1 —p)7|A]ls, ...

Proof. Taking t = s,(A) in the definition of || - |5, _, we obtain

(n+1)rs,(A) < ||A||Z‘p,oo‘
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Consequently, [|Alls, .. < [|Als, .- Next, we have

S minft s (A)} < oY mingt, [Alls, . (0+ 1)}

n>0 n>0

< t”‘l/miﬂ{t,IIAllsp,wx‘””}dx= (1=p) " Alls, .
0

Hence, |All5, ., < (1—p)"'7|A]s, .. ®
Lemma 7.6. If0 <p <1, then || |5 _ is a p-norm, i.e.,
vt Aol < 1A +IAalE . A A€ Sy

Proof. By Rotfeld’s theorem [R], if ® is a concave nondecreasing function on
R, such that ®(0%) = 0, then

Zq><sj<A1 +A)) <D B(s;(A1) + > D(s5(Ar), mE Ly (7.4)

=0 =0
For ¢t > 0 we define the function ®; on R by
®y(z) = P~ min{t, z}.

Clearly,
JAI[E = sup Y Bi(s;(A)).
>0 43
It remains to apply 7.4 for ®; and take the supremum over ¢t > 0. B

Note that the fact that for p < 1 the space L”*> has a p-norm that is equivalent
to the initial quasi-norm is well known (see [K]).

Proof of Theorem 7.4. The proof is similar to the proof of Theorem 7.3.
Again, it is sufficient to assume that ¢ has the form (7.2) with C' = 0.

By Lemma 7.5 and Lemma 7.6, to prove that our function is a Schur multiplier
of weak type (1/2,1/2), it is sufficient to prove that if 7" is defined by (7.3), then
T € S1)2,00- Let u, v, ki, ky, Th, and Ty be as in the proof of Theorem 7.3. Let
n > 2 and n = my + my, where |m; —n/2| < 1/2 and |my —n/2| < 1/2. Since the
triangular projection P has weak type (1,1) (see (2.9)), we have

115, < const||g]lzellull2 and || T3[|s, ., < const [n]]z2]lv] 2.
Hence, by (2.2),

1
sn(T) < Sy (T1)$my(T2) < const ————|l¢]| 2 [ull 2 [nl] 2 [v]] 2

2

IN

1
const ﬁ||§||/;2 [l 22 [|m]] 2 [|v]| 2
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which completes the proof. B
We let 91, denote the space of Schur multipliers of S,, and put

def
oo, = sup [lwklls,,

where the supremum is taken over all integral operators with kernel & € L? such
that ||k||s, = 1. Here by ||k||s, we mean the S, norm (quasi-norm if p < 1) of the
integral operator with kernel function k. If w is a Schur multiplier of weak type

(p,p), we put
def
[wllom, .. = sup [lwklls,
where the supremum is taken over all integral operators with kernel & € L? such
that HkHSp =1.
Remark. It is clear from the proofs of Theorems 7.1, 7.2, 7.3, and 7.4 that
under the hypotheses of Theorem 7.1 we have

[ (max{z, y})[lm, < C(p)|[¢| L~
and

14 (max{z, y})llan, .. < Cl[Y]|z<
while under the hypotheses of Theorem 7.3 we have

[ (max{z, y})[lm, < C(p)|[¥] 5y,
and
[¢(max{z, y})[lon, .. < Cll¥[Bv.

Here we use the notation

HSOHZW:/RIM and  [lollsy = lellpy + llpllzoe.

The following result gives us a more accurate estimate for ||y (max{z,y})|lon, in
the case 1/2 <p < 1.

Theorem 7.7. Let ¢ be a function of bounded variation on R. Then

kusw)
%] e

o (max{z, y})lan < const [z log (2 i

and

2—-1 1/p—1 1
lo(max{z, y})llom, < const [0, 5 <p<l

Proof. Let ¢ and 7 be function in L? such that ||¢]|z2 = ||n]/z2 = 1. We have to
estimate the S,-norm of the integral operator with kernel ¢(max{z,y})¢(z)n(y).
Let {sn}n>0 be the sequence of s-numbers of this integral operator. Theorem 7.2
implies that

S, < const ‘—

||| Lo~
n+1"
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Theorem 7.4 implies that

[l + ¥l

S, < const (n n 1)2

Consequently,

S, < const min {

[ @l [[¥llz~ + 14y
n+1’ (n+1)2 '
The rest of the proof is an easy exercise. B

8. The case p =1/2

Theorem 8.1. Let ¢ be a function of bounded variation on [0,1]. Then
[0,1]
Qo € 81/2,00-

Proof. We may extend the function ¢ by putting ¢(t) = 0 for t € R, \ [0, 1].
Clearly, the integral operator with kernel function x[o > has rank one, and so it
belongs to S/2. Consequently, by Theorem 7.4, the integral operator with kernel
function xp 12¢(max{x,y}) belongs to S/ . W

To see that this result cannot be improved to QL? es 1/2, we begin with two
extensions of Theorem 6.6.

Lemma 8.2. Let p,v € Li. (R). Suppose that the integral operator with kernel
function k,

k(z,y) = {SO(IW(?J), y<w,

0, otherwise,

belongs to 1. Then i) = 0 almost everywhere.
Proof. First we assume that ¢, € L?*(R). By Theorem 6.3 we have

a—0—

lim [ k(z,z+a)dx = lir&/k(x, z +a)dr =0,
R R

loc

whence [ ¢(x)¢(z) dz = 0. Now let ¢ and ¢ be arbitrary functions in L, (R). Sup-
R

pose that f and g are functions in L*(R) such that fe € L?(R) and
gy € L*(R). Consider the integral operator with kernel function

(2, y) = f(2)k(z,y)9(y)-
Clearly, it belongs to S;. It follows from what we have just proved that
[ p(z)f(z)(x)g(x)dz = 0. Since f and g are arbitrary, this implies the result. W
R
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Lemma 8.3. Let ¢ € L (R,) and let A = (0,00) x A, where A is a measurable

loc

subset of (0,00). Suppose that PaQf € S1. Then ¢ =0 almost everywhere on A.
Proof. The result follows easily from Lemma 8.2 with ) = yA. B

Lemma 8.4. Let ¢ be a nonincreasing locally absolutely continuous function on
R, and let A be a measurable subset of R,.. Suppose that the integral operator with
kernel function

(z,y) — p(max{z, y})xa(z)xa(y)
belongs to S1/2. Then ¢' =0 almost everywhere on A.

Proof. By replacing A with A N (a,b), we may assume that A C [a,b] where
0 < a <b< oo. We may then subtract ¢(b) and modify ¢ outside [a,b] so that
¢ becomes constant on (0,a] and zero on [b,00). Let ¢ = (—¢')¥/2. Since z¢(x)
is bounded, we have ¢ € X,. Thus Qfg is bounded and by Theorem 4.2, @),
admits a factorization Q, = (Q;’)*Q:Z Let M be multiplication by ya. It follows
that MQ,M = (Q M)*(Q} M), and so QM € S,. The result follows now from
Lemma 8.3. &

Corollary 8.5. Let ¢ be as in Lemma 8.4 and let ¢ be a function on R, such

that Qy € S1/2. Set A o {z € Ry : (x) = ¢(x)}. Suppose that ¢ is dif-
ferentiable almost everywhere on A. Then ¢ = ' = 0 almost everywhere on

A.
Proof. It suffices to apply Lemma 8.4. B

Theorem 8.6. Let ¢ be an absolutely continuous function on [0,1]. Suppose
QL?’H € S1/2. Then 1 is constant.

Proof. Clearly, we may assume that 1) is a real function. Suppose that 1 is
not constant. Then maxt) > (1) or miny < ¥(1). To be definite, suppose that
max ) > 1(1). We use the “sun rising method”. Let

ALYz e0,1]: v(x) > () forall t>az}.

Clearly, A is closed and 1 € A. Moreover, the restriction w’[a, B] is constant for
any interval (o, ) such that o, 5 € A and AN («, ) = @. Set
p(x) = Joax 1.
Clearly, ¢ is non-increasing, ¢|n = ¥|a and nga, O] is constant for any interval
(cr, B) such that o, € A and AN (a,F) = @. Consequently, ¢ is absolutely
continuous. Thus, ¢’ = 0 almost everywhere on A by Corollary 8.5. Moreover,
¢ = 0 outside A because ¢ is locally constant outside A. Consequently, ¢’ = 0
almost everywhere on [0, 1], and so ¢(t) = ¢(1) = (1) for any t € [0,1] which
contradicts the condition max1 > ¢(1). B
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Corollary 8.7. Suppose that Qy € S1/2. Then 1 is constant on any interval
I C Ry on which v is absolutely continuous. A

Corollary 8.8. Suppose that 1 is locally absolutely continuous and Q. € S1/».
Then v = 0 everywhere on Ry. B

Lemma 8.9. Let ¢ be a nonincreasing function on Ry with tliin ©(t) =0 and

let € > 0. Then there exists a nonincreasing absolutely continuous function ¢ on
Ry such that tli+m Y(t) =0 and m{p £ Y} <e.

Note that here and in what follows m denotes Lebesgue measure on R or nor-
malized Lebesgue measure on the unit circle T.

Proof. We may assume that ¢ is right-continuous on (0,00) and that ¢ is
bounded. Consider the positive measure p on R such that ¢(t) = u(t,o0) for
any t > 0. Denote by pus the singular part of . There exists a Borel set £/ C R,
such that m(E) = 0 and p,((0,4+00) \ £) = 0. We may find an open set U such
that E C U C Ry and pu(U) <e. Let U = | (an, by), where (ayn, b,) are mutually

n>1
disjoint. Set
_Q(t),  teR\E
F() =9 plan, by)

t ns On ).
b, —a, € (an;bn)

Set () ¥ [ f(s)ds. Clearly, ¢ =1 outside U. B
t

Lemma 8.10. Let ¢ a nonincreasing function on Ry with lim ¢(t) = 0. Sup-

t——+o0
pose that the integral operator with kernel function
(2,y) — p(max{z,y})xa(@)xa(y)

belongs to Sy, for a measurable subset A of R.. Then ¢' = 0 almost everywhere
on A.

Proof. The result follows from Lemmas 8.4 and 8.9. R

Theorem 8.11. Let ¢ be a function with bounded variation on [0, 1]. Suppose
that QL?’” € S1)2. Then ' =0 almost everywhere on [0, 1].

Proof. Again, we may assume that ¢ is real. We may also make the assumption
that that ¢ is continuous at 0 and at 1, and ¥ (t) = max{¢(t"),¥(t")} for any
t € (0,1). With any nondegenerate closed interval I C [0,1] we associate the
function ¢; : I — R defined by ¢(z) =sup{e)(t) :t € I and ¢ > x}. Set

def
A(l) ={xel: ¢r(x)=1(x)}.
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Clearly, A(I) is closed. By Lemma 8.10, ¢’ = ¢, = 0 almost everywhere on A(I).
Set E_ ={x € (0,1): ¢'(x) <0}. Let a € E_. Clearly, a € A(I) if [ is small
enough and a € I. Consequently,

E—Cg@ﬁ([%;l»kilm-

We have shown that Lemma 8.10 implies m(A(/) N E_) = 0 for every I. Conse-
quently, m(E_) = 0. Thus, we have proved that ¢/ > 0 almost everywhere. It
remains to apply this result to —y.

The following fact is an immediate consequence of Theorem 8.11.

Corollary 8.12. Suppose that Qy € S1/2. Then ' = 0 almost everywhere on
any interval I C Ry on which v is of bounded variation. B

9. Sturm—Liouville theory and p = 1/2

If ¢ is real, then @), is self-adjoint, so its singular values are the absolute values
of its eigenvalues. Hence, we next study the eigenvalues and eigenfunctions. For
simplicity we consider only the case of symbols ¢ which vanish on (1, 00); thus it

does not matter whether we consider Q, on L2(R,) or Q" on L2[0,1].
Suppose that ¢ € C1[0,1] and that ¢ is real. Let A be a non-zero eigenvalue of

Q‘[BJ} and g € L?[0, 1] a corresponding eigenfunction,

Ag(z) = p(x) /Oxg(y) dy + /1 eWgly)dy, 0<x<1 (9.1)

The right hand side is a continuous function of z; hence, g € C[0,1] and (9.1)
holds for every x (and not just a.e.). By (9.1) again, g € C'(0, 1] with

\(2) = ¢'(@) [ glw)dy 9.2
0
Define G(z) = [ g(y) dy. Then (9.2) can be written as the system
G'(x) = g(x)

_ (9.3)
g (x) = A" (2)G(x)
and we have, using (9.1) with = 1, the boundary conditions
G(0) =0,
©) (9.4)

g9(1) = A p()G(1).
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Conversely, any solution of (9.3) with the boundary conditions (9.4) satisfies (9.2)
and (9.1), so the problem of finding the singular values of @, reduces to finding
the A # 0 for which (9.3) and (9.4) have a solution. Note that (9.3) can be written
as a Sturm-Liouville problem

AG"(x) = ¢/ (2)G(x). (9.5)

If g(zg) = G(xp) = 0 for some z( € [0,1], then (9.3) shows, by the standard
uniqueness theorem, that g vanishes identically, a contradiction. In particular,
since G(0) = 0, we have ¢g(0) # 0, and we may normalize the eigenfunction g by
g(0) = 1.

For every A # 0, (9.3) has a unique solution (Gy, gx) with G»(0) = 0, gA(0) = 1.
It thus follows that all non-zero eigenvalues of (), are simple, and that A # 0 is an
eigenvalue if and only if

gr(1) = A p(1)GA(D). (9.6)

Example. Let p(z) =1 — 2, 2 € [0,1], and ¢(x) = 0, z > 1. Then (9.3)
gives G"(z) = —A\"'G(x), and we find the solutions gx(z) = cos A\™*/2z, A > 0, and
ga(x) = cosh |\|7/22, A < 0.

Since (1) = 0, condition (9.6) is simply g»(1) = 0, and the non-zero eigenvalues
are given by cosA™/2 =0or A™Y2 = (n+1)m, n =0,1,.... (A < 0is impossible in
this case; in other words, @), is a positive operator, as is also seen by Theorem 4.1.)
Hence, the non-zero eigenvalues are {(n + 5) 27 ~2} " and the singular values are

sn=m"2(n+3)"% n>0.

The behaviour s,(Q,) < (n+ 1)72 found in the above example holds for all
smooth ¢ on [0,1] by Sturm-Liouville theory, as will be seen in Theorem 9.3.
Hence, for smooth ¢ with compact support, we have ), € S/ but nothing
better.

Let BV[0, 1] denote the Banach space of functions on [0,1] with bounded varia-
tion, with the seminorm |||z, = fol |dp| and the norm ||¢||gy = ||¢l|5y +sup |¢]-

The following result is essentially the same as Theorem 8.1. However, we use
in this section a different approach based on the study of eigenvalues of Sturm—
Liouville operators.

Theorem 9.1. If ¢ € BV[0,1], and ¢ = 0 on (1,00), then Q, € S1/200 and
1Qsll s, .. < Cllellpv. More precisely,

5n(Qp) < Cillgllpv(n+1)72, 0 >0, (9.7)
and

sn(Qp) < Collollpyn™,  n>1. (9-8)
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Proof. Note that (9.8) follows from (9.7) since a symbol ¢ constant on [0,1]
yields a rank one operator ).
We use methods from Sturm-Liouville theory, and begin by making some sim-
plifications.
(i) Replacing ¢ by a regularization ¢, such that p. — ¢ in L?[0,1] and thus
Qy. — Q, in S as € — 0, we see that we may assume ¢ € C*[0, 1].
(ii) Considering real and imaginary parts separately, we may assume that ¢ is
real, and thus @), self-adjoint.
(iii) Subtracting a constant times o 1], which yields a rank 1 operator, we may
assume that ¢(1) = 0.
(iv) By homogeneity, we may assume that |||z, = fol |¢'| <1 and show that
then [|Q,lls, ), ., < C.
(v) Using

o@) = - / o (y)dy

S / max{¢'(y),0}dy — / min{y’(y), 0}dy

= ¢1(z) — (),
and the corresponding decomposition @, = Q,, —Q,, We may also assume
that ¢’ < 0 and thus ¢ > 0. By Theorem 4.1, ), is then a positive operator.

(vi) Similarly, writing ¢ = 2p; — @9 with @9 =1 — 2 and ¢ = (¢ + ¢2)/2, we

may further assume that ¢’ < —1/2 on [0,1].

Let A > 0 and let, as above, (G, gx) be the solution to (9.3) with g,(0) = 1,
GA(0) = 0. Thus A is an eigenvalue if and only if (9.6) holds, i.e., by (iii), if and
only if gx(1) = 0.

Write w = A2 and express (gx, wGy) in polar coordinates

gx(z) = R,(z) cos O, (x),

wGA(z) = R,(7)sin O, (x),
where R,(z) = \/¢?> + w?G? > 0 and O, is continuous with 6,,(0) = 0. Note that
A is an eigenvalue if and only if cos©,(1) = 0, i.e. ©,(1) = nm + 7/2 for some

integer n.
Since R, (z) > 0, R, and ©,, belong to C*[0,1], and (9.9) and (9.3) yield

M2R2Q! = gG' — Gy = ¢* — AN 1W'G? = R?(cos® O, — ¢'sin0,)
and thus

(9.9)

0!, = w(cos* O, — ¢'sin® B,,). (9.10)

In particular, since ¢’ < 0 by (vi), ©’, > 0 and thus ©,(1) > 0.
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Now suppose 0 < w < v and consider the corresponding functions 6, and ©,.
We claim that

Ou,(7) < O,(x), 0<z<1 (9.11)

Indeed, since ©,(0) = 0 = 6,(0) and, by (9.10), ©/,(0) =w < v = ©,(0), (9.11)
holds in (0,0) for some § > 0. Hence, if (9.11) fails, there exists some x; € (0, 1]
such that ©,(z) < ©,(z) for 0 < x < z; but ©,(z1) = ©,(z1). This would imply
O/ (1) > ©! (x1); on the other hand, then

cos®? O (x1) — ¢’ sin® O, (1) = cos* O, (1) — ¢’ sin? O, (x,) > 0,

recalling (vi), and (9.10) would yield ©/ (z;) < ©/(x1), a contradiction.

From (9.11) follows in particular that the function w +— ©,(1) is strictly increas-
ing. Hence, there is for each integer n > 0 at most one value of w, w, say, such
that ©,, (1) = nm + 7/2, and thus a corresponding eigenvalue )\, = w,?. (The
solution to (9.4) depends continuously on w, with ©y(1) = 0 and ©,(1) — oo as
w — 00, SO W, exists for every n > 1, but we do not need that.) Integrating (9.10)
we obtain by (iv)

1 1
0,(1) = / O (x)dx < w/ (1+ | (2)]) de < 2w
0 0
and thus 2w, > 0O,, (1) = nm + 7/2, which yields
A =w,?<drn?(n+3)7% N

Considering again functions on the whole half-line R,, we now can prove an
endpoint result corresponding to Theorem 5.1.

Theorem 9.2. If ¢ € Y5, then @, € S1/2,00-

Proof. Define A and A® as in (3.3) and (3.4), but now for all integers k.
For k > 1, (3.7) holds for every p, and thus ¢ € Y35 C Xy, implies that

1/2 _
Y 1P Qullgl, <D const 277 < oo,
k>1 k>1
Moreover, by symmetry, [|Ps»Qylls, , = [[Paw Qylls,,, 50
1/2
> 1PawQulld?, < oo
k<—1
too. It follows that
Qp = PawQp = > _ PawQy € Sij2. (9.12)

k=0
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Next, Py Q@ is the direct sum of P o Qy, n € Z, which act in the orthogonal
spaces L?[2", 2" "], By translation invariance, Lemma 2.1 and Theorem 9.1, with
en(T) = 2"p(2"x + 27),

n on+1
1P Qellsie = 1R sy o = 1QE s, 0 < Clinllnvioy

< C'Z"/ |dep|.
2

n

By Theorem 5.3, we thus have

1/2
S (1P Qs ) <o

neL

and it follows from Lemma 7.6 (or as in the proof of Lemma 9.5 below) that
PA(O)QW € 51/2’00. By (912), Q‘P € 81/2700 too. W

Theorem 9.2 is the best possible; for any reasonably smooth ¢, the singular
numbers s,(Q,) decrease like n™2 but not faster. More precisely, we have the
following very precise result. Recall that a function in Y}/, has locally bounded
variation and thus is a.e. differentiable.

Theorem 9.3. Let p € Yy/5. Then

fe'e) 2
nQSn(Q@ — 12| || e = 72 (/ |g0’(x)|1/2dx) <00 asmn — oo.
0

(9.13)
Equivalently,
e21{n:5,(Q,) > e} — 7T_1/ |/ (z)[V2dx < 0o as e — 0.
0 (9.14)
In particular, n*s,(Q,) — 0 as n — oo if and only if ¢’ =0 a.e.
Proof. Note first that by the Cauchy-Schwarz inequality and (5.1),
00 gn+1 1/2
/ 10/ () |Y2dz < Zgnﬁ (/ ¢/ ()] dm) < Hg0||§,<32 < 00.
0 nez 2n (915)

For smooth and positive symbols on a finite interval, (9.13) follows by standard
Sturm—Liouville theory, see [LS, §1.2 with the transformation in §1.1]. Indeed,
much more refined asymptotics of s,, can be given [LS, Chapter 5].

We present here another proof that applies in the general case. We prove a
sequence of lemmas. The first implies that (9.13) and (9.14) are equivalent.

Lemma 9.4. For any bounded operator T on a Hilbert space,

1/2
limsupe'/?[{n : s, >e}| = (lim sup(n23n)>
e—0 n—o0
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and similarly with liminf instead of lim sup on both sides.

Proof. If limsupe'/?|{n:s, >¢c}| < a for some a > 0, then for all small ¢,
{n: s, >e}| < ac™'/2. Taking ¢ = a*(n + 1)72, we see that for large n, s, < ¢,
and thus (n + 1)2s, < @?, so limsup,,_, . n%s, < a®. The converse is similar, and
the second part follows similarly by reversing the inequalities. H

Lemma 9.5. IfT},..., Ty are bounded operators on Hilbert spaces Hy, ..., Hy,
then

1/2
(lim sup nQSn(Tk))

n—o0

WE

1/2
<lim supn®s,(Ty @ --- @ TN)) <

n—oo

=
Il

1
and

1/2
<hm inf n’s, Tk)> )

n—oo

Mz

1/2
<1iminfn2sn(T1 DTy )

n—oo

k=1

Proof. The singular numbers s, (7} @ - - - @ T)) consist of all s;(T}), rearranged
into a single nonincreasing sequence. Hence,

{n:s (Ty® - ®Ty) >e}| = Zy{n sn(T}) > €}

and the result follows by Lemma 9.4. B
For arbitrary sums we have the following estimate.

Lemma 9.6. IfT and U are bounded operators in a Hilbert space, and (0 < § < 1,
then

limsup n’s, (T + U) < (1 — 6) 2 limsup n’s,(T) + 0> lim sup n’s, (U),

liminf n?s, (T + U) > (1 — 6)*liminf ns,(T) — § 2 limsup n’s, (V).

e e n—o0 (9.17)

Proof. By (2.1), 5,(T+U) < sja—syn)(T) + 5[50 (U), and (9.16) follows, together
with

liminf n?s, (T + U) < (1 — ) 2liminf n?s,(T) + 62 limsup n’s,, (U).

Replacing here T' by T'+ U and U by —U, we obtain (9.17) by rearrangement. W
Letting § — 0in (9.17) and (9.18), we obtain the following result by Fan [GK1].

Lemma 9.7. If T and U are bounded operators in a Hilbert space, lim n%s,(T)

exists and n*s,(U) — 0 as n — oo, then lim n%s,(T 4+ U) = lim n?s,(T). A

n—oo n—oo

Lemma 9.8. The set of ¢ € Y15 such that (9.13) holds is a closed set.
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Proof. Suppose that ¢, — ¢ in Yj,, and that (9.13) holds for each ¢;. By
Lemma 9.6 and Theorem 9.2, for every k and 0 < 9§ < 1,

lim sup n®s,(Q,) < (1 — §)?limsupn®s,(Q,,) + 0 limsupn®s,(Qu,_,,)

00 n—00 n—00
< (1 — 5)_27T_2||90;€||L1/2 + 05_2”90 - 9016”3/1/2 (9'19)
and similarly

(@) 2 (=P et = OF el
9.20

Moreover, by (9.15), [[(¢ — w&)' |12 < [l — ¢klly;,, — 0 as & — oo, and so
|0kl iz = ||| /2. Letting first & — oo and then § — 0 in (9.19) and (9.20), we
obtain (9.13). &

Lemma 9.9. If ¢ is linear on a finite interval I, then

2
n2$n(pr) — 72 (/ |g0'(x)|1/2dx) as n — oo.
I

Proof. Let p(x) = a + [z with a,3 complex numbers. Suppose first that
I =10,1]. By the example at the beginning of the section and homogeneity,

$n(QLg15,) = 1Blm (0 + §) 72
2 I 2 Si Il _ Al
so ns,(Q15,5,) — 7 °|B] as n —o0. Since Q. 5, — Qg5 = Quyp is 2
rank one operator, Lemma 9.7 (or, more simply, s,41(Q” 3,5,) < 5n(QL15,) <

2
(@) = 7 =7 ([ I ar ) (9.21
If I = [0, al], we have by Lemma 2.1 and (9.21)

2
n*su(Qg) = n*sa(QR) — 72| B = 77 (/] Iso’(x)\”zdx) ,

and the general case follows by translation invariance. B

Completion of the proof of Theorem 9.3.

Step 1. ¢ is piecewise linear on [0,1] and ¢ =0 on (1,00). Let 0 =ty < t; <
-+ < ty =1 be such that ¢ is linear on every I; = [t;_1,%;], i = 1,...,N. Let
H; = L*(I;), so L?[0,1] = H, @ --- ® Hy, and let P, : L?[0,1] — H,; denote the
orthogonal projection.

N
Since each P,Q,P;, i # j, has rank 1, Q, — > P,Q,P; has finite rank and by
i=1

N
Lemma 9.7 (or directly), it suffices to consider ) P,Q,P; = Qf} G- P QQV. By
=1

1=
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Lemma 9.9,

ti 2
R2n(QL) — 77 ( / |¢<x>|1/2dx) |
1—1

and thus Lemma 9.5 yields

N

al 1/2 1/2 1
(im n*sn (- RQuR)) T =30 (Jim @) = [ i

i=1

which proves (9.13).
Step 2. ¢ is absolutely continuous on [0,1] and ¢ =0 on (1,00). Approximate
¢’ by step functions h, such that ||¢" — hy||£10,1) < 1/n, and let

Yy () = {90(0) + [y ha(y)dy, =<1,

0, x> 1.

Then (9.13) holds for each 1, by Step 1, and v, — ¢ in BV[0, 1] and thus in Y7o,
see Corollary 5.5, so (9.13) holds by Lemma 9.8.

Step 3. ¢ has bounded variation on [0,1], ¢ = 0 on (1,00) and ¢ is singular,
i.e., ¢ =0 almost everywhere. We may assume that ¢ is right-continuous. Then
o(x) = ¢(0) + [ du for some singular complex measure p supported on [0,1].
Given any € > 0, there thus exists a sequence of intervals (/;)$° in [0, 1] such that

ST < e and |y ([O, 1\ y [i) = 0. Let N be a positive integer such that
=1 =1

ul (0.0 U 1) <

We may assume that each I; is closed, and by combining any two of Iy,..., Iy
that overlap, we may assume that [I;,...,Iy are disjoint. The complement
N M
[0,1]\ U I is also a finite disjoint union of intervals, say |J J;.
i=1 j=1

For each interval I, Theorem 9.1 and Lemma 2.1 yield

supn’sn(Q) < ClIllsy ) < CH|pl(T). (9-22)

n>1

Moreover, as in Step 1 of the proof,

QSO:QQ@.'.@Q{DN%Q:?@..'@QiM+R7



where R has finite rank. Hence, by Lemma 9.5, (9.22) and the Cauchy-Schwarz
inequality,
N

<limsup n?s,(Q )) 2 < Z(hmsupn s QI )1/2 + i(hmsupn s QJ )>
(e =< n n(

1/2
n—o0 n—o00 n—oo
= 7=1
N

<o () + e (nen)

i=1 7j=1

o(3 )" ()

(3 1l) ()

1/2

| /\

< 051/2(|u|[0, )" +C-1 L gl/?

The result n?s,(Q,) — 0 follows by letting ¢ — 0.

Step 4. ¢ has bounded variation on (0,a) and ¢ =0 on (a,00) for some a > 0.
By Lemma 2.1, it suffices to consider the case a = 1. We can decompose ¢ = @, +ps
on [0, 1], with ¢, absolutely continuous and ¢y singular; let ¢, = @3 = 0 on (1, 00).
By Steps 2 and 3,

n?s0(Qpa) = T 2lGully2 = 7219112
and n?s,(Q,.) — 0, and the result follows by Lemma 9.7.
Step 5. ¢ € Yy)9 is arbitrary. Define, for N > 1,
gp(l/N) - SO(N>7 0<z< 2_N7
pn() = p@) —pN), 27V <z <2V,
0 2N < .
It is easily seen that each ¢x has bounded variation and that [l — ¢n|ly,,, — 0

as N — oo, cf. (5.1). Thus the result follows by Step 4 and Lemma 9.8. l
As corollaries, we obtain new proofs of some results from §8.

Corollary 9.10. If I is a finite interval and ¢ has bounded variation on I, then
2
’I’LQSn(Q;) — 2 (/ |90’(x)|1/2dx> as n — oo.
I

Proof. By translation invariance, we may assume I = [0,a|. Then, defining
¢ = 0 outside I, we have ¢ € Y}/, by Corollary 5.5, and the result follows by
Theorem 9.3. W

Corollary 9.11. If ¢ has locally bounded variation and Q, € S1/2, then ¢’ =0

a.e.
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Proof. If 0 < a < b < oo, then ¢ has bounded variation on [a, b], and since

n’s, (QUY) < n’s,(Q,) — 0,
Corollary 9.10 yields f; |¢'|'/2 = 0. Hence, ¢’ =0 a.c. B

Corollary 9.12. If ¢ is locally absolutely continuous and Q, € S1/2, then
=01

Remark. More generally, in the last two corollaries, S/, can be replaced by
any Schatten-Lorentz space S/, with ¢ < oo.

10. More on p =1

Although ¢ € X does not imply Q,, QF € S, the corresponding weak results
holds. There is, however, a striking difference between @), and Q;; as is shown in
(ii) and (iii) below, for every ¢ € X; not a.e. equal to 0, ns, — 0 for @), but not
for Q;f. (Note that Theorem 6.5 implies that nothing can be said about the rate
of convergence of ns,(Q,) to 0. In particular, if ¢ < oo, then ¢ € X; does not

imply that Q, € S1,.)
Theorem 10.1. If ¢ € X; then the following hold:
(1) Qsaa j;a Q; S Sl,oo~

(ii) ns,(Qy) — 0 as n — oo.
(ili) nsp(QF) = nsn(Qy) — 7 [ |o(x)|dz as n — oo.

Proof. Since X; C X, Q7 is bounded by Theorem 3.1. By Theorem 4.2,
(QF) Q) = Qo

where ®(z) = [ |p(y)|*dy. By (1.5), 2'2®(2)'/? € L'(dz/x), so ® € Yy by
Theorem 5.3, and hence, Qo € S1/2,00 by Theorem 9.2. Consequently, Q; €S8
The same holds for Q = (Q;)* and Q, = QF + Q.

Moreover, s,(Qs) = 5,(Q})?, and thus (iii) follows from Theorem 9.3 applied
to ®.

For (ii), we observe that ¢ — @, thus is a bounded linear map X; — S, and
that the set of C'! functions with compact support is dense in X; and mapped (by
Theorem 9.2) into the closed subspace 89 ., = {T € Sy : n5,(T) — 0 as n — oo}

of §1 . Hence, Q, € S?jOO for every p € X;. I
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Remark. Note that (i) and (iii) were earlier obtained in [EEH] for a more
general class of operators. Moreover, in [EEH] the authors also consider the same
operators on LP(R,) and obtain similar results for approximation numbers. See
also related results in [NaS]. We also mention here [GK1, Remark IV.8.3] and
[GK2, Theorem III.2.4], where similar asymptotic formulas are given for abstract
Volterra operators with trace class imaginary parts.

Remark. For the related operators Q:, we similarly obtain that if xu(z, 00) €
LY*(dx/x), then Q) € 814, and

[ du\ V2
ns,(Qyr) — 7T_1/ (%) dr asn — oo,
0

where Z—’; is the Radon—Nikodym derivative of the absolutely continuous component
of y. In particular, for such i, ns,(Q,) — 0 if and only if y is singular.

We saw earlier that ¢ € X, is not enough to insure that (), is in the trace
class. Furthermore the previous theorem shows that if ¢ € X; then neither Q:g
nor (), will be in the trace class. However, the combination of size and regularity
results for singular numbers given in the previous theorem does insure that these
operators have a well defined Dixmier trace. Because of the recent interest in the
Dixmier trace we digress briefly to record this observation. For more about the
Dixmier trace and its uses we refer to IV.2.5 of [C].

Let ¢*° be the space of bounded sequences indexed by non-negative integers and
let ¢; be the closed subspace consisting of sequences {a,, } for which lim a,, exists. It

n

follows from the Hahn—Banach theorem that the functional lim(-) which is defined
on ¢; has a positive continuous extension, lim,(-), to all of £>°. By saying lim,(+)
is positive we mean that if a, > 0 for n = 0,1,2,... then lim, ({a,}) > 0. This
extension is not unique and we are using the subscript w to denote the particular
choice. It was noted by Dixmier in [D] that lim,(-) can also be selected to have
the following scaling property:

lim,, (ao, ag, a1, ai, as, as, ... ) = lim, (ag, ai,as, ...).

A simple proof is in [C]. (Although the scaling is important for the general theory
it has no role in our discussion.)

Consider now the operator ideal Sq D S « that consists of the operators 7" on
Hilbert space such that

> sk(T)
IT||s, & sup ) (10.1)
n> 1
=
k=0
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Suppose that T € Sq. For a fixed choice of lim,(-) we define a Dixmier trace,
trace,(+), as follows. For positive T € Sgq set

trace, (T') = lim, ({m kzo M (T) }) :

Here the \j are the (necessarily non-negative) eigenvalues of the positive operator
T arranged in decreasing order. Although perhaps not obvious at first glance, it
is not difficult to see that, in fact, if 77 and 75 are two positive operators in Sq
then trace, (T} + T») = trace,(T1) + trace,(73). A proof of this is also in [C].
Using this fact, the functional trace,(-) can be extended uniquely by linearity to
all of T € Sq. For T € Sq the value of trace,(7) need not be independent of
w. However, there are certain operators for which trace, (1) is independent of w.
Such operators are defined to be measurable. In this case we will write tracep(7")
for this common value and refer to it as the Dixmier trace of T.

Corollary 10.2.
(i) If ¢ € X1, then the operators |QF| and |Q7| are measurable and

tracep QY1) = tracen((Q;) = = [ lpte)ld

(i) If ¢ € Y1ja, then |Qu|"? is measurable and

1 [e.e]
tracen((Q,'%) =+ [ I¢/ () e
0

(ili) If ¢ € X, then Q, is measurable and

tracep(Q,) = 0.
(iv) If ¢ € Xy, then QF and Q7 are measurable and

tracep(Qy) = tracep(Q,) = 0.

Proof. We start with (i). From the very definitions s,(|Q}|) = s,(Q7) and
hence, the previous theorem gives the asymptotic behavior of {s,(|Q7[)}n>0. Those
asymptotics, together with the fact that ]Q;’] is a positive operator, insure that
|Q7| is measurable and has the indicated Dixmier trace. A similar argument
applies to Q| and, after noting that s, (|Q,|"/?) = s,(Q,)"* and taking note of
Theorem 9.3, to part (ii).

We now consider (iii). By Theorem 10.1, we have lim ns,(Q,) = 0. Also

n—oo

$n(Qp) = 5,(Q7). Thus by (2.1), nll_{go ns,((Qy + @7)/2) = 0. We now use the

spectral projection to write %(Qg; + Q;) as a difference of two positive operators
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%(Q¢ + Q’;)i and note that we will have
lim ns, (5(Qp + Q5)x) = 0.

n—oo

Arguing similarly with the skew-adjoint part of ), we realize @), as a linear com-
bination of four positive operators each of which have singular numbers which tend
to zero more rapidly than n~!. Those positive operators are certainly measurable
and have Dixmier trace zero. The result we want now follows by the linearity of
tracep(-).

For (iv) we first pick and fix a choice trace,(-). Assume for the moment that

¢ is real, supported in [0,1] and in L?. R, def QL — Q= Qf — Q has real

anti-symmetric kernel. Thus it is normal and its eigenvalues are imaginary and
symmetric. Hence, iR, is symmetric and its positive and negative parts, (iR,)+
are unitarily equivalent. Thus

trace,(R,) = —i trace, ((iR,)+) +1 trace, ((iR,)-) = 0.

Taking note of the fact that lim,(+) is continuous on £> and of the norm estimates
implicit in the previous theorem we see that we can extend this result by linearity
and continuity and conclude that trace,(R,) = 0 for all ¢ € X;. Now we use
the fact that w was arbitrary to conclude tracep(R,) = 0. By linearity this result
together with the result in (iii) yields (iv). B

For a function ¢ defined on a finite or infinite interval I, we define the standard
and LP moduli of continuity by

) def
W (h; 1) = sup {lp(x) — (y)| : 2,y € L, | —y| < h},

1/p
SO 1) sup ( [ letas) - w(x)lpdrc) Cl<p<oo,
IN(I—s)

0<s<h

(10.2)

where 0 < h < |I|and [ —s={z—s:axe€l} ={x:a+s eI} It follows easily
from Minkowski’s inequality that

wfpp)(h; I < 2wg’)(h/2; I, 1 <p<oo. (10.3)
Note further that for a finite interval I,
wl (s 1) < |17V (s 1), p < g < oo (10.4)

We often omit I from the notation.
An alternative LP modulus of continuity is defined by

1/p

5O 1) | (2n) / o(z) — o(y) P dr dy

xz,yel
lz—y|<h
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This is equivalent to wfop )(h; I) defined above by the following lemma, which prob-
ably is well-known to some experts.

Lemma 10.3. Let 1 < p < 0o. Then, with C, depending on p only,
P (h; I) < wP (h; 1) < C@P (h; ).
Proof. The left hand inequality follows by

(cNup // x)|P dz dy

xz,yel
O<y—ax<h

1 h
= —/ / lp(x + ) — (@) dody < (WP (h; 1))".
hJo Jecin—s

For the converse, we assume for convenience that I = [0,1]. The result then
follows for every finite I by a linear change of variables, and for infinite I by
considering IN[—n,n| and letting n — co. Thus I = [0, 1] and IN(/—s) = [0, 1—s].

Let ps(x) = w(z + s). Assume first that A < 1/2. Then, for 0 < s,t < h, by
Minkowski’s inequality,

”90 - 905||]2p[0 1/2] < Cp”‘p - SOtHip [0,1/2] + CPHSOS o SptHI[)/P[[)’l/Q}‘
Averaging over t € [0, h] we find

o = @sllopo 12 = 57 / / () — oz + )P + |p(x + 5) — go(a:th)]p)dxdt
// D) dzdy = Cp(@P (1; 0,1)))".
xyeml
O<y—z<h

A similar argument, now taking s — h < t < s, yields the same estimate for
lp — s05||l£p[1/2_s,1_5], and summing we find
lp = @sllzrjo—g < Cpfufop)(h; 0,1]) (10.5)

for every 0 < s < h, which proves the result for h < 1/2.
If 1/2 < h <1, the result follows from the case h < 1/2 and (10.3). B
For simplicity, we state the following lemma for I = [0, 1] only.

Lemma 10.4. Let 1 < p < oo. If ¢ € LP[0,1] and 0 < t < 1, there exists a
decomposition p = po + @1 with

HSOOHLP[OJ] < Opwfpp) (t) and ||%01||39V[0,1] < Cpt_lwg(op) (t).
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In other words, the Peetre K-functional (see [BL]), can be estimated by
K(t, sO;Lp[O 1], BV'[0, 1]) <CwP(t), 0<t<L

Proof. Take ¢1(z) = f (- t m+t y) dy and ¢y = ¢—p1. Then ¢, is absolutely
continuous, and thus

lealy = | rsoa<x>|d:c—1‘t/|so (1= 1)+ 1) — (1= 0)2)| de

1

Z;/O _ lo(y +1) — w(y)| dy

< 1(/OH lp(y +1) —e(y)” dy) " < %wff) (t).

— 1

Moreover, using Hélder’s inequality again,

1 (1—t)z+t p 1 (1—t)z+t
@l =3 [ e v i < [ e - Py
tJa—t)a tJa-te
and thus
/\900 P i [[ o) - v drdy =20 0). ®
xyE[Ol]
ly—z|<t

Theorem 10.5. If I is a finite interval and ¢ € L*(I), then

i@y < (M) <l (1) s

n n n n

Proof. By a linear change of variables, we may assume that I = [0, 1], cf.
Lemma 2.1. Then, using the decomposition given by Lemma 10.4 with ¢t = 1/n,
(2.1), Theorem 10.1 and Theorem 9.1, we find, for n > 1,

s20-1(Qp) < 8u-1(Qpo) +50(Qp1) < CnHlpollze +Cn 2 [l < Cn'w (1/n),

and the result follows, using (10.3) and (10.4). W
In particular, we see that a Dini condition implies @, € S;.

Corollary 10.6. If ¢ € L?[0,1] is such that fol wg)(t)% < 00, in particular if

fol w&oo)(t)% < 00, then QEB’I] €S

Proof. Theorem 3.1 shows that @), is bounded, and Theorem 10.5 yields

ian@ SOZ—w”( ><O/ WG (t)% _

n=2
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By a simple change of variables, Corollary 10.6 applies to other finite inter-
vals too. Moreover, for functions ¢ on R, we have the following corresponding
sufficient conditions for @, € S;.

Theorem 10.7. If p € X, and

- n/2 7 (2) n on+l dt
Z 2 / wg (t; 27,2 ])7<oo
0

then Q, € S1.
Proof. Let I,, = [2",2""!]. Then Theorem 10.5 yields
1018, =3 (QE) < 21QE s, + IS ot (it
k=0 k=2
< 027 o [ u@ 1) %
< Ol + 02 [ WD)
and the result follows by Theorem 6.4 and (1.3). W
Corollary 10.8. If ¢ € X; and
0o on +
Z 2”/0 wfpoo) (¢ [2",2"]) — < o0

then Q, € S;. &

Note that for the functions py considered in Theorem 6.5, the estimate of the
singular numbers in Theorem 10.5 is sharp (within a constant factor) and the esti-
mates of the §7 norm implicit in Corollary 10.6, Theorem 10.7 and Corollary 10.8
are of the right order.

We do not know whether the condition in Theorem 10.7 is necessary, but we will
give a related necessary condition using the L' modulus of continuity in §15.

We have in these applications of Theorem 10.5 considered S; only, but the same
arguments apply to S, for other p too. In particular, Theorem 10.7 extends as
follows (see the remark after Theorem 6.4).

Theorem 10.9. Let 1/2 <p < 1. If p € X, and
oo on
S w2 /0 (@@ (127, 271]))" 92 dt < oo,

n=—oo

then Q, € S,. B

Note also the following immediate consequence of Theorem 10.5.
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Corollary 10.10. If I is a finite interval and ¢ satisfies a Hélder (Lipschitz)
condition |f(x) — f(y)| < Clz — y|* for x,y € I, where 0 < «a < 1, then

Qyp € S1/(1+a),00 and thus Q, € S, for everyp >1/(1+ o). A

11. Averaging projection

In this section we study properties of the averaging projection onto the set of
operators of the form @),. Let us first define the averaging projection on S,. Let
T be an operator on L?(R,) of class Sy with kernel function k = kr € L*((R,)?).
We define the function ¢ on R, by

olz) = — (/Oxk(x,t)dth/oxkr(s,x)ds), x> 0. (11.1)

T

We define the averaging projection Q on S5 by
def

OT = Q.

It is not hard to see that if @)y, € S5, then QQy = Q. It is also easy to see that
19T ||s, < ||T||s, for any T" € S, and so Q is the orthogonal projection of Ss
onto the set of operators of the form Q).

We show in this section that Q is a bounded linear operator on S, for
1 < p < 2. This allows us to define by duality the projection Q on the classes S,
for 2 < p < co. We also show that Q is unbounded on S; but it has weak type
(1,1), i.e., s,(QT)(1 +n) < const |T||s,. Finally, we use this result to show that
©Q maps the Matsaev ideal into the set of compact operators.

Theorem 11.1. Let 1 < p < 2. Then Q is a bounded projection on S,.

Proof. Let T be an integral operator in S, with kernel function k£ and let ¢
be defined by (11.1). We have to show that ¢ € X, (see the definition in the
Introduction). We can identify in a natural way the dual space X* with the space

Zy of functions f on Ry such that

2n+1 //2

S (/ |f<w>|2das> < o0

nez
with respect to the pairing

(0. ]) = / " o) (@)de. (11.2)

Here p’ = p/(p — 1). Suppose that f is a function on (0,00). Define the function
)

1 on Ry by (z) = %, x > 0. It is straightforward to see from the definition of
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the X, spaces that f € X if and only if ¢ € X}y and the norm of f in X and
the norm of ¢ in X, are equivalent. It is also easy to see that for 1 < p < oo the
space X, is reflexive.

Let us show that if f is a bounded function in X with compact support in
(0,00), then

(o, f) = trace TQy. (11.3)
We have

traceTQy = //k;(:c,y)w(max{x,y}) dxdy

x T

= 71/; / T t)dt—i—/k(s,x)ds dx

0

= / 2x)(x / o(z
0 0
It follows that

sup{[(e, /) = f € X5, |If]

x; <1} < const | Tlls, sup{[Qulls, : Illx, <1}

< const ||Ts,

by Theorem 3.3. It follows that ¢ € X, and again by Theorem 3.3, 9T € S§,. &

Theorem 11.1 allows us to define for 1 < p < 2 the adjoint operator Q* on S,,.
Since Q is an orthogonal projection on S5, Q is a self-adjoint operator on S,. We
denote the adjoint operator Q" on S,, by the same symbol Q.

Thus we can consider the projection Q on any class S, with 1 < p < oo. It is
easy to show that if 7" is an integral operator with kernel function £ of class S,
2 < p < oo, then QT = @, where ¢ is defined by (11.1) and @, € S,. We are
going to prove that for any 7' € §), 2 < p < 00, the operator QT has the form @),
for a function ¢ € X,,.

Theorem 11.2. Let T be an operator of class Sy, 2 < p < 0o. Then there exists
a function ¢ € X, such that QT = Q..

Proof. Let X, be the space of operators of the form @), with ¢ € X,,. Clearly,
X, is a Banach space with norm

1Q¢llx, = llllx,-
It follows from Theorems 11.1 and 3.3 that for T' € Sy
19T ||x, < const ||QT||s, < const ||T|s,.
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Since Sy dense in S, it follows that QT € X, forany T'€ S,,. B

We consider now the behavior of @ on S;. It follows from Theorem 11.1 that if
T € 84, then QT € §), for any p > 1. The next result shows that QT does not
have to be in §; but it has to be in S .

Theorem 11.3. (i) There exists an operator T in Sy such that QT ¢ S,.
(ii) Q has weak type (1,1), i.e., Q@ maps Sy into S 0, i.€.,

$,(QT) < const(1 +n)'||T||s,, T €S

Lemma 11.4.
def

0S8, =%, = {Q@ D pe Xl}

Let us first deduce Theorem 11.3 from Lemma 11.4.

Proof of Theorem 11.3. (i) is an immediate consequence of Lemma 11.4 and
the Example following Theorem 6.5. (ii) also follows immediately from Lemma
11.4 and Theorem 10.1. W

Proof of Lemma 11.4. Let us first show that @S; C X;. Let T € S; and
QT = @Q,. We have to prove that ¢ € X;. Consider the space Z2, that consists of
functions f on R, such that

2n+1

n1—1>I:£loo (2_” /2n |f(x)|2dx) = 0.

It is not difficult to see that (Z2)* = X, with respect to the pairing (11.2). As

in the proof of Theorem 11.1 we define the function ¢ by ¥ (x) = %f), x>0 It
follows from (11.3) that

(0, P < comst [T, |Qul| < const [ T[s, [[¢]lxg, < const T, [|f]|ze,,

and so ¢ determines a continuous linear functional on Z2 . Hence, ¢ € X;.

To prove that QS = X;, we consider the operator A : §7 — X; defined by
AT = ¢, where ¢ is the function on R, such that QT = @Q,. We have to show
that A maps S; onto X;. Consider the conjugate operator A* : X7 — B(L*(R.)).

It is easy to see that with respect to the pairing (11.2) the space X; can be
identified with the space Z., that consists of functions f on R, such that

gn+1 1/2
sup 27"/? (/ \f(x)|2d:v> < 00.
nez 2n

Consider the operator J : X; — X defined by (Jf)(z) = %, x > 0. It is easy
to see that J maps isomorphically X onto X.
It can easily be verified that A*f = @ ¢. It follows from Theorem 3.1 that

|A* f]| > const || f||x;. It follows that A maps S; onto X;. B
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Remark. In [Pel3] metric properties of the averaging projection P onto the
space of Hankel matrices were studied. In particular, it was shown in [Pel3] that
PS, C Si2. However, it turns out that the averaging projection Q onto the
operators (), has different properties. Theorem 11.3 shows that QS; C S  but
it follows from Lemma 11.4 and the remark preceding Theorem 6.6 that 95, ¢ S,
for any ¢ < oo.

Recall that the Matsaev ideal S, consists of the operators T" on Hilbert space
such that )
def Sn
I7ls. 30305 <o
It is easy to see that S, C S, for any p < oco.
Consider now the operator ideal Sq defined by (10.1). It is easy to see that

S100 C Sq. It is well known (see [GK1]) that S = Sq with respect to the pairing
{T,R} =traceTR, T €S, RESq. (11.4)

Theorem 11.5. The averaging projection Q defined on So extends to a bounded
linear operator from S, to the space of compact operators. If T € S, then
OT = Q, for a function ¢ in X,.

Proof. Let us prove that Q extends to a bounded operator from S, to the space
of compact operators. The proof of the second part of the theorem is the same as
the proof of Theorem 11.2. Since the finite rank operators are dense in S, it is
sufficient to show that Q extends to a bounded operator from S, to B(L*(R,)).

Let T'€ S5 and R € §1. By Theorem 11.3, QR € §; o, C Sq. We have

{QT, R} ={T, QR},
and so
{QT, R} < const|T|s,||QR]s,

< const | T|s,[|QRlls; ., < const [|T|s,[|Rl|s,

by Theorem 11.3. Since S = B(L*(R.)) with respect to the pairing (11.4), it
follows that ||QT|| < const ||T||s,, and so Q extends to a bounded linear operator
from S, to B(L*(R,)). B

12. Finite rank

We say that ¢ is a step function if there exist finitely many numbers

0 =290 < 1 < -+ < xy < oo such that ¢ is a.e. constant on each interval
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(xi—1,x;), and zero on (xy,00). The number of steps of ¢ then is the smallest
possible N in this definition.

There is a natural correspondence between operators (), where the symbol ¢ is
a step function, with given x; < --- < xy, and matrices of the form {amax; ;}}-
We need a simple result for such matrices, but will not pursue their study further.

Lemma 12.1. If aq,...,a, are complex numbers, then the matrix
n—1

{@maxgi gy }1<ij<n has determinant a, 1] (a; — aiy1).
i=1
Proof. Denote this determinant by D(ay,...,a,). Subtracting the last row
from all others, we see that D(ay,...,a,) = a,D(a; — ayp,...,a,_1 — a,), and the
result follows by induction. W

Theorem 12.2. ), has finite rank if and only if ¢ is a step function. In this
case, the rank of Q, equals the number of steps of .

N
Proof. If ¢ is a step function with NV steps, we have ¢ = > a;X(04,) for some
i=1
a; and x; > 0, and thus @, is a linear combination of NV rank one operators.
Conversely, suppose that rank(Q,,) = M < oco. Suppose that n > M and that
z1 < -++ < z, are Lebesgue points of ¢. If h > 0 and f.;, = h™'X(4n), then
the matrix ((Qy [z 1, f2;n))i; has rank at most M < n and thus its determinant
vanishes. As h — 0, as shown in the proof of Theorem 4.1, (Quf.n, fo;n) —
p(max{z;, 2;}) = ¢(#max{i,j}), and thus the determinant of (ap(zmax{,;,j}))ij vanishes
too. By Lemma 12.1, this implies that either ¢(z;) = ¢(2;4+1) for some i < n or

¢(z,) = 0.

Consequently, if z; < --- < z, are Lebesgue points of ¢ such that ¢(z;) # ©(zi41)
for i < n and ¢(z,) # 0, then n < M. Choose such a sequence z; < --- < z, with
n maximal. If z € (z;, z;41) N Leb(g) for some i < n, then either ¢(z) = ¢(z;) or
©(z) = ¢(zi41), since n is maximal. Moreover, for the same reason, if ¢(z) = (),
then ¢(2') = p(z) for every 2 € (z;,2) N Leb(p), and if p(2) = ¢(241), then
©(2") = @(zi11) for every 2’ € (2, z;+1) N Leb(y). Together with similar arguments
for the intervals (0, z1) and (z,, 00), which we leave to the reader, this easily shows
that ¢ is a step function with at most n steps. B

13. A class of integral operators on L*(R)

In this section we associate with the operator Q, on L*(R.) an integral operator

on L*(R) and we study these operators.
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For a function ¢ € L} _(R,) we define the function ¢* on R by

() & 2p(e?)e, teR; (13.1)
this defines a one-to-one correspondence between L2 (R,) and L2 (R). With a

function ¢ on L?*(R) we associate the function @/} on R x R defined by
U(s,t) = h(max{s,t})e " s teR, (13.2)

and denote by K, the integral operator on L?(R) with kernel function O (if it
makes sense):

(Ko f)(s / (max{s, t})e~*1 f(2)d.

Theorem 13.1. Let p € L (R.). Then the operators Q, and K o are unitarily
equivalent.

Theorem 13.1 certainly means that the boundedness of one of the operators
implies the boundedness of the other one.

Proof. Consider the unitary operator U : L?*(R,) — L*(R) defined as follows
(UF)(t) = V2f(e*)e'. Tt remains to observe that K oU = UQ,,. B

We can identify L?(R,) with the subspace of L?(R) which consists of the func-
tions vanishing on (—o0,0). We can now extend in a natural way the operator of
triangular projection P to act on the space of operators on L?(R) by defining it in
the same way as it has been done in §2. We keep the same notation, P, for this
extension. We put K = o PKy and K o Ky, —PK.

It is easily seen from the proof of Theorem 13.1 that the operators Q; and Q)
are unitarily equivalent to the operators K ;r@ and K;@ respectively.

It is easy to see that, for any p > 0,

pe Xy e S 167 iy < o0 (13.3)

n=—oo

(and correspondingly for X, and X2 ) and, using Theorem 5.1 (vii),

pcY, s Z 167 1%y gy < 0O (13.4)

n=—oo

(In (13.3) and (13.4), the intervals [n,n + 1] can be replaced by any partition of R
into intervals of the same length.) We can thus translate results from the preceding
sections to Ky, for example as follows.

Theorem 13.2. Let ¢ € L2 _(R). The following are equivalent:
(i) Ky is bounded on L*(R);
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(it) K is bounded on L*(R);

(iii) sup /n+1 1Y (z)Pdr < oo.

n€eZ Jn
Proof. The theorem is a direct consequence of Theorems 3.1 and 13.1. B
Similarly we find from Theorems 3.3, 6.2, and 5.1, respectively, the following
three theorems.
Theorem 13.3. Let ¢ € L2 _(R). If 1 < p < oo, the following are equivalent:
( ) Kd) € SIH
(ii) K res,;
(iii) Z 1 2 ) < 00

Theorem 13.4. If K, € Sy, then Y [|¢||r2pns1) < 00 and thus ¢ € L'(R).

neZ

Moreover, then trace K, = fw(:c) dr. B
Theorem 13.5. If1/2 <p <1 and 2 lvlI% BVt < 00, then Ky € S,. B

The following two results involving the modulus of continuity also can be ob-
tained by changes of variables in the corresponding Theorems 10.5 and 10.9, using
(10.3) and Lemma 10.3, but the details are involved and we prefer to imitate the
proofs.

Theorem 13.6. If ) € L*(R) has support on [0,1], then
1 o1 1
WKy < C=wP (=) + C= 0|12, > 1.
sa() < Cowl? (1) + Ol 2

Proof. We interpolate using Lemma 10.4 as in the proof of Theorem 10.5. H

Theorem 13.7. Let 1/2<p < 1. If > ||¢||L2nn+1] < oo and
neL
Z / [n,n+1]))" P2 dt < oo,

n=—oo

then Ky € S,.

Proof. We argue as in the proofs of Theorems 10.7 and 10.9, using Theo-
rem 13.6. W

We denote by F the Fourier transformation on L?*(R™), which is a unitary op-
erator defined by (2.3) for f € L*(R")(L'(R"). Let T be the integral operator
with kernel function k € L?(R?). Denote by R the integral operator with kernel

function Fk. The following lemma has a straightforward verification.
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Lemma 13.8. FTF=R. 11
Note that Lemma 13.8 is similar to Lemma 2.3.
Corollary 13.9. Let p > 0. Then ||T||s, = || R||s,. W

Denote by Z be the integral operator with kernel function (z,y) — (Fk)(x, —y).
By Lemma 2.3, T is unitarily equivalent to Z. Indeed, the equality FT'F = R
implies FTF ! = Z

Lemma 13.10. If 1) € L*(R), then ¢ € LY(R?), and

Fe) = FEOe+) (1 + 1) (13.5)

Proof. The inclusion ¢ € L!(R2) is obvious. We have

('7:77;)(1'; y) = /¢(max{5’t})e_|5—t6—27risz—27rityd8dt
R2

s

— / 77Z)(S>€—s€—27risw / 6t—27ritydt ds

R —00

t

+/ w(t)e—te—%rity / es—27ris:pd8 dt

w —27rls x—l—y w —27r1t z—l—y
/ 1 — 2miy / 1 — 27ix
R

=< ! — + ! .)(fw)(:chy). [ |

1—27iz  1-—27iy

Consider the functions

7 def y v def v
er(Sa t) = X{(s,t):s>t}w(3> t) and ¢— (S, t) = X{(s,t):s<t}w(57 t) (136)
It can easily be seen from the proof of Lemma 13.10 that

Fd) e y) = T g (F ) y) =

1— 2niy

It is easy to verify that if ¢ is a tempered distribution on R (see §2), we can define
tempered distributions QZ, @E+, and gz_ by (13.2) and (13.6); the formal definitions
are by duality and analogous to (2.4)—(2.6). It is easy to check that formulas (13.5)
and (13.7) also hold for tempered distributions .

As a corollary to Theorem 13.2, we have the following lemma.
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Lemma 13.11. Let ¢ € L} (R). Suppose that the operator Ky is bounded on

loc

L*(R). Then v determines a tempered distribution. W

Theorem 13.12. Let 0 < p < oo. Suppose that ¢ € L2 (R, and ¢ is defined
by (13.1). The following are equivalent:

<1> Qip S Sp;'
(ii) Ko € Sp;
(iii) the integral operator on L*(R) with kernel

(z,y) — (Fe")(z +y) (1 —127Tia/: + 1 —127riy)

belongs to S,.

Proof. The theorem is a consequence of Theorem 13.1, Lemma 13.8 and Lemma
13.10. &

Note that if for p > 2 we have a tempered distribution in (iii) rather than
a function, by the integral operator we mean the operator determined by this
tempered distribution (see §2).

In the same way one can prove the following result.

Theorem 13.13. Let 0 < p < oo and let ¢ € L% _(Ry). The following are
equivalent:

(i) Q; S
€S,

(Fe?)(x +y)
(@y) =~ o0,
belongs to S,. A

It is straightforward to show that if p > 0 and the integral operator on L*(R)
with kernel function % belongs to S, for some o € C\ R, then it belongs to
S, for any a € C\ R. Let us show that such an integral operator can belong to
S, for p <1 only if it is zero.

Consider the operator £ : D(R?) — D(R, x R,) defined by the following

formula (Ef)(s,t) o L(st)"2f(Llog s, 1logt). Clearly, E is an isomorphism.

Consequently, the conjugate operator F' is an isomorphism from D'(R; x R} )
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onto D'(R?). Clearly, (E'®)(z,y) = 20(e**,e*)e%e? if & € L (R, x Ry). Put
20 (e e®)eveY o (E'®)(z,y) for ® € D'(R; x R,).

Theorem 13.14. Let & € D'(Ry x R,). Then ® determines a bounded opera-
tor on L*(Ry) if and only if the distribution 2®(e**, e?¥)e"e¥ determines a bounded

operator on L*(R). Moreover, these two operators are unitarily equivalent opera-
tors.

Proof. It suffices to note that
(2®(e, e™)e"e’, V2e! f(e™)V2e7g(e2*)) = (D(s,1), f(t)g(s))

for any f,g € D(R, x R,), and the map h — /2¢®h(e?*) is a unitary operator
from L*(R,) onto L?*(R). W

Theorem 13.15. Let h € D'(R). Suppose that the distribution ?gﬁg deter-
mines an operator on L*(R) of class S1. Then h = 0.

Proof. By Lemma 2.2, % € S'(R?). Consequently, h(x + y) € S'(R?),
whence h € S'(R). Thus, there exists a distribution ¢ € D’(Ry) such that
0¥ € S'(R) and Fo¥ = h (the operation ¢ + ¥ defined in (13.1) extends in
an obvious way to distributions ¢). Lemma 2.3 and formula (13.7) imply that Q_
and thus also Q;’j belongs to S;. By Theorem 2.4, ¢ € L2 (R,). Thus ¢ = 0 by
Theorem 6.6. W

We are going to prove now that for p > 1/2 if the integral operator with kernel
function h(z+y) (HLOC + ﬁ) belongs to S, for some o, € C\R with a+ 3 ¢ R,
then it belongs to S, for any «, # € C\ R. We will also show that this is not true

for p < 1/2.
Lemma 13.16. The function
1
x, = x), xz, € ]Ra
( y) x+y+1X[0,1]( ) Yy

is a Schur multiplier of S, for any p > 0.

Proof. First we prove that the function
1

T,y)r— —— T _ , x,yeR, 13.8
(z,y) x+y+1x[0’”( XR\[ 2,2](@) Y ( )
is a Schur multiplier of §,. We have
1 (x+1)"
_ x _ = E 1" x _ .
x+y+iX[0’”( )XR\[-2.2](Y) n>0( ) ot X[o,1] (%) Xm\[-2,2) ()

Clearly, the p-multiplier norm of the n-th summand is bounded by 2=™/2. Conse-

quently, the function (13.8) is a Schur multiplier of S,. It remains to prove that
58



the function
1
) . - ) ) € IR7
(2,y) — x+y+1X[o,1}($)X[ 22 (), T,y
is a Schur multiplier of S,. For any (§,n) € [0,1] x [—2,2] we can expand the
function - +1y —; in a Taylor series in a neighborhood of (&,m). Tt follows easily that

for a sufficiently small € > 0 the function
1
r+y+1

(-’E7y) = X[O,I]ﬂ[gfs,éﬂ-:](x)X[72,2]ﬁ[n75,17+5] (y>7 z,y €R,

is a Schur multiplier of S,,. It remains to choose a finite subcover of [0, 1] x [—2, 2]
that consists of rectangles of the form [ — e, +¢| x[n—e,n+¢]. B

Remark. In the same way we can prove that the function

1
(z,y) — mX[ém]@L z,y € R,

is a Schur multiplier of S, for any p > 0 for any a € C\ R and for any &, n € R.

Corollary 13.17. Let o, 3, v € C and v € R. Then the function

(z +a)(y + P)
r+y—+

(ZL’, y) = X[O,l] (ﬂf), z,Yy € Rv

is a Schur multiplier of S, for any p > 0.
Proof. We have

(z+a)ly+p) f—vy—zx
PR =(r+ ) (1+—).

It remains to note that
X[0,1] (90), (JU + Oé)X[o,l](x): (ﬂ -7 $)X[0,1} (90), and —X[0,1] (»T)

are Schur multipliers of S,. W

Corollary 13.18. Let p > 0 and let o, € C\ R such that a+ [ & R. Suppose
that the integral operator on L*(R) with kernel function

1 1
o bt ) (st o

belongs to S,. Then the integral operator with kernel function

>’ I7y€Ra

(33, y) = h(l’ + y)X[O,l](x)a VIS R,

belongs to S,. A
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Theorem 13.19. Let p > 1/2 and let ag, fo € C\ R such that ag + By € R.
Suppose that the integral operator on L*(R) with kernel function

1 1
+
r+ag Y+ o
belongs to S,. Then the integral operator with kernel function
)l t) (5 + o
x,y) — h(z
Y '\ e+a y+p

also belongs to S, for any o, 5 € C\ R.

(w.0) = o+ 9) ). wver

)’ x)yeR’

Proof. By Corollary 13.18, the integral operator with kernel h(x + y)x[o1(%)
belongs to S,. Obviously, for any n € Z,
17z + y)x,1(@) s, = [[R(z + y) Xy (2)]]s,

(as usual we write ||k||s, for the S, norm (or quasi-norm) of the integral operator
with kernel k). Consequently,

s (-2

x+a_x+a0

< const(1 + |n])~2.

) X[n,n+1] ('I)

Sp
It is now clear that the integral operator with kernel function

@wﬁﬁM$+w< S >, z,y €R,

T+« T+ Qg

belongs to S, for p > 1/2. Similarly, we prove that the integral operator with
kernel function

1 1
y+08  y+ 5o

() o)

belongs to S, for p > 1/2. W
Theorem 13.20. Let p € L (Ry), a € R\ {0}, and p > 1/2. Put

loc

)’ m?y€R7

def an o
Pl (t) = o)t

Then Q, € Sy if and only if Qg € S

Proof. Recall that ¢%(t) = 2p(e*)e? and Lp% (t) = 2ppq (€*)e? = 2¢p(e*)e
Consequently, cp[?l] (t) = ¢”(at). By Theorem 13.12, Qo € Sp if and only if the
integral operator on L?(R) with kernel

@ ) () (g + o ) BUCR

1 —2miz 1 —2miy
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belongs to S, and thus if and only if the integral operator on L*(R) with kernel

(2.9) = (P4 ) mueR

1 —27iax 1 — 27iay
belongs to S,. By Theorem 13.19, this holds if and only if the integral operator
on L*(R) with kernel

1 1
Q
R
@)= FNa ) (g 1o )+ BV ER

belongs to S,. It remains to apply Theorem 13.12 once more. B

Corollary 13.21. Let v € L2 (R), a € R\ {0}, and p > 1/2. Define
def

Yo (t) = Y(at). Then Ky € S, if and only if Ky, € S,. B

Remark. Theorem 13.20 and its corollary do not generalize to the case p < 1/2.
Indeed, if ¢ is the characteristic function of an interval, then @, € S, for any p > 0
but if a # 1, then @y, & S;, by Corollary 8.12. It follows from the proof above
that Theorem 13.19 too does not extend to p < 1/2.

Remark. Note that if ¢ € X, then ¢p(t) € X, for any a € R\ {0} and any
p > 0. Moreover, if ¢ € Y, then ¢ (t) € Y, for any a € R\ {0} and any p > 0.
Indeed, let A > 1. It is easy to see that (1.3) is equivalent to the condition

An+l p/2
DA (/ IsO(I)IQdI) < o0,

nel Ar

while the condition in Theorem 5.3 (vii) is equivalent to

Z ngp('m)Hva[An,An-q—l] < OO,
nez

which easily implies the above assertions.

Theorem 13.22. Let o, § € C\ R and let p > 0. Then the integral operator
on L*(R) with kernel function
1

h R
@) o hotn) (7 oyg) e muER

belongs to S, if and only if convolution with the function h(x)(x + a + () is an
operator from L*(R, (1 + z?)dx) to L*(R, (1 4+ 2?)~'dz) of class S,.

Proof. Clearly, the integral operator on L*(R) with kernel function

1 1
) o b 0) (g
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belongs to S, if and only if so does the integral operator with kernel function

r—y+a+p
(z+a)ly—0)
To complete the proof, it remains to observe that multiplication by (z — 3)~! is an

isomorphism from L?*(R) onto L*(R, (1 + x?)dxz) and multiplication by (z + «a)~*
is an isomorphism from L*(R, (1 + z%)~!dz) onto L*(R). W

Corollary 13.23. Let a, 3, v € C\ R such that « + 3 & R and let p > 1/2.

Then the integral operator with kernel function

1+1
r+a y+p

(:c,y)l—>h(:1:'—y) 5’5>ZJGR-

(w,y)Hh(Hy)( ) z,y €R,

belongs to S, if and only if convolution with the function h(x)(z+7) is an operator
from LA(R, (1 + 2?)dx) to L*(R, (1 4+ 2?)~*dz) of class S,.
Proof. It suffices to apply Theorem 13.19. B

Remark. In the same way we can prove that the following statements are
equivalent for any o € C\ R and for any p > 0:

(i) the integral operator on L?(R) with kernel function
(z,y) — k(z+y)(z+a), z, yeR,
belongs to S,;
(ii) the integral operator on L*(R) with kernel function
(z,y) = k@ +y)y+a), z,yeR,
belongs to S,;

(iii) convolution with k is an operator from L*(R) to L*(R, (1 + 2?)~'dx) of
class Sp;

(iv) convolution with & is an operator from L*(R, (1 + 2?)dx) to L?(R) of class
S,

Let us repeat that Theorem 13.15 implies that the integral operator with kernel
function k(z + y)(x + a)~! can be a nonzero operator in S, only if p > 1.

14. Matrix representation
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Let ¢ be a function in L2 (R) such that ¢(z + 1) = ¢(z), € R. Consider the
operators QI and Q19 on L2]0,1] and L2[0, 2] respectively. Obviously,

12, < ll@2, . 0<p<oo (14.1)
Obviously,
1QEAN = [1Pl2xon @2 || = llellz2qo.- (14.2)
It is also easy to see that
9515, < 00 (02, + Ielisan) . 0<p<oe (143

where C'(p) is a constant that may depend only on p.

Theorem 14.1. Let 0 < p < oo. Suppose that ¢ is a function in L% _(R) such

that p(x) = @(x + 1) and (x) o ©(1 —x). Then

) (10871, + [027],, ) < ek, < s (b, + 2], ).

Proof. To prove the left inequality, consider the integral operator K on L?[0, 1]
with kernel function

(z,y) = p(min{z,y}).
Clearly, the operators K and Q[O 1 are unitarily equivalent, and so
IK]ls, = [|Q%"]|, for any p > 0. Note that
p

p(min{z,y}) + p(max{z, y}) = () + ¢ (y).
Hence, K—i—QEg’l] is the integral operator with kernel function (x,y) — ¢(x)+¢(y).

< C(P)|l¢ll2. Now the left inequality is obvious. To prove
p

N

the right inequality, we have to show that

Il z200) < Clp (HQ[OHHS +HQ[011

Clearly,
1

(K+QUN)1=p+ /go(t) dt.
0

It follows that
2

H(K+ QL?’I]) 1Hiz[071] = HS0||%2[0,1] +3 /@(t) dt| > ||90||2L2[0,1}'
0

Thus,
|5+ Q3 M5, = 1K +Q2V = Ielzp
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and so
lelepy < (105 + @21,

IN

cw) (I%1s, + 1|25,

= o (02l + k], ) -
Corollary 14.2. Under the hypotheses of Theorem 14.1
0,2
|2, <cw ek,

Theorem 14.3. Letp > 0 and a € R. If v is a function satisfying the hypotheses
of Theorem 14.1 and (x) aof o(x — a), then

@b, <cwllell,

Proof. Clearly, it is sufficient to consider the case a € (0,1). Then Qq[f’l] is by

a translation unitarily equivalent to QE _a’Q_a], and thus

[t =Nty < ek,

The result follows by (14.3) and (14.2). B
def

Let ¢ be a function on the unit circle T. Put T, = {( € T : Im¢{ > 0},

T_“{¢eT:Im¢ <0} and

aet [ #(¢%), (TeTy, 2
k¢(<77-) - { ¢(72), (FeT_, (C:T) e T" (14'4>
It is easy to see that the functions ¢ and k, are equimeasurable. In particular,
|®ll2(ry = ||Ks|| L2(r2). Note also that if ¢ is continuous on T, then &y is continuous

on T?. Let ¢ € L*(T). Denote by K, the integral operator on L?(T) with kernel
function k.

Theorem 14.4. Let p > 0. Suppose that ¢ € L*(T) and p(t) o o(e*™) t € R.
Then
Cip) |27, < 1K5ls, < Colp) Q27 -
where C1(p) and Cy(p) may depend only on p.

Proof. Consider the integral operator K on L?[0,1] with kernel function
k € L?([0,1]?) defined by

| e@max{z,y}), |z—y| <1/2,
ko y) = { p(2min{r,y}), |v—y|> 1/2.
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It is easy to see that K is unitarily equivalent to Ky4. For a, 3 = 0,1 we consider
the integral operator K (*#) with kernel function

(@, y) = k(T Y)X(as2,0+a)/2 () X(8/2,048)/21 (V) -

Using the substitution (z,y) — (2, 2y), we find that 2||K©9|g HQ 00 In
a similar way we can obtain 2| K(tV||g = Q . Let ¥(t dﬁf 1—1t). It is
y ¥
also easy to see that 2| KOV = 2|K10|g, = HQ[O a s, . Hence,

1 Ll
0,1 (0,1] _ o,
(e, + b, ) = 3 Ixel,,
P a=0 =0

— <||Q01]||S +HQ01]

S ) '
It remains to apply Theorem 14.1. B
We denote by f(n) denote the nth Fourier coefficient of a function f in L'(T).
For convenience we put

fn+1/2)%0, nez
)

For a function k£ in L'(T?) we denote by {ff(m,n)}(m,n)ezz the sequence of its

Fourier coefficients.
Let ¢ be a function on T. Put

2 S—
e { O TET

and
0, (teT,,
(¢ {¢(>,CT€Tj
Clearly, k; (¢, 7) =k (7,¢) and ky(C,7) = k3 (¢, 7) + k5 (¢, 7), where ky is defined
by (14.4).
Lemma 14.5. Let ¢ € L'(T). Then for (m,n) € Z?

%qg(m% n =0,

2
ky(m,n) = Lp() m, n are odd,
0, otherwise.
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Proof. Let us first observe that for any ¢ € T and n € Z we have

%7 n= Oa
/ T "dm(t) = ¢ (™, nis odd,
{reT:(7TeT1} 0, otherwise.
It follows that
[rencrrame = [ ol i)

T {re€T:(TeT+}
03¢, n=0,
= Lp(¢*)™™, nis odd,
0, otherwise.
It remains to integrate the last identity in (. W
Corollary 14.6. Let ¢ € L*(T). Then

30(%): m =0,
k,(m,n) = %é&(m;"), m, n are odd,
0, otherwise.

Proof. It suffices to observe that k (¢, 7) = &k (7,¢). B
Corollary 14.7. Let ¢ € L*(T). Then

(

30 (%) n=0,

36(3), m =0,
ks(m,n) =< ¢(0), m=n =0,

#(%—i—%)(ﬁ(m;"), m, n are odd,

0, otherwise.

\

Proof. It suffices to observe that ky(C,7) = k3 (¢, 7) + k3 (7,¢). B

Theorem 14.8. Let p > 0. Suppose that o(t) = > ape®™* and > |ax|* < co.
kezZ keZ

Then QB’Q} € S, if and only if the matriz

1 1
Amtn + 14.5
{ **1(m+% +>} (148)
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Here we identify operators on ¢?(Z) with their matrices with respect to the
standard orthonormal basis of (*(Z).
Proof. Consider the function ¢ on T defined by ¢(z) = > a,2". By Theorem

nez
14.4, QEQ} € S, if and only if K, € §, . It easy to see that the operator K,
belongs to S, if and only if the matrix {l;:(b(m, 1) }mnez belongs to S,. Corollary
14.7 implies that l;:(b(m, n) # 0 only if mn is odd or mn = 0. Hence, it is easy to
check that {ky(m,n)}mncz € S, if and only if {ks(2m +1,2n+ 1) }nez € Sp. It
remains to note that

. i 1 1
k¢(2m+1,2n—|—1) :; <2m+1 +27L+1> Am+n+1

by Corollary 14.7. B

Clearly, the same reasoning shows that QEQ} is bounded on L2?[0, 1] if and only
if the matrix (14.5) is bounded. The following result shows that the boundedness
of (14.5) is equivalent to its membership of S, p > 1.

Theorem 14.9. Let {ay}rez be a two-sided sequence of complex numbers and

let
1 1
= fown (i)}
e m—i_% n—i_% m,ne”

Suppose that p > 1. The following are equivalent:
(i) A is a bounded operator on (*(Z);
(i) Ae S,;
(iii) {ax}rez € C3(Z).

Proof. Suppose that A is bounded. Then the sequence

1
a, 2+
{ —H( n—{_%)}nEZ

belongs to ¢*(Z) which implies (iii). Clearly, (iii) is equivalent to the fact that

¢ € L?[0,1]. By Theorem 3.3, QEB’Q] € S,, and so by Theorem 14.8, A € S,,. The
implication (ii)=-(i) is trivial. W

Related results, that matrices of a roughly similar sort are bounded if and only
if they are in certain S, can be found in [W1].

Remark. Note that the following identities hold:

D DTN (e S P B

1 1 /
m,ne”L m+ 2 n+ 2 CT

~—

i am+n+1mn_%
= Y
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_ Z Am+4n+1 gm n _ _¢(T>

m,nez

where /(T is chosen so that 7v/(7 € T, (the series converge in L?(T?)).
Indeed, it suffices to note that by Corollary 14.7,

1 1 2m—+1_2n+1 __ 1
- Z Am4n+1 (2 1 +2n+1>§ + T * _§<k¢(C>T)_k¢(C7_T))7

m,neZ

by Lemma 14.5,

o § : Amint1 2m+17_2n+1 _

o 1° (k3 (¢,m) = kJ (¢, =),

N | —

ng

and by Corollary 14.6,

L Z Amtnt1 CamALntl

2m+1 (k(;( ,r)—k;(g,—r)).

N | —

Remark. Note that if p > 1/2, then

if and only if

e 1 1
BY {am+n ( e — )} €S, (14.6)
m+ 2 n+ 2 mneZ

Indeed, put 1/1( ) = o e?™tp(t). By Theorem 14.8, it suffices to prove that Q[O 2

implies Q¢ € S,. This follows from Theorem 7.3.

Note however that for p < 1/2 this is not true. Indeed, if ap = 1 and a,, = 0
for n # 0 (in other words, ¢(t) = 1, t € R), then it is easy to see that A is the
zero matrix, and so it belongs to S), for any p > 0. On the other hand, the matrix
B has nonzero entries —(n? — 1/4)~! for m = —n, and so it belongs to S, only
for p > 1/2. The situation is similar in the case where the restriction ¢[[0,1) is
the characteristic function of an interval in which case A € §), for any p > 0 but

B € S, only for p > 1/2, see Theorem 8.11 and Corollary 9.11.
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Suppose now that p > 1/2 and consider the following submatrices of the matrix

B defined by (14.6):

1 1
Blz{am-i-n( 1+ 1)} )
m+§ n+§ m,n>0
>}m20,n<0
1 1
B3:{am+n< 1+ 1)} )
m+5 nts3/) . 0m>0

1 1
m+s5 nt+3/) a0

Clearly, B € S, if and only if all matrices B;, 1 < j <4, belong to S,,.
It is direct that B, € S, if and only if the matrix

and

j+k+1 }
e (14.7)
{ TEGHDE+1) S 4s0
belongs to S,. Matrices of the form
{ajk(1+5)*(1+ k)Y a0 (14.8)

are called weighted Hankel matrices. 1t was proved in [Pel2] that if o > —1/2,

B > —1/2, and 0 < p < 1, the matrix (14.8) belongs to S, if and only if the
function > a,z" belongs to the Besov class B;/If’ rots
n>0

circle T. More recent results on Schatten class properties of weighted Hankel
matrices are in [RW] and [W2]. However, in the case of interest, the weighted
Hankel matrix (14.7) for « = § = —1, no characterization of such matrices of
class S, is known. In the next section we obtain some necessary conditions for the
matrix (14.7) to belong to S;.

It is also easy to see that B, € S, if and only if the weighted Hankel matrix

j+Ek+1
(i —_ 14.9
{a ) (J+1D((k+1) }j,kZO (149)
belongs to S,.

It can also be easily shown that B, € S, if and only if B3 € S, and this is
equivalent to the fact that the weighted Toeplitz matrix

ji—k
{m} (1410)
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belongs to .
Summarizing the above, we can state the following result.

Theorem 14.10. Let 1/2 < p < 1 and let ¢ be a function in L?*[0,1] of the

form o(t) = > ae*™™ t € [0,1]. Then QES’H € S, if and only if the matrices
nez

(14.7), (14.9), and (14.10) belong to S,. B

In the next section we use the results above to obtain necessary conditions for
the nuclearity of operators @,.

Let us consider now the family of functions {Fj}xec on [0,1)? defined for a
function ¢ € L'[0,1] by

F)\(t7 S) déf © (maX{S, t}) 6—271'>\i‘8—t| + © (min{S’ t}) 627T)\'1|S—ﬂ—27r)\i‘

Clearly, F\, € L'([0,1)?). We identify [0,1)> with T? via the map
(s,t) — (€™ e?™!) and we can consider the Fourier coefficients of functions on
0,1)%

Theorem 14.11. Suppose that X & Z. Then

N 1 — e—27ri>\ 1 1
F = . . 14.11
) = 2 (e ) e ) (1411)

Proof. We have

ﬁ/\(m’ 'n,) déf // F)\(Sjt)€727rimsf27rint dsdt = //+//
[ t>s  t<s

0,1)x[0,1)

Let us compute the first integral:

1 t
// _/ /(p(t)€27ri)\(st)e27rimt27rins ds | dt
t>s 0 0

1 1

+/ /gp(s)e27ri>\(t—s)—27ri>\6—27rimt—27rins dt | ds
0 \s
1 t
_ /w(t)e—Zwi)\t—Qwimt /627ris()\—n) ds | at
0 0
1 1
_i_/(p(s)e—Qﬂi/\s—eri)\—Qﬂ'ins /627rit(/\—m) dt | ds
0 s
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1
) ) 2rit(A—n) __ 1
— /QO(t)@2mAt2mmte dt

27i(\ — n)
0
1 2w\ _ p2nis(A-m)
omins—2mir—2mins € — €T
d
+ /90(5)6 e
0
(m + n) h
Plm tn L [ plgerseorm
- — t Ly mimt gt
omi(A—n)  2mi(A—n) p(t)e

0

e 2™ o (m + n)

—27ri)\s—27rins
ds —
27r1)\ m) /gp ° 27i(A —m)
0

Similarly,
1
¢(m +n) o~ 2miXs—2mins
g d
// 2mi(\ — m) 2mi(A\ — m/(p N
t<s 0
1

27N,

/(P 727ri)\t7271'imt dt — € : @(m + n)
27i(A — n)

27r1
0

which implies (14.11). W

Theorem 14.12. Let A € C. The integral operator with kernel function F) is
bounded on L*[0,1] if and only if p € L*([0,1)).

Proof. Clearly, the integral operator with kernel function F) belongs to S if
¢ € L*([0,1)). Suppose now that the integral operator with kernel function F} is
bounded. If X\ € Z, then

F)\<S, t) _ (go(max{s, t})e—47ri)\ max{s,t} + gp(min{s, t})6—47ri>\ min{s,t}) e27ri)\(s—&—t)
_ ((,0(8) —4mids + gO(t) 47ri/\t) 627ri/\(8+t).
Consequently, the boundedness of this operator implies that ¢ € L?[0,1]. If A € Z,

then the boundedness of the integral operator with kernel function F implies that

2

Z F\(m,0)| < +o0

meZ
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and by Theorem 14.11 we obtain

> lp(m)?

MEZ

2N —m|?
A—m

< 400,

whence ¢ € L?*[0,1]. B
Lemma 14.13. Let w,a € C and w # 1. Let p > % Then the function
(5,8) = (w — =) Iy a(s)xalt), s, tER,
is a Schur multiplier of S, if A is an interval of sufficiently small length.

Proof. Clearly, it suffices to consider the case p < 1. Note that w — e®*~ is a
Schur multiplier of S,(L*(A)) by Theorem 7.3, since

w— ea\s—t| —w — eamax{s,t}e—amm{s,t}.

We have to prove that this multiplier is an isomorphism of S,(L*(A)) if A has
sufficiently small length. For w € L>®(A?) we put

def
o llom, a) = sup |wkls, 22
where the supremum is taken over all integral operators with kernel k € L?*(A?)
such that ||k||s, = 1. Here by [|k[|s, we mean the S), norm (quasi-norm if p < 1)
of the integral operator with kernel function k. Obviously, it suffices to prove the
inequality

Hea max{s,t}e—a min{s,t}

o, (a) < Jw =1
provided the length of A is sufficiently small. Theorem 7.7 implies that, for any
o € A,

max{s,t}—xo) —a(min{s,t}—xo)

lim |[e

-1 =0 d 1
Jn ||9:rtp(A) an im ||e

-1 = 0.
|A]—0 ||%(A)

Hence, the desired inequality is obvious. W

Theorem 14.14. Suppose that X\ & Z and p > 1/2. Then QL?Q] €S, if and
only if the integral operator with kernel function Fy belongs to S,.

Proof. Suppose that QL?Q] € S,. Then the integral operators with kernel
functions p(max{s, ¢}) and ¢(min{s, t}) belong to S,(L?[0,1]) (see Theorem 14.1).
Note that e?mAs—H = e2miA2max{st}=s=t) Tt follows now from Theorem 7.3 that the
integral operator with kernel function F) belongs to S,.

Suppose now that the integral operator with kernel function Fy belongs to S,.

We have to prove that QES’Q] € S,. By Theorem 14.12, p € L?[0, 1], and so it suffices

to show that QE?’” € S,. By Lemma 14.13, we can choose a positive number

such that the function (e?™ — e4™Ns=t)=1 helongs to 9,(A) for any interval A of
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N

length less than 6. We can represent the interval [0,1) in the form |J A;, where
j=1

the A, are pairwise disjoint intervals with lengths less than 0. Clearly,

F(s,t) = cp(max{s,t})e”““*t‘ + (p(s) + @(t) — gp(max{s,t})ez’r)‘i“"’*”””’“,
Let s, t € A;. Then

F)\<S, t) — ((,0(8) + gO(t))eQW)‘iIS_”_Z“)‘i
go(max{s,t}) - e—2mAi|s—t| _ p2mAils—t|-2mAi =

(F/\(Sa t) _ (@(3) + (P(t))€2ﬂz\i(max{8,t}*min{3,t}*1) 627r)\i(1+max{s,t}—min{s,t})
e2mAl _ pdmi|s—t| ’

Theorem 7.3 and Lemma 14.13 imply that the integral operator with kernel func-
tion

(s,1) — p(max{t,s})xa,(t)xa,(s), s 7€R,
belongs to S),. To complete the proof, it remains to observe that the kernel function

(s,1) = p(max{s,t}) — Z p(max{s, t})xa, (s)xa, (t)

determines a finite rank operator. B

Theorem 14.14 implies that if p > 1/2, Ay, Ao ¢ Z, and F), € S, then F), € S,.
This can also be easily deduced from the following elementary fact: if x € ¢*(Z)
and y € (P(Z) with p < 2, then {Zyin Yn}mnez € Sp.

15. Necessary conditions for Q, € S,

In this section we obtain various necessary conditions for @, € S.

Theorem 15.1. Let {a,},>0 be a sequence in (*. If the matriz

r={o (74 )}
=V | Tt T
j+3 k+3 k>0

belongs to Sy, then the function > log(2 + n)a,z" belongs to the Hardy class H*.

n>0
We need the following well-known lemma (see e.g., [Pell]).

Lemma 15.2. Suppose that the matriz {a;;} ;x>0 belongs to S1. Then the func-

n>0 \ j=

tion Y ( Oaj n_j> 2" belongs to the Hardy class H'.
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Proof. It is sufficient to prove this when the matrix has rank one in which case

the result is an immediate consequence of the fact that H? - H> C H'. B

Lemma 15.3. Let m € Z, and let
(15.1)

o |
Y

=0

Then there exists d € R such that
B, —log(2 +n) — d| < const
| og( ) ] cons Ton

Proof. We use the following well known fact (see, for example, [Z, Ch. I, (8.9)])

"1
Z ~ —logn — 7| < const-n"*, (15.2)
— j
j_
where v is the Euler constant. We have
n n 2n+1 n
1 1 1 1

P ML R LT O
. 1 . -

= JTa = 2j+1 il Bl

and so by (15.2),
< const 1

1
—2log(2n + 1) + logn — v

Z]—i—%

Jj=0

which implies the result. B
Proof of Theorem 15.1. By Lemma 15.2, we have
G Z 2" e H .

[ 1 1

A — + — )) LM _— 9 —
mz;o (jz%(j+§ <m_j+§) m>0 j:0j+§
Since {a,}n>0 € (2, it is not hard to check that Lemma 15.3 implies that
> log(2 +n)a,z" € H'. A
n>0

Theorem 15.4. Let ¢ € L*[0,b] and p(z) = 3 a,e?™@/b. If Q0% ¢ S, then

nez
the functions > a,log(2+mn)z" and > a_,log(2+4n)z" in the unit disc D belong
n>0 n>0

to the Hardy class H".
Proof. Without loss of generality we may assume that b = 1. By Theorem

14.8, the matrices
= e (71t )
= %+k1\ T T T

J+s k43 k>0
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and

= 0-G+k+) | 1 1
j+3 k+3 k>0

belong to S;. The result follows now from Theorem 15.1. B

Theorem 15.5. Let I be a compact interval in (0,00) and let ¢ be a function
in Li (Ry) such that Q, € Sq. If

loc
a, = /go(x)e%im”'dx, n € Z,
I

then the functions > a,log(2+mn)z" and > a_,log(2+mn)z" belong to the Hardy
n>0 n>0

class H'.

Proof. Since [ is separated away from 0, it follows that 90|[ € L*(I). We can
now apply a translation and reduce the result to Theorem 15.4. B

Corollary 15.6. Under the hypotheses of either Theorem 15.4 or 15.5 the fol-
lowing holds:

(i) |a,| < const(log(2 + |n|))~t, n € Z;

(i) suppose that {ny}r>o is an Hadamard lacunary sequence of positive integers,

i.e.,
inf 5L S
k>0 Nk
then
> Jan, P(log(1+n3))* < oo and Y la_y,|*(log(1 +n}))* < o
k>0 E>0

Proof. (i) follows immediately from Theorem 15.5 and the obvious fact that the
Fourier coefficients of an H' function are bounded. Finally, (ii) is an immediate
consequence of Theorem 15.5 and Paley’s inequality (see [Z, v. 2, Ch. XII, (7.8)]).
[

Note that if I is a compact interval in (0, 00), the restrictions of function in X;
to I fill the space L?(I), and so the sequence of Fourier coefficients {a, },cz can
be an arbitrary sequence in £2. Thus Corollary 15.6 also shows that the condition
¢ € X, is not sufficient for @, € S;.

Now we are going to use Theorem 13.12 to obtain another necessary condition
for Q, € S1. We denote by $' the Stein-Weiss space of functions f in L'(R) such
that F~'(xr, Ff) € L'(R), where F is Fourier transformation.

Theorem 15.7. Let h € L} _(R). Suppose that the integral operator on L*(R)
with kernel function

(2,9) = M y) 2 B + ) (
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belongs to S1. Then the Fourier transform of the function h(z)log(1+ z?) belongs
to the Stein—Weiss space $H*.

Proof. Clearly, the integral operator with kernel function h*X[O,JrOO)z belongs
to Sl. Put

o) % |14t~ O st = 1.
R
We have

t+i r—t—i

g(z) = h(z) of ( L+ )dt = h(z)log(1+ %), x>0,

0, xz < 0.

It follows from Theorem 6.3 that Fg € L'(R). In the same way it can be shown
that the Fourier transform of the function h(z)log(1+xz?)xz_(z) belongs to L!(R).
This implies the result. B

Corollary 15.8. Let h € L2 _(R) and let a,b € C\ R such that a +b ¢ R.

loc

Suppose that the integral operator on L*(R) with kernel function
1 1
h® “h —
a,b(xvy) (l’+’y) x+a+y+b

belongs to Sy. Then the Fourier transform of the function h(x + c)log(1 + x?)
belongs to H* for any c € R.

Proof.  Clearly, the integral operators on L?*(R) with kernels functions

h(z 4+ y + c) <$+2+C + ﬁ) belong to S;. Consequently, by Theorem 13.19, the

integral operator on L?*(R) with kernel function h(z + y + ¢) (x%l + ﬁ) belongs

to Sy. It remains to apply Theorem 15.7. B

Corollary 15.9. Suppose that h, a and b satisfy the hypotheses of Corollary
15.8. Then h(x)log|z| — 0 as |x| — co. B

Now Corollary 15.9 and Theorem 13.12 imply the following theorem
Theorem 15.10. Let p € L2 (R,). Suppose that Q, € S1. Then

loc

10g|x|/gp(t)t””idt —0 as |z —o00. N (15.3)
R4

Note that it follows from Theorem 6.2 that ¢ € L'(R,), and so the integral
in (15.3) is well defined. Tt is easy to see that if ¢ is an arbitrary L? function
supported on a compact subset of (0, 00), then ¢ € X;. However, ¢ does not have
to satisfy (15.3), and so Theorem 15.10 also implies that the condition ¢ € X is

not sufficient for @, € S;.
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We conclude this section with necessary conditions on the L' modulus of conti-

nuity of symbols. If f is a function on T, then its L' modulus of continuity w](cl) is

defined by, in analogy with (10.2),

WP E sup /|f () = f(7)|dm(r), t>0.
CeT, |1-¢|<t

The following result is possibly known to experts. We were not able to find a
reference, and we prove it here.

Theorem 15.11. Let f € L(T) and let
fn)
)= ;Z log(|n| + 2)/Z
Then g € LY(T) and

lim w1 >1og1 0. (15.4)

Consider the function h on T defined by
h(z) <3 (log(|n| +2))™
nez

It is well-known (see, for example, [Z, Ch. V, (1.5)]) that the series converges for
z€ T\ {1}, h>0and h € L'(T). We define the function h on R by

h(xz) = o h(e™) = (log2) ™ + 22 log(n + 2)) " cos n. (15.5)

n>1

Then h is continuously differentiable on R\ 27Z, see [Z, Ch. V, Miscellaneous
theorems and examples, 7].
We use the following notation. Let ¢ and 1 be nonvanishing functions on an
interval (0, ). We write
0 . o)
p~1, if  lim =1
+5 (a)

Lemma 15.12. Let h be the function defined by (15.5). Then

hz) ~ z(log x)?

(15.6)

and

O R — (15.7)

22(logx)?
7



Proof. (15.6) is proved in [Z, Ch. V, (2.17)]. Let us prove (15.7). Using Abel’s

transformation, we obtain
3 X
sin(n + %)

> ((log(n+2))™" = (log(n +3)) ")

in T
SlIl2

h(x) =
n>0
= cot g <Z ((log(n +2))~" — (log(n + 3))7") sin nx)
n>0
+ Z ((log(n+2))~" — (log(n + 3))~") cos nz.
n>0
Consequently,
1
W(x) = T 5 e : (; ((log(n+2))~" — (log(n + 3))~") sin nx)
+ cot g (Z ((log(n+2))~" — (log(n + 3))~") ncos mc)
n>0
— Z ((log(n+2))~" — (log(n + 3))~") nsinna LI SN YANED 9%
n>0
It remains to observe that
.0 T
! x%(log x)?
by [Z, Ch. V, (2.13)], while
2m

L

2 22(logx)3’
and
1

.o =
’ z(log x)?

by [Z, Ch. V, (2.18)]. &
Corollary 15.13. The following inequality holds

T/ Ih(¢r) — h(r)|dm(r) < C (1og m) 1

for any ¢ € T.
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Proof. It suffices to prove that

-1
/|hx+t )|dx<C(log1>

for sufficiently small positive ¢. We have

/|h(m+t)—h(x)|d:c: / Wz + 1) — h(z)| dz

|| <2t

+ / |h(x +t) — h(z)| dz

2t<|z|<7
<2 / |h(x)|dz + / \h(z +t) — h(x)| dz
|| <3t 2<|z| <7

o+ 1.

Using Lemma 15.12, we obtain

and

if ¢ > 0 is sufficiently small.
Proof of Theorem 15.11. Note that ¢ = f * h. Consequently, g € L*(T). It
follows easily from Corollary 15.13 that

g

3\ !
wM(t) < const || f| 1 (log ?) ., O<t<2.
The result follows now from the obvious fact that (15.4) holds for trigonometric

polynomials f.
For a function f € L'(R), we defined the L' modulus of continuity w( Vin (10.2):

—sup/|fx—|—s (x)|dz, t>0.



In fact this definition can be extended to functions f not necessarily in L'(R). Tt
is sufficient to assume that

/|fx—|—s (x)|dr < 00, se€R.

In a similar way we can prove the following analog of Theorem 15.11.

Theorem 15.14. Let f € L'(R). Then there exists a function g € L*(R) such
that

(F)(x) = (Fg(z))log(lz| +2), = €R,

and |
lim w1 (¢ )logg =0

t—0 9

Proof. Indeed, let

h(z) = / (log(2+ [t]) ™" e 2" dt = 2 / log(2 + 1))~ cos(2ntz) dt.
R 0

Then b is an even positive continuously differentiable function on R\ {0}. We can
repeat the above reasoning to prove that

0 1
ble) ~ 2z (log x)?

and
0 1

!/
r)~————.
() 222 (log x)?
Moreover, [h(x)| < const-z~% and [h'(x)| < const-z~? everywhere. These esti-
mates allow us to obtain the inequality

!
/\f) (x+t) — h(x)| dx < const <log >

for t € (0, %) and repeat the reasoning in the proof of Theorem 15.11. Il
def

Let us introduce some more notation. Set C;, = {z € C : Imz > 0} and
_ {2 €C:Imz < 0}. Let f be a function in L{ (R) such that
1@
dt < 400
1+t
R

Consider the Cauchy transform of f defined by
def 1 f(t)dt
= — I :
R
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It is well known that (Cf)|Cy and (Cf)|C_ are holomorphic functions of bounded
characteristic in C, and C_ respectively, and so they have finite angular boundary
values almost everywhere on R. Set

def def

Fo@) ™t (€f)a+iy) and fo(@) ™~ T (€@ +iy).

By the Privalov theorem (see [Pr]| for the case of a rectifiable Jordan curve),
f = f++ f_ almost everywhere on R. If f € L'(R) + L?*(R), then

o0

wﬁ@w:/uvww%“w,zec%

and
0

(CF)z) = — / (FH)e = dt, zeC..
Note that f, does not have to be in L'(R) for an arbitrary function f € L'(R).
In fact, if f € L'(R), then f, € L'(R) if and only if f belongs to the Stein—Weiss
space H'.
Theorem 15.15. Let f € $H'. Suppose that there exists a function g € L'(R)
such that (Ff)(z) = (Fg)(x)log(1+ 2?) for all x € R. Then
1

lim w®(t) log ;=

t—0 g+ 0
and 1
im W i
H%wg_ (t)log ; 0.
Note, however, that the assumptions of Theorem 15.15 do not imply that
g+ € L'(R) or g_ € L'(R).
We need some auxiliary facts. Let M(R) be the space of finite Borel measures
on R.

Lemma 15.16. Let f € L'(R). Suppose that f” € M(R) (in the distributional
sense). Then Ff € L*(R) and
1 e < C Il | e

Proof. The result follows from the obvious inequality:

Kfn@MSmm@umuMJW@%, cER W
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Corollary 15.17. Let f € L'(R). Suppose that supp Ff is bounded above.
Then

W(t) < const ¢, t> 0.
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Proof. It suffices to construct a function g, € L'(R) such that ||g,| 11 &) < C|s|
and fi(x+s)— fi(x) = (f*gs)(x) for all x € R. Suppose that supp f C (—o0, M],
where M > 0. We may take a function g, such that

0, £ <0,
e2mst _ | t € [0, M]
f’ o t — ) Y ) )
(F6:)(0) = | amitanr—) _ 1, te[M,2M]
0, t>2M,
Clearly, fi(x+s)—fi(x) = (f*gs)(z) forall 2 € R. The inequality ||g,| r1 ) < C|s|

follows from Lemma 15.16 (with C' depending on ). W

Lemma 15.18. Set p(t) o 2log(2 + [t|) — log(1 + t*). Then Fp € L'

Proof. It suffices to observe that p is even, tlim p(t) = 0, p has two continuous
—00

derivatives on (0,00), and
oo

[ ot < oo
0
this implies that p(z) = — @T p'(t) dt and

mm:/ﬂwwmwwﬂzlww@u—MhﬁzéwmeKWMu

z|

where K is the Fejér kernel with |||, = 1. B

Lemma 15.19. Let p be an even positive function in C*(R) such that p(z) =
log(1 + 2%) for sufficiently large |x|. Then F(o™') € L',

Proof. See the proof of the previous lemma. B

Proof of Theorem 15.15. We prove the first equality (the proof of the second
one is the same). Let 1 be a function in L!(R) such that supp F% is compact and
supp F¢ = 1 in a neighborhood of 0. Then f = f %t + (f — f * ). The Fourier
transform of the first summand has a compact support while the support of the
Fourier transform of the second summand does not contain 0. Thus it is sufficient
to consider two cases.

Case 1, supp F f is compact. The result follows from Corollary 15.17.

Case 2, 0 ¢ supp F f. Clearly,

(Ff)(x) = (Fgy)(x)log(1 +2%), ze€R.

Let 6 > 0 be such that Ff = 0 on [—0, ], and let ¢ be an even positive function
in C?(R) such that ¢(z) = log(1 + 2?) for |z| > §. By Lemma 15.19, 1/ = F®
for some ® € L'(R). Hence,

Fg+ :-7:er/9§2: F(fy x @),



which implies that g, € L'(R). Moreover, if p is as in Lemma 15.18, and thus
p=JFF with F € L'(R), then

2(Fg)(x)log(2 + [x]) = (Fgi)(@)p(x) + (Ff)(x) = Flgy * F + f1)(x),

s0 (Fgy)(z)log(2 + |z|) is the Fourier transform of an L'-function. It remains to
apply Theorem 15.14. W

Theorem 15.20. Let ¢ be a function in L*[0,b] such that QEB’Z’] € S and let
90(55) — Z an€27rinx/b_ If

neZ
def n def n
6+(O) Y anl" and _(Q) =D anl", (15.8)
n>0 n<0
then
lim w! (¢) log1 =0 and limw( (1) log1 =0 (15.9)
t—0 b+ t t—0 ¢ t ' ’

Proof. The result follows immediately from Theorems 15.4 and 15.11. B

Theorem 15.21. Let I be a compact interval in (0,00) and let ¢ be a function
in Li (Ry) such that Q, € Sy. If

loc

ap = /gp(x)e_%im”'dx, n € Z,
I

and ¢4 and ¢_ are defined by (15.8), then (15.9) holds.

Proof. The result is an immediate consequence of Theorem 15.20. B
Recall that for a function ¢ € L2 _(R,) the function ¢ is defined by (13.1).
Note that if Q, € Sy, then by Theorem 6.2, » € L'(R,) and thus ¢¥ € L*(R).

Theorem 15.22. Let  be a function in L (R,) such that Q, € S1. Then

. 1 1 _ 1 1
%E% w(((p)@)+(t) log o= 0 and %1_1(% W((¢)<7),(t> log ;= 0.
In particular,
) 1
lg% W0 (t) log ;= 0.
Proof. The result follows from Theorem 13.12, Corollary 15.8, and Theorem

15.15. W
This result should be compared to Theorems 10.7 and 13.7. In particular, if
¢ has compact support in R, we see that a Dini condition on the L? modu-

lus of continuity is sufficient for ), € S, while the slightly weaker condition

lin% w&l)(t) log% = 0 on the L' modulus of continuity is necessary.
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Theorem 15.23. Let ¢ be a function in L (R) such that Q, € S1. Then

hm/|g0 ax) x)| dz - log

= 0.
ja = 1]

Proof. By Theorem 15.22, we have

1
lim/ }@(62S+2t)625+2t . g0<€28)628’ dS . log E — 0.

t—0

Substituting e* = x and e?* = a, we obtain

=0.

It remains to observe that by Theorem 6.2, ¢ € L'(R,) and obviously,

lirri|a—1|-log = 0.

o — 1]

16. Dilation of Symbols

Let ¢ be a function in L2 (R) such that p(z + 1) = p(x), x € R. For a > 0 we

define the function ¢, on [0, 1] by ¢, (z) o p(az) for z € [0,1). We are going to
ol

Note that we can extend ¢, to R as a 1-periodic function on R. Using an obvious
estimate, see (14.1)—(14.3),

O (@57, + leallznn) < 1QE2 I, < o (10515, +ligallizon ) - (16.1)

we can reduce the estimation of [|Q; 1]HS to that of [|Q |s,- We can consider
the Fourier coefficients of ¢, defined by

1
buln) [ pureat, mez
0

loc

obtain in this section upper and lower estimates for

Theorem 16.1. Let ¢ be a 1-periodic function in LE (R) and let a > 0. Suppose
that ¢ has bounded variation on [0,1]. Then

1Q% |5, < C(p)log(2 + a)
and
1QYAls, < Cle)(1+a)/P!, 1/2<p<1.
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Proof. The result follows from Theorem 7.7. B

Theorem 16.2. Let ¢ be a nonconstant 1-periodic function in L3 (R). Then
fora>1

1% Is, = C(i0) log(2 + a).
Proof. It follows from (16.1) that it is sufficient to prove that

105715, = Cp) log(2 + a). (16.2)

First we consider the case where a is an integer. There exists an integer k € Z\ {0}
such that ¢(k) # 0. By Corollary 15.6,

[Ba(1)] < Clog(2 + 1)~ |Qp, s -

Substituting | = ak, we obtain (16.2), since ¢,(ak) = ¢(k).

Let now a be an arbitrary number in (1,00). For any o € [1,2] there exists
k, € Z \ {0} such that ¢,(k,) # 0. Consequently, there exists a neighborhood U,
of o such that ¢, (k,) # 0 for any 7 € U,. The first part of the proof allows us to
obtain the required estimate for any a > 1 such that a/N € U, for some positive
integer N. To complete the proof, we can choose a finite subcover U, of [1,2]. B

Theorem 16.3. Let ¢ be a nonconstant 1-periodic function in L2 (R) and let
0<p<1. Then fora>1

|5

Proof. It suffices to consider the case when a is an even integer. The general
case may be reduced to this special case in the same way as in the proof of Theorem
16.2. With any kernel & on the square [0,1)? and any integer n > 1 we associate
the kernel k" defined by

1/p—1
!Sp > C(p)a ™.

FESQES
[f BES I 1+1
k[”](x,y):nQ//k(t,s)dtds, if x¢€ [l,i) and y € [—,L).
n’ n n n
il

Clearly, ||kI"||s, < ||k|s, for any positive p (recall that ||k||s, means the S,-norm
(or quasinorm) of the integral operator with kernel k).

Suppose that
1 1
/ o(t) dt # 2/ to(t) dt.
0 0

Put k,(z,v) o ¢ (nmax{z,y}) for z,y € [0,1). Clearly,

bt — ko || < 27|kl

p
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» 2 2n’ 2n
1
[e)dt, j#L
A 0
2n 1
2 [tp(t)dt, j=1
0
n=1__
Thus, the kernel k;g;] — kgn”} vanishes outside the “diagonal” (J [, 1) x [L, Z£1)
=0

Clearly, for x, y € [O, ”T’l) x [0, "—’1) we have

n 2n n 1 1 2n 1 1

Consequently,

_ ., 1/p
" =n

[

n 2n
(kén] - kén]> Xo,2)x[0,1)

p ‘SP

We have

on ([0,57) > [0,57)) U ([55:5) * [25:)) and

P

1 1
for some nonzero ¢, since [ p(t)dt # 2 [ tp(t) dt.
0

0
Suppose now that ¢ is an arbitrary nonconstant 1-periodic function. It suffices

1 1
to prove that there exists b € R such that [ o(t —b) dt # 2 [ tp(t — b) dt. Suppose
0 0
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that
1 1

/gp(t—b) dt = 2/tg0(t—b) dt, beR. (16.3)

Let h be the 1-periodic function such that h(t) = 2t — 1 for t € [0,1). Clearly,
h(n) # 0 for n # 0. Thus it follows from (16.3) that ¢ is constant. W
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