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ABSTRACT

This appendix to [2] contains a proof of the improved estimates in Remark 7.3 of that
paper for the moment generating function of the (normalized) number of comparisons
in Quicksort.
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This is an appendix to [2], to which we refer for background and notation. The
theorem, lemmas, and equations in this appendix are labelled by A.1, etc.; labels with
pure numbers refer to [2].

The purpose of this appendix is to provide a proof of the following estimates stated
in Remark 7.3 of [2].

Theorem A.l. Let Ly = 5.018 be the largest root of e* = 6L%. Then, for all m > 0,

el34N N < 058,
05N 058 <A <0,

EcMr < QM 0<\<0.42,
el 0.42 < ) < L,
e2ek, Lo < A

In particular, E e < exp (maX (12)\2, 26)‘)) for all A € R.

The proof below follows closely the corresponding proof in [1], where we obtained
by the method of Roésler [3] (with some refinements) explicit estimates for the moment
generating function of the limit variable Y. In this appendix we treat instead the nor-
malized number of comparisons Y,, for finite n. In the present case, some estimates
involving C,, (i), stated as lemmas below, become harder than the corresponding esti-
mates in [1] where the limit as n — oo is treated. Note that the bound in Theorem A.1
is the same as the one obtained for Ee*Y in [1] for A > 0, but slightly weaker for A\ < 0
(or rather for A < —0.58). (It seems likely that with further effort one could show that
the bounds in [1] for Ee*Y hold also for Ee* for all A and n, but this is still an open
problem.)

In order to obtain good estimates we use extensive numerical calculations for small n
to supplement our analytical estimates; we could do without these numerical calculations
at the cost of increasing the constants in the exponents in the theorem. [All numerical
calculations have been verified independently by the two authors, the (alphabetically)
first using Mathematica and the second using Maple.|

We begin with some estimates of C), (7).

Lemma A.2. The sequence (i, )n>0 is nondecreasing and convez.
Proof. By (1.7) and (1.8), for n > 0,
it =t = 20+ D Hop — An+ 1) — 20+ 1) Hygr — d(n+1) +2]
= 2H,41 —2, (A1)
which is nonnegative and increasing. O

Lemma A.3. For every n > 1, the sequence (Cy(i))1<i<n is convex. Its mazimum is

Cn(1) = Cy(n) and its minimum is Cp([(n+ 1)/2]) _C:L?(T[(n +1)/2]).

Proof. The definition (1.5) and Lemma A.2 show that (C,(4))1<i<n is convex. Moreover,
Cn(i) = Cp(n+ 1 —1i), and the result follows. O



Lemma A.4. If1<1i<n, then

—-n S Cn(z) < 1’

where n:=21n2 — 1 = 0.3863.

Proof. By Lemma A.3 and (1.5)
Cn(i) < Cn(1) = (n =1+ po + pin—1 — pn) < %52 <1,

because pp = 0 and pp,—1 < pp, by Lemma A.2.
For the lower bound we first consider n odd, n = 2m—1 with m > 1. By Lemma A.3,
(1.5), and (1.8),

C2m71(i) > C2m71(m) = 2771;_1(27’)1 — 24+ pm—1 + -1 — ,Uf2m71)
= 5 [2m — 2+ 22mHy, — 4m + 2) — (AmHam, — 8m + 2)]

= 5ty (1+ 2Hy, — 2Hay). (A.2)

Note that for k > 2 we have Ink —In(k — 1) = —In(1 — +) > + + ﬁ, and thus
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If n = 2m is even, then Lemma A.3, (1.5), (1.7), and (1.8) similarly yield

Com(i) > Cop(m) = ﬁ@m — 1+ pm—1 + M — H2m)

2m — 14 2mH,, —4m +2+2(m + 1)H,, — 4m
—(2(2m + 1)Hgy, — 8m)]

= il 4 oH,, — 2Hy,).
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Comparing with (A.2) we find by the estimate above |Coy,(m)| < |Copm—1(m)| < n, and
the result follows. O



Lemma A.5. For n > 1 and U, ~ unif{1,...,n}, the sequence E C,(U,)? is strictly
increasing, and therefore

EC,(U,)? = %Z Co(i)2 < BCW)? = 02/3 = 0.140.
i=1

Proof. We could use Lemma 2.2, Minkowski’s inequality, and numerical calculations by
computer to verify E C,,(U,) < 0.15, but we can do slightly better. Indeed, from the
results in Section 1, one obtains the formula

BCAU) =5 (L4 4~ 4 (14 2) (14 1) BY — 4w, > 1,

From this expression it is simple (if somewhat laborious) to prove increasingness. Fi-
nally, the limiting value of E C,,(U,)? is EC(U)? = 0%/3. O

Lemma A.6. For1 <i<n,

O i) — 21 [(i;1>2+ (”;i>2— 1] > 0.

Proof. Fix n and denote the left-hand side by z;. By (1.5) and (A.1), for 1 <i<n-—1
we have

n2($i+1 —x;) = n(i— i1+ Pn—i-1 — fn—i)
+2n[(i— 1) —i*+ (n—10)® — (n—i—1)°]
= 2nH; —2nH,_; + 2n(2n — 4i)

and thus, for 1 <i<n—2,

?m o 2n(n + 1) 2n(n + 1)
2

N2 (Ti00 — @iy + 1) = - + - —8n=—"—= 8> ——5 -8
(o =2mnt o) = T S = T T g

8n
= — 8 >4—8np>0.
n-+1 n= "

Hence (z;)1<i<n is convex. Moreover z; = p41—4, and thus the minimum is x;, with
io = |(n+1)/2]. Since ig — 1 < n/2 <y,

ig — 1 2+ n — i 2_1 <9 1—1—1—1 — 1y < Culio)
n n = <1 4 4 = 7= Emlbo

by Lemma A.4. Hence x;, > 0 and the result follows. O

2n

Lemma A.7. If1<i<mnand (i—1)/n <u<i/n, then

u(l —u)Cyp(7) < 0.05.



Proof. The left-hand side is not changed if we replace i by n + 1 — 4 and u by 1 — u;
hence we may assume that i < (n+ 1)/2. Moreover if n is odd and i = (n+ 1)/2, then,
by Lemma A.3, Cy, (i) = min; Cy,(j), and since E Cy,(U,,) = 0 when U,, ~ unif{1,...,n},
Cp(7) <0 and the inequality is trivial.

We may thus assume i < n/2. Since u(1—u) is increasing on [0, 1/2], we may further
assume v = i/n. Then, by (2.25),

u(l —u)Ch(i) < u(l—u) (Cu) + 2) <u(l —u)C(u) + 2.

As stated in [1], it can easily be checked numerically that maxg<,<i u(l — u)C(u) <
0.033, and thus u(1 — u)C), (i) < 0.05 follows for n > 45. The cases 1 <1i < n < 44 are
verified numerically. (The maximum value is 591/12005 = 0.0492, obtained for n = 7
and i=1or7.) O

Proof of Theorem A.1. Let U ~ unif(0,1) and, forn > 1, K >0, A € R,

U, = [nU]~unif{l,...,n},
2 2
W, = (U"n_ 1) + (" _nU"> —1<U2+(1-U)%—1=-20U(1-U),
fig(N) = Eexp (ACy(Uy) + KN°W,),
fak(N) = Eexp (A\C,h(Uyn) — 2KNU(1 - U));

note that f} (A) < fox(A).
Suppose now that we have found positive numbers K and L such that

<1, nx1 el (A.3)
Then, by induction, for every n > 0,
EeMr <5 Xelo, L) (A.4)

Indeed, (A.4) is trivial for n = 0, and if n > 1 and EeMm < KN for m <n-—1and
A € [0, L], then by the recursion (1.4), for A € [0, L],

1 & i—1 n—i ,
EeMr = EZEeXp [A{— i1+ — Y;_i—i-Cn(z)H
i=1

n

_ %gexpp\cn(i)] (E exp [A%YHD (E exp [A”; iyn_iD
< %if;expucnw exp {KV (52) ' (n;” }

= E exp [\Co(Un) + KXN*(W,, + 1)]

= V() <Y

Similarly, if f7 ,(X\) <1 for every n > 1 and A € [-L,0], then E M < BN for every
n>1and X € [-L,0].



Thus our goal is to show f,; -(A) <1 for suitable K and A; since f;; () < fo k(N),
it suffices to show f;, x(A) < 1. We follow the argument in [1], omitting many details
which remain the same.

First, a Taylor expansion yields, using Lemma A.5, for 0 < A\ < L,

fog(N) <1+ é)@ <gz - 2K + Lo?iEL f,’{jK(/\)> : (A.5)
Moreover,
"\ = E [((Cn(Un) CAKNU(1 — U))® —12KU(1 — U) (Cp(Uy,) — AKAU(1 — U)))
x exp (ACp(Un) — 2KN°U(1 - U))] . (A.6)
Using Lemma A 4, it follows as in [1] that

L sup f)'x(\) < L(3Kn+3K’L)e".
0<A<L

It is readily checked that for K = 1 and L = 0.42, this is less than 1.547 < 2K — o2,
so (A.5) shows that f,, 1(A) <1 for 0 < A <0.42. Hence (A.3) and thus (A.4) hold with
K =1and L =0.42.

For larger L we use again Lemma A.4 to obtain

Fa(A) < e\)\|Ee—2K)\2U(1—U).
It is shown in [1] that the right-hand side is at most
g (V) = e [1 —exp(=KN?/2)] /(KX /2),

and further that gx(\) < 1if K =12 and 0.42 < A <2, orif K = 2L 2l and 2 < \ <
L. It follows that (A.3) and (A.4) hold for any L > 0 and K = max (12,2L"2¢").
For —L < X\ <0, a Taylor expansion yields [cf. (A.5)]

1
fakN) <1+ =20 —2K+L sup (—fl'c(N) |- (A7)
6 —L<A<0 ’
Moreover, from (A.6) and Lemmas A.4 and A.7, for —L < A < 0 we have

(X)) > (=0 = 12K - 0.05 — 3BK*L)e"".

n

Taking K = 0.5 and L = 0.58, we find

L sup (—flk(N) <0.576 < 2K — o2,
—L<A<0

and thus by (A.7)
Jno05(A) <1, —0.58 < A < 0. (A.8)



Finally, for A < —0.58 we take K = 21/0.58 < 1.34. Then |K\| > 27, and thus, using
Lemma A.6,

ACH(Up) + KXW, < ACp(Un) + 20| AW,

Co(Un) — 21 <<U"n_ 1>2+ (n—nU">2— 1)] <0.

Hence f; x(—A) < 1. (This time we thus use f; ;- instead of f, k.) Combined
with (A.8), this shows that f; ; 3,(A) <1 for all A <0, which completes the proof. [
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