Appendix to Quicksort Asymptotics

James Allen Fill ${ }^{1}$
Department of Mathematical Sciences
The Johns Hopkins University
jimfill@jhu.edu and http://www.mts.jhu.edu/~fill/
AND
Svante Janson
Department of Mathematics
Uppsala University
svante.janson@math.uu.se and http://www.math.uu.se/~svante/

ABSTRACT

This appendix to [2] contains a proof of the improved estimates in Remark 7.3 of that paper for the moment generating function of the (normalized) number of comparisons in Quicksort.

AMS 2000 subject classifications. Primary 68W40; secondary 68P10, 60F05, 60E10.
Date. May 22, 2001.

[^0]This is an appendix to [2], to which we refer for background and notation. The theorem, lemmas, and equations in this appendix are labelled by A.1, etc.; labels with pure numbers refer to [2].

The purpose of this appendix is to provide a proof of the following estimates stated in Remark 7.3 of [2].

Theorem A.1. Let $L_{0} \doteq 5.018$ be the largest root of $e^{L}=6 L^{2}$. Then, for all $n \geq 0$,

$$
\mathbf{E} e^{\lambda Y_{n}} \leq \begin{cases}e^{1.34 \lambda^{2}}, & \lambda \leq-0.58 \\ e^{0.5 \lambda^{2}}, & -0.58 \leq \lambda \leq 0 \\ e^{\lambda^{2}}, & 0 \leq \lambda \leq 0.42 \\ e^{12 \lambda^{2}}, & 0.42 \leq \lambda \leq L_{0} \\ e^{2 e^{\lambda}}, & L_{0} \leq \lambda\end{cases}
$$

In particular, $\mathbf{E} e^{\lambda Y_{n}} \leq \exp \left(\max \left(12 \lambda^{2}, 2 e^{\lambda}\right)\right)$ for all $\lambda \in \mathbf{R}$.
The proof below follows closely the corresponding proof in [1], where we obtained by the method of Rösler [3] (with some refinements) explicit estimates for the moment generating function of the limit variable Y. In this appendix we treat instead the normalized number of comparisons Y_{n} for finite n. In the present case, some estimates involving $C_{n}(i)$, stated as lemmas below, become harder than the corresponding estimates in [1] where the limit as $n \rightarrow \infty$ is treated. Note that the bound in Theorem A. 1 is the same as the one obtained for $\mathbf{E} e^{\lambda Y}$ in [1] for $\lambda \geq 0$, but slightly weaker for $\lambda<0$ (or rather for $\lambda<-0.58$). (It seems likely that with further effort one could show that the bounds in [1] for $\mathbf{E} e^{\lambda Y}$ hold also for $\mathbf{E} e^{\lambda Y_{n}}$ for all λ and n, but this is still an open problem.)

In order to obtain good estimates we use extensive numerical calculations for small n to supplement our analytical estimates; we could do without these numerical calculations at the cost of increasing the constants in the exponents in the theorem. [All numerical calculations have been verified independently by the two authors, the (alphabetically) first using Mathematica and the second using Maple.]

We begin with some estimates of $C_{n}(i)$.
Lemma A.2. The sequence $\left(\mu_{n}\right)_{n \geq 0}$ is nondecreasing and convex.
Proof. By (1.7) and (1.8), for $n \geq 0$,

$$
\begin{align*}
\mu_{n+1}-\mu_{n} & =2(n+2) H_{n+1}-4(n+1)-\left[2(n+1) H_{n+1}-4(n+1)+2\right] \\
& =2 H_{n+1}-2 \tag{A.1}
\end{align*}
$$

which is nonnegative and increasing.
Lemma A.3. For every $n \geq 1$, the sequence $\left(C_{n}(i)\right)_{1 \leq i \leq n}$ is convex. Its maximum is $C_{n}(1)=C_{n}(n)$ and its minimum is $C_{n}(\lfloor(n+1) / 2\rfloor)=C_{n}(\lceil(n+1) / 2\rceil)$.

Proof. The definition (1.5) and Lemma A. 2 show that $\left(C_{n}(i)\right)_{1 \leq i \leq n}$ is convex. Moreover, $C_{n}(i) \equiv C_{n}(n+1-i)$, and the result follows.

Lemma A.4. If $1 \leq i \leq n$, then

$$
-\eta \leq C_{n}(i) \leq 1,
$$

where $\eta:=2 \ln 2-1 \doteq 0.3863$.
Proof. By Lemma A. 3 and (1.5)

$$
C_{n}(i) \leq C_{n}(1)=\frac{1}{n}\left(n-1+\mu_{0}+\mu_{n-1}-\mu_{n}\right) \leq \frac{n-1}{n} \leq 1,
$$

because $\mu_{0}=0$ and $\mu_{n-1} \leq \mu_{n}$ by Lemma A. 2 .
For the lower bound we first consider n odd, $n=2 m-1$ with $m \geq 1$. By Lemma A.3, (1.5), and (1.8),

$$
\begin{align*}
C_{2 m-1}(i) & \geq C_{2 m-1}(m)=\frac{1}{2 m-1}\left(2 m-2+\mu_{m-1}+\mu_{m-1}-\mu_{2 m-1}\right) \\
& =\frac{1}{2 m-1}\left[2 m-2+2\left(2 m H_{m}-4 m+2\right)-\left(4 m H_{2 m}-8 m+2\right)\right] \\
& =\frac{2 m}{2 m-1}\left(1+2 H_{m}-2 H_{2 m}\right) . \tag{A.2}
\end{align*}
$$

Note that for $k \geq 2$ we have $\ln k-\ln (k-1)=-\ln \left(1-\frac{1}{k}\right)>\frac{1}{k}+\frac{1}{2 k^{2}}$, and thus

$$
\begin{aligned}
\delta_{m} & :=2 \ln 2+2\left(H_{m}-H_{2 m}\right)=2 \sum_{k=m+1}^{2 m}\left(\ln k-\ln (k-1)-\frac{1}{k}\right) \\
& >\sum_{k=m+1}^{2 m} \frac{2}{2 k^{2}}>\sum_{k=m+1}^{2 m}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\frac{1}{m+1}-\frac{1}{2 m+1}=\frac{m}{(m+1)(2 m+1)} .
\end{aligned}
$$

Hence, if $m \geq 2$, then

$$
2 m \delta_{m}=\frac{2 m^{2}}{(m+1)(2 m+1)} \geq \frac{8}{15}>\eta
$$

while if $m=1$, then $\delta_{1}=\eta$. Therefore,

$$
-C_{2 m-1}(i) \leq-C_{2 m-1}(m)=\frac{2 m}{2 m-1}\left(-1+2 \ln 2-\delta_{m}\right)<\frac{2 m}{2 m-1}\left(\eta-\frac{\eta}{2 m}\right)=\eta .
$$

If $n=2 m$ is even, then Lemma A.3, (1.5), (1.7), and (1.8) similarly yield

$$
\begin{aligned}
C_{2 m}(i) \geq & C_{2 m}(m)=\frac{1}{2 m}\left(2 m-1+\mu_{m-1}+\mu_{m}-\mu_{2 m}\right) \\
= & \frac{1}{2 m}\left[2 m-1+2 m H_{m}-4 m+2+2(m+1) H_{m}-4 m\right. \\
& \left.\quad-\left(2(2 m+1) H_{2 m}-8 m\right)\right] \\
= & \frac{2 m+1}{2 m}\left(1+2 H_{m}-2 H_{2 m}\right) .
\end{aligned}
$$

Comparing with (A.2) we find by the estimate above $\left|C_{2 m}(m)\right|<\left|C_{2 m-1}(m)\right|<\eta$, and the result follows.

Lemma A.5. For $n \geq 1$ and $U_{n} \sim \operatorname{unif}\{1, \ldots, n\}$, the sequence $\mathbf{E} C_{n}\left(U_{n}\right)^{2}$ is strictly increasing, and therefore

$$
\mathbf{E} C_{n}\left(U_{n}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} C_{n}(i)^{2}<\mathbf{E} C(U)^{2}=\sigma^{2} / 3 \doteq 0.140
$$

Proof. We could use Lemma 2.2, Minkowski's inequality, and numerical calculations by computer to verify $\mathbf{E} C_{n}\left(U_{n}\right)<0.15$, but we can do slightly better. Indeed, from the results in Section 1, one obtains the formula

$$
\mathbf{E} C_{n}\left(U_{n}\right)^{2}=\frac{7}{3}\left(1+\frac{1}{n}\right)^{2}-\frac{4}{3}\left(1+\frac{2}{n}\right)\left(1+\frac{1}{n}\right) H_{n}^{(2)}-\frac{4}{3} n^{-3} H_{n}, \quad n \geq 1 .
$$

From this expression it is simple (if somewhat laborious) to prove increasingness. Finally, the limiting value of $\mathbf{E} C_{n}\left(U_{n}\right)^{2}$ is $\mathbf{E} C(U)^{2}=\sigma^{2} / 3$.

Lemma A.6. For $1 \leq i \leq n$,

$$
C_{n}(i)-2 \eta\left[\left(\frac{i-1}{n}\right)^{2}+\left(\frac{n-i}{n}\right)^{2}-1\right] \geq 0
$$

Proof. Fix n and denote the left-hand side by x_{i}. By (1.5) and (A.1), for $1 \leq i \leq n-1$ we have

$$
\begin{aligned}
n^{2}\left(x_{i+1}-x_{i}\right)= & n\left(\mu_{i}-\mu_{i-1}+\mu_{n-i-1}-\mu_{n-i}\right) \\
& \quad+2 \eta\left[(i-1)^{2}-i^{2}+(n-i)^{2}-(n-i-1)^{2}\right] \\
= & 2 n H_{i}-2 n H_{n-i}+2 \eta(2 n-4 i)
\end{aligned}
$$

and thus, for $1 \leq i \leq n-2$,

$$
\begin{aligned}
n^{2}\left(x_{i+2}-2 x_{i+1}+x_{i}\right) & =\frac{2 n}{i+1}+\frac{2 n}{n-i}-8 \eta=\frac{2 n(n+1)}{(i+1)(n-i)}-8 \eta \geq \frac{2 n(n+1)}{[(n+1) / 2]^{2}}-8 \eta \\
& =\frac{8 n}{n+1}-8 \eta \geq 4-8 \eta>0
\end{aligned}
$$

Hence $\left(x_{i}\right)_{1 \leq i \leq n}$ is convex. Moreover $x_{i}=x_{n+1-i}$, and thus the minimum is $x_{i_{0}}$ with $i_{0}=\lfloor(n+1) / 2\rfloor$. Since $i_{0}-1 \leq n / 2 \leq i_{0}$,

$$
2 \eta\left[\left(\frac{i_{0}-1}{n}\right)^{2}+\left(\frac{n-i_{0}}{n}\right)^{2}-1\right] \leq 2 \eta\left(\frac{1}{4}+\frac{1}{4}-1\right)=-\eta \leq C_{n}\left(i_{0}\right)
$$

by Lemma A.4. Hence $x_{i_{0}} \geq 0$ and the result follows.
Lemma A.7. If $1 \leq i \leq n$ and $(i-1) / n \leq u \leq i / n$, then

$$
u(1-u) C_{n}(i) \leq 0.05 .
$$

Proof. The left-hand side is not changed if we replace i by $n+1-i$ and u by $1-u$; hence we may assume that $i \leq(n+1) / 2$. Moreover if n is odd and $i=(n+1) / 2$, then, by Lemma A.3, $C_{n}(i)=\min _{j} C_{n}(j)$, and since $\mathbf{E} C_{n}\left(U_{n}\right)=0$ when $U_{n} \sim \operatorname{unif}\{1, \ldots, n\}$, $C_{n}(i) \leq 0$ and the inequality is trivial.

We may thus assume $i \leq n / 2$. Since $u(1-u)$ is increasing on $[0,1 / 2]$, we may further assume $u=i / n$. Then, by (2.25),

$$
u(1-u) C_{n}(i) \leq u(1-u)\left(C(u)+\frac{3}{n}\right) \leq u(1-u) C(u)+\frac{3}{4 n} .
$$

As stated in [1], it can easily be checked numerically that $\max _{0 \leq u \leq 1} u(1-u) C(u)<$ 0.033 , and thus $u(1-u) C_{n}(i)<0.05$ follows for $n \geq 45$. The cases $1 \leq i \leq n \leq 44$ are verified numerically. (The maximum value is $591 / 12005 \doteq 0.0492$, obtained for $n=7$ and $i=1$ or 7 .)

Proof of Theorem A.1. Let $U \sim \operatorname{unif}(0,1)$ and, for $n \geq 1, K \geq 0, \lambda \in \mathbf{R}$,

$$
\begin{aligned}
U_{n} & :=\lceil n U\rceil \sim \operatorname{unif}\{1, \ldots, n\}, \\
W_{n} & :=\left(\frac{U_{n}-1}{n}\right)^{2}+\left(\frac{n-U_{n}}{n}\right)^{2}-1 \leq U^{2}+(1-U)^{2}-1=-2 U(1-U), \\
f_{n, K}^{*}(\lambda) & :=\mathbf{E} \exp \left(\lambda C_{n}\left(U_{n}\right)+K \lambda^{2} W_{n}\right), \\
f_{n, K}(\lambda) & :=\mathbf{E} \exp \left(\lambda C_{n}\left(U_{n}\right)-2 K \lambda^{2} U(1-U)\right) ;
\end{aligned}
$$

note that $f_{n, K}^{*}(\lambda) \leq f_{n, K}(\lambda)$.
Suppose now that we have found positive numbers K and L such that

$$
\begin{equation*}
f_{n, K}^{*}(\lambda) \leq 1, \quad n \geq 1, \quad \lambda \in[0, L] . \tag{A.3}
\end{equation*}
$$

Then, by induction, for every $n \geq 0$,

$$
\begin{equation*}
\mathbf{E} e^{\lambda Y_{n}} \leq e^{K \lambda^{2}}, \quad \lambda \in[0, L] . \tag{A.4}
\end{equation*}
$$

Indeed, (A.4) is trivial for $n=0$, and if $n \geq 1$ and $\mathbf{E} e^{\lambda Y_{m}} \leq e^{K \lambda^{2}}$ for $m \leq n-1$ and $\lambda \in[0, L]$, then by the recursion (1.4), for $\lambda \in[0, L]$,

$$
\begin{aligned}
\mathbf{E} e^{\lambda Y_{n}} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{E} \exp \left[\lambda\left\{\frac{i-1}{n} Y_{i-1}+\frac{n-i}{n} Y_{n-i}^{*}+C_{n}(i)\right\}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \exp \left[\lambda C_{n}(i)\right]\left(\mathbf{E} \exp \left[\lambda \frac{i-1}{n} Y_{i-1}\right]\right)\left(\mathbf{E} \exp \left[\lambda \frac{n-i}{n} Y_{n-i}\right]\right) \\
& \leq \frac{1}{n} \sum_{i=1}^{n} \exp \left[\lambda C_{n}(i)\right] \exp \left\{K \lambda^{2}\left[\left(\frac{i-1}{n}\right)^{2}+\left(\frac{n-i}{n}\right)^{2}\right]\right\} \\
& =\mathbf{E} \exp \left[\lambda C_{n}\left(U_{n}\right)+K \lambda^{2}\left(W_{n}+1\right)\right] \\
& =e^{K \lambda^{2}} f_{n, K}^{*}(\lambda) \leq e^{K \lambda^{2}} .
\end{aligned}
$$

Similarly, if $f_{n, K}^{*}(\lambda) \leq 1$ for every $n \geq 1$ and $\lambda \in[-L, 0]$, then $\mathbf{E} e^{\lambda Y_{n}} \leq e^{K \lambda^{2}}$ for every $n \geq 1$ and $\lambda \in[-L, 0]$.

Thus our goal is to show $f_{n, K}^{*}(\lambda) \leq 1$ for suitable K and λ; since $f_{n, K}^{*}(\lambda) \leq f_{n, K}(\lambda)$, it suffices to show $f_{n, K}(\lambda) \leq 1$. We follow the argument in [1], omitting many details which remain the same.

First, a Taylor expansion yields, using Lemma A.5, for $0 \leq \lambda \leq L$,

$$
\begin{equation*}
f_{n, K}(\lambda) \leq 1+\frac{1}{6} \lambda^{2}\left(\sigma^{2}-2 K+L \sup _{0 \leq \lambda \leq L} f_{n, K}^{\prime \prime \prime}(\lambda)\right) \tag{A.5}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
f_{n, K}^{\prime \prime \prime}(\lambda)= & \mathbf{E}[\\
& \left(\left(C_{n}\left(U_{n}\right)-4 K \lambda U(1-U)\right)^{3}-12 K U(1-U)\left(C_{n}\left(U_{n}\right)-4 K \lambda U(1-U)\right)\right) \tag{A.6}\\
& \left.\times \exp \left(\lambda C_{n}\left(U_{n}\right)-2 K \lambda^{2} U(1-U)\right)\right]
\end{align*}
$$

Using Lemma A.4, it follows as in [1] that

$$
L \sup _{0 \leq \lambda \leq L} f_{n, K}^{\prime \prime \prime}(\lambda) \leq L\left(3 K \eta+3 K^{2} L\right) e^{L} .
$$

It is readily checked that for $K=1$ and $L=0.42$, this is less than $1.547<2 K-\sigma^{2}$, so (A.5) shows that $f_{n, 1}(\lambda) \leq 1$ for $0 \leq \lambda \leq 0.42$. Hence (A.3) and thus (A.4) hold with $K=1$ and $L=0.42$.

For larger L we use again Lemma A. 4 to obtain

$$
f_{n, K}(\lambda) \leq e^{|\lambda|} \mathbf{E} e^{-2 K \lambda^{2} U(1-U)}
$$

It is shown in [1] that the right-hand side is at most

$$
g_{K}(\lambda):=e^{|\lambda|}\left[1-\exp \left(-K \lambda^{2} / 2\right)\right] /\left(K \lambda^{2} / 2\right)
$$

and further that $g_{K}(\lambda)<1$ if $K=12$ and $0.42 \leq \lambda \leq 2$, or if $K=2 L^{-2} e^{L}$ and $2 \leq \lambda \leq$ L. It follows that (A.3) and (A.4) hold for any $L>0$ and $K=\max \left(12,2 L^{-2} e^{L}\right)$.

For $-L \leq \lambda \leq 0$, a Taylor expansion yields [cf. (A.5)]

$$
\begin{equation*}
f_{n, K}(\lambda) \leq 1+\frac{1}{6} \lambda^{2}\left(\sigma^{2}-2 K+L \sup _{-L<\lambda \leq 0}\left(-f_{n, K}^{\prime \prime \prime}(\lambda)\right)\right) \tag{A.7}
\end{equation*}
$$

Moreover, from (A.6) and Lemmas A. 4 and A.7, for $-L \leq \lambda \leq 0$ we have

$$
f_{n, K}^{\prime \prime \prime}(\lambda) \geq\left(-\eta^{3}-12 K \cdot 0.05-3 K^{2} L\right) e^{\eta L}
$$

Taking $K=0.5$ and $L=0.58$, we find

$$
L \sup _{-L \leq \lambda \leq 0}\left(-f_{n, K}^{\prime \prime \prime}(\lambda)\right)<0.576<2 K-\sigma^{2}
$$

and thus by (A.7)

$$
\begin{equation*}
f_{n, 0.5}(\lambda) \leq 1, \quad-0.58 \leq \lambda \leq 0 \tag{A.8}
\end{equation*}
$$

Finally, for $\lambda \leq-0.58$ we take $K=2 \eta / 0.58<1.34$. Then $|K \lambda| \geq 2 \eta$, and thus, using Lemma A.6,

$$
\begin{aligned}
\lambda C_{n}\left(U_{n}\right)+K \lambda^{2} W_{n} & \leq \lambda C_{n}\left(U_{n}\right)+2 \eta|\lambda| W_{n} \\
& =-|\lambda|\left[C_{n}\left(U_{n}\right)-2 \eta\left(\left(\frac{U_{n}-1}{n}\right)^{2}+\left(\frac{n-U_{n}}{n}\right)^{2}-1\right)\right] \leq 0 .
\end{aligned}
$$

Hence $f_{n, K}^{*}(-\lambda) \leq 1$. (This time we thus use $f_{n, K}^{*}$ instead of $f_{n, K}$.) Combined with (A.8), this shows that $f_{n, 1.34}^{*}(\lambda) \leq 1$ for all $\lambda \leq 0$, which completes the proof.

References

[1] Fill, J. A. and Janson, S. Approximating the limiting Quicksort distribution. Technical Report \#615, Department of Mathematical Sciences, The Johns Hopkins University. Preprint available from http://www.mts.jhu.edu/~fill/ or http://www.math.uu.se/~svante/.
[2] Fill, J. A. and Janson, S. Quicksort asymptotics. Technical Report \#597, Department of Mathematical Sciences, The Johns Hopkins University. Preprint available from http://www.mts.jhu.edu/~fill/ or http://www.math.uu.se/~svante/.
[3] Rösler, U. A limit theorem for 'Quicksort'. RAIRO Inform. Théor. Appl. 25 (1991), 85-100.

[^0]: ${ }^{1}$ Research supported by NSF grant DMS-9803780, and by The Johns Hopkins University's Acheson J. Duncan Fund for the Advancement of Research in Statistics.

