
Remarks to Random Dyadi
 Tilings of the Unit SquareSvante JansonAugust 1, 2001This note 
ontains some further remarks to Random Dyadi
 Tilings of the UnitSquare by Svante Janson, Dana Randall and Joel Spen
er, that were not deemed suitablefor in
lusion in the paper. (Although only one of the authors is reponsible for this note,the help of the other two is a
knowledged.)The note is informal, and not intended for publi
ation.1 Number of edges in the graph TnLet en be the number of edges in the graph Tn (see Se
tion 2 and Problem 2.8). Thuse0 = 0, e1 = 1, e2 = 8, . . . .If n � 2, then the subgraph 
onsisting of tilings with a verti
al 
ut is isomorphi
 toTn�1 � Tn�1 and has 2An�1en�1 edges, the same holds for the subgraph 
onsisting oftilings with a horizontal 
ut, every edge belongs to at least one of these two subgraphs byTheorem 2.3 and the number of edges belonging to both subgraphs equals the number ofedges in Tn�2�Tn�2�Tn�2�Tn�2, whi
h is 4en�2A3n�2. Hen
e, we have the re
ursionformula en = 4An�1en�1 � 4A3n�2en�2; n � 2: (1)This gives for small n the values in Table 1.e1 1e2 8e3 192e4 52000e5 1874325376e6 1210503319261219968e7 251888520933684030206341784482360832e8 5448250438458315814543618408036661448863619847306233051620928065384960Table 1: number of edges in Tn, n = 1; : : : ; 8Let dn := en=An be (half) the average degree. Then the re
ursion formula (1) 
anbe rewritten en = 4dn�1A2n�1 � 4dn�2A4n�21



and thus, see (4.1) and (1.1),dn = 4dn�1pn � 4dn�2(2pn � 1); n � 2:Let xn := 2�ndn. Then x0 = 0, x1 = 1=4, x2 = 2=7, x3 = 12=41, and, by therelations above, xn = 2pnxn�1 � (2pn � 1)xn�2; n � 2:Hen
e, xn � xn�1 = (2pn � 1)(xn�1 � xn�2); n � 2;and thus xn � xn�1 = 14 nYk=2(2pk � 1); n � 1;and �nally xn = 14 nXj=1 jYi=2(2pi � 1)! 
 := 14 1Xj=1 jYi=2(2pi � 1):In other words, dn = 2n�2 nXj=1 jYi=2(2pi � 1) � 
2n;and hen
e, see (1.2), we have the asymptoti
al expressionen � 
2nAn � 
��12n�2n :Sin
e 2pi�1! 2��1�1 = 2��3 = p5�2 = 0:236 � � � , the sum de�ning 
 
onvergesrapidly. Numeri
ally, 
 = 0:2946462157 � � � .2 More latti
e theoryBy a theorem of Birkho�'s, every �nite distributive latti
e is isomorphi
 to the family ofall hereditary subsets (down-sets) in some �nite partially ordered set, whi
h is uniqueup to isomporphism. (The 
onverse holds too, and this de�nes a bije
tion betweensets of isomorphism 
lasses of �nite distributive latti
es and �nite posets.) The heightfun
tion (in our 
ase H(T )=2) is the 
ardinality of the 
orresponding hereditary subset,and thus the diameter of the latti
e equals the 
ardinality of the poset.It follows by indu
tion and the re
ursive 
onstru
tion of Tn as the union of thetwo (overlapping) subsets of tilings with a horizontal or verti
al 
ut, respe
tively, thatthe partially ordered set for the latti
e Tn looks like a n-dimensional truss. It hasn2n�1 elements, 
f. Corollary 2.7, and 
an be realized as follows: Take the produ
t setf1; : : : ; ng � f0; 1gn�1, and de�ne (i + 1; x1; : : : ; xn�1) > (i; y1; : : : ; yn�1) if xj = yj forevery j 6= i (but xi and yi are arbitrary). Take the transitive 
losure.(Thanks to Anders Bj�orner for helpful remarks.)2



3 Path 
oupling, a remarkA
tually, the �rst 
eiling in the 
on
lusion of Theorem 5.4 is not ne
essary, but [2℄ hasit, so its simplest to keep it.4 Comparison methodTheorem 5.8 is a slight modi�
ation of a theorem in [3℄. Here is a detailed proof.Theorem (5.8). Let (P; �;
) and ( eP ; �;
) be two reversible Markov 
hains su
h thateP (x; y) 6= 0 implies P (x; y) 6= 0 for all x; y 2 
. Let �� = minx2
 �(x). Then, for0 < � < 1=2, �(�) � 4 ln(1=(���))Amax� e�(�)ln(1=2�) ; 1�; (2)where A = maxx6=y; eP (x;y)>0 eP (x; y)P (x; y) :Proof. The argument in [3℄ yields that �1 < 1=2 or1� �1 � 14e�(�) log(1=2�)and thus always 1� �1 � min� 14e�(�) log(1=2�); 12�:Moreover, sin
e we only use paths of length 1, whi
h is odd, the same argument butusing Theorem 2.2 in [1℄ shows that the same estimate holds for 1 + �j
j�1. Thus theresult holds by [3, Theorem 1(i)℄.Remark. Although we do not need it, the 
onstant 4 in (2) 
an be repla
ed by 2 bythe following sharpening of [3, Theorem 1(ii)℄.Theorem 1. Let �� = max(j�1j; j�
�1j). For 0 < � < 1, we havemaxx �x(�) � ��1� �� log� 12��:Proof. Let Lp denote Lp(
; �), let P denote the operator on these spa
es (whi
h 
oin
ideas ve
tor spa
es but have di�erent norms) de�ned by Pf(x) =Py P (x; y)f(y) and let Qdenote the operator de�ned by Qf(x) =Py �(y)f(y); then P is a self-adjoint operatoron L2 and Q is the orthogonal proje
tion onto the spa
e of 
onstant fun
tions.Sin
e P �Q is self-adjoint, the operator norm in L2 of P t �Q = (P �Q)t is givenby kP t �QkB(L2) = k(P �Q)tkB(L2) = �t�: (3)
3



On the other hand, it is easily seen that the operator norm in L1 and in L1 bothare given bykP t �QkB(L1) = kP t �QkB(L1) = maxx Xy jP t(x; y)� �(y)j = 2maxx �x(t):(That these two norms are equal follows also be
ause the operator is self-adjoint.)Hen
e, if t = maxx �x(�), we havekP t �QkB(L1) = kP t �QkB(L1) � 2�:By interpolation (in this 
ase spe
ial 
ase due to S
hur (1911) and known as S
hur'slemma), this implies kP t �QkB(L2) � 2�and the result follows by (3) and log(1=��) � 1=�� � 1.5 A non-uniform random tilingWe have shown that Algorithm 4.1 generates uniformly distributed random tilings inTn. Evidently, one 
an also produ
e random tilings in Tn by the following simpleralgorithm: Make a verti
al or horizontal 
ut, with probability 1=2 ea
h, and 
ontinuere
ursively in ea
h half (independently) n levels. This method, however, does not givea uniformly distributed tiling when n � 2. For example, the probability of obtainingthe all horizontal tiling eT0 is 2�(2n�1) � A�1n .This simpler method is equivalent to 
hoosing a random labeling of the 
ompletebinary tree with H and V (or A and D) uniformly among all 22n�1 possibilities withoutany restri
tions, and 
onstru
ting the 
orresponding tiling as in Se
tion 3.It might be interesting to study properties of su
h non-uniform random tilings too.We give only a few simple remarks.A bran
hing pro
ess argument, similar to the one in Se
tion 6.2 but now with a
riti
al bran
hing pro
ess, shows that for the random tiling generated by this pro
e-dure, P(there is a verti
al 
ut) ! 1 as n ! 1, in 
ontrast to (4.1). By symmetry,P(there is a horizontal 
ut)! 1 too, and hen
e P(there is a strut)! 0.For the total height we now �nd easily from (6.4) that, with the same normalization(6.1), ~Hn d! ~H 01, where ~H 01 = 1Xk=1 2k�1Xj=1 2�kYkjwith Ykj independent random variables with P(Ykj = �1) = 12 . Hen
e, Var ~H 01 = 12and the moment generating fun
tion is given byE ez ~H01 = 1Yk=1(
osh(2�kz))2k�1 :Problems. Re
alling the minimum height hmin from Problem 6.6, it is not diÆ
ult toshow that for the non-uniform model hmin p!1. How fast? What is Ehmin? Does hminhave an asymptoti
 distribution after normalization? If so, what is it?4
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