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ABSTRACT

This appendix to [2] contains a proof of the improved estimates in Remark 7.3 of that
paper for the moment generating function of the (normalized) number of comparisons
in Quicksort.
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This is an appendix to [2], to which we refer for background and notation. The
theorem, lemmas, and equations in this appendix are labelled by A.1, etc.; labels with
pure numbers refer to [2].

The purpose of this appendix is to provide a proof of the following estimates stated
in Remark 7.3 of [2].

Theorem A.1. Let L0
.
= 5.018 be the largest root of eL = 6L2. Then, for all n ≥ 0,

E eλYn ≤


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
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



















e1.34λ2

, λ ≤ −0.58,

e0.5λ2

, −0.58 ≤ λ ≤ 0,

eλ2

, 0 ≤ λ ≤ 0.42,

e12λ2

, 0.42 ≤ λ ≤ L0,

e2eλ

, L0 ≤ λ.

In particular, E eλYn ≤ exp
(

max
(

12λ2, 2eλ
))

for all λ ∈ R.

The proof below follows closely the corresponding proof in [1], where we obtained
by the method of Rösler [3] (with some refinements) explicit estimates for the moment
generating function of the limit variable Y . In this appendix we treat instead the nor-
malized number of comparisons Yn for finite n. In the present case, some estimates
involving Cn(i), stated as lemmas below, become harder than the corresponding esti-
mates in [1] where the limit as n → ∞ is treated. Note that the bound in Theorem A.1
is the same as the one obtained for E eλY in [1] for λ ≥ 0, but slightly weaker for λ < 0
(or rather for λ < −0.58). (It seems likely that with further effort one could show that
the bounds in [1] for E eλY hold also for E eλYn for all λ and n, but this is still an open
problem.)

In order to obtain good estimates we use extensive numerical calculations for small n
to supplement our analytical estimates; we could do without these numerical calculations
at the cost of increasing the constants in the exponents in the theorem. [All numerical
calculations have been verified independently by the two authors, the (alphabetically)
first using Mathematica and the second using Maple.]

We begin with some estimates of Cn(i).

Lemma A.2. The sequence (µn)n≥0 is nondecreasing and convex.

Proof. By (1.7) and (1.8), for n ≥ 0,

µn+1 − µn = 2(n + 2)Hn+1 − 4(n + 1) − [2(n + 1)Hn+1 − 4(n + 1) + 2]

= 2Hn+1 − 2, (A.1)

which is nonnegative and increasing.

Lemma A.3. For every n ≥ 1, the sequence (Cn(i))1≤i≤n is convex. Its maximum is

Cn(1) = Cn(n) and its minimum is Cn(⌊(n + 1)/2⌋) = Cn(⌈(n + 1)/2⌉).

Proof. The definition (1.5) and Lemma A.2 show that (Cn(i))1≤i≤n is convex. Moreover,
Cn(i) ≡ Cn(n + 1 − i), and the result follows.
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Lemma A.4. If 1 ≤ i ≤ n, then

−η ≤ Cn(i) ≤ 1,

where η := 2 ln 2 − 1
.
= 0.3863.

Proof. By Lemma A.3 and (1.5)

Cn(i) ≤ Cn(1) = 1
n
(n − 1 + µ0 + µn−1 − µn) ≤ n−1

n
≤ 1,

because µ0 = 0 and µn−1 ≤ µn by Lemma A.2.
For the lower bound we first consider n odd, n = 2m−1 with m ≥ 1. By Lemma A.3,

(1.5), and (1.8),

C2m−1(i) ≥ C2m−1(m) = 1
2m−1 (2m − 2 + µm−1 + µm−1 − µ2m−1)

= 1
2m−1 [2m − 2 + 2(2mHm − 4m + 2) − (4mH2m − 8m + 2)]

= 2m
2m−1 (1 + 2Hm − 2H2m). (A.2)

Note that for k ≥ 2 we have ln k − ln(k − 1) = − ln(1 − 1
k
) > 1

k
+ 1

2k2 , and thus

δm := 2 ln 2 + 2(Hm − H2m) = 2

2m
∑

k=m+1

(

ln k − ln(k − 1) −
1

k

)

>

2m
∑

k=m+1

2

2k2
>

2m
∑

k=m+1

(

1

k
−

1

k + 1

)

=
1

m + 1
−

1

2m + 1
=

m

(m + 1)(2m + 1)
.

Hence, if m ≥ 2, then

2mδm =
2m2

(m + 1)(2m + 1)
≥

8

15
> η,

while if m = 1, then δ1 = η. Therefore,

−C2m−1(i) ≤ −C2m−1(m) =
2m

2m − 1
(−1 + 2 ln 2 − δm) <

2m

2m − 1

(

η −
η

2m

)

= η.

If n = 2m is even, then Lemma A.3, (1.5), (1.7), and (1.8) similarly yield

C2m(i) ≥ C2m(m) = 1
2m

(2m − 1 + µm−1 + µm − µ2m)

= 1
2m

[2m − 1 + 2mHm − 4m + 2 + 2(m + 1)Hm − 4m

− (2(2m + 1)H2m − 8m)]

= 2m+1
2m

(1 + 2Hm − 2H2m).

Comparing with (A.2) we find by the estimate above |C2m(m)| < |C2m−1(m)| < η, and
the result follows.
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Lemma A.5. For n ≥ 1 and Un ∼ unif{1, . . . , n}, the sequence ECn(Un)2 is strictly

increasing, and therefore

ECn(Un)2 =
1

n

n
∑

i=1

Cn(i)2 < EC(U)2 = σ2/3
.
= 0.140.

Proof. We could use Lemma 2.2, Minkowski’s inequality, and numerical calculations by
computer to verify ECn(Un) < 0.15, but we can do slightly better. Indeed, from the
results in Section 1, one obtains the formula

ECn(Un)2 = 7
3

(

1 + 1
n

)2
− 4

3

(

1 + 2
n

) (

1 + 1
n

)

H(2)
n − 4

3n−3Hn, n ≥ 1.

From this expression it is simple (if somewhat laborious) to prove increasingness. Fi-
nally, the limiting value of ECn(Un)2 is EC(U)2 = σ2/3.

Lemma A.6. For 1 ≤ i ≤ n,

Cn(i) − 2η

[

(

i − 1

n

)2

+

(

n − i

n

)2

− 1

]

≥ 0.

Proof. Fix n and denote the left-hand side by xi. By (1.5) and (A.1), for 1 ≤ i ≤ n− 1
we have

n2(xi+1 − xi) = n(µi − µi−1 + µn−i−1 − µn−i)

+ 2η
[

(i − 1)2 − i2 + (n − i)2 − (n − i − 1)2
]

= 2nHi − 2nHn−i + 2η(2n − 4i)

and thus, for 1 ≤ i ≤ n − 2,

n2(xi+2 − 2xi+1 + xi) =
2n

i + 1
+

2n

n − i
− 8η =

2n(n + 1)

(i + 1)(n − i)
− 8η ≥

2n(n + 1)

[(n + 1)/2]2
− 8η

=
8n

n + 1
− 8η ≥ 4 − 8η > 0.

Hence (xi)1≤i≤n is convex. Moreover xi = xn+1−i, and thus the minimum is xi0 with
i0 = ⌊(n + 1)/2⌋. Since i0 − 1 ≤ n/2 ≤ i0,

2η

[

(

i0 − 1

n

)2

+

(

n − i0
n

)2

− 1

]

≤ 2η

(

1

4
+

1

4
− 1

)

= −η ≤ Cn(i0)

by Lemma A.4. Hence xi0 ≥ 0 and the result follows.

Lemma A.7. If 1 ≤ i ≤ n and (i − 1)/n ≤ u ≤ i/n, then

u(1 − u)Cn(i) ≤ 0.05.
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Proof. The left-hand side is not changed if we replace i by n + 1 − i and u by 1 − u;
hence we may assume that i ≤ (n + 1)/2. Moreover if n is odd and i = (n + 1)/2, then,
by Lemma A.3, Cn(i) = minj Cn(j), and since ECn(Un) = 0 when Un ∼ unif{1, . . . , n},
Cn(i) ≤ 0 and the inequality is trivial.

We may thus assume i ≤ n/2. Since u(1−u) is increasing on [0, 1/2], we may further
assume u = i/n. Then, by (2.25),

u(1 − u)Cn(i) ≤ u(1 − u)
(

C(u) + 3
n

)

≤ u(1 − u)C(u) + 3
4n

.

As stated in [1], it can easily be checked numerically that max0≤u≤1 u(1 − u)C(u) <
0.033, and thus u(1 − u)Cn(i) < 0.05 follows for n ≥ 45. The cases 1 ≤ i ≤ n ≤ 44 are
verified numerically. (The maximum value is 591/12005

.
= 0.0492, obtained for n = 7

and i = 1 or 7.)

Proof of Theorem A.1. Let U ∼ unif(0, 1) and, for n ≥ 1, K ≥ 0, λ ∈ R,

Un := ⌈nU⌉ ∼ unif{1, . . . , n},

Wn :=

(

Un − 1

n

)2

+

(

n − Un

n

)2

− 1 ≤ U2 + (1 − U)2 − 1 = −2U(1 − U),

f∗
n,K(λ) := E exp

(

λCn(Un) + Kλ2Wn

)

,

fn,K(λ) := E exp
(

λCn(Un) − 2Kλ2U(1 − U)
)

;

note that f∗
n,K(λ) ≤ fn,K(λ).

Suppose now that we have found positive numbers K and L such that

f∗
n,K(λ) ≤ 1, n ≥ 1, λ ∈ [0, L]. (A.3)

Then, by induction, for every n ≥ 0,

E eλYn ≤ eKλ2

, λ ∈ [0, L]. (A.4)

Indeed, (A.4) is trivial for n = 0, and if n ≥ 1 and E eλYm ≤ eKλ2

for m ≤ n − 1 and
λ ∈ [0, L], then by the recursion (1.4), for λ ∈ [0, L],

E eλYn =
1

n

n
∑

i=1

E exp

[

λ

{

i − 1

n
Yi−1 +

n − i

n
Y ∗

n−i + Cn(i)

}]

=
1

n

n
∑

i=1

exp[λCn(i)]

(

E exp

[

λ
i − 1

n
Yi−1

])(

E exp

[

λ
n − i

n
Yn−i

])

≤
1

n

n
∑

i=1

exp[λCn(i)] exp

{

Kλ2

[

(

i − 1

n

)2

+

(

n − i

n

)2
]}

= E exp
[

λCn(Un) + Kλ2(Wn + 1)
]

= eKλ2

f∗
n,K(λ) ≤ eKλ2

.

Similarly, if f∗
n,K(λ) ≤ 1 for every n ≥ 1 and λ ∈ [−L, 0], then E eλYn ≤ eKλ2

for every
n ≥ 1 and λ ∈ [−L, 0].
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Thus our goal is to show f∗
n,K(λ) ≤ 1 for suitable K and λ; since f∗

n,K(λ) ≤ fn,K(λ),
it suffices to show fn,K(λ) ≤ 1. We follow the argument in [1], omitting many details
which remain the same.

First, a Taylor expansion yields, using Lemma A.5, for 0 ≤ λ ≤ L,

fn,K(λ) ≤ 1 +
1

6
λ2

(

σ2 − 2K + L sup
0≤λ≤L

f ′′′
n,K(λ)

)

. (A.5)

Moreover,

f ′′′
n,K(λ) = E

[(

(Cn(Un) − 4KλU(1 − U))3 − 12KU(1 − U) (Cn(Un) − 4KλU(1 − U))
)

× exp
(

λCn(Un) − 2Kλ2U(1 − U)
)]

. (A.6)

Using Lemma A.4, it follows as in [1] that

L sup
0≤λ≤L

f ′′′
n,K(λ) ≤ L(3Kη + 3K2L)eL.

It is readily checked that for K = 1 and L = 0.42, this is less than 1.547 < 2K − σ2,
so (A.5) shows that fn,1(λ) ≤ 1 for 0 ≤ λ ≤ 0.42. Hence (A.3) and thus (A.4) hold with
K = 1 and L = 0.42.

For larger L we use again Lemma A.4 to obtain

fn,K(λ) ≤ e|λ|E e−2Kλ2U(1−U).

It is shown in [1] that the right-hand side is at most

gK(λ) := e|λ|
[

1 − exp(−Kλ2/2)
]

/(Kλ2/2),

and further that gK(λ) < 1 if K = 12 and 0.42 ≤ λ ≤ 2, or if K = 2L−2eL and 2 ≤ λ ≤
L. It follows that (A.3) and (A.4) hold for any L > 0 and K = max

(

12, 2L−2eL
)

.
For −L ≤ λ ≤ 0, a Taylor expansion yields [cf. (A.5)]

fn,K(λ) ≤ 1 +
1

6
λ2

(

σ2 − 2K + L sup
−L<λ≤0

(

−f ′′′
n,K(λ)

)

)

. (A.7)

Moreover, from (A.6) and Lemmas A.4 and A.7, for −L ≤ λ ≤ 0 we have

f ′′′
n,K(λ) ≥ (−η3 − 12K · 0.05 − 3K2L)eηL.

Taking K = 0.5 and L = 0.58, we find

L sup
−L≤λ≤0

(

−f ′′′
n,K(λ)

)

< 0.576 < 2K − σ2,

and thus by (A.7)
fn,0.5(λ) ≤ 1, −0.58 ≤ λ ≤ 0. (A.8)
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Finally, for λ ≤ −0.58 we take K = 2η/0.58 < 1.34. Then |Kλ| ≥ 2η, and thus, using
Lemma A.6,

λCn(Un) + Kλ2Wn ≤ λCn(Un) + 2η|λ|Wn

= −|λ|

[

Cn(Un) − 2η

(

(

Un − 1

n

)2

+

(

n − Un

n

)2

− 1

)]

≤ 0.

Hence f∗
n,K(−λ) ≤ 1. (This time we thus use f∗

n,K instead of fn,K.) Combined
with (A.8), this shows that f∗

n,1.34(λ) ≤ 1 for all λ ≤ 0, which completes the proof.
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