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This note contains some further remarks to Random Dyadic Tilings of the Unit
Square by Svante Janson, Dana Randall and Joel Spencer, that were not deemed suitable
for inclusion in the paper. (Although only one of the authors is reponsible for this note,
the help of the other two is acknowledged.)

The note is informal, and not intended for publication.

1 Number of edges in the graph T,

Let e, be the number of edges in the graph T}, (see Section 2 and Problem 2.8). Thus
60:0, 61:1, 62:8,

If n > 2, then the subgraph consisting of tilings with a vertical cut is isomorphic to
Tyn-1 X Ty—1 and has 24,,_1e,_1 edges, the same holds for the subgraph consisting of
tilings with a horizontal cut, every edge belongs to at least one of these two subgraphs by
Theorem 2.3 and the number of edges belonging to both subgraphs equals the number of
edges in Ty, o X T, 9 X T}, 9 X T}, o9, which is 4en,2A%72. Hence, we have the recursion
formula

en =44, 1en-1 — 4A§172en,2, n > 2. (1)

This gives for small n the values in Table 1.

€1 1
€2

es 192
e4 52000
es 1874325376
€6 1210503319261219968
er 251888520933684030206341784482360832
es | 5448250438458315814543618408036661448863619847306233051620928065384960

Table 1: number of edges in 7,, n=1,...,8

Let d,, := e, /A, be (half) the average degree. Then the recursion formula (1) can
be rewritten
en == 4d’l’L*1Ai—1 - 4d’l’L*2Ai—2



and thus, see (4.1) and (1.1),
dn = 4dn71pn - 4dn72(2pn - ]-)7 n > 2.

Let z, := 27"d,. Then zy = 0, z; = 1/4, zo = 2/7, z3 = 12/41, and, by the
relations above,

Ty = 2ppTn—1 — (2pn — Dxp_9, n > 2.
Hence,
Ty — Tn—1 = 2pp — 1) (Tp-1 — Tp—2), n>2,
and thus o
fEn_fEnfl:iH(ka_l)v n>1,
k=2
and finally

In other words,

n J
do=2"2% []2pi—1) ~ 2",

j=1i=2

and hence, see (1.2), we have the asymptotical expression
n —1lon 2™
en ~y2" Ap ~ T 2% .

Since 2p;—1 = 26~ —1 =2¢$—3 = v/5—2 = 0.236- - -, the sum defining v converges
rapidly. Numerically, v = 0.2946462157 - - - .

2 More lattice theory

By a theorem of Birkhoff’s, every finite distributive lattice is isomorphic to the family of
all hereditary subsets (down-sets) in some finite partially ordered set, which is unique
up to isomporphism. (The converse holds too, and this defines a bijection between
sets of isomorphism classes of finite distributive lattices and finite posets.) The height
function (in our case H(T')/2) is the cardinality of the corresponding hereditary subset,
and thus the diameter of the lattice equals the cardinality of the poset.

It follows by induction and the recursive construction of 7, as the union of the
two (overlapping) subsets of tilings with a horizontal or vertical cut, respectively, that
the partially ordered set for the lattice 7T, looks like a n-dimensional truss. It has
n2"~! elements, cf. Corollary 2.7, and can be realized as follows: Take the product set
{1,...,n} x {0,1}""1, and define (i + 1,71,...,2n—1) > (i,Y1,...,Yn—1) if z; = y; for
every j # i (but z; and y; are arbitrary). Take the transitive closure.

(Thanks to Anders Bjorner for helpful remarks.)



3 Path coupling, a remark

Actually, the first ceiling in the conclusion of Theorem 5.4 is not necessary, but [2] has
it, so its simplest to keep it.

4 Comparison method

Theorem 5.8 is a slight modification of a theorem in [3]. Here is a detailed proof.

Theorem (5.8). Let (P, m,Q) and (P,7,Q) be two reversible Markov chains such that

P(z,y) # 0 implies P(z,y) # 0 for all z,y € Q. Let m, = mingeqn(x). Then, for
0<e<1/2,

7(e) < 41n(1/(en*))Amax(%, 1), 2)
where _
A= max P(z,y) O

x#y,P(x,y)>0 P(l‘, y) .
Proof. The argument in [3] yields that A\; < 1/2 or
1—X > ; log(1/2€)
47 (€)
and thus always

1—X > min(%(e) log(1/2€), %)

Moreover, since we only use paths of length 1, which is odd, the same argument but
using Theorem 2.2 in [1] shows that the same estimate holds for 1 + A\jq|_;. Thus the
result holds by [3, Theorem 1(i)]. O

Remark. Although we do not need it, the constant 4 in (2) can be replaced by 2 by
the following sharpening of [3, Theorem 1(ii)].

Theorem 1. Let A, = max(|A1],|Aq—1]|). For 0 < e <1, we have

Ak 1

m;}xrx(e) > = log<2—€>.
Proof. Let LP denote LP(2, ), let P denote the operator on these spaces (which coincide
as vector spaces but have different norms) defined by Pf(z) =>_, P(z,y)f(y) and let Q
denote the operator defined by Qf(z) = Zy 7(y) f(y); then P is a self-adjoint operator

on L? and Q is the orthogonal projection onto the space of constant functions.
Since P — @ is self-adjoint, the operator norm in L? of P! — Q = (P — Q)" is given

by

||Plt - Q||B(L2) =P - Q)tHB(L2) = Ai- (3)



On the other hand, it is easily seen that the operator norm in L' and in L*™ both
are given by

IP' = Qllpws) = IP' = Qllpguoe) = max Y [P (w,) = m(y)| = 2max Aq ().
Yy

(That these two norms are equal follows also because the operator is self-adjoint.)
Hence, if ¢ = max, 7,.(¢), we have

1P = Qllpry = 1P = Qllpr=) < 2e.

By interpolation (in this case special case due to Schur (1911) and known as Schur’s
lemma), this implies

1P — Qllpr2y < 2e
and the result follows by (3) and log(1/\:) < 1/A, — 1. O

5 A non-uniform random tiling

We have shown that Algorithm 4.1 generates uniformly distributed random tilings in
Tn. Evidently, one can also produce random tilings in 7, by the following simpler
algorithm: Make a vertical or horizontal cut, with probability 1/2 each, and continue
recursively in each half (independently) n levels. This method, however, does not give
a uniformly distributed tiling when n > 2. For example, the probability of obtaining
the all horizontal tiling Ty is 2=(2" 1) <« A1,

This simpler method is equivalent to choosing a random labeling of the complete
binary tree with H and V' (or A and D) uniformly among all 22" ~! possibilities without
any restrictions, and constructing the corresponding tiling as in Section 3.

It might be interesting to study properties of such non-uniform random tilings too.
We give only a few simple remarks.

A branching process argument, similar to the one in Section 6.2 but now with a
critical branching process, shows that for the random tiling generated by this proce-
dure, P(there is a vertical cut) — 1 as n — oo, in contrast to (4.1). By symmetry,
P (there is a horizontal cut) — 1 too, and hence P(there is a strut) — 0.

For the total height we now find easily from (6.4) that, with the same normalization
(6.1), H, LN H'_, where

00 ok—1
H, =YY 27y,
k=1 j=1
with Yj,; independent random variables with P(Y;; = +1) = +. Hence, Var H = :
and the moment generating function is given by
- o0
E e/ = [](cosh(27*2))
k=1

ok—1

Problems. Recalling the minimum height Api, from Problem 6.6, it is not difficult to
show that for the non-uniform model A 2 00. How fast? What is E hmin? Does Amin
have an asymptotic distribution after normalization? If so, what is it?
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