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Abstract. A functional limit theorem is proved for multitype continu-
ous time Markov branching processes. As consequences, we obtain limit
theorems for the branching process stopped by some stopping rule, for
example when the total number of particles reaches a given level.

Using the Athreya–Karlin embedding, these results yield asymptotic
results for generalized Pólya urns. We investigate such results in detail
and obtain explicit formulas for the asymptotic variances and covari-
ances. The general formulas involve integrals of matrix functions; we
show how they can be evaluated and simplified in important special
cases. We also consider the numbers of drawn balls of different types
and functional limit theorems for the urns.

We illustrate our results by some examples, including several appli-
cations to random trees where our theorems and variance formulas give
simple proofs of some known results; we also give some new results.

1. Introduction

Consider a generalized Pólya urn process (Xn)∞n=0 defined as follows.
(This process is also known as a generalized Pólya–Eggenberger urn or a
generalized Friedman urn, cf. [17], [47], [19].) There are balls of q types (or
colours) 1, . . . , q, and each Xn is a vector (Xn1, . . . , Xnq), where Xni ≥ 0 is
the number of balls of type i in the urn at time n. The urn starts with a given
vector X0, random or not. We are further given, for each type i, an activity
(or weight) ai ≥ 0 (typically ai = 1, but sometimes different ai are useful
[2]; we will even find use for ai = 0), and a random q-dimensional vector
ξi = (ξi1, . . . , ξiq) with integer coordinates. (Actually, only the distribution
of ξi matters.) We usually further assume that, almost surely,

ξij ≥ 0, j 6= i, (1.1)

ξii ≥ −1. (1.2)

(Relaxation of these requirements, allowing further negative values, will be
discussed in Remark 4.2.) The urn evolves according to a Markov pro-
cess. At each time n ≥ 1, one of the balls in the urn is drawn at random
such that the probability of drawing a particular ball of type i is propor-
tional to the activity ai, i.e. the probability of drawing a ball of type i
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is aiXn−1,i/
∑

j ajXn−1,j . (In particular, if every ai = 1, a ball is drawn
uniformly at random.) The drawn ball is returned to the urn together with
∆Xnj balls of type j, for each j = 1, . . . , q, where ∆Xn = (∆Xn1, . . . ,∆Xnq)
is a random vector such that if the drawn ball has type i, then ∆Xn has
the same distribution as ξi and is independent of everything else that has
happened so far. (In many applications, the replacement vectors ξi are deter-
ministic and the randomness enters solely through the the random draws.)

Note that (1.1) means that we may add but never remove balls of other
types than the drawn one, while (1.2) means that ∆Xni = −1 is allowed
when i is drawn, meaning that the drawn ball is removed (with or without
addition of balls of other types). Indeed, the rule above may also be stated
as: The drawn ball is removed and, if it had type i, we add a number
of new balls with the distribution of (ξij + δij)

q
j=1. This is often a more

natural formulation, and explains (1.2) better. Note that, in both versions,
ξi describes the change in the composition of the urn when a ball of type i
is drawn.

If the urn ever becomes empty, or, more generally, there are no balls with
non-zero activity left, the process stops (extinction). We are only interested
in urns where there is a positive probability of non-extinction, and our main
goal is to describe the asymptotics of the urn conditioned on non-extinction.
Indeed, in typical applications extinction cannot occur at all.

For some specific examples and applications, see Section 7.
Urn models of this type have been studied by many authors, including

[13], [14], [49], [19], [18], [8], [9], [30], [10], [20], [51], [11], [35], [12].
We will use the method of Athreya and Karlin [8], see also [9, §V.9], and

study the urn process by embedding it into a multitype continuous time
Markov branching process X (t) =

(
X1(t), . . . ,Xq(t)

)
. This process is defined

using the same data ai and ξi, i = 1, . . . , q, as above and an initial vector
X (0) = X0. In this process we assume that a ball (particle) of type i lives an
exponentially distributed time with mean a−1

i , i.e. it dies with intensity ai,
and when it dies, it is replaced by a set of balls with the distribution given
by (ξij +δij)

q
j=1, all life times and offspring compositions being independent.

Alternatively, when ξii ≥ 0 a.s., the ball lives for ever and at random times
according to a Poisson process with intensity ai, it gives birth to a new litter
of balls with the distribution given by ξi. (Unfortunately, the embedding is
exemplified in [8] and [9] only with urn processes where the drawn ball is
returned, which in our notation means ξii ≥ 0. It is clear from [8], [9] that
the results hold also when the drawn ball is removed, as observed in e.g.
[10], [2], but some authors have overlooked this.) We assume throughout
that all variables ξi have finite mean (and variance, see (A2) below); this is
sufficient to prevent explosion and guarantees that the process X (t) exists
for all t ≥ 0 [9, §V.7]. We define X (t) to be right-continuous.

Let τ0 = 0, and let τn, n ≥ 1, be the n:th time a ball dies (splits). It
is easily shown [8], [9] that the process (X (τn))∞n=0 equals (in distribution)
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(Xn)∞n=0; hence limit theorems for Xn can be derived from limit theorems
for X (t). The processes X (t), t ≥ 0, and Xn, n ≥ 0, are the same up to a
random time change (extending the parameter n to real values). However,
since X (t) grows exponentially (Lemma 9.8), the time scales are different.

In several applications, see e.g. Examples 7.5 and 7.8, urn processes not
satisfying (1.1) and (1.2) appear. Although the embedding method by
Athreya and Karlin does not apply directly, it can be modified to handle
this case too, in at least two ways. First, in many cases, it is possible to
transform the urn process into a different urn process satisfying the condi-
tions above, using a “superball” argument, see Remark 4.2. Secondly, even
if ξij are arbitrary integers, but we for simplicity assume that they are such
that the process never gets stuck, it is possible to define the corresponding
continuous time process; this is a generalized branching process where the
death of one ball may force the removal of others (like the ancient practices
of sacrificing slaves or burning widows), and under appropriate conditions,
the results extend to this case too. For simplicity, we nevertheless assume
(1.1) and (1.2) in the main parts of the paper, and discuss these extensions
in Remark 4.2 and some examples.

Our main results are stated in Section 3; we first introduce some notation
and basic assumptions in Section 2. Some extensions, and problems for
future research, are discussed in Section 4. We aim at directly applicable
results where, in the case of normal limits, the asymptotic variances and
covariances are given explicitly, by formulas computable using linear algebra.
The formulas in Section 3 are given by integrals. Some simplifications and
evaluations of the formulas in important special cases are given in Section 5;
see also the examples in Section 7. We discuss how our results and methods
relate to some previous papers in Section 6.

In Section 7, we give some examples and applications of our results. In
particular, urn processes have been used by several authors to study various
classes of random trees, see e.g. the “fringe analysis” in [2]. We review
several such applications and show how some old (and a few new) results
follow easily from our theorems. See also [29], which may serve as an easier
introduction to such applications. Finally, the proofs of the main results are
given in Sections 8–10.

Acknowledgements. This research was begun more than ten years ago,
inspired by a talk by Hosam Mahmoud at a conference on Random Graphs in
Poznań 1991; I thank Hosam Mahmoud and others for interesting discussions
over the years. The research has partly been carried out during visits to
the Mittag-Leffler Institute in Djursholm, Sweden and the Isaac Newton
Institute for Mathematical Sciences in Cambridge, U.K.

2. Preliminaries

We let A denote the q × q matrix

A := (aj E ξji)q
i,j=1. (2.1)
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The matrix A and its eigenvalues will play a central role.
Note our choice of notation; in the main case when aj = 1, Aij = E ξji and

the j:th column of A is the expected change when a ball of type j is drawn
(splits). It may seem more natural to consider the transpose A′, and this is
done by other authors (which should be remembered when comparing the
results). The reason for our choice is that we will use the standard notation
where a matrix is regarded as an operator acting on column vectors to the
right. (In contrast to the standard notation for Markov chains, where the
transition matrix acts on row vectors to the left.)

By (1.1), A + αI is a non-negative matrix if α is large enough, so by
the standard Perron–Frobenius theory, A has a largest real eigenvalue λ1

such that every other eigenvalue λ satisfies Reλ < λ1 (see e.g. [50, Chapter
1 and Theorem 2.6] or [32, Appendix 2]). We order the eigenvalues with
decreasing real parts: λ1 > Reλ2 ≥ Reλ3 ≥ . . . .

We write i � j if it is possible to find a ball of type j in an urn beginning
with a single ball of type i, i.e. if (An)ji > 0 for some n ≥ 0. The relation �
is transitive and reflexive, so it partitions the set of all types into equivalence
classes C1, . . . , Cν such that i and j belong to the same class if and only if
i � j and j � i; moreover, � induces a partial order among the equivalence
classes. We say that a type i is dominating if i � j for every type j; similarly
a class Ck is dominating if some (and then every) i ∈ Ck is dominating.

Note that if we order the classes suitably, and take the types in this
order, A becomes a block triangular matrix, see [34] for a detailed treatment.
Hence the set of eigenvalues of A (with multiplicities) is the union of the
sets of eigenvalues of the restrictions of A to the classes Ck; we say that an
eigenvalue belongs to a class if it is an eigenvalue of the restriction of A to
this class.

The urn or branching process (or A) is irreducible (or positive regular,
which is equivalent in continuous time) if there is only one equivalence class,
i.e. if i � j for any types i and j; equivalently, every type is dominating.

We are mainly interested in the irreducible case, but for an important
technical reason, see for example the proof of Theorem 3.16, we will state
our results somewhat more generally.

Our basic assumptions are as follows (but see Remark 4.2):

(A1) (1.1) and (1.2) hold, i.e. ξij + δij ≥ 0 a.s. for all i and j.
(A2) E ξ2ij <∞ for all i, j = 1, . . . , q.
(A3) The largest real eigenvalue λ1 of A is positive, λ1 > 0.
(A4) The largest real eigenvalue λ1 is simple.
(A5) There exists a dominating type i with X0i > 0 (X (0)i > 0), i.e. we

start with at least one ball of a dominating type.
(A6) λ1 belongs to the dominating class.

We assume that the classes are ordered so that C1 is the dominating class.
(A1) is already discussed. (A2) is essential since we use L2 theory. (A3)

says that the branching process X (t) is supercritical, and implies that X (t),
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and thus Xn, has a positive probability of non-extinction. (Non-extinction
is also possible in some exceptional cases with λ1 = 0, for example when
the balls always have exactly one child, and thus change type according to
a Markov chain. We do not treat these cases.)

Note that (A4), (A5) and (A6) hold when A is irreducible [32], [50]. In the
reducible case, (A5) is only a weak restriction; if we consider a case with a
single ball initially, we may ignore all types that cannot occur and then (A5)
holds. (A4) and (A6) are more significant restrictions; see [34] (which treats
the related case of multitype Galton–Watson processes in discrete time) or
[35] for some complications that otherwise can occur.

We say that the process becomes essentially extinct if at some time there
are no balls of any dominating type left. Note that if we restrict attention to
the balls of the dominating types, we have an irreducible multitype Galton–
Watson process, and essential extinction means that this restricted process
becomes extinct. For irreducible processes (our main concern), essential
extinction is thus the same as extinction.

For most applications, the following lemma yields convenient criteria (pos-
sibly combined with Remark 4.2).

Lemma 2.1. If A is irreducible, (A1) and (A2) hold,
∑

j E ξij ≥ 0 for
every i and

∑
j E ξij > 0 for some i, then (A1)–(A6) hold and (essential)

extinction is impossible.

Proof. The conditions imply that the total number of balls never decreases,
which guarantees non-extinction. Since the process is irreducible, this is the
same as essential non-extinction. We have already remarked that (A4)–(A6)
hold when A is irreducible. Finally, it is easy to see that the conditions imply
(A3), cf. [50, Theorem 1.1, Corollary 1]. �

We collect various facts and notations that will be used throughout the
paper, usually without further comment.

We will often regard A and other matrices as linear operators in Rq or Cq,
or in some invariant subspace thereof. In this context, vectors in Cq, in par-
ticular Xn and X (t), are always regarded as column vectors. Consequently,
by an eigenvector of A we mean a right eigenvector; a left eigenvector is the
same as an eigenvector of the transpose matrix A′.

Note that if u and v are vectors in Cq, then u′v is a scalar while uv′ is a
q × q matrix. We also use the notation u · v for u′v.

We use | · | for the norm of both vectors and matrices. (The choice of
matrix norm is irrelevant.)

We let a denote the (column) vector (a1, . . . , aq) of activities, and let u1

and v1 denote left and right eigenvectors of A corresponding to the largest
eigenvalue λ1, i.e. vectors satisfying

u′1A = λ1u
′
1, Av1 = λ1v1.
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By (A4) u1 and v1 are unique up to scalar factors, and by the Perron–
Frobenius theory [32], [50], (applied to A+ αI for suitable α), they may be
chosen non-negative.

If the process is irreducible, all entries of u1 and v1 are strictly positive
[32], [50]. In general, it follows easily from this result applied to the restric-
tion to the dominating class C1 together with (A6) that v1i > 0 for every i
while u1i > 0 if i ∈ C1 (i.e., i is dominating) and u1i = 0 otherwise.

The scalar products u1 · v1 and a · v1 thus are both positive, and we may
assume that v1 and u1 are normalized such that

a · v1 = a′v1 = v′1a = 1, (2.2)

u1 · v1 = u′1v1 = v′1u1 = 1. (2.3)

This determines u1 and v1, and we fix this choice of u1 and v1 throughout
the paper. (Otherwise, obvious normalization factors would enter into some
formulas.)

We will use the Jordan decomposition of the matrix A in the following
form, see e.g. [46, Theorem 7.6]: There exists a decomposition of the complex
space Cq as a direct sum

⊕
Eλ of generalized eigenspaces Eλ, such that A−λ

is a nilpotent operator on Eλ; here λ ranges over the set Λ of eigenvalues
of A. (A− λ denotes A− λI, where I is the identity matrix of appropriate
size.) In other words, there exist projections Pλ, λ ∈ Λ, that commute with
A and satisfy ∑

λ∈Λ

Pλ = I, (2.4)

APλ = PλA = λPλ +Nλ, (2.5)

where Nλ = PλNλ = NλPλ is nilpotent. Moreover, PλPµ = 0 when λ 6=
µ. We let dλ ≥ 0 be the integer such that Ndλ

λ 6= 0 but Ndλ+1
λ = 0.

(Equivalently, in the Jordan normal form of A, the largest Jordan block
with λ on the diagonal has size dλ +1.) Hence dλ = 0 if and only if Nλ = 0,
and this happens for all λ if and only if A is diagonalizable, i.e. if and only
if A has a complete set of q linearly independent eigenvectors.

Note, by taking transposes in (2.4) and (2.5), that P ′
λ and N ′

λ are the
corresponding projections and nilpotent operators for A′.

We define, for k = 0, 1, . . . , the quotient space Eλ,k := Eλ/N
k+1
λ Eλ and

the projection Qλ,k : Eλ → Eλ,k, noting that Eλ,dλ
= Eλ and Qλ,dλ

= I.
Then Nλ : Eλ → Eλ induces a map Nλ : Eλ,k → Eλ,k+1, and if 0 ≤ j ≤ k,

N j
λQλ,k−j = Qλ,kN

j
λ : Eλ → Eλ,k. (2.6)

Since we assume that λ1 is a simple eigenvalue, Nλ1 = 0 and dλ1 = 0, and
Pλ1 is the one-dimensional projection

Pλ1 = v1u
′
1. (2.7)

In the sequel, λ will always denote an eigenvalue of A. (Formally, the
results hold for other λ too if we then set Pλ = Nλ = 0.)
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We recall that matrix exponentials may be defined by power series; for
example etA =

∑∞
j=0 t

jAj/j!. We have, using (2.5) and commutativity,

Pλe
tA = etAPλ = Pλ

∞∑
j=0

tj

j!
(PλA)j = Pλe

tPλA = Pλe
λtPλ+tNλ

= Pλe
λtPλetNλ = Pλe

λt
dλ∑

j=0

tj

j!
N j

λ

(2.8)

and thus, by (2.4),

etA =
∑

λ

dλ∑
j=0

tj

j!
eλtPλN

j
λ. (2.9)

Some immediate consequences are

|Pλe
tA| ≤ C(1 + |t|)dλeRe λt, −∞ < t <∞, (2.10)

and more generally, for 0 ≤ k ≤ dλ,

|Qλ,kPλe
tA| ≤ C(1 + |t|)keRe λt, −∞ < t <∞, (2.11)

and, using (A4),
|etA| ≤ Ceλ1t, 0 ≤ t <∞, (2.12)

where, as sometimes later, C denotes unspecified constants that may depend
on the data q, ai, ξi, X0.

As is well-known since decades [33], [5], [6], the asymptotic behavior de-
pends on whether there is any eigenvalue beside λ1 with a real part > λ1/2.
We thus define ΛI := {λ ∈ Λ : Reλ < λ1/2}, ΛII := {λ ∈ Λ : Reλ = λ1/2},
ΛIII := {λ ∈ Λ : Reλ > λ1/2}; hence Λ is the disjoint union ΛI ∪ΛII ∪ΛIII .
We further define PI :=

∑
λ∈ΛI

Pλ, the projection onto the sum of the gen-
eralized eigenspaces with Reλ < λ1/2.

For later use, we define the following matrices.

Bi := E(ξiξ′i), (2.13)

B :=
q∑

i=1

v1iaiBi, (2.14)

ΣI :=
∫ ∞

0
PIe

sABesA
′
P ′

Ie
−λ1s ds, (2.15)

ΣII :=
∑

λ∈ΛII

PλBP
′
λ̄ =

∑
λ∈ΛII

PλBP
∗
λ , (2.16)

ΣII,d :=
1

(2d+ 1)d!2
∑

λ∈ΛII

Nd
λPλBP

∗
λ (N∗

λ)d, (2.17)

where ∗ denotes Hermite conjugation and d = 0, 1, . . . ; thus ΣII,0 = ΣII .
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Remark 2.2. Let ξ∗ be the random vector obtained by choosing ξi for
a random type i, with the probability aiv1i for type i. It follows from
Theorem 3.21 below that this is the asymptotic distribution of the drawn
types; thus ξ∗ is the asymptotic distribution of the added balls.

Then (2.14) says B = E ξ∗ξ′∗. Since, E ξ∗ =
∑q

i=1 v1iai E ξi and, by (2.1),
q∑

i=1

v1iai E ξi =
( q∑

i=1

v1iai E ξij
)q

j=1
=

( q∑
i=1

v1iAji

)q

j=1
= Av1 = λ1v1,

(2.18)
the covariance matrix of ξ∗ is given by

B̂ := E ξ∗ξ′∗ − E ξ∗ E ξ′∗ = B − λ2
1v1v

′
1.

Not surprisingly, this quantity will appear below. Indeed, since Pλv1 =
0 when λ 6= λ1, we may replace B by B̂ in (2.15)–(2.17); this might be
conceptually better, but we prefer B for computations.

We state our results on convergence of stochastic processes using the usual
function space D of right-continuous functions with left-hand limits, always
equipped with the Skorohod J1-topology. Our processes will, however, be
defined on several different intervals, so we will use several versions of D; we
will also consider vector-valued processes. In general, for a finite-dimensional
vector space E and any (open, closed or half-open) interval J ⊆ [−∞,∞],
we let D(J) = D(J,E) be the space of all right-continuous functions J → E
with left-hand limits. We say that fn → f in D if there exists strictly
increasing continuous maps λn of J onto itself such that λn → ι (the identity
map) and fn ◦ λn → f uniformly on compact subsets of J . When f is
continuous, this is equivalent to fn → f uniformly on compact subsets of J .
It is well-known that this topology is Polish, i.e. defined by some complete
metric. (The case J = [0, 1] is discussed in detail in [15], and the case
J = [0,∞) in [37], [24]. See also [27].) Note that both the space and the
topology are changed if we add or remove an endpoint of J . If Zn

d→ Z in
D(J) for some processes Zn and Z defined on J , and Z is a.s. continuous,
then the restrictions to any subinterval J ′ ⊂ J converge in D(J ′).

3. Results

The basis of all our results for the branching process and generalized
Pólya urns, is the following functional limit theorem for the branching pro-
cess. (For previously known results, including parts of this theorem, see
Section 6.) Since different normalizations (and different time scalings) are
required for different components of X (t), the result is stated in terms of
various projections of X (t); this is equivalent to stating results for scalar
products η · X (t), where the normalization depends on η, as is done by
several other authors. The proof is given in Section 9.

Theorem 3.1. Assume (A1)–(A6). Then, as t→∞, e−λ1tX (t) a.s.→ Wv1,
and, with joint convergence in distribution of all processes,
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(i) e−λ1(t+x)/2PIX (t+ x) d→W 1/2UI(x) in D(−∞,∞); equivalently,
e−λ1t/2PIX (t+ x) d→W 1/2eλ1x/2UI(x) in D(−∞,∞);

(ii) for every λ ∈ ΛII and k = 0, . . . , dλ,

t−(k+1/2)e−λxtQλ,kPλX (xt) d→W 1/2Uλ,k(x) in D[0,∞);

(iii) for every λ ∈ ΛIII and k = 0, . . . , dλ, t−ke−λtQλ,kPλX (t) a.s.→ Wλ,k

and thus

(xt)−ke−λxtQλ,kPλX (xt) d→Wλ,k in D(0,∞).

Here, UI and Uλ,k are continuous Gaussian vector-valued stochastic pro-
cesses, with UI(x) defined for −∞ < x < ∞ and Uλ,k(x) defined for 0 ≤
x <∞, while Wλ,k are vector-valued random variables, also regarded as con-
stant stochastic processes. Moreover, W is a non-negative random variable,
related to Wλ1 := Wλ1,0 by W = u1 ·Wλ1 and Wλ1 = Wv1.

The process UI is real, while the processes Uλ,k and variables Wλ,k are
real for real λ but complex otherwise, with Uλ̄,k = Uλ,k and Wλ̄,k = Wλ,k.
Furthermore, a.s., UI(x) ∈ EI :=

⊕
λ∈ΛI

Eλ, Uλ,k(x) ∈ Eλ,k, and Wλ,k ∈
Eλ,k.

The process UI , the families {Uλ,k}0≤k≤dλ
for different λ ∈ ΛII with

Imλ ≥ 0, and the family {Wλ,k}λ∈ΛIII ,k≤dλ
∪ {W} are independent of each

other.
The processes UI and Uλ,k are characterized by being (jointly) Gaussian

with mean 0 and covariances, for 0 ≤ x ≤ y,

E
(
UI(x)UI(y)′

)
= ΣIe

(y−x)(A′−λ1/2), (3.1)

and

E
(
Uλ,k(x)Uµ,l(y)′

)
= c(k, l, x, y)Qλ,kN

k
λPλΣIIP

′
µ(N ′

µ)lQ′
µ,l (3.2)

(which vanishes unless µ = λ̄), where

c(k, l, x, y) :=
1
k! l!

∫ x

0
sk(y − x+ s)l ds

=
1
k! l!

l∑
j=0

(
l

j

)
(y − x)j xk+l+1−j

k + l + 1− j
.

(3.3)

The results above holds also if we condition X and W , Wλ,k on W > 0, or
(which is a.s. the same) on essential non-extinction.

Remark 3.2. When x = y, (3.3) simplifies to

c(k, l, x, x) =
xk+l+1

k! l! (k + l + 1)
.

Remark 3.3. Taking k = dλ in (ii) or (iii), we have Qλ,k = I and we
thus find the limit of PλX under appropriate normalization. The point
of the variable k is that, when dλ > 0 (i.e., when the nilpotent part Nλ
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does not vanish), some linear combinations of the components of PλX have
smaller asymptotic variance than others, and thus they disappear in the
normalization required for PλX . More precisely, if η ∈ E′

λ is such that
(N ′

λ)k+1η = 0, then η can be regarded as a linear functional on Eλ,k, and if,
for example, λ ∈ ΛII , (ii) shows that t−k−1/2e−λ1t/2η · X (xt) converges to a
Gaussian process.

Remark 3.4. If λ ∈ ΛII and dλ = 0, (ii) simplifies to t−1/2e−λxtPλX (xt) d→
W 1/2Uλ(x), with, from (3.2) and (3.3), for 0 ≤ x ≤ y,

E
(
Uλ(x)U∗

λ(y)
)

= xPλΣIIP
∗
λ = xPλBP

∗
λ .

In this case, Uλ is a process with independent increments.

Remark 3.5. By (3.1), UI is a stationary Gaussian process. It can be
regarded as a multi-dimensional Ornstein–Uhlenbeck process.

Remark 3.6. If λ ∈ ΛII with Imλ 6= 0, it follows from (3.2) and (2.16) that
E

(
Uλ,k(x)Uλ,k(x)′

)
= 0. Hence Uλ,k(x) is a vector-valued symmetric com-

plex Gaussian random variable, i.e. ωUλ,k(x)
d= Uλ,k(x) for every complex

number ω with |ω| = 1, see [28, Proposition 1.31].
Consequently, Uλ,k is either real (when λ is real) or symmetric complex.

Remark 3.7. We have no general description of the distributions ofWλ,k for
λ ∈ ΛIII , and there seems to be no reason to expect any. They are (typically,
at least) not normal, and not independent of each other. Moreover, their
distributions (typically) depend on the initial state X (0), unlike UI and Uλ,k.

Taking x = 0 in (i) and x = 1 in (ii) and (iii), we obtain as a corollary
some standard results, cf. [9].

Corollary 3.8. Assume (A1)–(A6). Then, as t→∞, with joint conver-
gence,

(i) e−λ1t/2PIX (t) d→W 1/2UI ;
(ii) for every λ ∈ ΛII and k = 0, . . . , dλ,

t−(k+1/2)e−λtQλ,kPλX (t) d→W 1/2Uλ,k;

(iii) for every λ ∈ ΛIII and k = 0, . . . , dλ, t−ke−λtQλ,kPλX (t) d→ Wλ,k

(and a.s.→).
Here, UI , Uλ,k and Wλ,k are vector-valued random variables with UI and

Uλ,k jointly Gaussian. The vector UI is real, while Uλ,k and Wλ,k are real
for real λ but complex otherwise, with Uλ̄,k = Uλ,k and Wλ̄,k = Wλ,k. Fur-
thermore, a.s., UI ∈ EI :=

⊕
λ∈ΛI

Eλ, Uλ,k ∈ Eλ,k, and Wλ,k ∈ Eλ,k.
The random vector UI , the families {Uλ,k}0≤k≤dλ

for different λ ∈ ΛII

with Imλ ≥ 0, and the family {Wλ,k}λ∈ΛIII ,k≤dλ
∪ {W} are independent of

each other.
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The Gaussian random vectors UI and Uλ,k are characterized by mean 0
and covariances

E
(
UIUI

)
= ΣI ,

E
(
Uλ,kU

′
µ,l

)
=

1
(k + l + 1) k! l!

Qλ,kN
k
λPλΣIIP

′
µ(N ′

µ)lQ′
µ,l

(which vanishes unless µ = λ̄). �

Limits at stopping times. The main interest in the functional limit the-
orem above is that it enables us to study X (t) at random times t. Our
main interest is to let t be the n:th splitting time τn; as mentioned in the
introduction, this yields results for the urn process Xn. As a preparation
for this, we will first study another important example where we stop the
process when we reach a given total number of balls, or a given number of
balls of a given type. Somewhat more generally, let b ∈ Rq be a fixed vector
and define for z ≥ 0

τb(z) := min{t ≥ 0 : b · X (t) ≥ z} (with min ∅ = +∞).

We assume b · v1 > 0, which means that typically b · X (t) →∞, as is shown
by the following lemma. A more precise result is given in Lemma 10.1. The
proof of this lemma and the following results are given in Section 10.

Lemma 3.9. Assume b · v1 > 0. Conditioned on essential non-extinction,
we have a.s. b · X (t) →∞ as t→∞ and thus 0 ≤ τb(z) <∞ for all z ≥ 0.
Moreover, τb(z) →∞ as z →∞.

Theorem 3.10. Assume (A1)–(A6) and let b ∈ Rq with b · v1 > 0. Condi-
tioned on essential non-extinction we have as z →∞,

z−1X
(
τb(z)

) a.s.→ (b · v1)−1v1, (3.4)

and, with joint convergence in distribution of all random vectors,

(i) z−1/2PIX
(
τb(z)

) d→ (b · v1)−1/2VI ;
(ii) for every λ ∈ ΛII and k = 0, . . . , dλ,

(z ln2k+1 z)−1/2Qλ,kPλX
(
τb(z)

) d→ (b · v1)−1/2Vλ,k;

(iii) for every λ ∈ ΛIII and k = 0, . . . , dλ,

(ln z)−kz−λ/λ1Qλ,kPλX
(
τb(z)

) a.s.→ (b · v1)−λ/λ1W̌λ,k;

(iv)

z−1/2

Pλ1X
(
τb(z)

)
− z

b · v1
v1 +

∑
λ6=λ1

b · PλX
(
τb(z)

)
b · v1

v1

 a.s.→ 0;

(v)

z−1/2

X (
τb(z)

)
− z

b · v1
v1 −

(
I − v1b

′

b · v1

) ∑
λ6=λ1

PλX
(
τb(z)

) a.s.→ 0.
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Here, VI , Vλ,k and W̌λ,k are vector-valued random variables with VI and
Vλ,k jointly Gaussian. The vector VI is real, while the vectors Vλ,k and W̌λ,k

are real for real λ but complex otherwise, with Vλ̄,k = Vλ,k and W̌λ̄,k = W̌λ,k.
Furthermore, a.s., VI ∈ EI :=

⊕
λ∈ΛI

Eλ, Vλ,k ∈ Eλ,k, and W̌λ,k ∈ Eλ,k.
The random vector VI , the families {Vλ,k}0≤k≤dλ

for different λ ∈ ΛII

with Imλ ≥ 0, and the family {Wλ,k}λ∈ΛIII ,k≤dλ
are independent of each

other.
The Gaussian vectors VI and Vλ,k are characterized by mean 0 and co-

variances

E
(
VIV

′
I

)
= ΣI , (3.5)

E
(
Vλ,kV

′
µ,l

)
=

λ−k−l−1
1

(k + l + 1) k! l!
Qλ,kN

k
λPλΣIIP

′
µ(N ′

µ)lQ′
µ,l (3.6)

(which vanishes unless µ = λ̄).
The same results hold for Xτb(z) in the urn process.

We specialize to some important cases.

Corollary 3.11. Assume (A1)–(A6) and let b ∈ Rq with b ·v1 > 0. Suppose
further Reλ2 <

1
2λ1. Conditioned on essential non-extinction we have as

z →∞,
z−1/2

(
X

(
τb(z)

)
− z

b · v1
v1

)
d→ N(0,Σb),

where the covariance matrix Σb is given by

Σb = (b · v1)−1
(
I − v1b

′

b · v1

)
ΣI

(
I − bv′1

b · v1

)
= (b · v1)−1

∫ ∞

0

(
I − v1b

′

b · v1

)
esABesA

′
(
I − bv′1

b · v1

)
e−λ1sds.

(3.7)

The same result holds for Xτb(z) in the urn process.

Corollary 3.12. Assume (A1)–(A6) and let b ∈ Rq with b ·v1 > 0. Suppose
further Reλ2 = 1

2λ1, and let d := max{dλ : Reλ = 1
2λ1}. Conditioned on

essential non-extinction we have as z →∞,(
z ln2d+1 z

)−1/2
(
X

(
τb(z)

)
− z

b · v1
v1

)
d→ N(0,Σb),

where the covariance matrix Σb is given by

Σb =
λ−2d−1

1

b · v1

(
I − v1b

′

b · v1

)
ΣII,d

(
I − bv′1

b · v1

)
. (3.8)

The same result holds for Xτb(z) in the urn process.

Corollary 3.13. Assume (A1)–(A6) and let b ∈ Rq with b ·v1 > 0. Suppose
further Reλ2 >

1
2λ1, and let d := max{dλ : Reλ = Reλ2}. Conditioned on

essential non-extinction, the family of random variables

Yb(z) := (ln z)−dz−Re λ2/λ1

(
X

(
τb(z)

)
− z

b · v1
v1

)
,
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for z ≥ 2, say, is tight. More precisely, there exist complex random vectors
Wb,λ, λ ∈ Λ′

III := {λ : Reλ = Reλ2, Imλ ≥ 0 and dλ = d}, such that, as
z →∞,

Yb(z)− Re
∑

λ∈Λ′
III

e−i(Im λ/λ1) ln zWb,λ
a.s.→ 0. (3.9)

In particular, if λ2 is real and Λ′
III = {λ2}, then as z →∞, Yb(z)−Wb

a.s.→ 0
for some random vector Wb, and thus

Yb(z)
d→Wb. (3.10)

The same results hold for Xτb(z) in the urn process.

Remark 3.14. Unless all ξi a.s. belong to some fixed subspace of Rq, the
matrix B has full rank q, and thus the covariance matrix in (3.7) has rank
q − 1; hence the limit distribution is concentrated on the hyperplane {v :
b · v = 0} but not on any smaller subspace.

In contrast, the limits in Corollaries 3.12 and 3.13 are typically concen-
trated on a subspace of Rq of low dimension (commonly 1 or 2).

Remark 3.15. Suppose that Reλ2 >
1
2λ1 with Imλ2 > 0, and that, for

simplicity, Λ′
III = {λ2}. In that case, the sum in (3.9) contains only one

term, and we see that Yb(z) converges in distribution when z →∞ along a
subsequence where the fractional part of (Imλ2/2πλ1) ln z converges. The
subsequence limits are of the form Re

(
eiαWb

)
for a complex random vector

Wb and real α. Hence, a limit distribution as in (3.10) exists only if ωWb
d=

Wb whenever |ω| = 1, i.e. if Wb is symmetric complex. This seems highly
unlikely, and we conjecture that it never happens, so we do not expect that Yb

converges in distribution in this case (or, more generally, when Λ′
III contains

a non-real λ). Unfortunately, we have not been able to show this conjecture
in general, but in some particular cases [25], [16], non-convergence of Yb(z)
has been shown by computations of the first moments, showing that the
moments oscillate.

Similarly, we conjecture that the (subsequence) limits in Corollary 3.13
never are normal; again we cannot prove this, but it can be verified in some
particular cases by computations of moments [14], [49], [25], [16].

Limits for urns. In some urn processes we add a fixed number of balls
each time (with varying types), say m; assuming as we may that we start
with a non-random number of balls l, the total number of balls at time n
then is deterministic mn+ l and τn equals τb(mn+ l) with b = (1, 1, . . . , 1)′

(or τb(n+ l/m) with b = m−1(1, 1, . . . , 1)′). In this case, Theorem 3.10 and
its corollaries thus yield results for X (τn) and thus for Xn.

In general, we can change the setup by adding a dummy type q + 1 such
that aq+1 = 0 (the dummy balls never split) and a dummy ball is added
whenever a ball splits (see Section 10 for details). The dummy balls then
count the number of splits, and Theorem 3.10 yields a description of the
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asymptotics of Xn. In order to give explicit expressions for the asymptotic
variances, we define, for s ≥ 0,

φ(s,A) :=
∞∑

n=1

sn

n!
An−1 =

∫ s

0
etAdt, (3.11)

ψ(s,A) := esA − λ1v1a
′φ(s,A). (3.12)

The first result below is in [9, Section V.9.3] (under slightly different
hypotheses), and is included for completeness.

Theorem 3.16. Assume (A1)–(A6). Conditioned on essential non-extinc-
tion, n−1Xn

a.s.→ λ1v1 as n→∞.

Theorem 3.17. Assume (A1)–(A6). Suppose further Reλ2 <
1
2λ1. Condi-

tioned on essential non-extinction we have as n→∞,

n−1/2
(
Xn − nλ1v1

) d→ N(0,Σ),

where the covariance matrix Σ is given by

Σ =
∫ ∞

0
ψ(s,A)Bψ(s,A)′e−λ1sλ1 ds− λ2

1v1v
′
1. (3.13)

Theorem 3.18. Assume (A1)–(A6). Suppose further Reλ2 = 1
2λ1, and let

d := max{dλ : Reλ = 1
2λ1}. Conditioned on essential non-extinction we

have as z →∞, (
n ln2d+1 n

)−1/2(
Xn − nλ1v1

) d→ N(0,Σ),

where the covariance matrix Σ is given by

Σ = λ−2d
1 (I − T )ΣII,d(I − T ′), (3.14)

with T :=
∑

λ∈ΛII
λ−1λ1v1a

′Pλ. If a ∈ Im(A′) and a = A′â, T can be
replaced by T1 := λ1v1â

′.

Theorem 3.19. Assume (A1)–(A6). Suppose further Reλ2 >
1
2λ1, and let

d := max{dλ : Reλ = Reλ2}. Conditioned on essential non-extinction, the
family of random variables

Y (n) :=
(
n ln2d n

)−1/2(
Xn − nλ1v1

)
, n ≥ 2,

is tight, and we have the same type of asymptotic behaviour as described in
Corollary 3.13 and Remark 3.15. In particular, if λ2 is real and Reλ3 < λ2,
or more generally when Λ′

III = {1
2λ1}, then Y (n) d→ Wb for some random

vector Wb, but we conjecture that this fails otherwise.

Remark 3.20. In Theorem 3.18, the limit is typically concentrated on a
subspace L of low dimension (as in Remark 3.14). For some vectors η ∈ Rq

with η ⊥ L (and thus ηΣη′ = 0) it is possible to obtain a non-degenerate
limit in distribution of η · Xn with a different normalization from Theo-
rem 3.10(i) or (ii); we leave the details to the reader. The same applies to
Theorem 3.19 (and subsequence limits). Cf. [8], [9].
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The drawn balls. Let Nni be the number of drawn balls of type i in the
first n draws, and let Nn := (Nn1, . . . , Nnq). (In the branching process, we
would similarly study Ni(t), the number of deaths of balls of type i up to
time t. We leave this case to the reader.)

If each ξi is deterministic and, for notational simplicity, each ai = 1,
then Xn = X0 + ANn, so if further A is invertible, asymptotics for Nn =
A−1(Xn − X0) follow from Theorems 3.16–3.19. In general, we can argue
with dummy balls again, this time using q dummy types q + 1, . . . , 2q and
adding a dummy ball of type q+ i each time a ball of type i is drawn. This
leads to the following theorem. (Explicit expressions when some ai 6= 1 can
be found by this method too, but are left to the reader.)

Theorem 3.21. Assume (A1)–(A6). Conditioned on essential non-extinction
we have, as n→∞, n−1Nni

a.s.→ νi := aiv1i and, furthermore,
(i) if Reλ2 < λ1/2, then

n−1/2
(
Xn − nλ1v1, Nn − nν

) d→ (V, V̂ ),

where (V, V̂ ) is vector-valued Gaussian random variable with mean
0; if for simplicity each ai = 1, and Dv is the diagonal matrix with
entries Dii = v1i,

E V̂ V̂ ′ =
∫ ∞

0
(I − v1a

′)
(
φ(s,A)Bφ(s,A)′ (3.15)

+ esADv +Dve
sA′ −Dv

)
(I − av′1)e

−λ1sλ1 ds.

EV V̂ ′ =
∫ ∞

0
ψ(s,A)

(
Bφ(s,A)′ +ADv

)
(I − av′1)e

−λ1sλ1 ds. (3.16)

(ii) if Reλ2 = λ1/2 and d := max{dλ : Reλ = 1
2λ1}, then(

n ln2d+1 n
)−1/2(

Xn − nλ1v1, Nn − nν
) d→ (V, V̂ ),

where (V, V̂ ) is a vector-valued Gaussian random variable with mean
0. If, for simplicity, each ai = 1, then V = AV̂ and

E
(
V̂ V̂ ′) = λ−2d

1 T̂ΣII,dT̂
′,

with T̂ := (I − v1a
′)

∑
λ∈ΛII

λ−1Pλ.

In the case of random ξi, the dummy ball method also shows asymptotic
normality when λ2 ≤ λ1/2 of the number of draws of a ball of type i leading
to a specific set of balls being added. We leave the details to the reader.

Functional limit theorems for stopped processes and urns.

Theorem 3.22. Assume (A1)–(A6) and let b ∈ Rq with b · v1 > 0. Con-
ditioned on essential non-extinction we have as z → ∞, with joint conver-
gence,

(i) z−1/2PIX
(
τb(xz)

) d→ (b · v1)−1/2VI(x) in D[0,∞);
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(ii) for every λ ∈ ΛII and k = 0, . . . , dλ, in D[0,∞),

(ln z)−k−1/2(zx)−1/2−i Im λ/λ1Qλ,kPλX
(
τb(zx)

) d→ (b·v1)−1/2λ
−(k+1/2)
1 Uλ,k(x).

Here VI and Uλ,k are continuous Gaussian vector-valued stochastic processes,
defined on [0,∞). Uλ,k(x) is as in Theorem 3.1, VI(0) = 0, EVI(x) = 0 and

EVI(x)VI(y)′ = xΣI

(y
x

)λ−1
1 A′

, 0 < x ≤ y. (3.17)

The process VI and the families {Uλ,k}0≤k≤dλ
for different λ ∈ ΛII with

Imλ ≥ 0 are independent.
The same results hold for Xτb(xz) and Xτb(zx) in the urn process.

Corollary 3.23. Assume (A1)–(A6) and let b ∈ Rq with b · v1 > 0. Let
z →∞ and condition on essential non-extinction.

(i) If Reλ2 <
1
2λ1, then, in D[0,∞),

z−1/2
(
X

(
τb(xz)

)
− xz

b · v1
v1

)
d→ Vb(x) := (b · v1)−1/2

(
I − v1b

′

b · v1

)
VI(x).

(ii) If λ2 = 1
2λ1 and ΛII = {λ2}, then, with d := dλ2, in D[0,∞),

(ln z)−d−1/2z−x/2
(
X

(
τb(zx)

)
− zx

b · v1
v1

)
d→

Vb(x) := λ
−d−1/2
1 (b · v1)−1/2

(
I − v1b

′

b · v1

)
Uλ2,d(x).

The limit processes are Gaussian, vanish at 0, and have means 0 and co-
variances given by (3.17) for (i) and, using (3.3), for (ii)

EUλ2,d(x)Uλ2,d(y)′ = c(d, d, x, y)(2d+ 1)d!2ΣII,d, 0 ≤ x ≤ y. (3.18)

The same results holds for the urn process.

With dummy balls as above, Corollary 3.23 leads to the corresponding
result for urns.

Theorem 3.24. Assume (A1)–(A6). Let n→∞ and condition on essential
non-extinction.

(i) If Reλ2 <
1
2λ1, then, in D[0,∞),

n−1/2
(
Xbxnc − xnλ1v1

) d→ V (x),

where V (x) is a continuous Gaussian vector-valued process with V (0) =
0, mean EV (x) = 0 and, for 0 < x ≤ y,

EV (x)V ′(y) =
∫ ∞

−λ−1
1 ln x

ψ(s+ λ−1
1 lnx,A)Bψ(s+ λ−1

1 ln y,A)′e−λ1sλ1 ds

− xλ2
1v1v

′
1. (3.19)
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(ii) If λ2 = 1
2λ1 and ΛII = {λ2}, then, with d := dλ2, in D[0,∞),

(lnn)−d−1/2n−x/2
(
Xbnxc − nxλ1v1

) d→ V (x),

where V (x) is a continuous Gaussian vector-valued process with
V (0) = 0, mean EV (x) = 0 and, for 0 < x ≤ y,

EV (x)V (y)′ = c̃(d, x, y)λ−2d
1 (I − 2v1a′Pλ2)ΣII,d(I − 2P ′

λ2
av′1), (3.20)

where

c̃(d, x, y) := (2d+ 1)d!2c(d, d, x, y) =
d∑

j=0

2d+ 1
2d+ 1− j

(
d

j

)
(y − x)jx2d+1−j .

Remark 3.25. If Reλ2 = 1
2λ1 and Imλ2 6= 0 we obtain a more compli-

cated behaviour. If, for simplicity, λ2 and λ2 are the only eigenvalues with
real part 1

2λ1, it follows from Theorem 3.22 that
(
Xbnxc − nxλ1v1

)
will,

asymptotically, oscillate deterministically as a sine function with frequency
(Imλ2/2πλ1) lnn, but with amplitude and phase drifting stochastically at
a slower rate.

4. Some remarks, extensions and open problems

Remark 4.1. We assume throughout that the set of types is finite. How-
ever, in Examples 7.6 and 7.7 we consider two applications where the natural
urn models have an infinite number of types (in this case N); luckily it is
possible in those applications to consider only a finite number of types at a
time.

Another example where the results extend to an infinite space of types
(in that case a compact group, for example T) is described in Example 7.10.

These examples suggest the possibility of (and desire for) an extension of
the results in this paper to infinite sets of types (with suitable assumptions).
Our matrix A would then be replaced by an operator acting in a suitable
space, such as `1(N) or L2(T). It is far from clear how such an extension
should be formulated, and we have not pursued this.

Remark 4.2. In several applications, the assumptions (1.1), (1.2) are too
restrictive; we want to allow the possibility of removing other balls than the
drawn one. Several authors, following Bagchi and Pal [10], have studied the
so-called tenable urn models where ξii may be an arbitrary negative integer
−di, but it is assumed that di|ξji for all j and di|X0i; hence Xni is always
a multiple of di and we can never be required to remove balls that do not
exist. (We still assume ξji ≥ 0 when j 6= i. We let di = 1 if ξii ≥ 0.)

Note that the corresponding continuous time process X (t) is well-defined,
but (if some di ≥ 2) it is not a branching process because the balls do not
evolve independently.

Tenable urns can, nevertheless, easily be reduced to the Athreya–Karlin
setting, and thus studied by the results above, by replacing the balls with
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“superballs”; each superball of type i being equivalent to di ordinary balls
and having activity diai. If D denotes the diagonal matrix with Dii = di,
this means that we consider the process X̃n := D−1Xn, which is of the type
treated above with ξ̃i = D−1ξi and Ã = D−1AD. Note that Ã and A have
the same eigenvalues. If (A2)–(A6) hold, we can thus apply Theorem 3.1
and its consequences in Section 3 to the superball process. Returning to the
original process (by multiplying with D), it can easily be verified that all
results in Section 3 (including the variance formulas) hold for tenable urns
too. See Example 7.5 for an example.

As mentioned in the introduction, the results can be extended even fur-
ther. Let ξij be arbitrary integers (or even real numbers), but assume that
they are such that the urn process never can require the removal of balls
that do not exist. (An example, from [39], is given in Example 7.8.) The
corresponding continuous time process then is well-defined; it is a general-
ized branching process where the death of one ball may force the removal
of others. In this case, we cannot use the Perron–Frobenius theory, so we
add the assumption that A has a real eigenvalue λ1 > 0 with Reλ < λ1 for
every other eigenvalue λ, and that there exist corresponding left and right
eigenvectors u1 and v1 such that v1i > 0 for every i and u1i > 0 if i is
dominating while u1i = 0 otherwise; we also assume (A2)–(A6). Finally, we
assume that Lemma 9.7(iii) holds (we have not been able to prove this in the
present generality), for example because P(W = 0) = 0. It may then be ver-
ified that the proofs in Sections 9 and 10 hold without modification; hence
all results in Section 3 hold for such urn models and generalized branching
processes too. (We conjecture that the results hold also if it is possible that
the process stops by requiring some Xni to become negative, provided that
we condition on this not happening, but we have not pursued this.)

Remark 4.3. Assume for simplicity that essential extinction is impossible,
so W > 0. By Theorem 3.1 or Corollary 3.8, the different sets of projections
of X (t) in parts (i), (ii) and (iii) of these results, divided by the normalizing
factor W 1/2, form three asymptotically independent families. This may
seem surprising at first sight, but is explained by the three families being
essentially determined by what happens in the end, the middle, and the
beginning of the process, respectively. More formally, let ε(t) → 0 and
ω(t) →∞ as t→∞. By Theorem 3.1 (and its proof), dividing everything by
W 1/2 and ignoring terms that are asymptotically negligible, the projections
in (i) depend only on the random splits after time t−ω(t), the projections in
(ii) depend only on the random splits in [ε(t)t, (1−ε(t))t], and the projections
in (iii) depend only on the random splits before ω(t).

For the urn process in Theorems 3.17–3.19 we find, by the exponential re-
lation between n and t, that the variables asymptotically depend only on the
draws after εn, the draws in [nε, n1−ε] and the draws before ω, respectively.
The same holds if we consider the different cases together as in Remark 3.20.
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Remark 4.4. It would be interesting to extend the results to cases where
(A4) or (A6) does not hold. A typical case is when A is triangular: if, for
example, q = 2 and A =

(
α 0
β δ

)
with β > 0, the conditions hold if α > δ but

not otherwise. It might be possible to handle this case by combining the
methods here with the ones in [34], where a detailed study is made in the
related case of multitype Galton–Watson processes in discrete time. Some
new phenomena will arise, however, see [34], [20] and [35].

Remark 4.5. Mahmoud [40] has initiated the study of urn models where
several, say 2, balls are drawn at the same time, and balls are added de-
pending on the drawn combination of types. It may be possible to study
such models too by the methods of this paper, first considering the corre-
sponding continuous time model, but we have not pursued this. (This case
is substantially more complicated than the standard case treated here; for
example, the continuous time model will explode in finite time.)

Remark 4.6. Asmussen [3] has proved laws of iterated logarithm for X (t) in
the irreducible case. (The results in the cases Reλ2 <

1
2 Reλ1 and Reλ2 =

1
2 Reλ1 are different.) By the Athreya–Karlin embedding, this yields laws of
iterated logarithm for the urn process Xn complementing the results above;
we leave the details to the reader. Such laws for the urn process have been
proved in a special case by Bai, Hu and Zhang [12].

Remark 4.7. Our methods give no information on the rate of convergence.
Using other methods, Hwang [23] has found the rate of convergence to the
limiting normal distribution for a specific variable in Example 7.9 below:
the rate is n−γ where γ = min

(
1
2 , 3(1

2 − Reλ2/λ1)
)
. It is tempting to guess

that this might hold rather generally.

5. Variance calculations

In several of the theorems in Section 3, the variances and covariances
of the limits are given as integrals of matrix functions. In any specific
application, these integrals can be evaluated by first transforming the matrix
A to Jordan normal form. (A computer algebra package is helpful, and can
do the integration directly if q is not too large.) We will here give some
simplifications in important special cases. We concentrate on the main cases;
the reader may add further similar results. See the examples in Section 7 and
for various applications of these results. See also [29] for more complicated
applications.

First we consider the case when the replacement vectors ξi are determin-
istic. Let D be the diagonal q × q matrix with entries

Dii :=

{
v1i/ai, ai 6= 0,
0, ai = 0.

(5.1)

Lemma 5.1. (i) If each ξi is deterministic, then B = ADA′.
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(ii) If furthermore Reλ2 <
1
2λ1, then the covariance matrix Σ in Theo-

rem 3.17 is given by

Σ =
∫ ∞

0
(A− λ1v1a

′)esADesA
′
(A− λ1v1a

′)′e−λ1sλ1 ds. (5.2)

Equivalently, if gi(s) := (A− λ1v1a
′)esAδi, where (δi)j = δij, then

Σ =
∫ ∞

0

∑
ai 6=0

a−1
i v1igi(s)gi(s)′e−λ1sλ1 ds. (5.3)

If further u1 = a, then gi(s) = AesA(I − v1u
′
1)δi = AesA(δi − u1iv1).

Proof. We now have, by (2.13) and (2.1), when ai 6= 0,

(Bi)jk = E ξij E ξik = a−2
i AjiAki,

and then by (2.14)

Bjk =
q∑

i=1

aiv1i(Bi)jk =
∑
ai 6=0

a−1
i v1iAjiAki = (ADA′)jk,

which proves (i).
For (ii), we have by (3.11) and (3.12) φ(s,A)A = esA − 1 and

ψ(s,A)A = esAA− λ1v1a
′(esA − 1) = (A− λ1v1a

′)esA + λ1v1a
′.

Hence (i) now yields

ψ(s,A)Bψ(s,A)′ = (A− λ1v1a
′)esADesA

′
(A− λ1v1a

′)′

+λ1v1a
′DesA

′
(A− λ1v1a

′)′ + λ1(A− λ1v1a
′)esADav′1

+λ2
1v1a

′Dav′1.

It follows from (5.1) that (Da)i = v1i when ai 6= 0, and thus a′Da = a′v1 = 1
and ADa = Av1 = λ1v1. It follows that (A− λ1v1a

′)esA(Da− v1) = 0, and
thus (A − λ1v1a

′)esADa = (A − λ1v1a
′)esAv1 = 0. Hence, the second and

third terms in the sum vanish. The fourth equals λ2
1v1v

′
1, and thus (5.2)

follows from (3.13). Since D =
∑

iDiiδiδ
′
i, (5.3) follows from (5.2).

In the special case u1 = a, we have (A − λ1v1a
′)esA = AesA(I − v1u

′
1),

and the alternative formulas for gi follow. �

Remark 5.2. In general, the argument above shows that if B◦
i is the co-

variance matrix E(ξi − E ξi)(ξi − E ξi)′ and B◦ :=
∑q

i=1 aiv1iB
◦
i , then

Σ =
∫ ∞

0
ψ(s,A)B◦ψ(s,A)′e−λ1sλ1 ds

+
∫ ∞

0
(A− λ1v1a

′)esADesA
′
(A− λ1v1a

′)′e−λ1sλ1 ds,

which separates the contributions to the asymptotic variance coming from
the randomness in the ξi and the randomness in the draws.
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Another simplifying case is when A is diagonalizable. In that case, there
exist dual bases {ui}q

i=1 and {vi}q
i=1 of left and right eigenvectors of A, i.e.

vectors such that uiA = λiui, Avi = λivi and ui · vj = δij (where the λi,
i = 1, . . . , q do not have to be distinct; we assume that the bases are ordered
such that λ1 ≥ Reλ2 ≥ . . . as elsewhere).

Lemma 5.3. (i) If A is diagonalizable and {ui}q
i=1 and {vi}q

i=1 are dual
bases of eigenvectors, then, with LI := {i : λi ∈ ΛI} and LII := {i : λi ∈
ΛII},

ΣI =
∑

j,k∈LI

u′jBuk

λ1 − λj − λk
vjv

′
k and ΣII =

∑
j∈LII

(u′jBuj)vjv
∗
j .

(ii) If further each ξi is deterministic, then

ΣI =
∑

j,k∈LI

λjλku
′
jDuk

λ1 − λj − λk
vjv

′
k and ΣII =

∑
j∈LII

|λj |2(u′jDuj)vjv
∗
j .

(iii) If further Reλ2 < 1
2λ1, then the covariance matrix Σ in Theo-

rem 3.17 is given by, with wj := λjvj − λ1(a · vj)v1,

Σ =
q∑

j,k=2

λ1 u
′
jDuk

λ1 − λj − λk
wjw

′
k.

(iv) If the assumptions in (i) and (ii) hold and Reλ2 = 1
2λ1, then the

covariance matrix Σ in Theorem 3.18 is given by, with wj as in (iii),

Σ =
∑

j∈ΛII

(u′jDuj)wjw
∗
j .

Proof. We have PI =
∑

j∈LI
vju

′
j and PIe

sA =
∑

j∈LI
esλjvju

′
j . Hence the

first equality in (i) follows from the definition (2.15). The second follows
similarly from (2.16).

For (ii) we use (i) and B = ADA′ from Lemma 5.1, recalling that u′jA =
λju

′
j .

In case (iii), when LI = {2, . . . , q}, the result follows from (5.2) and

(A− λ1v1a
′)esA =

∑
j≥1

(A− λ1v1a
′)esAvju

′
j =

∑
j≥2

wje
sλju′j .

Finally, since A is diagonalizable, d = 0 and (iv) follows from (3.14) and
(ii). �

A third common simplifying case is when a fixed number of balls is added
each time, i.e. each

∑
j ξij = m is deterministic and independent of i, and

further each ai = 1. We state the result somewhat more generally.

Lemma 5.4. Suppose that a · E ξi = m for some m > 0 and every i.
(For example, this holds if exactly m balls are added each time, and each
ai = 1.) Then λ1 = m and u1 = a. The covariance matrix (3.13) in
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Theorem 3.17 equals mΣI . The covariance matrix (3.14) in Theorem 3.18
equals λ−2d

1 ΣII,d.

Proof. We have, by (2.1) and assumption,

(a′A)k =
q∑

j=1

ajAjk =
q∑

j=1

ajak E ξkj = aka · E ξk = mak

so a′A = ma′ and a is a non-negative left eigenvector of A. This implies
that m = λ1 and that a is a multiple of u1; by our normalizations (2.2) and
(2.3), a = u1.

It follows that a′Pλ1 = a′ and a′Pλ = a′Pλ1Pλ = 0 when λ 6= λ1; thus
T = 0 in Theorem 3.18, which shows the claim about (3.14).

For (3.13), we may use algebraic manipulations as in the lemmas above,
but it seems easier to proceed as follows. Conditioning on X0, we may
assume that X0 is fixed. Then a · Xn = mn + l, where l := a · X0. Thus
we can obtain Xn by stopping at τb(n + l/m), where b = m−1a. We thus
obtain the conclusion of Theorem 3.17 directly from Corollary 3.11, with Σ
given by (3.7). Furthermore, since b′Pλ = m−1a′Pλ = 0 for every λ 6= λ1,
we have b′PI = 0 and P ′

Ib = 0. Moreover, b · v1 = m−1a · v1 = m−1. Since
ΣI = PIΣIP

′
I by (2.15), b′ΣI = 0 and ΣIb = 0, and the middle expression

in (3.7) equals mΣI . �

If further m = 1, we have in addition the following.

Lemma 5.5. If each |ξi| = 1, i.e. exactly one ball is added each time, and
each ai = 1, then B = D.

Proof. Since only one ξij is non-zero at a time, Bi in (2.13) is diagonal, with
(Bi)jj = P(ξij = 1) = E ξij . Thus B is diagonal with, see (2.18),

Bjj =
q∑

i=1

v1iai E ξij = (λ1v1)j = v1j . �

We also give a calculation of the variances and covariances in Theo-
rem 3.21.

Lemma 5.6. Suppose that ai = 1 and E
∑

j ξij = m for every i, and that A
is diagonalizable with dual bases of eigenvectors {ui}q

i=1 and {vi}q
i=1. Then
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λ1 = m and, if Reλ2 < λ1/2, the limit in Theorem 3.21 satisfies

E V̂ V̂ ′ =
q∑

j,k=2

(( 1
λ1 − λj

+
1

λ1 − λk

) u′jBuk

λ1 − λj − λk

+
λ2

1 − λjλk

(λ1 − λj)(λ1 − λk)
u′jDuk

)
vjv

′
k (5.4)

EV V̂ ′ =
q∑

j,k=2

( λ1

(λ1 − λj)(λ1 − λj − λk)
u′jBuk +

λ1λj

λ1 − λj
u′jDuk

)
vjv

′
k

+
q∑

k=2

u′1Buk

λ1 − λk
v1v

′
k (5.5)

Proof. By Lemma 5.4, λ1 = m and u1 = a. Thus, I − v1a
′ = I − v1u

′
1 =∑q

j=2 vju
′
j , and it follows from (3.15) that, with φ(s, λ) =

∫ s
0 e

tλdt,

E V̂ V̂ ′ =
q∑

j,k=2

vj

∫ ∞

0
u′j

(
φ(s, λj)Bφ(s, λk)

+ esλjD +Desλk −D
)
uke

−λ1sλ1 ds v
′
k

By the definition of φ(s, λ) and changes of order of integration,∫ ∞

0
φ(s, λj)φ(s, λk)e−λ1sλ1 ds =

∫∫∫
0<t,u<s

eλjt+λku−λ1sλ1 ds du dt

=
∫∫

0<t<u

eλjt+(λk−λ1)u du dt+
∫∫

0<u<t

eλku+(λj−λ1)t dt du

=
1

λ1 − λk

1
λ1 − λk − λj

+
1

λ1 − λj

1
λ1 − λj − λk

.

The integrals of the other terms are easily computed and a summation yields
(5.4).

Similarly, since (3.12) and a = u1 imply u′1ψ(s,A) = u′1 and u′jψ(s,A) =
esλju′j for j 6= 1, (3.16) yields

EV V̂ ′ =
q∑

j,k=2

vj

∫ ∞

0
u′je

sλj
(
Bφ(s, λk) + λjD

)
uke

−λ1sλ1 ds v
′
k

+
q∑

k=2

v1

∫ ∞

0
u′1

(
Bφ(s, λk) + λ1D

)
uke

−λ1sλ1 ds v
′
k

Again, the integrals are easily computed, and (5.5) follows; note that u′1Duk =
v′1uk = 0 for k 6= 1. �



24 SVANTE JANSON

Remark 5.7. These results can be extended to the covariances in the pro-
cess limits. For example, under the assumptions of Lemma 5.3(iii), an ar-
gument as in the proofs of Lemmas 5.1 and 5.3 shows that in (3.19)

EV (x)V (y)′ =
∑

j,k≥2

x1−λk/λ1yλk/λ1
λ1 u

′
jDuk

λ1 − λj − λk
wjw

′
k, 0 ≤ x ≤ y.

Similarly, under the assumptions of Lemma 5.4 and with Reλ2 <
1
2λ1, we

have in (3.19), by Corollary 3.23 with b := m−1a and (3.17),

EV (x)V (y)′ = mxΣI(y/x)m−1A′
, 0 < x ≤ y. (5.6)

6. Relations to previously known results

Large parts of Theorem 3.1 are known since Athreya’s thesis, at least in
the irreducible case: the a.s. convergence is in [4] and [9, Theorem V.7.2],
and the limits in Corollary 3.8 are proved in [5], [6], see also [9, §V.8].
Our results give more explicit formulas for the asymptotic variances and
covariances, and the extension to stochastic processes. The independence
between the limit processes in (i) and (ii) seems new too.

Also Theorems 3.16–3.19 for urn models are basically due to Athreya and
Karlin [8], see also [9, §V.9], but it is not evident how to obtain explicit
formulas for asymptotic variances from their paper.

One of the purposes of this paper is to draw attention to the embedding
method in [8], adding some details and making the results simpler to ap-
ply. In our opinion, this method has been neglected for too long. Several
authors have, however, derived similar results for Pólya urns, in more or
less general situations, either by calculating moments by recursion formulas
or by martingale methods. (Of course, the embedding method uses mar-
tingales too, for the branching process. It is thus not really a question of
using martingales or not; the main difference is rather whether to use dis-
crete time martingales directly or to first randomize the splitting times by
the continuous time branching process and then use continuous time mar-
tingales.) It seems that the (discrete time) martingale methods works fine
when the number of added balls is fixed, but the extra randomization in the
embedding method makes it much easier to handle the general case.

Some important papers with general limit theorems for urn processes that
contain special cases of our results are the following. (Our description is
brief; for exact conditions and results, see the cited papers. See also further
references in these papers.)

Bagchi and Pal [10] gave, using the method of moments, limit theorems
when q = 2 and the number of added balls is fixed, see Example 7.3 be-
low. Gouet [20] gave functional limit theorems in the same case, using a
martingale central limit theorem.

Smythe [51] used martingale methods to establish asymptotic normality
of Xn and joint asymptotic normality of Xn and Nn (thus inspiring our
Theorem 3.21) when λ2 <

1
2λ1, allowing removals (in the tenable case) and
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assuming that the expected number of added balls does not depend on the
type of the drawn ball, i.e. that the column sums of A are the same, and thus
equal to λ1. (He also assumed some technical simplifications, for example
that A is diagonalizable). However, no general variance formulas were given,
although some examples are given and it is stated that asymptotic variances
and covariances in principle can be computed more generally. (See also the
special case in [44] where asymptotic variances are given.) It is noteworthy
that only the expected number of added balls is assumed constant in [51];
most papers applying martingale methods use the stronger assumption that
the actual number of added balls is constant.

Bai and Hu [11] used similar martingale methods to establish asymptotic
normality of Xn. They assumed that the number of added balls is constant,
usually 1, and that Reλ2 ≤ 1

2λ1 = 1
2 . A new feature of [11] is that they

allow time-dependent transition probabilities (converging to a limit), a case
not studied in this paper.

Bai, Hu and Zhang [12] studied the case of two types in more detail,
using martingale methods and the Skorohod embedding theorem. Again
they allow some time-dependency, and assume that the number of added
balls is 1 (with some randomness allowed in the time dependent case), and
that Reλ2 ≤ 1

2λ1 = 1
2 . They results include functional limit theorems, laws

of iterated logarithm, and estimates of rates of convergence.

Remark 6.1. A method that has, as far as we know, not yet been used to
study this type of urn models is to use a general limit theorem for Markov
processes such as [31, Theorem 19.28]. This seems to have the potential of
giving comparatively simple proofs of several results in this paper, and could
probably be used to attack some of the extensions mentioned in Section 4.

7. Examples and applications to random trees

We give several examples of urn models that illustrate the results above.
We concentrate on already studied models and show how several previosly
known results follow from our theorems by routine calculations; we encour-
age the reader to compare the methods. We also give some new results.

Unless otherwise stated, all activities ai = 1, the urn is irreducible, (A1)–
(A6) hold, and (essential) extinction is impossible; this can in each case
easily be verified using Lemma 2.1. We sometimes omit minor details, such
as specifying X0; similarly, when convenient we shift the indices and start
the process with X1.

Example 7.1. First a trivial example. If ξ1, . . . , ξq are random with the
same distribution, the drawn types do not matter and Xn −X0 is a sum of
n i.i.d. random vectors. Thus Xn is asymptotically normal by the central
limit theorem. In this case, A has rank 1 so λ2 = 0 with multiplicity q − 1,
and there are no further eigenvalues. It can be verified that Theorem 3.17
indeed yields the normal limit given by the central limit theorem. Similarly,
Theorem 3.24 yields the same result as Donsker’s theorem.
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If b = δ1 = (1, 0, . . . , 0)′, then Xτb(z) is the vector obtained by summing
i.i.d. copies of ξ1 until the first component is at least z. Corollary 3.11 yields
asymptotic normality, as shown in [22], [21].

Example 7.2 (Friedman’s urn). A classic example is Friedman’s urn [19],
[18] (studied already by Bernstein [13], [14] and Savkevitch [49]), where
q = 2, ξ1 = (α, β)′ and ξ2 = (β, α)′ for some integers α and β. We assume
α + β > 0. If β = 0, we have the original Pólya urn [17], [47] which is
reducible; (A4), (A5), (A6) fail so our results do not apply, and it is well
known that Xn/n converges to a Beta distribution instead of a constant [47],
[30].

If β > 0, our assumptions hold. We have λ1 = α + β and λ2 = α − β,
so λ2 <

1
2λ1 is equivalent to α < 3β; in this case Theorem 3.17 yields by

Lemma 5.3(iii), with v1 = 1
2(1, 1)′, v2 = 1

2(1,−1)′, u1 = (1, 1)′, u2 = (1,−1)′,

n−1/2

(
Xn − n

α+ β

2

(
1
1

))
d→ N

(
0,

(α+ β)(α− β)2

4(3β − α)

(
1 −1

−1 1

))
as shown by Bernstein [13], [14] and Freedman [18].

Similarly, if α = 3β > 0, Theorem 3.18 and Lemma 5.3(iv) yield [13, 18]

(n lnn)−1/2

(
Xn − n

α+ β

2

(
1
1

))
d→ N

(
0,

(α− β)2

4

(
1 −1

−1 1

))
.

Example 7.3 (general 2-type urn). More generally, consider the case q = 2
with nonrandom ξ1 = (α, β)′ and ξ2 = (γ, δ)′. We assume that β, γ > 0
so that the urn is irreducible, and that λ1 > 0. If α, δ ≥ −1, (A1)–(A6)
hold and extinction is impossible; by Remark 4.2 we can also allow other
negative values for α and δ under suitable conditions, for example in the
tenable case.

The case α + β = γ + δ has been studied by several authors, including
Bernstein [13], [14] and (also for the tenable case) Bagchi and Pal [10], who
proved asymptotic normality when λ2 ≤ λ1/2. Gouet [20] gave functional
limit theorems.

We extend their results as follows. We write, for notational convenience,
κ := (α+ δ)/2, ε := (α− δ)/2, ρ :=

√
ε2 + βγ > 0. Thus

A =
(
α γ
β δ

)
=

(
κ+ ε γ
β κ− ε

)
.

Simple calculations yield the eigenvalues λ± = κ ± ρ (the indices +,− are
more convenient than 1, 2 in this example) and the dual bases of eigenvectors
(v+, v−) and (u+, u−) with

v± = c−1
±

(
ε± ρ
β

)
, u± =

c±
(ε± ρ)2 + βγ

(
ε± ρ
γ

)
,

where c± are normalization constants. We take c+ = β + ρ + ε so that
a · v+ = 1, and choose c− = 1.
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If λ− < 1
2λ+, or, equivalently, κ < 3ρ, Theorem 3.17 yields n−1/2(Xn −

n(κ+ ρ)v+) d→ N(0,Σ), where Lemma 5.3(iii) yields

Σ =
λ+

λ+ − 2λ−
(u′−Du−)ww′,

with w := λ−v−−λ+(a ·v−)v+. By elementary calculations, using (ρ−ε)2 +
βγ = 2ρ(ρ− ε) and (ρ− ε)(β + ρ+ ε) = β(γ + ρ− ε), we find

u′−Du− =
γ

4ρ2(ρ− ε)
and w =

2ρβ
β + ρ+ ε

(
γ − α
δ − β

)
and

Σ =
(κ+ ρ)βγ

(3ρ− κ)(β + ρ+ ε)(γ + ρ− ε)

(
γ − α
δ − β

) (
γ − α, δ − β

)
. (7.1)

(It is easy to see that Xn1 and Xn2 are linearly dependent, which explains
why Σ has rank 1. It is thus sufficient to study only Xn1.)

In the special case α+ β = γ + δ = m studied in [10] this simplifies: now
λ+ = κ+ ρ = m, ρ = (β + γ)/2 and 3ρ− κ = m+ 2ρ− 2κ = m+ 2(γ − α),
so

Σ =
mβγ

(m+ 2(γ − α))(β + γ)2
(γ − α)2

(
1 −1

−1 1

)
in accordance with [10].

When κ = 3ρ, λ− = 1
2λ+ and Theorem 3.18 yields (n lnn)−1/2

(
Xn −

n(κ+ρ)v+
) d→ N(0,Σ), where by Lemma 5.3(iv) and the calculations above

Σ =
βγ

(β + ρ+ ε)(γ + ρ− ε)

(
γ − α
δ − β

) (
γ − α, δ − β

)
. (7.2)

In the special case α + β = γ + δ (when α = β + 2γ, δ = 2β + γ) this
simplifies to βγ

(
1 −1

−1 1

)
as given by [10].

Theorem 3.24 yields functional convergence in D[0,∞) to a Gaussian
process when κ ≤ 3ρ. (In the special case α+β = γ+ δ, this was proved by
Gouet [20].) If κ < 3ρ, then

n−1/2
(
Xbxnc − xn(κ+ ρ)v+

) d→ V (x),

where EV (x) = 0 and, by Remark 5.7, with Σ given in (7.1),

EV (x)V ′(y) = x1−λ−/λ+yλ−/λ+Σ, 0 ≤ x ≤ y.

If κ = 3ρ, then, instead,

(lnn)−1/2n−x/2
(
Xbnxc − nx(κ+ ρ)v+

) d→ V (x),

where EV (x) = 0 and, with Σ given in (7.2),

EV (x)V ′(y) = xΣ, 0 ≤ x ≤ y.



28 SVANTE JANSON

Example 7.4 (randomized play-the-winner). The calculations in Exam-
ple 7.3 can be extended to random ξ1 and ξ2. We consider for simplicity
only the case when exactly one ball is added each time. This gives the
randomized play-the-winner rule for clinical trials introduced by Wei and
Durham [53], see also [54]: If the drawn ball has type i (i = 1 or 2), we add
a ball with the same type with probability pi and a ball with the opposite
type with probability qi = 1 − pi. Here p1 and p2 are given numbers with
0 ≤ pi < 1. We have

A =
(
p1 q2
q1 p2

)
.

It is easily seen that, see Lemma 5.4, λ1 = 1, λ2 = p1 + p2 − 1 = p1 − q2,

u1 =
(

1
1

)
, v1 =

1
q1 + q2

(
q2
q1

)
, u2 =

(
q1
−q2

)
, v2 =

1
q1 + q2

(
1

−1

)
.

Lemma 5.5 yields

B = D =
1

q1 + q2

(
q2 0
0 q1

)
.

When λ2 < 1/2, Theorem 3.17 applies with, by Lemmas 5.4 and 5.3(i),

Σ = ΣI =
u′2Bu2

1− 2λ2
v2v

′
2 =

q1q2
(1− 2λ2)(q1 + q2)2

(
1 −1

−1 1

)
.

(Note that q1 + q2 = 1− λ2.) Moreover, by Theorem 3.21(i), we have joint
asymptotic normality of the numbers of balls of different types after n draws
and the numbers of drawn balls of different types. Considering, as we may,
only type 1, we have

n−1/2
(
Xn1 − nq2/(q1 + q2), Nn1 − nq2/(q1 + q2)

) d→ N(0,Σ1),

where Lemma 5.6 easily gives

Σ1 =
q1q2

(1− 2λ2)(q1 + q2)2

(
1 1 + 2λ2

1 + 2λ2 3 + 2λ2

)
.

Similarly, when λ2 = 1/2, Theorem 3.18 applies with d = 0 and, by
Lemmas 5.4 and 5.3(i),

Σ = ΣII,d = ΣII =
q1q2

(q1 + q2)2

(
1 −1

−1 1

)
= 4q1q2

(
1 −1

−1 1

)
.

Furthermore, Theorem 3.21(ii) applies, and V̂ = A−1V = 2V .
For earlier proofs of these results and some extensions, see [52], [51], [11],

[12].

Example 7.5 (random 2-3 trees). Bagchi and Pal [10] applied their general
result to random 2-3 trees. In such trees, all internal nodes have 2 or 3
children, and all external nodes (leaves) are at the same distance from the
root. Keys are associated either with the leaves or with the internal nodes
[10], [2]. We define, following [10], the type of an internal node to be W
if it has 2 children and B if it has 3; an external node has the same type
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as its parent. When the tree is grown randomly, a new external node is
inserted adjacent to a randomly chosen old one; this either transforms a
W -type node at the lowest level to B, or splits a B-type node at the lowest
level into two nodes of type W (possibly inducing further splits higher up).
Bagchi and Pal [10] study the types of the external nodes as an urn process,
with ξ1 = (−2, 3)′ and ξ2 = (4,−3)′. This does not satisfy (1.2) so, as
noted in [10], the Athreya–Karlin embedding is not immediately available.
However, this example is of the “tenable” type described in Remark 4.2,
where we can use the superball trick. In this case, the superball method
is very natural; it means that we consider the lowest level internal nodes
instead of the external nodes. This “internal” urn model for 2-3 trees was
one of the examples considered by Aldous, Flannery and Palacios [2], who
noted that the Athreya–Karlin embedding works.

For the internal version, we have the urn model with ξ1 = (−1, 1)′ and
ξ2 = (2,−1)′ and the activities a1 = 2, a2 = 3; hence A =

(−2 6
2 −3

)
. Straight-

forward calculations yield λ1 = 1, λ2 = −6 and, by Theorem 3.17 and
Lemma 5.3(iii), for example n−1/2(Wn− 2

7n) d→ N(0, 108
637), if Wn is the num-

ber of W -type internal nodes in the lowest level when we have n nodes. For
wn, the number of W -type external nodes, we have wn = 2Wn and thus

n−1/2(wn − 4
7n) d→ N(0, 432

637), (7.3)

as shown by other methods in [10].
Alternatively, we can obtain this directly by using Theorem 3.17 on the

external version in [10], although (A1) is not satisfied; as remarked in Re-
mark 4.2, this is allowed for tenable urns (and for some other urns too). In
this direct approach, A =

(−2 4
3 −3

)
, and (7.3) follows by simple computa-

tions using Lemma 5.3(iii), or directly by (7.1). Note that, as always with
the superball trick, A differs for the two versions, but the eigenvalues are
the same, see Remark 4.2.

Example 7.6 (random recursive trees). Mahmoud and Smythe [43] used
a generalized Pólya urn to study random recursive trees and obtained the
asymptotic normal distribution of the nodes of outdegrees 0, 1 and 2. They
indicated that the results in principle extend to higher degrees; we can now
do this.

The distribution of outdegrees is the same as the distribution of types in
a generalized Pólya urn with infinitely many types {0, 1, 2, . . . } and the rule
that if a ball with type i is drawn, it is removed and replaced by a ball of type
i+ 1 and a ball of type 0, see [43]. In our notation, ξij = −δij + δ0j + δi+1,j .
Our theorems assume that the number of types is finite, but luckily we can
in this application truncate and lump all high degrees together. Thus, let
M ≥ 1 be an integer and use the types {0, 1, . . . ,M} only (thus q = M +1),
where now type M represents all outdegrees ≥M . The replacement vectors
ξi are as in the infinite model when i < M , while now ξM = (1, 0, . . . , 0)′.
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Exactly one ball is added each time, so λ1 = 1 and u1 = a = (1, 1, . . . , 1)′

by Lemma 5.4. It is easily verified that v1 = (1/2, 1/4, . . . , 2−M , 2−M )′, i.e.
v1i = 2−i−1 for 0 ≤ i < M and v1M = 2−M . In particular, Theorem 3.16
shows that Xni/n

a.s.→ 2−i−1 for every i ≥ 0 (by taking M > i); the weaker
statement Xni/n

p→ 2−i−1 was shown by Meir and Moon [45].
It can be shown, see [29], that A has besides λ1 = 1 only the eigenvalue

−1 (with multiplicity q − 1 = M). (Moreover, d−1 = M − 1, so A is not
diagonalizable when M ≥ 2.) Since thus λ2 = −1, Theorem 3.17 applies for
everyM , and the vector

(
n−1/2(Xni−2−i−1n)

)M−1

i=0
converges in distribution

to a Gaussian vector. Since M is arbitrary, this is the same as convergence of
the infinite vector

(
n−1/2(Xni− 2−i−1n)

)∞
i=0

in R∞, see [15, p. 19]. In other

words, n−1/2(Xni−2−i−1n) d→ Vi, jointly for all i ≥ 0, as n→∞, where the
Vi are jointly Gaussian variables with means EVi = 0. The (co)variances
Σjk := Cov(Vj , Vk) are calculated in [29] using Lemma 5.1.

Similarly, Theorem 3.24 yields a functional limit theorem: n−1/2(Xbxnc,i−
2−i−1xn) d→ Vi(x) in D[0,∞), where the Vi(x) are continuous Gaussian
processes with EVi(x) = 0. Again, see [29] for covariances.

Example 7.7 (random plane recursive trees). Mahmoud, Smythe and Szy-
mański [44] studied random plane recursive trees and obtained (among other
results) the asymptotic normal distribution of the number of nodes of outde-
grees 0, 1 and 2. The outdegrees can be modelled using a generalized Pólya
urn with infinitely many colours as in Example 7.6; the ξij are the same,
but now the activity ai = i + 1. In this case it is advantageous to use the
reverse of the superball trick: we replace each ball of type i by i+ 1 balls of
the same type. (The new balls can be interpreted as external vertices as in
[44].) This yields a new generalized Pólya urn with infinitely many types,
all activities 1, and the transitions given by

ξij = −(j + 1)δij + δ0j + (j + 1)δi+1,j = −(i+ 1)δij + δ0j + (i+ 2)δi+1,j .

Again we truncate and use the M+1 types 0, . . . ,M only, with ξMj changed
to δ0j + δMj . (Note that such truncation does not work in the original urn
model representing internal nodes.)

In this case the eigenvalues are λ1 = 2 and −1,−2, . . . ,−M , see [29].
Theorem 3.17 applies for every M , and extends the joint asymptotic nor-
mality found by Mahmoud, Smythe and Szymański [44] to all degrees. Theo-
rem 3.24 yields a functional limit theorem. The (co)variances are computed,
using Lemmas 5.4 and 5.3, in [29].

Example 7.8 (rotations in a binary tree). Mahmoud [39] modelled rotations
in the construction of a fringe-balanced binary tree by a generalized Pólya
urn with three types, with X0 = (2, 0, 0)′ and ξ1 = (−2, 1, 2)′, ξ2 = ξ3 =
(4,−1,−2)′. The number Rn of rotations in the n first insertions in the
binary tree then equals the number of times a ball of type 3 is drawn, i.e.
Rn = Nn3.
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Note that ξ23, ξ32 < 0, so (1.1) is violated.
Nevertheless, Mahmoud [39] observed that the proof of asymptotic nor-

mality in Smythe [51] holds for this urn too, and after finding exact formulas
for the mean and variance he obtained

n−1/2
(
Rn − 2

7n
) d→ N

(
0, 66

637

)
. (7.4)

Although (1.1), and thus (A1), does not hold, we can derive this result
from our theorems in several ways; since these methods may be useful in
other applications where some ξij are negative, we sketch three different
approaches, leaving simple calculations to the reader. (It is instructive to
compare the different calculations leading to the same result.)

First, note that in this urn, Xn1 is even and Xn3 = 2Xn2, which guaran-
tees that we are never required to remove balls that do not exist. Moreover,
λ1 = 1 with eigenvectors u1 = (1, 1, 1)′ and v1 = 1

7(4, 1, 2)′. Thus, as as-
serted in Remark 4.2, our theorems hold for this urn too, and (7.4) follows
by Theorem 3.21 and Lemma 5.6.

Secondly, since ξ2 = ξ3, we may combine types 2 and 3 and consider
the urn with two types and ξ1 = (−2, 3)′, ξ2 = (4,−3)′; to obtain Rn we
add a dummy ball with probability 2/3 each time we draw a ball of type
2. This is a tenable urn (the same as in Example 7.5), and the result can
be obtained by applying Corollary 3.11 and Lemma 5.3(i) to this urn (with
dummy balls), stopping when Xn1 +Xn2 = n+ 2.

Thirdly, consider the same 2-type urn again, but instead of adding dummy
balls at random, observe that given the number Nn2 of type 2 draws, Rn ∼
Bi(Nn2, 2/3). By Theorem 3.21, or by Example 7.5 and Nn2 = 1

6

(
3n −

Xn2

)
= 1

6

(
2n+ wn − w0

)
,

n−1/2
(
Nn2 − 3

7n
) d→ N(0, 12

637). (7.5)

In particular, Nn2/n
p→ 3/7. Hence, the central limit theorem for the bino-

mial distribution implies n−1/2
(
Rn− 2

3Nn2

) d→ N(0, 3
7 ·

2
3 ·

1
3); moreover, this

holds jointly with (7.5), with independent limits. Thus

n−1/2
(
Rn−2

7n
)

= n−1/2
(
Rn−2

3Nn2

)
+2

3n
−1/2

(
Nn2−3

7n
) d→ N(0, 2

21+
(

2
3

)2 12
637).

This also shows that of the variance in (7.4), only a fraction
(

2
3

)2 12
66 = 8

99
comes from the random variation in the urn, i.e. from the shape of the tree.

In the second and third methods, we reduce to the tenable urn for external
nodes in Example 7.5. We can replace this urn by the urn for internal nodes
in Example 7.5, thus reducing the problem further to an urn that satisfies
(A1). This is equivalent to reducing the original 3-type urn by an extension
of the superball trick, where the superballs may combine balls of different
types. In this case we have two types of superballs: the first represents two
balls of type 1, while the second represents 3 balls, 1 of type 2 and 2 of type
3. (This yields two further ways of deriving (7.4).)
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Example 7.9 (random m-ary search tree). In an m-ary search tree, where
m ≥ 2 is a fixed integer, a node may contain up to m− 1 keys. The tree is
constructed recursively, starting with an empty root node. Incoming keys
are added to the root node until it is full; it then get m daughters, initially
empty, and further keys are passed on to one of the daughters, where the
procedure repeats. See e.g. [38, Chapter 3].

Let us say that a node containing i keys has type i. With random input,
the number of nodes of different types is modelled by a generalized Pólya
urn with m types 0, . . . ,m− 1. A ball of type i with i < m− 2 has activity
i + 1; if drawn, it is removed and replaced by a ball of type i + 1. A ball
of type m− 2 has activity m− 1; if drawn, it is removed and replaced by a
ball of type m− 1 and m balls of type 0. A ball of type m− 1 has activity
0. (Since balls of type m − 1 are dead, we can ignore them when studying
the other types.)

Alternatively, we can study external vertices; each (internal) vertex of
type i ≤ m − 2 has i + 1 external vertices, which we label with the same
type i. The external vertices evolve as an urn with m−1 types 0, . . . ,m−2,
all activities 1, and the replacement rules ξi = −(i + 1)δi + (i + 2)δi+1,
0 ≤ i ≤ m − 3, and ξm−2 = −(m − 1)δm−2 +mδ0. For example, for m = 4
the external version has the matrix

A =

 −1 0 4
2 −2 0
0 3 −3


For the external version, it is easily seen that A has the characteristic

polynomial φm(λ) :=
∏m−1

i=1 (λ+ i)−m!; the largest real root is λ1 = 1, see
Lemma 5.4. (For the internal version, we have λφm(λ) with an additional
root λ = 0.)

A detailed study [42] shows that Reλ2 → 1 = λ1 as m → ∞, and that
Reλ2 <

1
2 for m ≥ 26, but Reλ2 >

1
2 for m > 26. Hence, the numbers

of nodes of different types have an asymptotic normal distribution when
m ≤ 26, but, as rigorously shown by Chern and Hwang [16], not for larger
m. This has earlier been shown by other methods [42], [36], [16], and by
urns as here by [41].

Example 7.10 (a branched random walk). Let G be a finite group and ξ a
random element of G, with some distribution µ. We define an urn process
where the types are the elements of G and ξgh = δgξ,h. We thus draw a ball,
replace it and add a new ball with a type shifted according to µ. This is a
special type of a branching random walk on G.

Since exactly one ball is added each time, λ1 = 1. By the symmetry, u1 =
(1, . . . , 1)′ and v1 = q−1(1, . . . , 1)′. The matrix A operates by convolution on
G: Av = v∗µ for v ∈ Cq = `2(G). Hence, ifG is commutative, the characters
of G are eigenvectors of A and the eigenvalues are the Fourier coefficients
of µ: Aχ = µ̂(χ)χ, χ ∈ Ĝ. In particular, we see that n−1/2(Xn − nv1)
converges to a Gaussian limit N(0,Σ) if and only if Re µ̂(χ) < 1/2 for all
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χ 6= 1. Lemma 5.5 yields B = q−1I (for any µ). Hence, Lemmas 5.4
and 5.3(i) together with the orthogonality of the characters yield

Σ = ΣI = q−2
∑
χ6=1

1
1− 2 Re µ̂(χ)

χχ′.

For a concrete example, let G be the cyclic group Zq and suppose that
only nearest-neighbour shifts are allowed, i.e. µ is supported on ±1. (For
example, we may always shift one step forward, or make a symmetric random
choice each time.) Then Re µ̂(χk) = cos(2πk/q), k = 0, . . . , q − 1, and
Reλ2 = cos(2π/q). Hence, if q ≤ 5, Reλ2 < 1/2 and Xn is asymptotically
normal with variance of the order n; if q = 6, Xn is still asymptotically
normal (but more degenerate) but the variance is of order n log n, and if
q > 6, the variance is of larger order and Xn is not asymptotically normal.

For non-commutative G, we obtain similar results by considering the ir-
reducible representations of G.

These results were proved in [25] by a different method (moment calcu-
lations). Moreover, [25] treats also infinite compact groups, obtaining the
same results there. This suggests that the results in this paper may have
generalizations to infinite sets of types, see Remark 4.1.

8. A lemma

We will later use a lemma on joint convergence in distribution. The lemma
is a simple exercise in measure theory, but since we do not know any good
reference, and the notation makes it look more complicated than it really is,
we give a detailed statement and proof. We begin with a simpler version.

Lemma 8.1. Suppose that (ηn, ζn) are pairs of random variables with values
in S1×S2 for some separable metric spaces S1 and S2, and that η and ζ are
random variables with values in S1 and S2, respectively. Suppose further:

(i) ηn
d→ η as n→∞;

(ii) for every measurable set A ⊆ S1 such that lim infn→∞ P(ηn ∈ A) > 0,
it holds that, conditioned on ηn ∈ A, ζn

d→ ζ.

Then we have joint convergence (ηn, ζn) d→ (η′, ζ ′) as n→∞, with η′ and ζ ′

independent copies of η and ζ, respectively.

Proof. Suppose that A and B are measurable sets in S1 and S2 with P(η ∈
∂A) = P(ζ ∈ ∂B) = 0. Then, by (i), P(ηn ∈ A) → P(η ∈ A), see e.g. [15,
Theorem 2.1]. If P(η ∈ A) > 0, we thus have by (ii) that, conditioned on
ηn ∈ A, ζn

d→ ζ, and thus P(ζn ∈ B | ηn ∈ A) → P(ζ ∈ B). Consequently,
when P(η ∈ A) > 0,

P
(
(ηn, ζn) ∈ A×B

)
= P(ζn ∈ B | ηn ∈ A) P(ηn ∈ A)

→ P(ζ ∈ B) P(η ∈ A) = P
(
(η′, ζ ′) ∈ A×B

)
.

(8.1)
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The same holds trivially if P(η ∈ A) = 0, and (ηn, ζn) d→ (η′, ζ ′) follows by
[15, Theorem 3.1]. �

We will need the following extension. (The index n may be replaced by
a continuous parameter t, since it suffices to consider sequences tn →∞.)

Lemma 8.2. Suppose that ηn, ζn, η, ζ, S1 and S2 are as in Lemma 8.1.
Let further E1 ⊆ E2 ⊆ . . . be an increasing sequence of measurable subsets
of S1, let E =

⋃∞
1 Em, and suppose that:

(i) ηn
d→ η as n→∞;

(ii) P(η ∈ ∂Em) = 0 for every m = 1, 2, . . . ;
(iii) P(ηn ∈ E) → P(η ∈ E) > 0 as n→∞;
(iv) for every m = 1, 2, . . . and every measurable set A ⊆ Em such that

lim infn→∞ P(ηn ∈ A) > 0, it holds that, conditioned on ηn ∈ A,
ζn

d→ ζ.

Then, conditioned on ηn ∈ E, we have ζn
d→ ζ and joint convergence

L
(
(ηn, ζn) | ηn ∈ E

) d→ L
(
(η′, ζ ′) | η′ ∈ E

)
,

with η′ and ζ ′ independent copies of η and ζ, respectively.

Proof. Suppose again that A and B are measurable sets in S1 and S2 with
P(η ∈ ∂A) = P(ζ ∈ ∂B) = 0. Let ε > 0 and choose m such that P(η ∈
E \ Em) < ε. By (i), (ii) and (iii) we have

P(ηn ∈ E \ Em) = P(ηn ∈ E)− P(ηn ∈ Em)

→ P(η ∈ E)− P(η ∈ Em) = P(η ∈ E \ Em),

and thus P(ηn ∈ E \ Em) < ε too for large n.
By (ii), P(η ∈ ∂(A ∩ Em)) ≤ P(η ∈ ∂A) + P(η ∈ ∂Em) = 0. Hence, (iv)

implies as in (8.1)

P
(
(ηn, ζn) ∈ (A ∩ Em)×B

)
→ P

(
(η′, ζ ′) ∈ (A ∩ Em)×B

)
and thus∣∣P(

(ηn, ζn) ∈ (A ∩ E)×B
)
− P

(
(η′, ζ ′) ∈ (A ∩ E)×B

)∣∣
=

∣∣P(
(ηn, ζn) ∈ (A ∩ (E \ Em))×B

)
+ P

(
(ηn, ζn) ∈ (A ∩ Em)×B

)
− P

(
(η′, ζ ′) ∈ (A ∩ Em)×B

)
− P

(
(η′, ζ ′) ∈ (A ∩ (E \ Em))×B

)∣∣
≤ P(ηn ∈ E \ Em)

+
∣∣P(

(ηn, ζn) ∈ (A ∩ Em)×B
)
− P

(
(η′, ζ ′) ∈ (A ∩ Em)×B

)∣∣
+ P(η ∈ E \ Em)

< 3ε,

provided n is large enough. Consequently, as n→∞,

P
(
(ηn, ζn) ∈ (A ∩ E)×B

)
→ P

(
(η′, ζ ′) ∈ (A ∩ E)×B

)
.
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Dividing by P(ηn ∈ E) → P(η ∈ E) = P(η′ ∈ E), we find

P
(
(ηn, ζn) ∈ A×B | ηn ∈ E

)
→ P

(
(η′, ζ ′) ∈ A×B | η′ ∈ E

)
,

and the result follows by [15, Theorem 3.1]. �

Note that (iii) follows from (i) if P(η ∈ ∂E) = 0. However, this stronger
condition does not always hold in our applications.

9. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on martingale theory, in particular a
martingale convergence theorem by Jacod and Shiryaev [24]. The theorem
uses the quadratic variation [X,X]t of a martingale X defined on [0,∞),
and its bilinear extension [X,Y ]t to two martingales X and Y . For a general
definition see e.g. [24] or [48]; for us it will suffice to know that, if X and Y
are (real or complex) martingales of finite variation, then

[X,Y ]t =
∑

0<s≤t

∆X(s)∆Y (s), (9.1)

where ∆X(s) := X(s) − X(s−) is the jump of X at s and, similarly,
∆Y (s) := Y (s) − Y (s−). (A martingale X is said to be of finite variation
if it is so pathwise, i.e. if t 7→ X(t) a.s. has bounded variation on each finite
interval.) The sum in (9.1) is formally uncountable, but in reality countable
since there is only a countable number of jumps; in the applications below,
the sum will be finite. (There is some disagreement in the literature on the
definition of [X,Y ] in the case X(0)Y (0) 6= 0; we have chosen the version
with [X,Y ]0 = 0.) For martingales of infinite variation (such as Brownian
motion), (9.1) fails, but we have always the inequality∑

0<s≤t

|∆X(s)|2 ≤ [X, X̄]t. (9.2)

For vector-valued martingales X = (Xi)m
i=1 and Y = (Yj)n

j=1, we define
the square bracket [X,Y ] to be the m× n matrix

(
[Xi, Yj ]

)
i,j

.
For a real-valued martingale X, the quadratic variation [X,X]t is a non-

negative and non-decreasing process. A real-valued martingale X(s) on [0, t]
is an L2-martingale if and only if E[X,X]t < ∞ and E |X(0)|2 < ∞, and
then

E |X(t)|2 = E[X,X]t + E |X(0)|2. (9.3)

(For complex-valued martingales one has to consider [X, X̄]t.) There is also
a corresponding bilinear formula, which extends to (real or complex) vector-
valued L2-martingales in the form

EX(t)Y ′(t) = E[X,Y ]t + EX(0)Y ′(0). (9.4)

We will use the following general result based on [24]; see [26] and [27] for
similar versions. Again, n may be replaced by a continuous parameter t.
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Proposition 9.1. (i) Assume that for each n, Mn(x) = (Mni(x))
q
i=1 is a

real q-dimensional martingale on [0,∞) with Mn(0) = 0, and that Σ(x),
x ≥ 0, is a (non-random) continuous matrix-valued function such that for
every fixed x ≥ 0,

[Mn,Mn]x
p→ Σ(x) as n→∞, (9.5)

sup
n

E |Mn(x)|2 <∞. (9.6)

Then Mn
d→ M as n → ∞, in D[0,∞), where M is a continuous q-

dimensional Gaussian process with EM(x) = 0 and covariances

EM(x)M ′(y) = Σ(x), 0 ≤ x ≤ y <∞. (9.7)

(ii) The same holds for complex Mn (with M complex), provided (9.5) is
supplemented by

[Mn,Mn]x
p→ Σ†(x) as n→∞, (9.8)

for some continuous matrix-valued function Σ†(x), and then further

EM(x)M ′(y) = Σ†(x), 0 ≤ x ≤ y <∞.

Proof. (i): Note first that (9.5) implies that if x ≤ y, then Σ(y) − Σ(x) is
positive semidefinite, so there exists a q-dimensional Gaussian process M
with independent increments such that EM(x) = 0 and EM(x)M ′(y) =
Σ(x), x ≤ y, see e.g. [24, Theorem II.5.2]. M is a martingale, and it is
continuous because each component is a (deterministic) time change of a
Brownian motion.

Since, by (9.2) and (9.3),

E sup
y≤x

|∆Mni(y)|2 ≤ E
∑
y≤x

|∆Mni(y)|2 ≤ E[Mni,Mni]x = E |Mni(x)|2,

it follows from (9.6) that, for each fixed x > 0, the sequence supy≤x |∆Mni(y)|
is uniformly integrable for each i, and thus supy≤x |∆Mn(s)| is uniformly in-
tegrable. The result now follows from [24, Theorem VIII.3.12, (ii)⇒(i)].

(ii): This follows from (i) by considering the real 2q-dimensional mar-
tingales (ReMn, ImMn). Note that (9.5) for these (with the appropriate
right-hand sides) follows from (9.5) and (9.8). �

In order to apply this result to our process X (t), we have to first define a
suitable martingale, and then estimate its quadratic variation. The martin-
gale is a standard one in branching process theory, and the estimates will be
derived by standard methods too, although the details will take some time.
We proceed with a series of lemmas. (Some of these are known, but included
here for completeness and because our conditions are slightly more general
than the standard ones; see also Remark 4.2.) We make the definition

Y(t) := e−tAX (t) (9.9)

and begin with a fundamental well-known result, cf. [9, Theorem V.8.1].
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Lemma 9.2. Y(t) is a martingale for t ≥ 0. In particular,

EX (t) = etA EX (0) (9.10)

and thus
EX (t) = O

(
eλ1t

)
. (9.11)

Proof. It follows from the definitions of X and A that

d

dt
EXj(t) =

q∑
i=1

ai EXi(t) E ξij =
(
AEX (t)

)
j

(9.12)

and hence d
dt EX (t) = AEX (t). This yields (9.10) by integration, and the

martingale property follows from (9.10) and the Markov property. Finally,
(2.12) implies (9.11). �

Let 0 < τi1 < τi2 < . . . denote the times a ball of type i splits, and let
Ni(t) := #{k : τik ≤ t} be the number of such splits up to time t. Since the
martingale Y(t) := e−tAX (t) has finite variation, its quadratic variation is
by (9.1) given by its jumps

[Y,Y]t =
q∑

i=1

∑
k:τik≤t

∆Y(τik)∆Y ′(τik)

=
q∑

i=1

∑
k:τik≤t

e−τikA∆X (τik)∆X ′(τik)e−τikA′
.

(9.13)

The main part of the proof consists of estimating this sum, and components
of it. It will be convenient to state a general lemma for sums of this type,
for simplicity considering a single i.

Lemma 9.3. Fix i ∈ {1, . . . , q}. Let f1 and f2 be continuous matrix-valued
functions defined on [0,∞) and let g be a matrix-valued function on Rq such
that E |g(ξi)| <∞. Suppose further that the dimensions of f1, g, and f2 are
such that the product f1gf2 is defined. Let

Z(t) :=
∑

k:τik≤t

f1(τik)g
(
∆X (τik)

)
f2(τik) =

∫ t

0
f1(s)g

(
∆X (s)

)
f2(s) dNi(s)

(9.14)
and

Z̃(t) := Z(t)−
∫ t

0
f1(s)(E g(ξi))f2(s)aiXi(s) ds. (9.15)

Then Z̃(t), t ≥ 0, is a (matrix-valued) martingale; in particular

EZ(t) =
∫ t

0
f1(s) E g(ξi)f2(s)ai EXi(s) ds. (9.16)



38 SVANTE JANSON

Proof. In the special case when f1 = f2 = g = 1, Z(t) = Ni(t) and Z̃(t) =
Ñi(t) := Ni(t)−

∫ t
0 aiXi(s) ds. The fact that Ñi(t) is a martingale is a well-

known simple consequence of the assumption that the balls have independent
exponential lifetimes. The present extension can be proved in the same
way, because ∆X (τik) is independent of the previous history; for example, a
straightforward calculation shows that Z̃(t∧ τn)− Z̃(t∧ τn−1) (with τ0 := 0)
is a martingale for each n, and the result follows by summing over n. We
omit the details. �

Note that (9.16) with |f1|, |f2| and |g|, implies, using (9.11), that E |Z(t)| <
∞ and that Z̃(t) is a uniformly integrable martingale on any finite interval
[0, T ].

From (9.4), (9.13), (2.13) and Lemma 9.3 follows

EY(t)Y ′(t) = E[Y,Y]t + EY(0)Y ′(0)

=
q∑

i=1

∫ t

0
e−sABie

−sA′
ai EXi(s) ds+ EY(0)Y ′(0).

(9.17)

By (9.9), this yields the following formula from [9, §V.7.3].

EX (t)X ′(t) =
q∑

i=1

∫ t

0
e(t−s)ABie

(t−s)A′
ai EXi(s) ds+ etA EX (0)X ′(0)etA

′
.

(9.18)

We apply the generalized eigenspace decomposition given by {Pλ} to
(9.17) and obtain the following estimate. (See also Lemma 10.6 below.)

Lemma 9.4. (i) If Reλ ≤ λ1/2, then

E |PλY(t)|2 = O
(
(1 + t)2dλ+1e(λ1−2 Re λ)t

)
.

(ii) If Reλ > λ1/2, then

E |PλY(t)|2 = O(1).

Proof. By (9.17), (9.11) and (2.10),∣∣E(
PλY(t)Y ′(t)P ′

λ

)∣∣ ≤ C1

∫ t

0

∣∣Pλe
−sA

∣∣ eλ1s
∣∣e−sA′

P ′
λ

∣∣ ds+ C2

≤ C3

∫ t

0
(1 + s)2dλe(λ1−2 Re λ)s ds+ C2.

The result follows by integration. �

An immediate consequence of Lemmas 9.2 and 9.4(ii) and the martin-
gale convergence theorem for L2-bounded martingales is the following [9,
Theorem V.8.2]. We let Ft denote the σ-field generated by X (s), 0 ≤ s ≤ t.

Lemma 9.5. If Reλ > λ1/2, then there exists a random vector W̃λ ∈ Eλ

such that PλY(t) → W̃λ as t→∞, a.s. and in L2. Moreover, PλY(t) =
E(W̃λ | Ft). �
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We can now prove part (iii) of Theorem 3.1. By (9.9) and (2.8),

e−tλQλ,kPλX (t) = e−tλQλ,kPλe
tAY(t) =

k∑
j=0

tj

j!
Qλ,kN

j
λPλY(t).

The first part of (iii) of Theorem 3.1 now follows from Lemma 9.5, with
Wλ,k := (k!)−1Qλ,kN

k
λW̃λ. The second part (convergence in distribution to a

constant process) follows because the first part implies uniform convergence
a.s. for a ≤ x ≤ b, on every compact interval [a, b] ⊂ (0,∞).

Before proving parts (i) and (ii), we observe that the limit in (iii) is non-
trivial.

Lemma 9.6. If λ ∈ ΛIII and 0 ≤ k ≤ dλ, then Wλ,k is non-degenerate.
More precisely, P(Wλ,k = 0) < 1 and P(Wλ,k = w) = 0 for every w 6= 0.

Proof. If Wλ,k = 0 a.s., then Nk
λW̃λ ∈ Nk+1

λ Eλ and thus Ndλ
λ W̃λ = 0 a.s.;

hence, by Lemma 9.5, for any t,

Ndλ
λ PλY(t) = E(Ndλ

λ W̃λ | Ft) = 0 a.s.

and thus
Ndλ

λ PλX (t) = etANdλ
λ PλY(t) = 0 a.s. (9.19)

Considering first rational t and using the right-continuity, we see that (9.19)
a.s. holds for all t ≥ 0. It follows that a.s. Ndλ

λ Pλ∆X (t) = 0 for all t > 0,
and thus Ndλ

λ Pλξi = 0 a.s. for every i with ai > 0, since every such transition
occurs with positive probability. Taking the expectation we find, since ai E ξi
equals the i:th column of A by definition, Ndλ

λ PλA = 0. By (2.5) this yields

0 = Ndλ
λ PλA = λNdλ

λ Pλ.

Since Ndλ
λ Pλ 6= 0 (it is Pλ when dλ = 0 and Ndλ

λ otherwise), this implies
λ = 0, contradicting λ ∈ ΛIII . Consequently, P(Wλ,k = 0) < 1.

Next, let τ be the time of the first death, and let X̂ (t) := X (τ + t).
Then X̂ is a branching process with the same transitions as X but a dif-
ferent (random) initial state X̂ (0) = X (τ); moreover, X̂ is independent of
τ . Letting Ŵλ,k denote the limit corresponding to Wλ,k for X̂ , one easily
finds Wλ,k = e−λτŴλ,k a.s. Since τ and Ŵλ,k are independent and τ has a
continuous distribution, P(Wλ,k = w) = 0 follows for w 6= 0 by conditioning
on Ŵλ,k. �

Because λ1 > 0 by our assumption (A3), Lemma 9.5 applies in particular
to λ = λ1. Note that Wλ1 = Wλ1,0 = W̃λ1 . We write W := u1 ·Wλ1 = u′1Wλ1

and have by (2.7)

Wλ1 = Pλ1Wλ1 = v1u
′
1Wλ1 = v1W = Wv1, (9.20)

as asserted in Theorem 3.1.
Some well-known properties of W are collected in the next lemma, see [9,

Theorems V.6.2 and V.7.2].



40 SVANTE JANSON

Lemma 9.7. We have W ≥ 0 a.s., P(W > 0) > 0 and P(W = w) = 0 for
every w 6= 0. Moreover,

(i) As t→∞, u1 · Y(t) = e−λ1tu1 · X (t) a.s.→ W .
(ii) If u1 · Y(t) = 0 for some t then a.s. W = 0.
(iii) Conversely, P(u1 · Y(t) > 0 and W = 0) → 0 as t→∞.

Consequently, a.s. W = 0 if and only if X becomes essentially extinct.

Proof. Since P ′
λ1
u1 = u1, we have by Lemma 9.5 and (9.20), (2.3)

u1 · Y(t) = P ′
λ1
u1 · Y(t) = u1 · Pλ1Y(t) a.s.→ u1 ·Wλ1 = u1 · v1W = W.

Moreover, A′u1 = λ1u1 and thus

u1 · Y(t) = u1 · e−tAX (t) = e−tA′
u1 · X (t) = e−λ1tu1 · X (t),

proving (i). Since u1 · X (t) ≥ 0, W ≥ 0 follows. If W = 0 a.s., then
Wλ1 = 0 a.s. by (9.20), which contradicts Lemma 9.6. Similarly, if w 6= 0
and P(W = w) > 0, then P(Wλ1 = wv1) > 0, which again contradicts
Lemma 9.6.

For the second part, recall that u1i > 0 for i ∈ C1 and u1i = 0 for i /∈ C1.
Hence, u1 · Y(t) = e−λ1tu1 · X (t) = 0 if and only if Xi(t) = 0 for all i ∈ C1.
(In other words, X is essentially extinct by time t.) Letting X̃ denote the
branching process obtained from X by ignoring all balls of types not in C1,
this means that X̃ (t) = 0. As a consequence, for all x ≥ t, X̃ (x) = 0 and
thus u1 · Y(x) = 0; hence the limit W = 0.

For the converse, we again consider the process X̃ (t). This is an ir-
reducible continuous time branching process, and by [9, Theorem V.7.2],
W = 0 a.s. implies extinction, X̃ (t) = 0 for large t, and thus u1 · Y(t) = 0
for large t. The result follows. �

We may further improve this result to the first claim in Theorem 3.1.

Lemma 9.8. As t→∞, e−λ1tX (t) a.s.→ Wv1.

Proof. This is Theorem V.7.2 in [9], see also [4], but since our setting is
somewhat more general, we give a complete proof.

Fix an eigenvalue λ 6= λ1 and let δ := λ1 − Reλ > 0. Let ε > 0 and let
En be the event supt∈[n−1,n]

∣∣e−λ1tPλX (t)
∣∣ > ε.

If En occurs, then, by (2.10), for some t ∈ [n− 1, n],

εeλ1t < |PλX (t)| =
∣∣Pλe

tAPλY(t)
∣∣ ≤ Cndλet(λ1−δ)|PλY(t)|

and thus |PλY(t)| ≥ cεn−dλetδ. Consequently, using Doob’s inequality and
Lemma 9.4,

P(En) ≤ P
(
sup
t≤n

|PλY(t)| ≥ cεn−dλe(n−1)δ
)

≤ Cε−2n2dλe−2nδ E |PλY(n)|2

≤ Cε−2n4dλ+1e−2nδemax(0,2δ−λ1)n.
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Hence
∑∞

n=1 P(En) <∞, so by the Borel–Cantelli lemma a.s.
lim supt→∞ |e−λ1tPλX (t)| ≤ ε. In other words,

e−λ1tPλX (t) → 0 a.s., λ 6= λ1. (9.21)

Moreover, Pλ1e
−tA = e−λ1tPλ1 and thus, by Lemma 9.5 and (9.20),

e−λ1tPλ1X (t) = Pλ1Y(t) a.s.→ W̃λ1 = Wλ1 = Wv1. (9.22)

The result follows by (9.21), (9.22) and (2.4). �

Lemma 9.9. Let, for t, y ≥ 0, Zy(t) be defined as in Lemma 9.3 using
matrix functions f1y, f2y and g. Suppose further that, as t→∞ and for
any fixed T ,

sup
t>1

∫ t

0
|f1t(s)| |f2t(s)|eλ1s ds <∞, (9.23)∫ t

0
|f1t(s)|2|f2t(s)|2eλ1s ds→ 0, (9.24)∫ T

0
|f1t(s)| |f2t(s)| ds→ 0. (9.25)

Then, as t→∞,

Zt(t)− aiv1iW

∫ t

0
f1t(s) E g(ξi)f2t(s)eλ1s ds

p→ 0.

Proof. We begin by showing that, defining Z̃t as in (9.15),

E |Z̃t(t)| → 0. (9.26)

By considering the components separately, and taking real and imaginary
parts, we may assume that f1y, f2y, g and Zy are real-valued; we write
fy = f1yf2y.

Assume first that E |g(ξi)|2 < ∞. Since the martingale Z̃y(t), t ≥ 0, has
finite variation, its quadratic variation is by (9.1) given by

[Z̃y, Z̃y]t =
∑
s≤t

(
∆Zy(t)

)2 =
∑

k:τik≤t

fy(τik)2g
(
∆X (τik)

)2
.

This is a sum of the same type as Z, with f1, g and f2 replaced by f2
y , g2

and 1. Hence Lemma 9.3 yields, together with (9.3) and (9.11),

E Z̃y(t)2 = E[Z̃y, Z̃y]t =
∫ t

0
fy(s)2 E g(ξi)2ai EXi(s) ds

≤ C

∫ t

0
fy(s)2eλ1s ds = C

∫ t

0
f1y(s)2f2y(s)2eλ1s ds

and thus, by (9.24), E |Z̃t(t)|2 → 0, which proves (9.26).
In the case E |g(ξi)|2 = ∞ we truncate, defining g1(x) = g(x)1[|g(x)| ≤

M ] and g2(x) = g(x)−g1(x) for a constant M . Thus g = g1+g2 and there is
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a corresponding decomposition Z̃y(t) = Z̃1y(t)+Z̃2y(t), where E |Z̃1t(t)| → 0
by the case just proved. Applying Lemma 9.3 with |f1y|, |f2y| and |g2|,

E |Z̃2y(t)| ≤ E |Z2y(t)|+
∫ t

0
|f1y(s)|E |g2(ξi)||f2y(s)|ai EXi(s) ds

≤ 2
∫ t

0
|f1y(s)|E |g2(ξi)||f2y(s)|ai EXi(s) ds.

Hence, by (9.11) and (9.23), for t ≥ 1,

E |Z̃2t(t)| ≤ C1 E |g2(ξi)|
∫ t

0
|f1t(s)| |f2t(s)|eλ1s ds ≤ C2 E |g2(ξi)|

and thus

lim sup
t→∞

E |Z̃t(t)| = lim sup
t→∞

E |Z̃2t(t)| ≤ C2 E |g2(ξi)|.

Since E |g2(ξi)| can be made arbitrarily small by choosing M large, (9.26)
follows.

Next, for every ε > 0, there is by Lemma 9.8 a.s. a random T such that
|e−λ1tXi(t) − v1iW | < ε for t ≥ T . Hence, for t ≥ T , for some random K
independent of t and again using (9.23),∣∣∣∣∫ t

0
f1t(s) E g(ξi)f2t(s)ai

(
Xi(s)− v1iWeλ1s

)
ds

∣∣∣∣
≤ C3

∫ T

0
|f1t(s)||f2t(s)|

(
Xi(s) + v1iWeλ1s

)
ds+ C4

∫ t

T
|f1t(s)||f2t(s)|εeλ1s ds

≤ K

∫ T

0
|f1t(s)||f2t(s)| ds+ C5ε.

It follows by (9.25) and the arbitrariness of ε that∫ t

0
f1t(s) E g(ξi)f2t(s)ai

(
Xi(s)− v1iWeλ1s

)
ds→ 0 a.s., (9.27)

and thus in probability, as t → ∞. The result follows from (9.15), (9.26)
and (9.27). �

Lemma 9.9 and (9.13) will give us the estimates of [Y,Y]t that we need in
order to apply Proposition 9.1. We begin with PIY, the part corresponding
to eigenvalues λ with Reλ < λ1/2. For convenience we set Ã := PIA−λ1/2,
and note that each eigenvalue µ of Ã satisfies Reµ < 0. Hence, for some
δ > 0 and every t ≥ 0,

|etÃ| = O(e−δt). (9.28)

Define, recalling (9.9),

Yy(t) := eyÃPIY(t) = e−λ1y/2+(y−t)APIX (t). (9.29)
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For fixed y, Yy(t) is a martingale by Lemma 9.2, and, by (9.13),

[Yy,Yy]t = eyÃPI [Y,Y]tP ′
Ie

yÃ′
=

q∑
i=1

∑
k:τik≤t

f
(i)
1y (τik)g

(
∆X (τik)

)
f

(i)
2y (τik),

(9.30)
where g(ξ) = ξξ′ and

f
(i)
1y (s) = f

(i)
2y

′
(s) = eyÃPIe

−sA = e−λ1s/2+(y−s)ÃPI . (9.31)

The inner sum in (9.30) is of the type studied in Lemmas 9.3 and 9.9. We
apply Lemma 9.9 for each i separately. By (9.31) and (9.28),

|f (i)
1t (s)| = |f (i)

2t (s)| = O
(
e−λ1s/2−(t−s)δ

)
, 0 ≤ s ≤ t, (9.32)

and the conditions (9.23)–(9.25) follow.
Moreover, E g(ξi) = Bi by (2.13), and by (9.31)∫ t

0
f

(i)
1t (s) E g(ξi)f

(i)
2t (s)eλ1s ds =

∫ t

0
e(t−s)ÃPIBiP

′
Ie

(t−s)Ã′
ds

= PI

∫ t

0
erÃBie

rÃ′
dr P ′

I → PI

∫ ∞

0
erÃBie

rÃ′
dr P ′

I ,

where the integral converges by (9.28). Consequently, (9.30) and Lemma 9.9
yield, as t→∞, see (2.15),

[Yt,Yt]t
p→

q∑
i=1

aiv1iWPI

∫ ∞

0
esÃBie

sÃ′
dsP ′

I = WΣI . (9.33)

For any fixed real x, Yt(s) = e−xÃYt+x(s) and thus, as t→∞,

[Yt,Yt]t+x = e−xÃ[Yt+x,Yt+x]t+xe
−xÃ′ p→We−xÃΣIe

−xÃ′
. (9.34)

Moreover, by (9.30) and Lemma 9.3

E[Yt,Yt]t =
q∑

i=1

∫ t

0
f

(i)
1t (s)Bif

(i)
2t (s)ai EXi(s) ds

which by (9.32) and (9.11) is bounded for t ≥ 0. Consequently, for t+x ≥ 0,

E[Yt,Yt]t+x = e−xÃ E[Yt+x,Yt+x]t+xe
−xÃ′

= O
(
|e−xÃ|2

)
.

We have further
|Yt(0)| = |etÃPIY(0)| = O(|etÃ|).

and thus, using (9.3) on each component of Yt,

E |Yt(t+ x)|2 = |Yt(0)|2 + Tr E[Yt,Yt]t+x = O
(
|etÃ|2 + |e−xÃ|2

)
. (9.35)

In particular, for any fixed x, by (9.28),

sup
t≥−x

E |Yt(t+ x)|2 <∞. (9.36)
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We are close to applying Proposition 9.1, but we still have the obstacle that
the right-hand side of (9.34) is random. To simply divide Yt by

√
W would

destroy the martingale property, but we can do something similar: Let, for
t ≥ 1, h = h(t) := t1/2 (any function of t that increases slowly to ∞ would
do), and define (with the convention 0−1/2 = 0)

Ỹt(x) :=

{(
u1 · Y(t− h)

)−1/2(Yt(t+ lnx)− Yt(t− h)
)
, x ≥ e−h,

0, x < e−h.
(9.37)

Clearly, Ỹt is a martingale on [0,∞), and this is still true conditioned on
any event Et ∈ Ft−h.

For fixed x > 0 we have from (9.1), for t so large that −h(t) < lnx,

[Ỹt, Ỹt]x =
(
u1 · Y(t− h)

)−1([Yt,Yt]t+ln x − [Yt,Yt]t−h

)
. (9.38)

Further, using Doob’s inequality, (9.35) and (9.28),

E sup
x≤t−h

|Yt(x)|2 ≤ 4 E |Yt(t− h)|2 = O
(
e−2δt + e−2δh

)
= o(1), (9.39)

as t→∞. It follows by (9.3) applied to the components Yti that, for i =
1, . . . , q, E[Yti,Yti]t−h → 0. The same holds for the nondiagonal entries of
E[Yt,Yt]t−h by the Cauchy–Schwarz inequality and the Kunita–Watanabe
inequality |[Yti,Ytj ]s| ≤ [Yti,Yti]

1/2
s [Ytj ,Ytj ]

1/2
s , which in this setting is the

Cauchy–Schwarz inequality applied to (9.1). Hence,

E[Yt,Yt]t−h → 0. (9.40)

Since t− h→∞, Lemma 9.7 yields u1 · Y(t− h) a.s.→ W . Combined with
(9.38), (9.34) and (9.40), this implies that, on the event {W > 0}, for every
fixed x > 0,

[Ỹt, Ỹt]x
p→ e−(ln x)ÃΣIe

−(ln x)Ã′
. (9.41)

Now assume that ε > 0 and that, for large t, Et is any event in Ft−h

with P(Et) ≥ ε and u1 · Y(t− h) ≥ ε on Et. Since P(Et ∩ {W = 0}) → 0 by
Lemma 9.7, it follows from (9.41), (9.36) and (9.39) that Ỹt conditioned on Et

satisfies the conditions of Proposition 9.1 with Σ(x) := e−(ln x)ÃΣIe
−(ln x)Ã′

.
(Σ(0) = 0; note that Σ is continuous at 0 by (9.28).) Consequently, condi-
tioned on Et, Ỹt(x)

d→ ŨI(x) inD[0,∞) as t→∞, where ŨI is the continuous
vector-valued Gaussian stochastic process with mean 0 and covariances

E ŨI(x)ŨI(y)′ = E ŨI(x)ŨI(x)′ = Σ(x) = e−(ln x)ÃΣIe
−(ln x)Ã′

, x ≤ y.
(9.42)

Next, from the definition of Ỹt and (9.39), on Et,

sup
x≥0

∣∣Ỹt(x)−
(
u1·Y(t−h)

)−1/2Yt(t+lnx)
∣∣ =

(
u1·Y(t−h)

)−1/2 sup
y≤t−h

|Yt(y)|
p→ 0

so we may replace Ỹt(x) by
(
u1 ·Y(t−h)

)−1/2Yt(t+lnx) in this limit result.
Changing variables x → ex we find, in D[−∞,∞) and thus in D(−∞,∞),
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conditioned on Et, as t→∞,(
u1 · Y(t− h)

)−1/2Yt(t+ x) d→ ŨI(ex).

Since, by (9.29), Yt(t + x) = e−λ1t/2−xAPIX (t + x), we obtain by multipli-
cation by exÃ, as t→∞ and conditioned on Et, in D(−∞,∞),(

u1 · Y(t− h)
)−1/2

e−λ1(t+x)/2PIX (t+ x) d→ UI(x) := exÃŨI(ex).

UI is a Gaussian process, and the covariances (3.1) follow from (9.42).
We now apply Lemma 8.2 taking ηt = u1 · Y(t − h), ζt =

(
u1 · Y(t −

h)
)−1/2

e−λ1(t+x)/2PIX (t + x), η = W , ζ = UI , S1 = R, S2 = D(−∞,∞),
E = {r ∈ R : r > 0}, and Em = {r ∈ R : r > 1/m}.

We have just proved assumption (iv) in Lemma 8.2, and assumptions (i),
(ii) and (iii) follow by Lemma 9.7. Hence Lemma 8.2 shows that, conditioned
on u1 · Y(t− h) > 0, (ηt, ζt)

d→ (W̃ , UI), where W̃ has the distribution of W
conditioned on being positive and with UI independent of W̃ . Consequently,
conditioned on u1 · Y(t− h) > 0,

e−λ1(t+x)/2PIX (t+ x) = η
1/2
t ζt

d→ W̃ 1/2UI(x) in D(−∞,∞). (9.43)

If P(W = 0) = 0, then W̃ = W and u1 · Y(t− h) > 0 a.s. by Lemma 9.7,
and part (i) of Theorem 3.1 is proved.

If P(W = 0) > 0, we define the martingale

Ŷt(x) :=

{
Yt(t+ lnx)− Yt(t− h), x ≥ e−h,

0, x < e−h.

Since u1 · Y(t − h) = 0 implies W = 0 a.s. by Lemma 9.7, (9.34) implies
that, conditioned on u1 · Y(t− h) = 0,

[Ŷt, Ŷt]x
p→ 0

for every fixed x. Together with (9.36) and (9.39), this shows that we can
apply Proposition 9.1 to Ŷt(x) conditioned on u1 · Y(t − h) = 0, now with
Σ(x) = 0 and thus M = 0. Hence, conditioned on u1 · Y(t − h) = 0, we
find first Ŷt(x)

d→ 0 in D[0,∞), then by (9.39) and a change of variable
Yt(t+ x) d→ 0 in D(−∞,∞), and then, after multiplication by exÃ′

,

e−λ1(t+x)/2PIX (t+ x) d→ 0 = W 1/2UI(x) in D(−∞,∞).

This complements (9.43) and together they imply part (i) of Theorem 3.1,
with UI independent of W .

A simple modification of the argument shows that (i) and (iii) hold jointly.
(When we talk about (iii) holding jointly with other assertions, here and
later in the proof, we only mean the part on convergence in distribution.)
Indeed, let YIII,t(xt) denote the collection of the left-hand sides of (iii) in
Theorem 3.1 (for λ ∈ ΛIII and 0 ≤ k ≤ dλ), regarded as a large vector-valued
process, and let WIII denote the corresponding collection of the right-hand
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sides. The a.s. convergence in (iii) implies that YIII,t(xt)−YIII,t(h)
p→ 0 in

D(0,∞) as functions of x. Hence the convergence in distribution in (iii) is
equivalent to YIII,t(h)

d→WIII .
By enlarging ηt (and S1) in the application of Lemma 8.2 above, changing

ηt into
(
u1 · Y(t−h),YIII,t(h)

)
, it now follows that (i) and (iii) hold jointly,

with UI independent of {Wλ,k}λ∈ΛIII ,k≤dλ
.

For λ ∈ ΛII we argue similarly, now putting

Yy,λ,k(t) = y−k−1/2Qλ,kPλY(t). (9.44)

Again, this is a martingale (for fixed y, λ, k). If also µ ∈ ΛII and 0 ≤ l ≤ dµ,
then [Yy,λ,k,Yy,µ,l]t is by (9.13) given by a sum as in (9.30), where now by
(2.8)

f
(i)
1y (s) = y−k−1/2Qλ,kPλe

−sA = y−k−1/2e−sλ
k∑

j=0

(−s)j

j!
Qλ,kN

j
λPλ

and similarly for f (i)
2y (s). Instead of (9.32) we have by (2.11), for t ≥ 1,

|f (i)
1t (s)| = O

(
t−k−1/2e−λ1s/2(1 + s)k

)
= O

(
t−1/2e−λ1s/2

)
, 0 ≤ s ≤ t,

and similarly for f (i)
2y (s). In this case too, (9.23)–(9.25) follow, so Lemma 9.9

applies for each i. We now have∫ t

0
f

(i)
1t (s) E g(ξi)f

(i)
2t (s)eλ1s ds

=
∫ t

0
t−k−l−1es(λ1−λ−µ)

k∑
j=0

l∑
m=0

(−s)j+m

j!m!
Qλ,kN

j
λPλBiP

′
µ(N ′

µ)mQ′
µ,l ds.

(9.45)

If µ = λ̄, then λ1 − λ− µ = λ1 − 2 Reλ = 0, and the integral (9.45) equals

k∑
j=0

l∑
m=0

(−1)j+m tj+m+1−k−l−1

(j +m+ 1) j!m!
Qλ,kN

j
λPλBiP

′
µ(N ′

µ)mQ′
µ,l

→ (−1)k+l

(k + l + 1) k! l!
Qλ,kN

k
λPλBiP

′
µ(N ′

µ)lQ′
µ,l,

as t→∞. If µ 6= λ̄, then λ1 − λ− µ is imaginary and nonzero. It is easily
seen, by integration by parts, that then

∫ t
0 e

s(λ1−λ−µ)sr ds = O(tr) for each
r ≥ 0, which implies that the integral (9.45) tends to 0.

Hence, in both cases, Lemma 9.9 and (2.16) imply that, as t→∞,

[Yt,λ,k,Yt,µ,l]t
p→W · (−1)k+l

(k + l + 1) k! l!
Qλ,kN

k
λPλΣIIP

′
µ(N ′

µ)lQ′
µ,l
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(with the right-hand side 0 by (2.16) unless µ = λ̄). Consequently, for every
fixed x > 0,

[Yt,λ,k,Yt,µ,l]xt = xk+l+1[Yxt,λ,k,Yxt,µ,l]xt

p→W · xk+l+1 (−1)k+l

(k + l + 1) k! l!
Qλ,kN

k
λPλΣIIP

′
µ(N ′

µ)lQ′
µ,l.

(9.46)

Clearly, this holds for x = 0 too. Moreover, it follows easily from (9.44),
(9.17) and (2.11) that supt≥1 E |Yt,λ,k(xt)|2 <∞ for every x ≥ 0.

Let YII,t(s) be the vector obtained by combining all vectors Yt,λ,k(s) for
λ and k as in part (ii) of Theorem 3.1; we write this as YII,t = (Yt,λ,k)λ,k.
We thus see from (9.46) that [YII,t,YII,t]xt converges. Moreover, since
Yt,λ,k = Yt,λ̄,k, YII,t equals YII,t with a certain permutation of the com-
ponents. Hence [YII,t,YII,t]xt too converges.

We this time define, with h := t1/2 as above,

Ỹt(x) :=

{(
u1 · Y(h)

)−1/2(YII,t(xt)− YII,t(h)
)
, x ≥ h/t,

0, x < h/t.

Repeating the argument after (9.37) above (replacing t− h by t/h = h and
using Proposition 9.1(ii) if some λ ∈ ΛII is non-real), we obtain, in D[0,∞),

YII,t(xt)
d→W 1/2ŨII(x) (9.47)

or, jointly for all λ ∈ ΛII and 0 ≤ k ≤ dλ,

Yt,λ,k(xt)
d→W 1/2Ũλ,k(x), (9.48)

where ŨII = (Ũλ,k)λ,k is Gaussian and, for 0 ≤ x ≤ y,

E
(
Ũλ,k(x)Ũµ,l(y)′

)
= c̃(k, l, x)Qλ,kN

k
λPλΣIIP

′
µ(N ′

µ)lQ′
µ,l. (9.49)

with

c̃(k, l, x) :=
(−1)k+l

(k + l + 1)k! l!
xk+l+1 =

(−1)k+l

k! l!

∫ x

0
sk+l ds. (9.50)

In the case dλ = 0 for λ ∈ ΛII , this completes the proof of (ii). In general,
we have by (9.9), (2.8), (2.6) and (9.44)

t−(k+1/2)e−λxtQλ,kPλX (xt) = t−k−1/2e−λxtQλ,kPλe
xtAY(xt)

= t−k−1/2Qλ,ke
xtNλPλY(xt) = t−k−1/2

k∑
j=0

(xt)j

j!
Qλ,kN

j
λPλY(xt)

=
k∑

j=0

xj

j!
N j

λYt,λ,k−j(xt),
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which by (9.48) yields part (ii) of the theorem with

Uλ,k(x) :=
k∑

j=0

xj

j!
N j

λŨλ,k−j(x).

By (9.49) we have (3.2), with, using (9.50) and the binomial theorem,

c(k,l, x, y) =
k∑

j=0

l∑
m=0

xj

j!
ym

m!
c̃(k − j, l −m,x)

=
k∑

j=0

l∑
m=0

xj

j!
ym

m!
1

(k − j)! (l −m)!

∫ x

0
(−s)k−j+l−m ds

=
1
k! l!

∫ x

0
(x− s)k(y − s)l ds,

which yields (3.3) by a change of variable and the binomial theorem again.
Again, by Lemma 8.2 with an enlarged ηt as above, (ii) and (iii) hold

jointly, with {Uλ,k}λ∈ΛII , k≤dλ
independent of {Wλ,k}λ∈ΛIII ,k≤dλ

.
We have proved (i), (ii) and (iii) separately, but only partly proved the

joint convergence and the asserted independence.
First, note that the families {Uλ,k}0≤k≤dλ

for different λ ∈ ΛII with
Imλ ≥ 0 are independent because they are jointly Gaussian and all co-
variances of real or imaginary parts vanish by (3.2) and (2.16).

Next, consider the stopped processes YT
II,t(s) := YII,t(s∧T ) and ŨT

II(x) :=
ŨII(x ∧ T ). Stopping at x = 1 we obtain from (9.47)

Yt
II,t(xt)

d→W 1/2Ũ1
II(x). (9.51)

Moreover, we have shown that this holds jointly with (iii) and with Ũ1
II

independent of {Wλ,k}λ∈ΛIII ,k≤dλ
. It is another consequence of (9.47) that

sup
x

∣∣Yt
II,t(xt)− Yt−h

II,t (xt)
∣∣ = sup

1−h/t≤x≤1
|YII,t(xt)− YII,t(t− h)| p→ 0. (9.52)

Hence (9.51) is equivalent to

Yt−h
II,t (xt)

d→W 1/2Ũ1
II(x). (9.53)

Next, redo the application above of Lemma 8.2 to (i) once again, now
further enlarging ηt (and S1) to contain also Yt−h

II,t (xt) (which is Ft−h-
measurable). This shows that (9.53), (iii) and (i) hold jointly, with UI ,
Ũ1

II and {Wλ,k}λ∈ΛIII ,k≤dλ
independent.

Finally, stop the left-hand side of (i) at x = h; this does not affect the
limit because h→∞. Consider again the argument for (9.47), but applied
to YII,t−Yt+h

II,t . Applying Lemma 8.2 as above but with ηt containing Yt−h
II,t ,

YIII,t(h) and the left-hand side of (i) stopped at x = h, we find

YII,t(xt)− Yt+h
II,t (xt)

d→W 1/2
(
ŨII(x)− Ũ1

II(x)
)

in D[0,∞), (9.54)
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jointly with (i), (iii) and (9.53), with ŨII − Ũ1
II independent of UI , Ũ1

II and
{Wλ,k}λ∈ΛIII ,k≤dλ

.
By (9.52) and the analogous supx |Yt+h

II,t (xt) − Yt
II,t(xt)|

p→ 0, we can
replace Yt±h

II,t in (9.53) and (9.54) by Yt
II,t. Together, these yield (9.47), and

hence (ii), now with joint convergence with (i) and (iii) and the asserted
independence. �

10. Remaining proofs

Proof of Lemma 3.9. By Lemma 9.8,

e−λ1tb · X (t) a.s.→ (b · v1)W as t→∞, (10.1)

which shows that b · X (t) →∞ a.s. when W > 0. The remaining properties
are immediate, observing that supt≤T b · X (t) <∞ for every finite T . �

The next lemma extends a result by Athreya and Karlin [7], [9, Theorem
V.7.3].

Lemma 10.1. Assume b · v1 > 0. As z →∞, (with ln 0 = −∞)

τb(z)−
1
λ1

ln z a.s.→ − 1
λ1

(
lnW + ln(b · v1)

)
.

Proof. Let E be the event b · X (t) → ∞. On E , τb(z) < ∞ for all z and
τb(z) →∞ as z →∞. Hence (10.1) implies that, a.s. on E ,

e−λ1τb(z)b · X
(
τb(z)

)
→ (b · v1)W as z →∞. (10.2)

By the right-continuity of X (t), b · X
(
τb(z)

)
≥ z. On the other hand, if

ε(z) = 1/z, say, and z is so large that τb(z) > ε(z), then b ·X (τb(z)−ε(z)) <
z, and, again by (10.1),

e−λ1τb(z)b · X (τb(z)− ε(z)) → (b · v1)W as z →∞. (10.3)

Combining (10.2) and (10.3) we find that, a.s. on E ,

e−λ1τb(z)z → (b · v1)W as z →∞. (10.4)

On the complement of E , W = 0 a.s. by Lemma 3.9 and τb(z) = ∞ for
large z; hence (10.4) holds trivially. In other words, (10.4) holds a.s. Taking
logarithms, we obtain the lemma. �

Lemma 10.2. As t→∞, e−λ1t/2 sups≤t |∆X (s)| a.s.→ 0.

Proof. Let ∆∗X (t) := sups≤t |∆X (s)| and let M > 0. Define

Z(t) :=
q∑

i=1

∑
k:τik≤t

1[|∆X (τik)| > M ], (10.5)

the number of jumps larger than M until time t. Clearly,

P
(
∆∗X (t) > M

)
= P

(
Z(t) ≥ 1

)
≤ EZ(t).
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Moreover, applying Lemma 9.3 with f1(s) = f2(s) = 1 and g(x) = 1[|x| >
M ] to the inner sum in (10.5) and using (9.11),

EZ(t) =
q∑

i=1

∫ t

0
P(|ξi| > M)ai EXi(s) ds =

q∑
i=1

P(|ξi| > M) ·O(eλ1t).

Now let ε > 0 and let En be the event supt∈[n,n+1] e
−λ1t/2∆∗X (t) > ε. Then,

taking M = εeλ1n/2,

P(En) ≤ P
(
∆∗X (n+ 1) > M

)
≤ EZ(n+ 1) ≤ C

q∑
i=1

P(|ξi| > M)eλ1(n+1)

= C

q∑
i=1

P(ε−2|ξi|2 > eλ1n)eλ1(n+1).

Summing over n we find∑
n

P(En) ≤ C1

q∑
i=1

E
∑

n

eλ1(n+1)1[eλ1n < ε−2|ξi|2] ≤ C2

q∑
i=1

E ε−2|ξi|2 <∞,

and the Borelli–Cantelli lemma completes the proof. �

Lemma 10.3. Conditioned on W > 0, z−1/2 sups≤τb(z) |∆X (s)| a.s.→ 0 as
z →∞.

Proof. Conditioned on W > 0, we have τb(z)
a.s.→ ∞ by Lemma 3.9 and thus

e−λ1τb(z)/2 sups≤τb(z) |∆X (s)| a.s.→ 0 by Lemma 10.2. Moreover, by Lemma 10.1
(or (10.4)), z−1/2eλ1τb(z)/2 a.s.→ (b · v1)−1/2W−1/2, and the result follows by
multiplication. �

Proof of Theorem 3.10. We condition on W > 0, which by Lemma 9.7 is
the same as essential non-extinction, and let z →∞.

First, τb(z) → ∞ and thus by Lemma 9.8 e−λ1τb(z)X
(
τb(z)

) a.s.→ Wv1.
Dividing by (10.4), we find (3.4).

Secondly, let t = λ−1
1 ln z and x = τb(z) − t. Then t→∞ and, by

Lemma 10.1, x → x0 := −λ−1
1

(
lnW + ln(b · v1)

)
a.s. Thus Theorem 3.1(i)

yields

e−λ1t/2PIX (t+ x) d→ eλ1x0/2W 1/2UI(x0) = (b · v1)−1/2UI(x0).

Here x0 is random, but UI is a stationary process independent of W and
thus of x0, and thus UI(x0)

d= UI(0). Hence (i) follows with VI = UI(0).
Next, let t = λ−1

1 ln z and x = τb(z)/t. Thus Lemma 10.1 yields xt− t→
−λ−1

1

(
lnW + ln(b · v1)

)
and x → 1 a.s. Hence Theorem 3.1(ii) implies for

λ ∈ ΛII , and thus Reλ = λ1/2,

t−(k+1/2)e−λ1t/2−i Im λxtQλ,kPλX
(
τb(z)

) d→ (b · v1)−1/2Uλ,k(1). (10.6)
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If λ = λ1/2, (10.6) yields the limit in (ii) with Vλ,k = λ
−k−1/2
1 Uλ,k(1). If

Imλ 6= 0, we have a further factor e−i Im λxt of modulus 1 on the left-hand
side of (10.6). In this case, however, the distribution of Uλ,k(1) is symmetric
complex Gaussian (Remark 3.6), and it follows that (ii) follows in this case
too. (Consider subsequences where e−i Im λt converges.)

Similarly, (iii) follows from Theorem 3.1(iii), with W̌λ,k := λ−k
1 W−λ/λ1Wλ,k.

Next, |b·X
(
τb(z)

)
−z| ≤ |b||∆X

(
τb(z)

)
| and thus z−1/2

(
b·X

(
τb(z)

)
−z

) a.s.→
0 by Lemma 10.3. We multiply this by (b · v1)−1v1, which yields (iv) if
we write X =

∑
λ PλX and observe that for every v ∈ ImPλ1 = Eλ1 ,

(b · v/b · v1)v1 = v. (v) is a consequence of (iv) and X =
∑

λ PλX .
The result for urn processes follows by the embedding argument by Athreya

and Karlin [8] discussed in the introduction. �

Proof of Corollary 3.11. By assumption, Λ = ΛI ∪ {λ1}. Hence Theo-
rem 3.10(v) yields, with some R(z) a.s.→ 0,

z−1/2
(
X

(
τb(z)

)
− z

b · v1
v1

)
= z−1/2

(
I − v1b

′

b · v1

)
PIX

(
τb(z)

)
+R(z).

Theorem 3.10(i) shows that this converges to the Gaussian limit

(b · v1)−1/2
(
I − v1b

′

b · v1

)
VI

with the covariance matrix (3.7), by (3.5) and (2.15); note that
(
I − (b ·

v1)−1v1b
′)PI = I − (b · v1)−1v1b

′ because PI = I − Pλ1 = I − v1u
′
1 and(

I − (b · v1)−1v1b
′)v1 = 0. �

Proof of Corollary 3.12. This is similar to the proof of the preceding corol-
lary; we now use Theorem 3.10(v), (i) and (ii), and find the Gaussian limit

(b · v1)−1/2
(
I − v1b

′

b · v1

) ∑
λ∈ΛII

Vλ,d

(where Vλ,d = 0 when dλ < d), which yields (3.8) by (3.6) and (2.17). �

Proof of Corollary 3.13. By Theorem 3.10(v),

Yb(z)−
(
I − v1b

′

b · v1

) ∑
λ6=λ1

(ln z)−dz−Re λ2/λ1PλX
(
τb(z)

) a.s.→ 0.

By Theorem 3.10(i), (ii) and (iii) (with k = dλ), the terms in the sum with
λ /∈ Λ̃′

III := {λ : Reλ = Reλ2, dλ = d} tend to 0 in probability; this can
be improved to almost surely for λ ∈ ΛIII by Theorem 3.10(iii) and for
λ ∈ ΛI ∪ ΛII by the argument in the proof of Lemma 9.8; we omit the
details. Moreover, for λ ∈ Λ̃′

III , Theorem 3.10(iii) implies

(ln z)−dz−Re λ2/λ1PλX
(
τb(z)

)
− zi Im λ/λ1(b · v1)−λ/λ1W̌λ,k

a.s.→ 0.
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Hence,
Yb(z)−

∑
λ∈Λ̃′

III

zi Im λ/λ1W̃b,λ
a.s.→ 0,

where W̃b,λ :=
(
I− v1b′

b·v1

)
(b ·v1)−λ/λ1W̌λ,k, and (3.9) follows with Wb,λ = W̃b,λ

when Imλ = 0 and Wb,λ = 2W̃b,λ when Imλ > 0. Tightness follows, as does
(3.10) in the special case when ΛIII = {λ2} with λ2 real. �

Proof of Theorem 3.16. As said in Section 3, we change the rules and add
an additional dummy ball of a new type q+1 whenever a ball splits; dummy
balls have aq+1 = 0 and ξq+1 = 0 and thus never split. This does not affect
the process of the balls of types 1, . . . , q, but adds a count of the number of
splits. Note that (A1)–(A6) hold for the modified process too. (However, it
is not irreducible even if the original process is; this is our main reason for
not assuming irreducibility in this paper.)

We write ˜ over the symbols to denote the modified process and vari-
ous quantities defined for it. Writing vectors and matrices in block form,
corresponding to a split Rq × R, we see that, for i = 1, . . . , q,

ξ̃i =
(
ξi
1

)
, ã =

(
a
0

)
, Ã =

(
A 0
a′ 0

)
.

Consequently, the eigenvalues Λ̃ = Λ ∪ {0}, in particular, λ̃1 = λ1. It is
easily verified that Ã has the corresponding eigenvectors

ũ1 =
(
u1

0

)
, ṽ1 =

(
v1
λ−1

1

)
. (10.7)

Finally, we choose b = ( 0
1 ), which means that τb(n) is the first time we have

n dummy balls, i.e. the n:th split time τn, and thus X̃n = X̃
(
τb(n)

)
. By

(10.7), we have b · ṽ1 = λ−1
1 .

We may now apply Theorem 3.10 to X̃n = X̃
(
τb(n)

)
, and the result

follows from (3.4). �

Lemma 10.4. (i) We have ψ(s,A)v1 = v1.
(ii) For s ≥ 1 and λ ∈ Λ,

ψ(s,A)Pλ =


Pλ1 , λ = λ1,
sdλ

dλ! e
λs

(
I − λ−1λ1v1a

′)Ndλ
λ Pλ +O(sdλ−1eλs), 0 < Reλ < λ1,

O(sdλ+1), Reλ ≤ 0.

Proof. By (3.11) and (3.12),

φ(s,A)v1 =
∫ s

0
etAv1 dt =

∫ s

0
etλ1v1 dt = λ−1

1

(
esλ1 − 1

)
v1,

and thus

ψ(s,A)v1 = esλ1v1 − λ1v1a
′λ−1

1

(
esλ1 − 1

)
v1 = esλ1v1 − v1

(
esλ1 − 1

)
= v1.

Hence, (2.7) implies ψ(s,A)Pλ1 = Pλ1 .
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Similarly, by (2.8), when Reλ > 0 and s ≥ 1,

φ(s,A)Pλ =
∫ s

0
etAPλ dt =

dλ∑
j=0

N j
λ

j!
Pλ

∫ s

0
tjeλt dt

= (dλ!)−1λ−1sdλeλsNdλ
λ Pλ +O(sdλ−1eλs).

(10.8)

For Reλ ≤ 0, the same argument yields φ(s,A)Pλ = O(sdλ+1). The result
follows from this, (3.12) and (2.8). �

Proof of Theorem 3.17. We continue the argument from the proof of Theo-
rem 3.16. We have, see (2.13) and (2.14), for i = 1, . . . , q,

B̃i = E
(
ξi
1

) (
ξ′i 1

)
= E

(
ξiξ

′
i ξi

ξ′i 1

)
=

(
Bi E ξi
E ξ′i 1

)
,

and thus, using (2.14), (2.18) and a · v = 1,

B̃ =
q+1∑
i=1

ṽ1iãiB̃i =
q∑

i=1

v1iaiB̃i =
(
B λ1v1
λ1v

′
1 1

)
. (10.9)

Further, Re λ̃2 = max(Reλ2, 0) < 1
2 λ̃1, so we may apply Corollary 3.11 to

X̃n = X̃
(
τb(n)

)
, obtaining a Gaussian limit Ṽb. Ignoring the dummy balls,

we obtain n−1/2(Xn − λ1nv1)
d→ V , with V = (I, 0)Ṽb.

The covariance matrix of Ṽb is given by (3.7), with ˜ added everywhere.
We have, by induction,

Ãn =
(

An 0
a′An−1 0

)
, n ≥ 1,

and thus

esÃ =
∞∑

n=0

sn

n!
Ãn =

(
esA 0

a′φ(s,A) 1

)
. (10.10)

Hence (
I − ṽ1b

′

b · ṽ1

)
esÃ =

((
I 0
0 1

)
− λ1

(
v1
λ−1

1

) (
0 1

))
esÃ

=
(
I −λ1v1
0 0

) (
esA 0

a′φ(s,A) 1

)
=

(
ψ(s,A) −λ1v1

0 0

)
.

(10.11)
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and thus, from (3.7), (10.9) and Lemma 10.4(i),

EV V ′ = λ1

∫ ∞

0

(
ψ(s,A), −λ1v1

)
B̃

(
ψ(s,A), −λ1v1

)′
e−λ1sds

= λ1

∫ ∞

0

(
ψ(s,A)Bψ(s,A)′ − λ2

1v1v
′
1ψ(s,A)′ − λ2

1ψ(s,A)v1v′1

+ λ2
1v1v

′
1

)
e−λ1sds

= λ1

∫ ∞

0

(
ψ(s,A)Bψ(s,A)′ − λ2

1v1v
′
1

)
e−λ1sds,

which yields (3.13). �

We need another lemma, which expresses the covariance matrix in (3.8)
as a limit of the integral in (3.7) over finite intervals, suitably renormalized.

Lemma 10.5. If Reλ2 = λ1/2 and d := max{dλ : Reλ = λ1/2}, then, as
t→∞,

t−2d−1

∫ t

0
(I − Pλ1)e

sABesA
′
(I − P ′

λ1
)e−λ1s ds→ ΣII,d, (10.12)

and thus, for any b with b · v1 6= 0,

t−2d−1

∫ t

0

(
I − v1b

′

b · v1

)
esABesA

′
(
I − bv′1

b · v1

)
e−λ1s ds

→
(
I − v1b

′

b · v1

)
ΣII,d

(
I − bv′1

b · v1

)
. (10.13)

Proof. The left-hand side of (10.12) equals∑
λ,µ 6=λ1

t−2d−1

∫ t

0
Pλe

sλ+sNλBesµ+sN ′
µP ′

µe
−λ1sds

=
∑

λ,µ 6=λ1

t−2d−1
d∑

k=0

d∑
l=0

∫ t

0

sk+l

k! l!
e(λ+µ−λ1)sdsPλN

k
λB(N ′

µ)lP ′
µ.

Here Reλ,Reµ ≤ λ1/2. For such λ and µ, the integral is O(t2d) unless
Reλ = λ1/2, µ = λ̄ and k = l = d, cf. the argument after (9.45). In the
remaining case, the integral is (2d+ 1)−1d!−2t2d+1, and (10.12) follows.

Multiplying (10.12) to the left by
(
I − (b · v1)−1v1b

′) and to the right by
the transpose, we obtain (10.13) because

(
I − (b · v1)−1v1b

′)Pλ1 = 0. �

Proof of Theorem 3.18. We argue as in the proof of Theorem 3.17, now ap-
plying Corollary 3.12. We have Re λ̃2 = Reλ2 = 1

2 λ̃1. Moreover, it follows
from (2.9) that |esA(I − Pλ1)| grows as sdeRe λ2s as s→∞; it follows easily
from (10.10) and (3.11) that |esÃ(I− P̃λ1)| grows at the same rate, and thus
d̃ = d.
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Hence, it follows from Corollary 3.12 that (n ln2d+1 n)−1/2(Xn−nλ1v1)
d→

V := (I, 0)Ṽb, where Ṽb is Gaussian and, by (3.8) and Lemma 10.5,

E ṼbṼ
′
b = λ−2d

1

(
I − ṽ1b

′

b · ṽ1

)
Σ̃II,d

(
I − bṽ′1

b · ṽ1

)
= λ−2d

1 lim
t→∞

t−2d−1

∫ t

0

(
I − ṽ1b

′

b · ṽ1

)
esÃB̃esÃ

′
(
I − bṽ′1

b · ṽ1

)
e−λ1s ds.

(10.14)

This implies, using (10.11), (10.9) and Lemma 10.4(i),

EV V ′ = λ−2d
1 lim

t→∞
t−2d−1

∫ t

0

(
ψ(s,A), −λ1v1

)
B̃

(
ψ(s,A), −λ1v1

)′
e−λ1sds

= λ−2d
1 lim

t→∞
t−2d−1

∫ t

0

(
ψ(s,A)Bψ(s,A)′ − λ2

1v1v
′
1

)
e−λ1sds.

We write ψ(s,A) =
∑

λ ψ(s,A)Pλ and use Lemma 10.4(ii); (3.14) follows.
For the final claim, note that

TPλN
d
λ = λ−1λ1v1a

′PλN
d
λ = λ−1λ1v1â

′APλN
d
λ = T1PλN

d
λ �

Proof of Theorem 3.19. Follows directly by applying Corollary 3.13 to X̃n.
�

Proof of Theorem 3.21. We add dummy balls with ai = 0, i = q+1, . . . , 2q,
as described in Section 3, and argue as in the proofs of Theorems 3.16–3.18.
For the modified process we now have, with vectors and matrices in block
form corresponding to a split Rq × Rq,

X̃n =
(
Xn

Nn

)
, ξ̃i =

(
ξi
δi

)
, ã =

(
a
0

)
, Ã =

(
A 0
Da 0

)
,

where (δi)j = δij and (Da)ij = aiδij . Again, the non-zero eigenvalues are
the same: Λ̃ = Λ ∪ {0}. Ã has the eigenvectors

ũ1 =
(
u1

0

)
, ṽ1 =

(
v1

λ−1
1 Dav1

)
.

We take b = ( 0
1 ), where 1 denotes the vector (1, . . . , 1)′, and note that

b · ṽ1 = λ−1
1 a · v1 = λ−1

1 . The a.s. convergence follows from (3.4) and the
Gaussian limits in (i) and (ii) follow by Corollaries 3.11 and 3.12.
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For the explicit forms of the covariance matrices in (i) we use (3.7) and
compute (omitting the details)

esÃ =
∞∑

n=0

sn

n!
Ãn =

(
esA 0

Daφ(s,A) I

)
,

(
I − ṽ1b

′

b · ṽ1

)
esÃ =

(
ψ(s,A) −λ1v11′

Da(I − v1a
′)φ(s,A) I −Dav11′

)
, (10.15)

B̃ =
(

B ADv

DvA
′ DaDv

)
. (10.16)

Assuming a = 1, and thus Da = I, the result now follows from (3.7) by
simple calculations, using Dv1 = v1 and φ(s,A)A = esA − I.

For (ii), we use (3.8) and Lemma 10.5 and obtain (10.14) as in the proof
of Theorem 3.18. We extract the leading terms in the integral in (10.14)
using (10.15) and (10.16) together with Lemma 10.4 and (10.8), cf. the proof
of Lemma 10.5. In the case a = 1, this yields, after some calculations, with
T as in (3.14),

E
(
V

V̂

) (
V ′ V̂ ′

)
= λ−2d

1

(
I − T

T̂

)
ΣII,d

(
I − T ′ T̂ ′

)
.

This yields the (co)variances. Since AT̂PλN
d
λ = (I − T )PλN

d
λ , λ ∈ ΛII , it

also implies that E(V −AV̂ )(V −AV̂ )′ = 0, and thus V = AV̂ a.s. �

Lemma 10.6. For all t ≥ 0,

E sup
s≤t

|PIX (s)|2 ≤ Ceλ1t

and, if λ ∈ ΛII and k ≥ 0,

E sup
s≤t

|Qλ,kPλX (s)|2 ≤ C(t+ 1)2k+1eλ1t.

Proof. It follows easily from (9.18), (9.11), (2.10) and (2.11) that, for λ ∈ ΛI ,

E |PλX (t)|2 = O(eλ1t)

and, for λ ∈ ΛII ,

E |Qλ,kPλX (t)|2 = O
(
(t+ 1)2k+1eλ1t

)
.

For each u, eA(u−t)PλX (t) = eAuPλY(t) is a martingale, and thus by Doob’s
inequality

E sup
u−1≤s≤u

|PλX (s)|2 ≤ C1 E sup
u−1≤s≤u

|eA(u−s)PλX (s)|2 ≤ C2 E |PλX (u)|2,

and similarly for Qλ,kPλX , and the results follows by summing over all
integers u less than t+ 1. �
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Proof of Theorem 3.22. We condition on W > 0.
(i): Let t = λ−1

1 ln z. By Lemma 10.1,

τb(xz)− t→ φ(x) := λ−1
1

(
lnx− lnW − ln(b · v1)

)
a.s.,

uniformly for x ∈ K for any compact interval K ⊂ (0,∞). This together
with Theorem 3.1(i) yields, in D(0,∞),

e−λ1t/2PIX
(
τb(xz)

) d→W 1/2eλ1φ(x)/2UI

(
φ(x)

)
= x1/2(b · v1)−1/2UI

(
φ(x)

)
.

Since UI is translation invariant and independent ofW , the processes UI(φ(x))
and UI

(
φ(x)− φ(1)

)
= UI(λ−1

1 lnx) have the same distribution, and thus

z−1/2PIX
(
τb(xz)

)
= e−λ1t/2PIX

(
τb(xz)

) d→ (b · v1)−1/2VI(x) in D(0,∞),

with VI(x) := x1/2UI(λ−1
1 lnx). VI is a continuous Gaussian process because

UI is, and (3.1) implies (3.17).
It remains to improve the result to convergence in D[0,∞), with VI(0) =

0. For this, it suffices to show that for every ε > 0,

lim sup
z→∞

P
(

sup
0≤x≤h

z−1/2|PIX
(
τb(xz)

)
| > ε

)
→ 0

as h → 0, see e.g. [27, Proposition 2.4], and this is an easy consequence of
Lemmas 10.6 and 10.1. Continuity of VI at 0 follows, or is proved directly
by standard methods [31, Theorem 3.23].

(ii): Convergence in D(0,∞) follows as in (i), now using Theorem 3.1(ii)
and Lemma 10.1, observing as in the proof of Theorem 3.10(ii) that the con-
stant factor (b·v1W )i Im λ/λ1 of modulus one can be ignored. The convergence
extends to D[0,∞) as in part (i), using Lemma 10.6(ii). �

Proof of Corollary 3.23. A simple consequence of Theorems 3.22 and 3.10(v);
(3.18) follows from (3.2) and (2.16)–(2.17). �

Proof of Theorem 3.24. This follows from Corollary 3.23 by the arguments
in the proofs of Theorems 3.17 and 3.18. In particular, the (co)variances
in (3.19) follow easily using (10.11) and a change of variables; for (3.20) we
observe that Corollary 3.23 shows that the covariance matrix depends on x
and y only through the numerical factor c(d, d, x, y), and the result follows
by comparison with (3.14) (the case x = y = 1), where now T = 2v1a′Pλ2 ,
together with (3.3). �
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Lett. 49 (2000), no. 2, 163–173.

[36] W. Lew & H.M. Mahmoud, The joint distribution of elastic buckets in multiway
search trees. SIAM J. Comput. 23 (1994), no. 5, 1050–1074.

[37] T. Lindvall, Weak convergence of probability measures and random functions in the
function space D(0, ∞). J. Appl. Probab. 10 (1973), 109–121.

[38] H.M. Mahmoud, Evolution of Random Search Trees. Wiley, New York, 1992.
[39] H.M. Mahmoud, On rotations in fringe-balanced binary trees. Inform. Process. Lett.

65 (1998), no. 1, 41–46.
[40] H.M. Mahmoud, Urn models evolving by drawing multisets of balls. Preprint, 2000.
[41] H.M. Mahmoud, The size of random bucket trees via urn models. Acta Inform. 38

(2002), no. 11-12, 813–838.
[42] H.M. Mahmoud & B. Pittel, Analysis of the space of search trees under the random

insertion algorithm. J. Algorithms 10 (1989), no. 1, 52–75.
[43] H.M. Mahmoud & R.T. Smythe, Asymptotic joint normality of outdegrees of nodes

in random recursive trees. Random Structures Algorithms 3 (1992), no. 3, 255–266.
[44] H.M. Mahmoud, R.T. Smythe & J. Szymański, On the structure of random plane-
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