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Abstract

The space of permutation pseudographs is a probabilistic model of 2-regular
pseudographs on n vertices, where a pseudograph is produced by choosing a per-
mutation σ of {1, 2, . . . , n} uniformly at random and taking the n edges {i, σ(i)}.
We prove several contiguity results involving permutation pseudographs (contigu-
ity is a kind of asymptotic equivalence of sequences of probability spaces). Namely,
we show that a random 4-regular pseudograph is contiguous with the sum of two
permutation pseudographs, the sum of a permutation pseudograph and a ran-
dom Hamilton cycle, and the sum of a permutation pseudograph and a random
2-regular pseudograph. (The sum of two random pseudograph spaces is defined
by choosing a pseudograph from each space independently and taking the union
of the edges of the two pseudographs.) All these results are proved simultaneously
by working in a general setting, where each cycle of the permutation is given a
nonnegative constant multiplicative weight. A further contiguity result is proved
involving the union of a weighted permutation pseudograph and a random regular
graph of arbitrary degree. All corresponding results for simple graphs are obtained
as corollaries.
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1 Introduction

Recently, Kim and Wormald [7] showed that a random d-regular graph, for d even,
asymptotically almost surely (a.a.s.) has an edge-decomposition into Hamilton cycles.
This was done by proving the asymptotic equivalence (or contiguity) of two different
probability models of random 4-regular graphs. The purpose of this paper is to prove
similar contiguity results for various models where Hamilton cycles are replaced by
permutation pseudographs, thereby confirming several conjectures of Janson [6, 5]. First
we introduce some necessary notation.

Denote by Gn,d the uniform probability space of d-regular graphs on n vertices,
where dn is even. As is usual in this area, we approach random d-regular graphs via the
standard pairing model (see Bollobás [1]). Consider dn labelled points, with d points
in each of n buckets, and take a random perfect matching of the points. We call this
uniform probability space Pn,d. Letting the buckets be vertices and each pair represent
an edge (joining the buckets containing the two endpoints of the pair), we obtain a
random regular pseudograph (which may have loops or multiple edges). Denote this
probability space by G∗n,d. Graphs with no loops or multiple edges occur with equal
probabilities, so the restriction of G∗n,d to (simple) graphs gives the uniform probability
space Gn,d. Also let G ′n,d be the space G∗n,d restricted to pseudographs with no loops (but
which may still have multiple edges).

We can also form a random 2-regular pseudograph as follows: choose a permutation
σ ∈ Sym(n) uniformly at random, and take the n edges {i, σ(i)}. The probability space
of 2-regular pseudographs which results is called the permutation pseudograph model.
Conditioning on no loops or multiple edges, we obtain the permutation graph model.

Suppose that (Bn)n≥1 and (B̂n)n≥1 are two sequences of probability spaces such that

Bn and B̂n have the same underlying set Ωn and differ only in the probabilities, for n ≥ 1.
We say that these sequences are contiguous if, for any sequence of events (An)n≥1 where
An ⊆ Ωn for n ≥ 1, we have

lim
n→∞

PBn(An) = 1 if and only if lim
n→∞

PB̂n
(An) = 1.

In other words, an event An is a.a.s. true in Bn if and only if it is a.a.s. true in B̂n. (Here
a.a.s. stands for “asymptotically almost surely”, meaning “with probability which tends
to 1 as n →∞”.) In this case, write

Bn ≈ B̂n.

For more information on contiguity see [6, Sections 9.5,9.6] or [14, Section 4].
We will also need the definition of the sum of two pseudograph models. If G and Ĝ

are two probability spaces of random graphs or pseudographs on the same vertex set,
then their sum G+Ĝ is the space whose elements are defined by the random pseudograph
G ∪ Ĝ, where G ∈ G and Ĝ ∈ Ĝ are generated independently. The graph-restricted sum
of G and Ĝ, denoted G⊕Ĝ, is the space which is the restriction of G+ Ĝ to simple graphs.

We will prove three new contiguity results involving permutation pseudographs. In-
formally, we will show that the sum of two permutation pseudographs, or of a permuta-
tion pseudograph and a random Hamilton cycle, or of a permutation pseudograph and a
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random 2-regular pseudograph, are all contiguous with a random 4-regular pseudograph.
(In the above, the term “random regular pseudograph” refers to the model G∗n,d which
arises from the pairings model.) By conditioning on having no loops or multiple edges,
we obtain the corresponding results for graphs. All the pseudograph results are proved
simultaneously by placing the problems in a common general setting. In fact, we will
also obtain some previously-known contiguity results for free. This general setting is
now described.

Let θ ≥ 0 be some constant. Give each permutation σ ∈ Sym(n) the weight

θκ(σ)−1,

where κ(σ) is the number of cycles in (the disjoint cycle decomposition of) σ, and
choose σ ∈ Sym(n) with probability proportional to its weight. Then form a 2-regular
pseudograph G on n vertices, by taking the n edges {i, σ(i)}, as above. Let κ(G) be
the number of cycles in G, and let ν(G) be the number of cycles in G of length 1 or 2,
for G ∈ G∗n,2. Each G ∈ G∗n,2 arises from exactly 2κ(G)−ν(G) permutations. If σ is chosen

with probability proportional to θκ(σ)−1, then G occurs with probability proportional to

Wθ(G) = θκ(G)−1 2κ(G)−ν(G).

Let Fn(θ) be the model of random 2-regular pseudographs obtained in this way. We
denote this as

Fn(θ) =
(
G∗n,2

)(Wθ)
.

So Fn(θ) is the model of 2-regular pseudographs obtained by choosing G with weight
proportional to Wθ(G). When θ = 1 we obtain the permutation pseudograph model,
as described above. When θ = 1/2 we obtain G∗n,2. To see this, note that the weight

of G in G∗n,2 is 2n−ν(G), which is proportional to W1/2(G). Finally, when θ = 0 the only
pseudographs with nonzero weight are those with κ(G) = 1; namely, Hamilton cycles.
Each Hamilton cycle gets the same weight, so we obtain Hn, the space of uniform
Hamilton cycles on n vertices.

Before stating our main result, we make a few remarks. When θ > 0 it is equivalent,
and customary, to use the weight θκ(σ) instead; our choice covers the case θ = 0 too. It
is well-known (see for example [13, (3.5.2)]) that the sum of the weights θκ(σ)−1 over the
n! permutations in Sym(n) equals (θ + 1)(θ + 2) · · · (θ + n − 1). Hence the probability
of choosing a given permutation σ is θκ(σ)−1/(θ + 1) · · · (θ + n− 1).

The distribution of random permutations defined by these weights appears in several
contexts, for example in the so-called Chinese restaurant process [11, Section 6.3]. The
joint distribution of the number of cycles of various lengths for these random permuta-
tions, or equivalently for Fn(θ), appears in several further contexts, and is known as the
Ewens sampling formula. See [11, 12] for a survey.

Our main result is the following. For the proof we use the small subgraph condition-
ing method introduced in [9, 10] by Robinson and Wormald.

Theorem 1.1. Let θ1, θ2 ≥ 0 be constants. Then

Fn(θ1) + Fn(θ2) ≈ G∗n,4
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except in the case θ1 = θ2 = 0, when

Fn(θ1) + Fn(θ2) ≈ G ′n,4.

The exception for θ1 = θ2 = 0 is natural, since this is the only case where Fn(θ1) +
Fn(θ2) is loopless.

As corollaries we obtain the corresponding results for (simple) graphs, by considering
the graph-restricted sum: i.e. by conditioning on Fn(θ1) + Fn(θ2) being a graph (see
Corollary 1.1).

As particular cases of Theorem 1.1, we obtain several new results involving permu-
tation pseudographs. Let Fn = Fn(1) denote the permutation pseudograph model. By
taking (θ1, θ2) =(0,1), (1

2
, 1) and (1, 1), we show that the three models

Hn + Fn, G∗n,2 + Fn, Fn + Fn

are all contiguous with G∗n,4. We also obtain the known results

Hn +Hn ≈ G ′n,4

(see [7]) by setting (θ1, θ2) = (0, 0),

Hn + G∗n,2 ≈ G∗n,4

(see [4, 10]) by setting (θ1, θ2) = (0, 1
2
), and

G∗n,2 + G∗n,2 ≈ G∗n,4

(see [8]) by setting (θ1, θ2) = (1
2
, 1

2
).

Note that one consequence of these results is

Fn + Fn ≈ Hn + G∗n,2,

showing that the sum of two permutation pseudographs is a.a.s. Hamiltonian. This was
proved directly by Frieze [3].

In the final section we prove the following result, using the same method.

Theorem 1.2. Let θ ≥ 0 be constant, and d ≥ 3. Then

Fn(θ) + G∗n,d−2 ≈ G∗n,d

except when θ = 0 and d = 3, when

Fn(0) + G∗n,1 ≈ G ′n,3.
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In particular, by setting θ = 1, we prove the following contiguity result for permu-
tation pseudographs:

Fn + G∗n,d−2 ≈ G∗n,d

for d ≥ 3. (This result was claimed in [6, Section 9.5].) The theorem also captures
several known results: for θ = 0 we obtain

Hn + G∗n,1 ≈ G ′n,3

and
Hn + G∗n,d−2 ≈ G∗n,d

for d ≥ 4, see [4, 5]. For θ = 1
2

we obtain

G∗n,2 + G∗n,d−2 ≈ G∗n,d

see [8].
Theorems 1.1 and 1.2 confirm all the conjectures of Janson relating to permutation

pseudographs (see [5] and the end of [6, Section 9.5]), and imply the following extension
of [6, Theorem 9.43] for sums of several random pseudographs.

Theorem 1.3. Let m ≥ 1 and let d1, . . . , dm ≥ 1. Let G1, . . . , Gm be independent
random pseudographs such that Gi is a copy of G∗

n,di
when di 6= 2, and a copy of Fn(θi),

for arbitrary constant θi ≥ 0, when di = 2. If d = d1 + · · ·+ dm ≥ 3, then

G1 + · · ·+ Gm ≈ G∗n,d

except when the only summands are G∗n,1 and Fn(0) = Hn, in which case

G1 + · · ·+ Gm ≈ G ′n,d.

As an application, this implies that the a.a.s. result by Friedman [2] on the second
eigenvalue of Fn + · · ·+ Fn applies also to G∗n,2d (and to Gn,2d).

Note however that no two of the models Fn(θ) are contiguous. This follows from [6,
Corollary 9.54] and the standard fact [11] that the number of cycles of length k in Fn(θ)
is asymptotically Poisson with mean θ/k, for k ≥ 1, with the numbers for different
lengths asymptotically independent.

By conditioning on no loops and multiple edges in Theorem 1.3, we obtain all cor-
responding results for simple graphs.

Corollary 1.1. Let m ≥ 1 and let d1, . . . , dm ≥ 1. Let G1, . . . , Gm be independent
random pseudographs such that Gi is a copy of G∗

n,di
when di 6= 2, and a copy of Fn(θi),

for arbitrary constant θi ≥ 0, when di = 2. If d = d1 + · · ·+ dm ≥ 3, then

G1 ⊕ · · · ⊕Gm ≈ Gn,d.

Finally, note that Janson [5, Theorem 12] showed that G∗n,d is contiguous with the
uniform model of d-regular pseudographs on n vertices. Therefore all of our results hold
using uniformly distributed regular pseudographs instead of the models G∗n,d which arise
from the pairing model.
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1.1 Further notation and preliminary results

Our proofs use the small subgraph conditioning method, stated below. Before stating
the theorem we introduce some notation. Let G be a probability space with underlying
set Ω. Given any nonnegative random variable Y on G, denote by G(Y ) the probability
space with underlying set Ω and probabilities given by

PG(Y )(X) =
Y (X)PG(X)

Z

for all X ∈ Ω, where Z =
∑

X∈Ω Y (X) is the normalising constant. The notation [X]k
denotes the falling factorial, [X]k = X(X − 1) · · · (X − k + 1). (Later we use [x] with
no subscript to denote extraction of coefficients.)

The following statement of the small subgraph conditioning method is taken from [14].
A similar theorem is given in [6, Theorem 9.12].

Theorem 1.4 ([14], Theorem 4.1). Let λi > 0 and δi ≥ −1 be real numbers for
i = 1, 2, . . . and suppose that for each n there are random variables Xi = Xi(n), i =
1, 2, . . . and Y = Y (n), all defined on the same probability space G = Gn such that Xi

is nonnegative integer valued, Y is nonnegative and EY > 0 (for n sufficiently large).
Suppose furthermore that

(i) For each k ≥ 1, the variables X1, . . . , Xk are asymptotically independent Poisson
random variables with EXi → λi,

(ii)

E(Y [X1]j1 · · · [Xk]jk
)

EY
→

k∏
i=1

(λi(1 + δi))
ji

for every finite sequence j1, . . . , jk of nonnegative integers,

(iii)
∑

i λi δi
2 < ∞,

(iv) EY 2/(EY )2 ≤ exp(
∑

i λi δi
2) + o(1) as n →∞.

Then
Ḡ(Y ) ≈ Ḡ

where Ḡ is the probability space obtained from G by conditioning on the event ∧δi=−1(Xi = 0).

As with many contiguity results for graphs, it is most convenient to perform the
calculations at the pairings level. In Fn(θ), the pseudograph G is given weight Wθ(G).
If we divide this weight evenly among the 2n−ν(G) pairings corresponding to G, then a
pairing P ∈ Pn,2 corresponding to G receives weight

θκ(G)−1 2κ(G)−ν(G) 2ν(G)−n = 21−n(2θ)κ(G)−1.
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That is, the pairing P ∈ Pn,2 has weight which is proportional to

wθ(P ) = (2θ)κ(P )−1.

(This demonstrates that Fn(1
2
) = G∗n,2, since then P is chosen uniformly.) Let F̂n(θ) =

P(wθ)
n,2 ; that is, the probability space of pairings in Pn,2 where pairing P receives weight

wθ(P ) = (2θ)κ(P )−1. For θ1, θ2 ≥ 0, unless (θ1, θ2) = (0, 0) we show that

F̂n(θ1) + F̂n(θ2) ≈ Pn,4.

Here ‘+’ denotes combining two pairings of disjoint sets of points by merging the corre-
sponding buckets and randomly relabelling the points in each resulting bucket. In the
exceptional case θ1 = θ2 = 0, we obtain

F̂n(0) + F̂n(0) ≈ P ′
n,4,

where P ′
n,4 is Pn,4 conditioned on no loops; i.e., no pair has both ends in the same bucket.

We now define the random variable Y which will be analysed. Fix constants θ1, θ2 ≥
0. Let (F1, F2) be a partition of the pairs of a pairing P ∈ Pn,4 such that exactly two
points in each bucket belong to F1 (and hence exactly two points in each bucket belong
to F2). The pseudograph on n vertices corresponding to Fi is 2-regular, for i = 1, 2. Call
such a partition an F -decomposition of P , and write (F1, F2) ` P . Now Fi gives rise to
a unique pairing F̃i ∈ Pn,2, for i = 1, 2, using the ordering on the points in P to order
the points in each bucket in F̃i. Hence we can define κ(Fi) = κ(F̃i), G(Fi) = G(F̃i), and
so on. In what follows we will drop the tilde sign where there is no chance of confusion.
Now define Y (P ) by

Y (P ) =
∑

(F1,F2)`P

(2θ1)
κ(F1)−1 (2θ2)

κ(F2)−1 (1)

where the sum is over all F -decompositions of P . Note that

P(Y )
n,4 = F̂n(θ1) + F̂n(θ2),

since Y (P ) is proportional to PF̂n(θ1)+F̂n(θ2)(P ). Therefore it suffices to establish that Y
satisfies the requirements of Theorem 1.4. The variables Xi will be the number of cycles
of length i in the pairing.

The following lemma will be useful.

Lemma 1.1. If c ≥ 0 then∑
F∈Pn,2

cκ(F )−1 ∼ 2n n!

2Γ(c/2 + 1)
nc/2−1.
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Proof. It is not difficult to see that∑
F∈Pn,2

cκ(F ) = 2n
∑

σ∈Sym(n)

( c

2

)κ(σ)

.

Assume for the time being that c > 0. Using [13, (3.5.2)] for example, we can write∑
F∈Pn,2

cκ(F ) = 2n c

2

( c

2
+ 1
)
· · ·
( c

2
+ n− 1

)
=

2n Γ(c/2 + n)

Γ(c/2)
.

Therefore ∑
F∈Pn,2

cκ(F )−1 =
2nΓ(c/2 + n)

2Γ(c/2 + 1)
∼ 2n n!

2Γ(c/2 + 1)
nc/2−1,

and this equation holds by continuity even when c = 0.

Taking c = 1 we recover the standard formula

|Pn,2| ∼ (πn)−1/2 2nn!.

Dividing by |Pn,2| we find:

Corollary 1.2. If c ≥ 0 then

E(cκ(F )−1) ∼
√

π

2Γ(c/2 + 1)
n(c−1)/2

where the expectation is over F ∈ Pn,2.

2 Calculating the Expectation

To calculate the expectation of Y we use a slightly different expression. For G ∈ G∗n,4

let Y (G) be defined by

Y (G) =
∑

P∈Pn,4

G(P )=G

Y (P ).

Suppose that G(F̃1) ∪ G(F̃2) = G for F̃1, F̃2 ∈ Pn,2. There are exactly 6n ways to
produce ordered pairs (F1, F2) such that Fi corresponds to F̃i for i = 1, 2, since all we
must do is specify which 2 points correspond to F1, for each bucket of 4 points. Each
such ordered pair is an F -decomposition for a pairing P corresponding to G. Summing
over all such F̃1, F̃2 gives all the ways which a pairing P corresponding to G can arise.
Hence (dropping the tilde signs again), Y (G) can also be written as

Y (G) = 6n
∑

(F1,F2)∈Pn,2×Pn,2

G(F1)∪G(F2)=G

(2θ1)
κ(F1)−1(2θ2)

κ(F2)−1.
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Therefore the expectation of Y (P ) in Pn,4 is given by

EY =
1

|Pn,4|
∑

G∈G∗n,4

Y (G)

=
6n

|Pn,4|

2∏
i=1

 ∑
F∈Pn,2

(2θi)
κ(F )−1


∼ 24n n!2

4|Pn,4|Γ(θ1 + 1)Γ(θ2 + 1)
nθ1+θ2−2

∼
√

2π nθ1+θ2−1

4Γ(θ1 + 1)Γ(θ2 + 1)

(
3

2

)n

, (2)

using Lemma 1.1 and the formula

|Pn,4| = |P2n,2| ∼ (2πn)−1/2 22n(2n)! ∼ 24n n!2√
2πn

.

3 Calculating the Variance

We are interested in the expected value of Y (P )2. Now

E(Y 2) =
1

|Pn,4|
∑

P∈Pn,4

∑
(F1,F2)`P

(2θ1)
κ(F1)−1 (2θ2)

κ(F2)−1
∑

(F3,F4)`P

(2θ1)
κ(F3)−1 (2θ2)

κ(F4)−1.

We follow the same steps used by Kim and Wormald [7] in the analysis of the variance of
H2 (the number of H-decompositions of a pairing in Pn,4, where an H-decomposition is
a partition of a pairing into two subsets, each of which corresponds to a Hamilton cycle).
In fact, it will be convenient later to compare our analysis directly with the analysis of
E(H2

2) given in [7], since the most technical part of both arguments is identical.
Given P ∈ Pn,4, let ((F1, F2), (F3, F4)) be an ordered pair of F -decompositions of P .

A pair in P is of type (i, j) if it belongs to Fi and F2+j, for 1 ≤ i, j ≤ 2. We use the
same notation for the corresponding edge in G(P ). As in [7], a vertex in G(P ) is said
to have

• type A if an edge of each type is incident with it,

• type B if there are two (1, 1)-edges and two (2, 2)-edges incident with it,

• type C if there are two (1, 2)-edges and two (2, 1)-edges incident with it

(note that these are the only possibilities). Consider the edges of a given type (i, j).
Each such edge lies on either a closed cycle, or a path which starts and ends in type A
vertices. These cycles and paths are disjoint. Each type A vertex is the endpoint of a
path of type (i, j). It follows that the number of type A vertices is even. Moreover, a
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closed cycle of (i, j) edges contains only type B vertices if i = j, and it contains only
type C vertices if i 6= j. Each type B vertex must lie on a path or cycle of type (1, 1)
edges, and a path or cycle of type (2, 2) edges. Similarly, each type C vertex must lie
on a path or cycle of type (1, 2) edges, and a path or cycle of type (2, 1) edges.

By ignoring the type B and type C vertices, the edges of any particular type give rise
to a perfect matching on the type A vertices. The union of these four perfect matchings
gives a labelled 4-regular pseudograph on the type A vertices, called a connection scheme.
We proceed by calculating the contribution to the weight made by all possible connection
schemes, and then the contribution made from all possible ways to add back the type B
and type C vertices. Finally we calculate the number of pairings corresponding to each
such configuration.

Suppose that there are a = 2k type A vertices, b type B vertices and c type C
vertices, so that c = n− 2k − b. There are(

n

2k

)(
n− 2k

b

)
=

n!

(2k)! b! c!

ways to assign types to vertices. The contribution from all possible connection schemes
is given by

S(2k) =
∑

(M1,M2,M3,M4)

(2θ1)
κ(M1∪M2)+κ(M2∪M3)−2 (2θ2)

κ(M3∪M4)+κ(M4∪M1)−2,

where M` is a perfect matching on [2k] for 1 ≤ ` ≤ 4. To see why this is the correct
quantity to analyse, let M1, M2, M3, M4 be the matchings induced by the edges of
types (1, 2), (1, 1), (2, 1) and (2, 2), respectively. Then each M` ∪M`+1 forms the edges
of the connection scheme induced by one of the permutation pseudographs Fi, namely
M1 ∪M2 = F1, M2 ∪M3 = F3, M3 ∪M4 = F2 and M4 ∪M1 = F4. Thus for example, a
cycle in M1 ∪M2 gives rise to a (possibly larger) cycle in F1. Therefore we weight each
such cycle by a factor of 2θ1. Analysis of S(2k) is deferred until Section 6, where we
prove in Theorem 6.1 that

S(2k) ∼ π2k2t−2 (2k)!4

16k+1Γ(θ1 + 1)2Γ(θ2 + 1)2 k!4

where t = θ1 + θ2.
(This assumes that k → ∞. However, this behaviour of k can be assumed, as we

can see by applying the following analysis to the case of bounded k.)
We now have to add in the type B and type C vertices. We can think of the four

edge-labels (i, j) as colours. First consider adding the type B vertices onto type (1, 1)
edges. Recall that all the vertices are already labelled. Some of the type B vertices
slide on to the edges between the type A vertices. If there are s vertices on an edge
then there are s! ways to arrange them. Hence the e.g.f. for vertices on a single edge
is 1/(1 − x), so the e.g.f. for vertices on the k edges is 1/(1 − x)k. Note that sliding
type B vertices onto these edges does not affect the number of cycles in the resulting
pairing. Any remaining type B vertices form closed cycles of type (1, 1) edges. Any
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such cycle of (1, 1) edges forms a cycle in both F1 and F3 (indeed any monochromatic
cycle forms a cycle in two of the Fi). Hence each such cycle should contribute weight
factor 4θ1

2 to the corresponding pairing. For reasons which will become apparent later,
we will instead weight an s-cycle of (1, 1) edges by a factor of 4θ1

2 if s ≥ 3, and by a
factor of 2θ1

2 otherwise. Hence the e.g.f. for these weighted cycles is

2θ1
2
∑
s≥1

xs

s
= −2θ1

2 log(1− x). (3)

It follows that the e.g.f. for unions of these weighted cycles is

1

(1− x)2θ1
2 .

Finally, the total contribution from adding b vertices of type B onto the (1, 1) edges is

b! [xb]
1

(1− x)k
· 1

(1− x)2θ1
2 = b!

(
k + b + 2θ1

2 − 1

b

)
∼
(

k + b

k

)2θ1
2−1

(k + b)!

k!
.

(Here [xb] means extraction of coefficients.) Note that the above calculation assumes
that k →∞. This behaviour of k can be assumed, as above.

When adding b vertices of type B onto the (2, 2) edges, the contribution is(
k + b

k

)2θ2
2−1

(k + b)!

k!
.

For type C vertices, a closed cycle of either (1, 2) or (2, 1) edges should be weighted
4θ1θ2. However, we will weight it by 4θ1θ2 if it has length at least 3, and give it weight
2θ1θ2 otherwise. The e.g.f. for unions of these weighted cycles is

1

(1− x)2θ1θ2

and the total contribution from adding c vertices of type C onto the (1, 2) edges, say, is

c! [xc]
1

(1− x)k
· 1

(1− x)2θ1θ2
= c!

(
k + c + 2θ1θ2 − 1

c

)
∼
(

k + c

k

)2θ1θ2−1
(k + c)!

k!
.

The contribution from adding c vertices of type C onto the (2, 1) edges is identical.
Identification of the two sets of type B vertices (those on type (1, 1) edges and those

on type (2, 2) edges) is immediate, since they are already labelled, and gives no extra
factor in the weighting. Similarly, there is no extra factor from identifying the two sets
of type C vertices.

We now have a 4-regular pseudograph with edge labels (i, j). It remains to calculate
the number of pairings corresponding to this pseudograph. There are 4! ways to wire
up a given vertex into a pairing, unless the vertex lies in a monochromatic 1-cycle
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or a monochromatic 2-cycle. The presence of each such cycle decreases the number
of corresponding pairings by a factor of 2. However, we have already penalised each
monochromatic 1-cycle and 2-cycle by a factor of 2 (for example, in (3)). Therefore we
can simply multiply by 4!n at this stage.

Combining all this we obtain (where as above t = θ1 + θ2),

|Pn,4|E(Y 2)

∼
∑

k

∑
b

n!

(2k)!b!c!
S(2k)

(
k + b

k

)2θ1
2+2θ2

2−2 (
k + c

k

)4θ1θ2−2
(k + b)!2 (k + c)!2

k!4
4!n

∼
∑

k

∑
b

π2 4!n (2k)!3 n! k2t−2 (k + b)2θ1
2+2θ2

2−2(k + c)4θ1θ2−2 (k + b)!2 (k + c)!2

16k+1 k2t2−4 Γ(θ1 + 1)2Γ(θ2 + 1)2 b! c! k!8
.

To treat this sum, we reduce it to the special case θ1 = θ2 = 0, already treated in [7].
(See also [4] for the case (θ1, θ2) = (0, 1

2
) and [8] for the case (θ1, θ2) = (1

2
, 1

2
).) We thus

write the last equation as

|Pn,4|E(Y 2) ∼ 1

Γ(θ1 + 1)2Γ(θ2 + 1)2

∑
k

∑
b

k2t−2t2(k + b)2θ1
2+2θ2

2

(k + c)4θ1θ2 s(k, b), (4)

where s(k, b) does not depend on θ1 or θ2.
In the special case θ1 = θ2 = 0, when Y = H2, this yields

|Pn,4|E(H2
2) ∼

∑
k

∑
b

s(k, b).

This sum was analysed in [7], where it was shown that

s(k, b) ∼ 4!n π
√

2n

16(k + b)(k + c)
√

kbc

(n

e

)2n

f(β, κ)

where here κ = k/n (and hence has nothing to do with our κ), β = b/n and

f(β, κ) =
16κ (β + κ)2(β+κ) (1− κ− β)2(1−κ−β)

(2κ)2κ ββ (1− 2κ− β)1−2κ−β
.

Moreover, the analysis given in [7] shows that the maximum of f occurs at β = 1/6,
κ = 1/3, and thus all terms s(k, b) with (k/n, b/n) outside a small neighbourhood around
(1/3, 1/6) give an exponentially small contribution to the double sum. It follows that
the sum in (4) is also dominated by terms with k ∼ n/3, b ∼ n/6, c ∼ n/6. Thus

|Pn,4|E(Y 2) ∼ 1

Γ(θ1 + 1)2Γ(θ2 + 1)2

∑
k

∑
b

(n

3

)2t−2t2 (n

2

)2θ1
2+2θ2

2 (n

2

)4θ1θ2

s(k, b)

=
2−2t232t2−2t

Γ(θ1 + 1)2Γ(θ2 + 1)2
n2t
∑

k

∑
b

s(k, b)

∼ 2−2t232t2−2t

Γ(θ1 + 1)2Γ(θ2 + 1)2
n2t |Pn,4|E(H2

2).
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Moreover, by comparing with the case θ1 = θ2 = 0 in (2), we find

EY ∼ nt

Γ(θ1 + 1)Γ(θ2 + 1)
EH2.

Now recall from [7] that
E(H2

2)

(EH2)2
∼
√

24.

It follows that

E(Y 2)

(EY )2
∼ 2−2t2 32t2−2t E(H2

2)

(EH2)2
= 23/2−2t2 32t2−2t+1/2. (5)

4 Effect of short cycles

Again, the argument follows the steps used by Kim and Wormald in [7]. For fixed k ≥ 1,
we must calculate

E(Y Ck)

EY

where Ck is the number of k-cycles in Pn,4. (Here a k-cycle is a set of k pairs in P which
correspond to a k-cycle in G(P ).) To do this we calculate

|Pn,4|E(Y Ck) =
∑

C

∑
P∈Pn,4

C⊆P

Y (P ),

where the first sum is over all possible labelled k-cycles C. Let C be a labelled, directed
cycle on k vertices. There are

[n]k
k

∼ nk

k

choices for C. Edges of the cycle will correspond to pairs in a pairing P ∈ Pn,4, with
an F -decomposition (F1, F2). Nominate which 2 points in each bucket will be joined to
pairs in F1. There are 6n ways to nominate these points. Now we only need specify F1

and F2 as pairings on n buckets, each with 2 points. There are three possibilities:

(i) C ∩ F1 = C,

(ii) C ∩ F1 = ∅,

(iii) C ∩ F1 is the disjoint union of i paths, for some i ≥ 1.

First consider case (i). Here C forms a closed cycle in F1. We must divide by 2 if C has
length 3 or more, to undirect the cycle. Then wire C ∩ F1 into the specified points of
the subpairing F1. There are 2k ways to do this if k ≥ 3, and 2k−1 ways if k = 1, 2. So

13



in either case, the net effect is that of multiplying by 2k−1. Finally, we multiply by 2θ1

to assign the appropriate weight to C. The contribution from extending C ∩F1 to F1 is∑
F∈Pn−k,2

(2θ1)
κ(F )−1 ∼ 2n−k (n− k)! (n− k)θ1−1

2Γ(θ1 + 1)
∼ 2n−k n! nθ1−1

2 nk Γ(θ1 + 1)
,

while the contribution from F2 is just∑
F∈Pn,2

(2θ2)
κ(F )−1 ∼ 2n n! nθ2−1

2Γ(θ2 + 1)
,

using Lemma 1.1. So using (2), the total contribution from case (i) is asymptotically
equal to

θ1 24n n!2 nθ1+θ2−2

4k Γ(θ1 + 1)Γ(θ2 + 1)
∼ |Pn,4|EY

θ1

k
.

From case (ii) we similarly get a contribution of

|Pn,4|EY
θ2

k
.

Now consider case (iii). Here C ∩ F2 is also the disjoint union of i paths. Colour
pairs of F1 red and pairs of F2 blue. Each path (whether red or blue) consists of at least
1 edge. The number of ways to grow these 2i paths, starting from the least vertex in C
and forming the paths in sequence red, blue, ... in the direction of the cycle, is

[xk]

(
x

1− x

)2i

(see [7]). Shift the starting vertex around the cycle by 1 place, k times. Having done
this for each directed cycle, we have counted each undirected configuration exactly 2i
times. To account for this we multiply by k/(2i), and note that now we are working
with undirected cycles.

Now we must wire Fi∩C into the specified points of the subpairing Fi, and complete
Fi, for i = 1, 2. Suppose that there are j edges in C∩F1. Then there are i+j nonisolated
vertices in C ∩ F1, and hence there are 2i+j ways to wire up F1 ∩ C into the specified
points of F1. Shrink each of the i red paths in the subpairing down to a single bucket.
This gives n − j buckets in total, each with 2 specified points. If we calculate the
contribution from all possible pairings on these points, and then expand the red paths
in C ∩ F1 back to their original size, we will have calculated the contribution from all
ways of completing F1. This is equal to∑

F∈Pn−j,2

(2θ1)
κ(F )−1 ∼ 2n−j (n− j)! (n− j)θ1−1

2 Γ(θ1 + 1)
∼ 2n−j n! nθ1−1

2 nj Γ(θ1 + 1)
(6)
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using Lemma 1.1. Similarly, there are 2i+(k−j) ways to wire the blue paths into the
specified points of the subpairing F2, and the contribution from all ways of extending
C ∩ F2 to F2 is asymptotically

2n−(k−j) (n− (k − j))! (n− (k − j))θ2−1

2Γ(θ2 + 1)
∼ 2n−(k−j) n! nθ2−1

2 nk−j Γ(θ2 + 1)
.

Thus each decomposition of C into 2i paths with j red edges contributes asymptotically

2i+j · 2n−j n! nθ1−1

2 nj Γ(θ1 + 1)
· 2i+k−j · 2n−(k−j) n! nθ2−1

2 nk−j Γ(θ2 + 1)
=

22n+2i n!2 nθ1+θ2−2

4nk Γ(θ1 + 1)Γ(θ2 + 1)
.

Since this does not depend on j, and using (2) again, we find that the total contribution
from case (iii) is asymptotically equal to

6n · nk

k

∑
i≥1

[xk]

(
x

(1− x)

)2i

· k

2i

22n+2in!2nθ1+θ2−2

4nkΓ(θ1 + 1)Γ(θ2 + 1)

=
24n n!2 nθ1+θ2−2

4Γ(θ1 + 1) Γ(θ2 + 1)
[xk]

∑
i≥1

(
4x2

(1− x)2

)i
1

2i

∼ EY |Pn,4|[xk]
∑
i≥1

(
4x2

(1− x)2

)i
1

2i

= EY |Pn,4| ·
−2 + (−1)k + 3k

2k

as in [7].
Putting these calculations together, we obtain

E(Y Ck)

EY
∼ t

k
+
−2 + (−1)k + 3k

2k
=

2t− 2 + (−1)k + 3k

2k
= ρk

for k ≥ 1, where t = θ1 + θ2. A direct generalisation of this argument, applied to an
ordered set of i1 cycles of length 1, i2 cycles of length 2, and so on, shows that

E (Y [C1]i1 · · · [Ck]ik)

EY
∼

k∏
j=1

ρj
ij .

5 Synthesis

We now combine the results of Sections 2 – 4. One further piece of information is
required, namely the short cycle distribution in Pn,4. As is well known, in Pn,4 the
variables Ck are asymptotically independent Poisson random variables with expectations

EPn,4(Ck) ∼ λk =
3k

2k
.
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Recall ρk from the previous section, and define δk by

δk =
ρk

λk

− 1 =
2t− 2 + (−1)k

3k
.

Then

exp

(
∞∑

k=1

λk δk
2

)
= exp

(
1

2

∞∑
k=1

(4t2 − 8t + 5) + (4t− 4)(−1)k

k 3k

)

= exp

(
1

2

(
−(4t2 − 8t + 5) log

(
2

3

)
− (4t− 4) log

(
4

3

)))
= 32t2−2t+1/2 23/2−2t2 .

But from (5) we also know that

E(Y 2)

(EY )2
∼ 32t2−2t+1/2 23/2−2t2 = exp

(
∞∑

k=1

λk δk
2

)
.

Note further that for k ≥ 2, ρk > 0 and thus δk > −1 for all t ≥ 0. Also δ1 = 2t/3 − 1
which equals −1 if and only if t = 0; that is, θ1 = θ2 = 0. Therefore, by Theorem 1.4,
when t > 0 we have

F̂n(θ1) + F̂n(θ2) ≈ Pn,4,

and when t = 0 we have
F̂n(θ1) + F̂n(θ2) ≈ P ′

n,4,

as claimed.
Notice that EY 2/(EY )2 depends asymptotically only on t = θ1 + θ2, and not on θ1,

θ2 themselves. Similarly, δk depends only on k and t, for k ≥ 1.

6 Random matchings

Recall from Section 3 that we wish to analyse

S(2k) =
∑

(M1,M2,M3,M4)

(2θ1)
κ(M1∪M2)+κ(M2∪M3)−2 (2θ2)

κ(M3∪M4)+κ(M4∪M1)−2,

where Mi is a perfect matching on [2k] for 1 ≤ i ≤ 4. We will prove the following result,
which is used in Section 3. (Throughout this section we use n in place of k.)

Theorem 6.1. With notation as above,

S(2n) ∼ π2 n2θ1+2θ2−2 (2n)!4

16n+1 Γ(θ1 + 1)2Γ(θ2 + 1)2 n!4
.
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Now switch language slightly and let B, R, S, S1 and S2 be perfect matchings of [2n].
(The letters stand for Blue, Red and Silver.) Write BR for B∪R, and so on. Also write
ER(·) to denote expectation over all uniformly chosen perfect matchings R of [2n]. Let
m(2n) denote the number of perfect matchings on [2n], so that

m(2n) =
(2n)!

2n n!
.

Now, letting B = M1, R = M3, S1 = M2 and S2 = M4, we obtain

S(2n) =
∑
B,R

∑
S1

∑
S2

(2θ1)
κ(BS1)+κ(RS1)−2 (2θ2)

κ(BS2)+κ(RS2)−2

= m(2n)2
∑
B,R

XBR(θ1) XBR(θ2),

where
XBR(θ) = ES((2θ)κ(BS)+κ(RS)−2)

for any constant θ ≥ 0. Let µ(θ) = ER(XBR(θ)). (By symmetry, this does not depend
on B.)

Lemma 6.1. For every θ ≥ 0,

µ(θ) ∼ π n2θ−1

4 Γ(θ + 1)2
.

Proof. We have

µ(θ) = ER

(
ES((2θ)κ(BS)+κ(RS)−2)

)
= ES((2θ)κ(BS)−1)ER((2θ)κ(RS)−1)

= ES((2θ)κ(BS)−1)2

∼ π n2θ−1

4 Γ(θ + 1)2
.

This follows by Corollary 1.2 with c = 2θ, since adding a random silver matching to a
fixed blue matching is the same as choosing a random element of Pn,2, where the blue
matching defines the pairs of the pairing.

We will show below that XBR(θ1)XBR(θ2) = µ(θ1)µ(θ2)(1 + o(1)) for almost all
perfect matchings B, R. For other pairs of perfect matchings we will use this result.

Lemma 6.2. Let θ ≥ 0. For all perfect matchings B, R on [2n], we have

XBR(θ) = O
(
n2θ2−2θ+1/2 µ(θ)

)
.
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Proof. Using the Cauchy-Schwarz inequality, we have

XBR(θ) ≤
√

XBB(θ)XRR(θ) = ES((4θ2)κ(BS)−1).

Using Lemma 6.1 and applying Corollary 1.2 with c = 4θ2, we find this is asymptotically
equal to √

π n(4θ2−1)/2

2Γ(2θ2 + 1)
= O

(
n2θ2−2θ+1/2µ(θ)

)
,

as claimed.

Given B and R, we can use a stochastic process to generate a perfect matching S on
[2n], uniformly at random. We do this in such a way that we can detect whether a cycle
has been formed in BS or RS. Let BR(0) = BR and start with S empty. At time t, we
choose x(t) uniformly at random from the shortest cycle of BR(t − 1), and select y(t)
uniformly at random from all other vertices. The edge {x(t), y(t)} is added to the silver
matching S. If {x(t), y(t)} is equal to a blue (respectively red) edge of BR(t− 1) then
we have created a new cycle in the evolving graph BS (respectively RS). It is possible
to create a cycle in both, if and only if x(t) lies in a 2-cycle of BR(t− 1) and we choose
y(t) to be its unique neighbour.

We form the graph BR(t) from BR(t− 1) by deleting x(t) and y(t); we further join
the widowed B-neighbour of x(t) to the B-neighbour of y(t), unless x(t) and y(t) were
neighbours of each other, and similarly for R-neighbours. This is called contracting the
edge {x(t), y(t)}. This process is used by Kim and Wormald in [7].

The proof of Theorem 6.1 uses a coupling of two instances of this process. A cou-
pling of two stochastic processes consists of a simultaneous realization of (copies of) the
processes.

Given three matchings B, R1 and R2 on [2n], we define a coupling {BR1(t), BR2(t)}n
t=1

for the process described above. The coupling produces silver matchings (S1, S2) with
uniform marginal probabilities. Let BRi(0) = BRi, for i = 1, 2 and let S1 = S2 = ∅.
The transitions of the coupling are as follows: for t ≥ 1 do

(i) choose xi(t) arbitrarily from the shortest cycle in BRi(t− 1), for i = 1, 2,

(ii) choose yi(t) uniformly at random from all remaining vertices of BRi(t − 1), for
i = 1, 2, subject to one condition: if BR1(t−1) and BR2(t−1) are non-isomorphic,
then y1(t) and y2(t) are chosen independently, but if BR1(t − 1) and BR2(t − 1)
are isomorphic, then

• let ϕ : BR1(t − 1) → BR2(t − 1) be a colour preserving isomorphism such
that x2(t) = ϕ(x1(t)),

• choose y1(t) uniformly at random and let y2(t) = ϕ(y1(t)).

(iii) add {xi(t), yi(t)} to Si and form BRi(t) by deleting or contracting the edge
{xi(t), yi(t)}, for i = 1, 2, as described above.
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So the marginal processes BRi(t) evolve independently until they become isomorphic,
at which point they couple and evolve together. In particular, if BR1(t) and BR2(t)
both are hamiltonian, they stay coupled for the rest of the process.

For convenience we define BRi(t) = BRi(n) for t > n.

Lemma 6.3. For every A > 0 and b > 0 there exists K = K(A, b) > 0 such that if
κ(BRi) ≤ A log n for i = 1, 2, then

P
(
κ(BR1(t)) = κ(BR2(t)) = 1 for some t ≤ K log n

)
= 1−O(n−b).

In particular, with probability 1−O(n−b), the processes couple before K log n.

Proof. For ease of notation, write

κi(t) = κ(BRi(t))

for i = 1, 2 and t ≥ 0. Let
κ(t) = max {κ1(t), κ2(t)} .

Since xi(t) is chosen from the smallest cycle of BRi(t− 1), and κi decreases by 1 when
xi(t) and yi(t) are in different components, it follows that

P(κi(t + 1) = κi(t)− 1) ≥ κi(t)− 1

κi(t)

for i = 1, 2. Thus, for any given BR1(t) and BR2(t) with κ(t) ≥ 4,

P(κ(t + 1) < κ(t)) ≥ P(κ1(t + 1) = κ1(t)− 1) ·P(κ2(t + 1) = κ2(t)− 1)

≥ κ1(t)− 1

κ1(t)
· κ2(t)− 1

κ2(t)

≥ 9

16
.

Moreover, κ(t) never changes by more than 1. Thus κ(t) behaves like a random walk
with negative drift as long as κ(t) ≥ 4.

Let W (t) be defined by W (0) = κ(0) and W (t) = W (t− 1) + Q(t), for t ≥ 1, where
the Q(t) are independent variables each with the distribution

Q(t) =

{
−1 with probability 9/16,

1 with probability 7/16.

Moreover, let N(t) be the number of times j = 0, . . . , t such that κ(j) ≤ 3, with
N(−1) = 0. Then the process {κ(t)− 2N(t− 1)} is stochastically dominated by the
process {W (t)}. (When κ(t) ≤ 3 this follows since both κ(t) and W (t) change by at
most 1 per step.)

Note that EQ(t) < 0, and that we thus can find α > 0 sufficiently small such that
EeαQ(t) < 1. We write EeαQ(t) = e−β, where β > 0. Then

Ee−2αN(t) ≤ Eeα(κ(t)−2N(t)) ≤ EeαW (t) = eακ(0)
(
EeαQ(1)

)t

= eακ(0)−tβ. (7)
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Let D = 2b/ log(16/15) and K = (αA + 2αD + b)/β. Note that D and K are both
positive. Then, by (7) and our assumption κ(0) ≤ A log n, for t ≥ K log n, Markov’s
inequality gives

P(N(t) ≤ D log n) ≤ e2αD log nEe−2αN(t) ≤ e2αD log n+ακ(0)−tβ ≤ n2αD+αA−βK = n−b. (8)

Let 0 ≤ T1 < T2 < . . . be an enumeration of the (random) times {t : κ(t) ≤ 3}.
Each time we have κ(t) ≤ 3, the probability that κ(t + 2) = 1 is at least 1/16. This
follows by direct calculations showing that P(κi(t + 1) = κi(t)− 1) ≥ 1

2
. Thus

P(κ(t + 1) = κ(t)− 1) ≥ 1

4

for any BR1(t), BR2(t). Consequently, the events

Ek = {κ(t) = 1 for some t with T2k−1 ≤ t ≤ T2k+1}, k = 1, 2, . . .

all have probabilities at least 1/4, also conditioned on the history up to T2k−1, and
consequently, for any k ≥ 0

P
(
κ(t) > 1 for all t ≤ T2k+1

)
= P

( k⋂
j=1

Ej

)
≤
(15

16

)k

.

Choosing k = 1
2
dD log ne − 1, we obtain by our choice of D

P
(
κ(t) > 1 for all t ≤ TdD log ne

)
≤
(15

16

) 1
2 dD log ne − 1 < 2n−b. (9)

Moreover, either TdD log ne ≤ K log n or N(dK log ne) ≤ D log n, so combining (8) and
(9) we obtain

P
(
κ(t) > 1 for all t ≤ K log n

)
≤ P

(
κ(t) > 1 for all t ≤ TdD log ne

)
+P
(
N(dK log ne) ≤ D log n

)
< 3n−b.

as claimed.

Lemma 6.4. Let θ ≥ 0 and A ≥ max {2(θ2 + 1), 5} be given. If B, R are perfect
matchings on [2n] such that κ(BR) ≤ A log n, then

XBR(θ) = µ(θ) + O(n−1/4µ(θ)).

(The choice of 1/4 is arbitrary, and could be replaced by 1 − ε for any positive
constant ε. We make no attempt to optimize the argument.)

Proof. This is the case α = −1/4 of the following property, which we prove for all
α ≥ −3/4 by an induction, successively improving α.
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H(α) : For each A ≥ max {2(θ2 + 1), 5}, there exists C = C(A, α, θ) such that for every
n ≥ 1 and perfect matchings B and R on [2n] with κ(BR) ≤ A log n,

|XBR(θ)− µ(θ)| ≤ Cnαµ(θ).

Note first that Lemma 6.2 shows that H(α) holds if α ≥ 2θ2 − 2θ + 1/2. (This value is
always nonnegative.) Now suppose that H(α) holds for some α ≥ 0; we will show that
then H(α − 3/4) holds too. From this it follows that H(α′) holds for all α′ ≥ α − 3/4.
This will prove the result.

Fix A ≥ max {2(θ2 + 1), 5} and consider three matchings B, R1, R2 such that
κ(BRi) ≤ A log n for i = 1, 2. Let T = bK log nc, where K is as in Lemma 6.3 with
b = 8(θ4 + 1). We may assume that n is so large that T ≤ n/2 and log(n−T ) ≥ 1

2
log n,

since H(α−3/4) trivially is satisfied for smaller n if we choose C large enough. Consider
the coupling {BR1(t), BR2(t)}n

t=1 described above. Define two events for the coupling:

H1 = {κ(BR1(t)) = κ(BR2(t)) = 1 for some t ≤ T} ,

H2 = {no cycle is created in steps 1, . . . , T} .

By Lemma 6.3, P(H1) = 1−O(n−b). Applying the Cauchy-Schwarz inequality gives

ES((2θ)κ(BS)+κ(RiS)−2 | H1) ·P(H1) ≤
√

ES((4θ2)κ(BS)+κ(RiS)−2)P(H1). (10)

Note that
ES((4θ2)κ(BS)+κ(RiS)−2) = XBRi

(ϕ)

where ϕ = 2θ2. Hence using Lemmas 6.1 and 6.2, we have

ES((4θ2)κ(BS)+κ(RiS)−2) = O
(
n2ϕ2−2ϕ+1/2µ(ϕ)

)
= O

(
n2ϕ2

)
= O

(
n8θ4

)
.

Substituting this into (10) and applying Lemma 6.1 again, we find that

ES((2θ)κ(BS)+κ(RiS)−2 | H1) ·P(H1) = O
(
n4θ4−b/2

)
= O

(
n4θ4−2θ+1−b/2µ(θ)

)
= O

(
n−3/4µ(θ)

)
(11)

for i = 1, 2. Here the final equality follows since 4θ4 − 2θ + 7/4 < b/2, by choice of b.
We turn to H2. Recall that a cycle is created at step t if and only if the silver edge

{xi(t), yi(t)} is identical to an edge of BRi(t − 1), for some i ∈ {1, 2}; we call this a
“bad event”. Write

H2 =
T⋃

t=1

Ft

where
Ft = { the first bad event occurs in step t} .
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If Ft happens, we use the Markov property of the process. Namely, the final n− t steps
of the process are exactly equivalent to starting the process with initial matchings B(t)
and Ri(t), each on 2(n− t) points. Since

κ(BRi(t)) ≤ κ(BRi) + t ≤ A log n + K log n ≤ 2(A + K) log(n− t)

and 2(A + K) > A, we may apply the induction hypothesis H(α) and Lemma 6.1 to
BRi(t), with n replaced by n− t. This gives

XBRi(t)(θ) ≤ O
(
(n− t)2θ−1

)
(1 + C(n− t)α) = O(nα+2θ−1).

Thus, since we have created at most two cycles in step t, and none before,

E((2θ)κ(BS1)+κ(R1S1)−2 | Ft) ≤ max
{

1, (2θ)2
}

E(XBR1(t)(θ) | Ft)

= O(nα+2θ−1)

= O(nαµ(θ)).

Moreover,

P(Ft) ≤
4

2n− 2t + 1
≤ 4

n

and so

T∑
t=1

E((2θ)κ(BS1)+κ(R1S1)−2 | Ft)P(Ft) = O(Tnα−1µ(θ)) = O(nα−3/4µ(θ)) (12)

and similarly for B, R2 and S2.
Conditional on H1 ∩ H2, we know that no cycles were created before step T , and

that coupling has occurred by step T . Thus

E((2θ)κ(BS1)+κ(R1S1)−2 | H1 ∩H2) = E((2θ)κ(BS2)+κ(R2S2)−2 | H1 ∩H2) (13)

(where the expectation is over all choices made in the coupled process).
Combining (11), (12) we find that

XBRi
(θ) = E((2θ)κ(BSi)+κ(RiSi)−2 | H1 ∩H2) ·P(H1 ∩H2) + O(nα−3/4 µ(θ))

for i = 1, 2. Moreover, the first term is the same for i = 1, 2, by (13). Therefore

XBR1(θ) = XBR2(θ) + O(nα−3/4µ(θ)), (14)

whenever κ(BRi) ≤ A log n, for i = 1, 2.
Now fix perfect matchings B, R on [2n] such that κ(BR) ≤ A log n. It is well-known

that P(κ(BR∗) > A log n) = O(n−A), where R∗ is a perfect matching on 2n chosen
uniformly at random. (This follows from a lemma of Bernstein’s on tail estimates for
sums of random variables: see [6, Remark 2.9]. For a proof when A ≥ 5 see [7, Lemma
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1]: some positive constant lower bound on A is certainly required.) Thus, by Lemma 6.2
and (14),

XBR(θ)− µ(θ) = ER∗
(
XBR(θ)−XBR∗(θ)

)
= P

(
κ(BR∗) > A log n

)
·O(n2θ2−2θ+1/2µ(θ))

+P
(
κ(BR∗) ≤ A log n

)
·O(nα−3/4µ(θ))

= O
(
n2θ2−2θ+1/2−Aµ(θ) + nα−3/4µ(θ)

)
= O(nα−3/4µ(θ)),

by choice of A. This shows that H(α− 3/4) holds, completing the proof.

Before continuing, we make a note about the previous proof. We are particularly
interested in the values θ ∈

{
0, 1

2
, 1
}

, corresponding to random Hamilton cycles, random
pseudographs arising from the pairings model, and permutation pseudographs, respec-
tively. For these values of θ, we have 0 ≤ 2θ2 − 2θ + 1/2 ≤ 1/2. So applying the
inductive step of the proof of Lemma 6.4 gives the conclusion immediately, which avoids
the inductive framework.

The next result looks at the expected value of XBR(θ1)XBR(θ2) over uniform choice
of the perfect matching R, with B fixed.

Lemma 6.5. Let B be a fixed perfect matching on [2n]. With notation as above,

ER(XBR(θ1)XBR(θ2)) = µ(θ1)µ(θ2) (1 + o(1)).

Proof. Fix A = max
{

2(θ1
2 + θ2

2 + 1), 5
}

. Letting Ei be the event κ(BRi) > A log(n),
we know that P(Ei) = O(n−A). Consequently, using Lemma 6.2 for E1 ∪ E2 and Lemma
6.4 for its complement E1 ∩ E2,

ER(XBR(θ1)XBR(θ2)) = ER(XBR(θ1)XBR(θ2) | E1 ∪ E2)P(E1 ∪ E2)

+ER(XBR(θ1)XBR(θ2) | E1 ∩ E2)P(E1 ∩ E2)

= O(n2θ1
2−2θ1+1/2µ(θ1)n

2θ2
2−2θ2+1/2µ(θ2)n

−A)

+(1−O(n−A))
(
1 + O(n−1/4)

)
µ(θ1)µ(θ2)

= µ(θ1)µ(θ2) (1 + o(1))

as required.

Proof of Theorem 6.1. The desired result

S(2n) ∼ π2 n2θ1+2θ2−2 (2n)!4

16n+1 Γ(θ1 + 1)2Γ(θ2 + 1)2 n!4

follows immediately from the equation

S(2n) = m(2n)3
∑
B

ER(XBR(θ1) XBR(θ2)),

using Lemmas 6.1 and 6.5.
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7 Further results

In this section we prove Theorem 1.2, again using the small subgraph conditioning
method. The argument follows that of Sections 2 – 5 but does not require any coupling.
At the end of the section we prove Theorem 1.3.

Proof of Theorem 1.2. Let θ ≥ 0 and d ≥ 3 be fixed constants. Given P ∈ Pn,d, we are
interested in partitions (F, Q) of the pairs of P such that G(F ) is a 2-regular pseudograph
and G(Q) is a (d− 2)-regular pseudograph. Let

Y (P ) =
∑

(F,Q)`P

(2θ)κ(F )−1.

We will compare the expectation and variance of Y with the expectation and variance
of ZH , the number of H-cycles in an element of Pn,d, which equals Y when θ = 0. The
random variable ZH was investigated by Frieze et al. in [4]. (An H-cycle is a set of n
pairs which correspond to a Hamilton cycle.)

It is straightforward to show, using Lemma 1.1, that

|Pn,d|EY =

(
d

2

)n ∑
F∈Pn,2

(2θ)κ(F )−1 |Pn,d−2|

∼ dn(d− 1)n n!
nθ−1

2Γ(θ + 1)
|Pn,d−2|.

Putting θ = 0 here gives an equation for |Pn,d|EZH , from which we conclude that

EY ∼ nθ

Γ(θ + 1)
EZH . (15)

The variance calculation is simpler than that of Section 3, since no coupling argument
is required. We calculate

|Pn,d|E(Y 2) =
∑

P∈Pn,d

∑
(F1,Q1)`P

∑
(F2,Q2)`P

(2θ)κ(F1)+κ(F2)−2.

First consider F1 ∩ F2. Colour the corresponding edges in G(P ) gold. We imitate the
argument of Section 3 for the golden edges, but argue more directly for the remaining
edges. As in Section 3, say that a vertex in G(P ) has type A, B or C if it is incident
with 1, 2 or 0 golden edges, respectively. The golden edges form a union of some paths
and some closed cycles. The endpoints of these paths have type A, while the interior
vertices of the paths and cycles have type B. Moreover, each vertex of type A is the
endpoint of a golden path, and each vertex of type B lies on a golden path or cycle.
Suppose that there are a = 2k type A vertices, b type B vertices and c = n − 2k − b
type C vertices. Then again there are

n!

(2k)! b! c!
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ways to assign types to these vertices. Instead of the connection scheme used in Section 3,
we just choose a perfect matching of the type A vertices, to determine the endpoints of
each golden path. There are

(2k)!

2k k!

such matchings. Now add the type B vertices onto the golden paths and cycles. Each
golden cycle is a cycle in F1 and in F2. Therefore it should contribute weight 4θ2.
Instead, as in Section 3, we give each golden cycle weight 4θ2 if it has length greater
than 2, and weight 2θ2 otherwise. This underweights each cycle of length 1 or 2 by a
factor of 2, but this will be corrected below. Using these weights, the contribution from
adding all the type B vertices is

b!

(
k + b + 2θ2 − 1

b

)
∼
(

k + b

k

)2θ2−1
(k + b)!

k!
.

(This assumes that k →∞, as in Section 3.)
Now choose which points in each bucket belong to pairs in F1 and F2. For each

vertex of type A there are d choices for the point in F1 ∩F2, d− 1 for the other point in
F1 and d− 2 for the other point in F2. For each vertex of type C we choose the points
in F1 in

(
d
2

)
ways and then the points in F2 in

(
d−2
2

)
ways. For each vertex of type B

there are
(

d
2

)
ways to choose the two points in F1 ∩ F2. The position of this vertex on

a golden path or cycle of G(P ) has already been determined. Multiply by 2 to count
the number of ways to wire these points to their neighbours in the path or cycle. This
factor d(d− 1) for each type B vertex gives a factor 2 too much for each golden cycle of
length 1 or 2. We have already compensated for this factor in the preceding step. Thus
the total factor is

(d(d− 1)(d− 2))2k (d(d− 1))b

((
d

2

)(
d− 2

2

))c

= 2−2c dn(d− 1)n(d− 2)2k+c(d− 3)c.

At this stage, F1∩F2 is complete determined. We now specify the remaining pairs in
F1, F2, as well as the pairs in Q1 ∩Q2. To specify the remaining pairs of F1, delete each
golden cycle and contract each golden path to a single vertex. The number of vertices
left is n− (2k + b) + k = k + c, and each remaining vertex corresponds to a bucket with
two points from F1 ∩ Q2 specified. (For vertices which correspond to shrunken paths,
each endpoint of the path contributes one of these points.) Choose a perfect matching
on these 2(k + c) points with the usual weighting: these determine the remaining pairs
of F1. Therefore the contribution from completing F1 is∑

F∈Pk+c,2

(2θ)κ(F )−1 ∼ 2k+c (k + c)!

2Γ(θ + 1)
(k + c)θ−1,

using Lemma 1.1 and assuming that k → ∞. Completing F2 contributes the same
factor. Finally, to specify the pairs of Q1 ∩Q2 we need only form a perfect matching of
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the remaining the remaining dn− 6k− 2b− 4c = (d− 4)n + 2k + 2b points. The number
of ways to do this is

|P(d−4)n+2k+2b,1| =
((d− 4)n + 2k + 2b)!

2(d/2−2)n+k+b ((d/2− 2)n + k + b)!
.

Combining all these factors gives

|Pn,d|E(Y 2) ∼
∑

k

∑
b

(
k + b

k

)2θ2

(k + c)2θ

Γ(θ + 1)2
t(k, b), (16)

where

t(k, b) =
n! k (k + b)! (k + c)!2 dn(d− 1)n(d− 2)2k+c (d− 3)c

4 k!2 b! c! (k + b) (k + c)2

× ((d− 4)n + 2k + 2b)!

2(d/2−2)n+b ((d/2− 2)n + k + b)!

does not depend on θ. The case θ = 0 was analysed in [4] (for d = 3, which is simpler
since then c = 0, see [9]). The method of [4] is similar but the notation differs: denoting
their k and a by k′ and a′, we have a′ = k (the number of paths in F1 ∩ F2) and
k′ = k + b (the number of edges in F1 ∩ F2). With these substitutions, (16) with θ = 0
is equivalent to [4, (14)]. It is shown in [4] that only terms with k′/n ∼ κ0 = 2/d and
a′/n ∼ α0 = 2(d− 2)/d(d− 1) contribute significantly to the sum. It follows that only
terms with k ∼ α0n and b ∼ (κ0 − α0)n contribute significantly to the sum in (16).
Therefore

|Pn,d|E(Y 2) ∼
(

κ0

α0

)2θ2

((1− κ0)n)2θ

Γ(θ + 1)2

∑
k

∑
b

t(k, b)

∼
(

κ0

α0

)2θ2

((1− κ0)n)2θ

Γ(θ + 1)2
|Pn,d|E(ZH

2)

=

(
d− 1

d− 2

)2θ2 (
d− 2

d

)2θ
n2θ

Γ(θ + 1)2
|Pn,d|E(ZH

2).

Combining these with (15) we finally find that

E(Y 2)

(EY )2
∼
(

d− 1

d− 2

)2θ2 (
d− 2

d

)2θ
E(ZH

2)

(EZH)2
∼
(

d− 1

d− 2

)2θ2 (
d− 2

d

)2θ−1

.

The second asymptotic equality follows since E(ZH
2)/(EZH)2 ∼ d/(d − 2), as shown

in [4].
Finally, we must calculate the effect of short cycles. The approach is very similar

to that used by Robalewska in [8, Lemma 1]. The case C ∩ F = C is handled as in
Section 4, and gives a contribution of

θ

k
|Pn,d|EY.
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Next suppose that C ∩ F = ∅. Then divide by 2 to undirect the cycle, if k ≥ 3. There
are ((d − 2)(d − 3))k ways to wire C into the specified points of the subpairing Q, if
k ≥ 3, and ((d− 2)(d− 3))k/2 ways if k = 1, 2. (The net effect of this is to multiply by
((d− 2)(d− 3))k/2 for all k.) There are asymptotically

|Pn,d−2|
(n(d− 2))k

ways to complete the pairing Q, since k pairs are already specified. Finally the contri-
bution from all possible choices of F is 2n n! nθ−1/2Γ(θ + 1), by Lemma 1.1. Hence the
contribution from case (ii) is(

d

2

)n

· nk

k
· ((d− 2)(d− 3))k

2
· |Pn,d−2|

(n(d− 2))k
· 2n n! nθ−1

2Γ(θ + 1)
=

(d− 3)k

2k
|Pn,d|EY.

Finally, suppose that C ∩ F is the union of i disjoint paths. Suppose that these paths
contain k − r vertices, so that there are r isolated vertices in C ∩ F . Let Nir be the
number of ways to ensure that C ∩ F has this form, starting without the vertices of C
specified. Then Robalewska [8] shows that

Nir ∼ nk[xkyizr]

(
−1

2
log((1− x)(1− xz)− x2y)

)
.

There are 2k−r ways to wire C ∩ F into the specified points of the subpairing F . The
contribution from extending C ∩ F to F in all possible ways is

∑
F∈Pn−(k−(i+r)),2

(2θ)κ(F )−1 ∼ 2n−(k−(i+r))n!nθ−1

2 nk−(i+r) Γ(θ + 1)
,

as in (6). Next, there are
(d− 2)2i+r(d− 3)r

ways to wire C ∩ Q into the specified points of the subpairing Q. Then the number of
ways to complete C ∩Q to Q is asymptotically equal to

|Pn,d−2|
(n(d− 2))r+i

.

Hence the total contribution from case (iii) is

|Pn,d|EY
∑
i≥1

∑
r≥0

[xkyizr]

(
−1

2
log((1− x)(1− xz)− x2y)

)
· (2(d− 2))i(d− 3)r.

Putting this together (and mirroring the calculations in [8, Lemma 1]), noting that only
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the first term depends on θ, we obtain

E(Y Ck)

EY
=

θ

k
+

(d− 3)k

2k

+
∑
i≥1

∑
r≥0

[xkyizr]

(
−1

2
log((1− x)(1− xz)− x2y)

)
· (2(d− 2))i(d− 3)r

=
2θ − 1 + (−1)k + (d− 1)k

2k
= ρk.

It is routine to verify that Y behaves well under joint short cycle distributions.
As is well-known, the distribution of k-cycles in Pn,d is asymptotically Poisson with

mean

λk =
(d− 1)k

2k
.

Define δk for k ≥ 1 by

δk =
ρk

λk

− 1 =
2θ − 1 + (−1)k

(d− 1)k
.

Then

exp

(∑
k≥1

λkδk
2

)
= exp

(∑
k≥1

2θ2 − 2θ + 1 + (2θ − 1)(−1)k

k(d− 1)k

)

=

(
d− 1

d− 2

)2θ2−2θ+1(
d− 1

d

)2θ−1

=
E(Y 2)

(EY )2
.

Therefore, using Theorem 1.4 we have

Pn,d−2 + F̂n(θ) ≈ Pn,d

when θ > 0 or d > 3, and
Pn,1 + F̂n(0) ≈ P ′

n,3

(since here ρ1 = 0 and δ1 = −1.) This completes the proof.

Proof of Theorem 1.3. Combine the graphs in a suitable order using Theorems 1.1 and 1.2,
together with known results for sums of G∗n,d as in the proof of [5, Theorem 9.43] or [14,
Corollary 4.17].
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