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Abstract. We use a notion of stochastic time, here called volatility
time, to show convexity of option prices in the underlying asset if the
contract function is convex as well as continuity and monotonicity of the
option price in the volatility.

1. Introduction

In this article we will announce some of the results of [J-T]. Consider the
spot price S of some asset following the risk neutral process

dS = Sσ(S, t) dB, (1)

with initial condition St = s, where B is a Brownian motion and σ is the
volatility of S. We here compute the price with respect to some suitable
numeraire process, for instance the price of a zero coupon bond, maturing
at some future time T , to avoid the drift in the process for S associated with
interest rates. We are interested in general properties of prices of simple
contingent claims maturing at T . The arbitrage free price of a simple claim
with contract function Φ is given by

F (s, t) = Es,t[Φ(ST ], (2)

according to [B-S]. In [B-G-W] it is shown that the price F (s, t) is a convex
function of s if Φ is a convex function. From the Black–Scholes equation

Ft +
1
2
s2σ2(s, t)Fss = 0, (3)

corresponding to (2) through the Feynman–Kac stochastic representation
formula, it follows that the convexity of F in s is equivalent to F decaying
with time when the price of the underlying asset is constant. In [B-G-W] it
is also shown that the price F is monotonic in the volatility. However, the
arguments presented in [B-G-W] for these results require the volatility to be
a differentiable function of the underlying asset price.

Below we state the generalization of the results above to volatilities that
are not even continuous in time and only satisfy a local Hölder(1/2) condi-
tion in s. We believe that these conditions, especially the lack of continuity
assumption in t, are natural in applications as well as mathematically satisfy-
ing. To obtain these results, we use the standard fact that a local martingale
can be represented as a time-change of a Brownian motion. In our context,
this entails defining a notion of stochastic time for risky assets which we
refer to as volatility time. Its aim is to reduce the study of price processes
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modelled by local martingales in the form (1) to the study of Brownian mo-
tion. This stochastic time has also been used by D. Hobson in [Ho] in the
same context. However, in [Ho], existence and uniqueness of volatility time,
which is needed in these applications, is assumed to hold without further
discussing conditions for this. In [J-T] we find very general conditions un-
der which the volatility time exists uniquely. The methods used to prove
these results are also very general in nature, and we believe they can be of
independent interest in the study of stochastic differential equations. From
these arguments we are also able to establish the continuity of the option
price in the volatility, a result which we have not seen elsewhere. The ques-
tion of the continuity of option prices under perturbations of the volatility
is of obvious interest in applications. A related reference, where the relation
between options prices and volatility is treated, especially in the context of
hedging, is [K-J-S].

2. Applications to option pricing

Assume that σ(s, t) is measurable on (0,∞) × [t0,∞) and that for some
constant C and all s ∈ (0,∞) and t ≥ t0,

σ(s, t) ≤ C(1 + s−1). (4)

We also assume that the following local Hölder(1/2) condition is satisfied:
for every K > 0, there exists a constant CK such that

|σ(s1, t)− σ(s2, t)| ≤ CK |s1 − s2|1/2 (5)

when s1, s2 ∈ [K−1,K] and |t| ≤ K.
In our first application we compare option prices at two different times.

Theorem 1. Let σ be as above and let t0 ≤ t1 ≤ t2 ≤ T . Let S
(1)
t and S

(2)
t

be solutions to
dSt = Sσ(St, t) dBt,

where B is a Brownian motion, with S
(1)
t1

= s0 = S
(2)
t2

. Assume that 0 is an

absorbing state for S
(1)
t and S

(2)
t . Finally, let Φ be a convex function. Then

EΦ(S(1)
T ) ≥ EΦ(S(2)

T ).

We note that interpreting S as a price process with volatility σ(S, t) we
have, in view of equation (2), that option prices with convex contract func-
tions decay with time, or in view of equation (3), that the price is convex as
a function of the price of underlying asset. As noted above, this has earlier
been proved by [B-G-W] and [Ho] under somewhat different conditions.

We also have the following result concerning the continuity of option prices
under perturbation of the volatility.

Theorem 2. Suppose that σ and σ1, σ2, . . . , satisfy the conditions above
uniformly and suppose that

σn(s, t) → σ(s, t),

as n →∞ for all s > 0 and t. Let St and S
(n)
t be solutions to

dSt = Stσ(St, t) dBt, dS
(n)
t = S

(n)
t σn(S(n)

t , t) dBt



VOLATILITY TIME AND OPTION PRICES 3

with St0 = S
(n)
t0

= s0. Assume that 0 is an absorbing state for St and S
(n)
t .

Let T ≥ t0. Then S
(n)
T converges in distribution to ST as n tends to infinity.

Further, if Φ is a continuous function with |Φ(s)| ≤ C1(1 + s)k for some C1

and k < ∞, then
EΦ(S(n)

T ) → EΦ(ST ).

Using the results on volatility time we can also show the following mono-
tonicity result for option prices in the volatility.

Theorem 3. Suppose that σ and σ̃ satisfy the conditions above and that
σ(s, t) ≤ σ̃(s, t) for all s > 0 and t. Let St and S̃t be solutions to

dSt = Stσ(St, t) dBt, dS̃t = S̃σ̃(S̃t, t) dBt

with S0 = S̃0 = s0. If T ≥ t0 and Φ is a convex function, then

EΦ(ST ) ≤ EΦ(S̃T ).
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