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Abstract. The distributions of vertex degrees in random recursive
trees and random plane recursive trees are shown to be asymptotically
normal. Formulas are given for the asymptotic variances and covari-
ances of the number of vertices with given outdegrees. We also give
functional limit theorems for the evolution as vertices are added.

The proofs use some old and new results about generalized Pólya urn
models. We consider generalized Pólya urns with infinitely many types,
but reduce them to the finite type case.

1. Introduction

A random recursive tree with n vertices is a random rooted tree obtained
by starting with a single root and then adding n − 1 vertices one by one,
each time joining the new vertex to a randomly chosen old vertex; the ran-
dom choices are uniform and independent of each other. If the vertices are
labelled 1, 2, . . . , we thus obtain a tree where the labels increase along each
branch as we travel from the root; the random recursive tree can also be
defined as a (uniform) randomly chosen such labelled tree. (The distribution
of a random recursive tree differs from the distribution of a uniform random
labelled tree.) See also the survey [23].

Mahmoud and Smythe [16] studied the distribution of outdegrees in a
random recursive trees and obtained a joint asymptotic normal distribution
of the number of nodes of outdegrees 0, 1 and 2. They also indicated how
the results in principle extend to higher degrees. We do this extension to
arbitrary degrees, using some new results on generalized Pólya urn processes
[11].

A variant of the random recursive tree is the random plane recursive tree
studied by Mahmoud, Smythe and Szymański [17]. This is a random rooted
plane (or ordered) tree, again obtained by starting with a single root and
then adding n− 1 vertices one by one. This time, however, the descendants
of each vertex are ordered (from left to right, say), and a new vertex may
be inserted at any place. At a vertex with outdegree d, there are thus d + 1
possible places to add a new vertex, and in total a plane tree with n vertices
has 2n−1 such places. We choose one of these places at random (uniformly)
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for vertex n + 1. It is often useful to regard the possible places for a new
vertex as external vertices; a tree with n (internal) vertices thus has 2n− 1
external vertices, and the random plane recursive tree evolves by converting
a randomly chosen external vertex v to an internal vertex and adding three
new external vertices: one daughter below v and one sister on each side of
v.

Mahmoud, Smythe and Szymański [17] obtained, among other results, a
joint asymptotic normal distribution of the number of nodes of outdegrees
0, 1 and 2 in a random plane recursive tree. We extend this result too to
arbitrary degrees.

We can state the results as follows. First, let Xni be the number of vertices
of outdegree i ≥ 0 in a random recursive tree with n vertices.

Theorem 1.1. As n →∞, n−1Xni → 2−i−1 a.s., and

n−1/2(Xni − 2−i−1n) d→ Vi,

jointly for all i ≥ 0, where the Vi are jointly Gaussian variables with means
E Vi = 0 and covariances σij = Cov(Vi, Vj) given by the generating function

∞∑
i,j=0

σijz
iwj = (1− z)(1− w)

( 1
2− zw

− 1
(2− z)(2− w)

) 1
3− z − w

=
2(1− z)2(1− w)2

(2− z)(2− w)(2− zw)(3− z − w)
.

(1.1)

The weaker result Xni/n
p→ 2−i−1 follows from Meir and Moon [18], who

studied asymptotics of the means and variances. Earlier, Na and Rapoport
[19] had shown that E Xni/n → 2−i−1.

The values of σjk may be found by expanding the generating function.
For example, extending a result in [16], the covariance matrix of the first
four components (V0, V1, V2, V3) is (using calculations done by Maple)

1
12 − 7

72 − 5
432

17
2592

− 7
72

71
432 − 37

864 − 269
15552

− 5
432 − 37

864
473
5184 − 1831

93312
17

2592 − 269
15552 − 1831

93312
26939
559872


It is also straightforward to write down a general formula with finite sums
only. However, this formula is a bit complicated, so we omit it and leave its
formulation to the interested reader.

Remark 1.2. The joint convergence of infinitely many random variables
in Theorem 1.1 is, by definition, the same as joint convergence of any fi-
nite subset. This is also the same as convergence of the infinite vector(
n−1/2(Xni − 2−i−1n)

)∞
i=0

in R∞ (see [7, p. 19]). We conjecture that this
can be strengthened to convergence in `1, or a suitably weighted version of
`1, which would imply the convergence of more continuous functionals.
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We similarly let Yni be the number of vertices of outdegree i ≥ 0 in a
random plane recursive tree with n vertices.

Theorem 1.3. As n →∞, n−1Yni → 4/(i + 1)(i + 2)(i + 3) a.s., and

n−1/2
(
Yni −

4
(i + 1)(i + 2)(i + 3)

n
)

d→ Wi,

jointly for all i ≥ 0, where the Wi are jointly Gaussian variables with means
E Wi = 0 and covariances σ̃ij = Cov(Wi,Wj) given by

σ̃ij = 2
i∑

k=0

j∑
l=0

(−1)k+l

k + l + 4

(
i

k

)(
j

l

)(
2(k + l + 4)!

(k + 3)!(l + 3)!
− 1− (k + 1)(l + 1)

(k + 3)(l + 3)

)
.

For example, extending a result in [17], the covariance matrix of the first
four components (W0,W1,W2,W3) is (again by Maple)

1
9 − 4

45 − 1
45 − 2

315

− 4
45

23
180 − 11

630 − 11
1260

− 1
45 − 11

630
179
3150 − 1

175

− 2
315 − 11

1260 − 1
175

187
6300


We can extend the theorems to functional limit theorems, describing the

evoultion as new vertices are added.

Theorem 1.4. For the random recursive tree

n−1/2
(
Xbxnc,i − 2−i−1xn

) d→ Vi(x) (1.2)

in D[0,∞), jointly for all i ≥ 0, where the Vi(x) are continuous Gaussian
processes with Vi(0) = 0, E Vi(x) = 0 and covariance functions

E Vj(x)Vk(y) =
x2

y

k∑
i=0

lni(y/x)
i!

σk−i,j , 0 < x ≤ y. (1.3)

Theorem 1.5. For the random planar recursive tree

n−1/2
(
Ybxnc,i − 4

(i+1)(i+2)(i+3)xn
) d→ Wi(x)

in D[0,∞), jointly for all i ≥ 0, where the Wi(x) are continuous Gauss-
ian processes with Wi(0) = 0, E Wi(x) = 0 and covariance functions, for
0 < x ≤ y,

E Wi(x)Wj(y) = 2
i∑

k=0

j∑
l=0

(−1)k+l

k + l + 4

(
i

k

)(
j

l

)
·
(

2(k + l + 4)!
(k + 3)!(l + 3)!

− 1− (k + 1)(l + 1)
(k + 3)(l + 3)

)
x(l+3)/2y−(l+1)/2.
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For example, for 0 < x ≤ y,

Cov(V2(x), V2(y)) =
x2

y

( 473
5184

− 37
864

ln
y

x
− 5

864
ln2 y

x

)
,

Cov(W2(x),W2(y)) = − 1
45x3/2y−1/2 + 1

105x2y−1 + 73
1050x5/2y−3/2.

We prove the theorems above by the method of [16] and [17], viz. by re-
formulating them as results for certain urn processes. We discuss such urn
processes in Section 2 and quote some results that we will use. Section 4
contains the details of the application of the general theorems to random
recursive trees and Section 5 contains the arguments for the random plane
recursive trees. In both cases, we consider urns with infinitely many types,
but reduce them to the finite type case. It may be observed that the argu-
ments for the two cases differ in some parts because of different eigenvalue
structures. In Section 6, we briefly discuss analogous results for random
recursive d-ary trees.

We finally note that problems of this type have been studied by other
methods too. For example, Najock and Heyde [20] proved the asymptotic
normality of Xn0 (the number of leaves in a random recursive tree). Berg-
eron, Flajolet and Salvy [6] used generating functions and obtained general
results for a class of random trees including the ones studied here; in par-
ticular, they show asymptotic normality of Xn0 and Yn0, and their methods
apply also to higher degrees.

2. Generalized Pólya urns

Consider an urn containing a finite number of balls of different types
(colours); say that the possible types are 1, . . . , q. Then the content of the
urn at time n is described by the vector (Xn1, . . . , Xnq), where Xni ≥ 0 is
the number of balls of type i in the urn.

The urn starts with a given vector X0 (or perhaps X1), random or not.
We are further given, for each type i, an activity ai ≥ 0 and a q-dimensional
vector ξi = (ξi1, . . . , ξiq) with integer coordinates. In general ξi may be
random, but in this paper and many other applications, we only consider
deterministic ξi.

The urn evolves according to a Markov process. At each time n ≥ 1,
one of the balls in the urn is drawn at random such that the probability
of drawing a particular ball of type i is proportional to the activity ai, i.e.
the probability of drawing a ball of type i is aiXn−1,i/

∑
j ajXn−1,j . (In

particular, if every ai = 1, a ball is drawn uniformly at random.) The
drawn ball is returned to the urn together with, if it is of type i, ξij balls of
type j, for each j = 1, . . . , q.

The integers ξij may be negative, which means removal of balls from the
urn. In order to guarantee that we are not required to remove balls that do
not exist, we assume that

ξij ≥ 0, i 6= j, (2.1)
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(thus balls of other types than the drawn are never removed) and

ξii ≥ −1 (2.2)

or, more generally, that for each i there is an integer di ≥ 1 such that di|X0i

and di|ξji for every j and

ξii ≥ 0 or ξii = −di. (2.3)

(Hence di|Xni for all n ≥ 0.) Such urns are called tenable by Bagchi and
Pal [3].

We further assume that the urn is irreducible, in the sense that for any
two distinct types i and j, if we start with only balls of type i, there is a
later time when there is a positive probability of having a ball of type j in
the urn. In particular, each ai > 0.

For simplicity, cf. Remark 3.4 below, we also assume that there exists
m > 0 such that, for every i, ∑

j

ajξij = m. (2.4)

(When every ai = 1, this says that exactly m balls are added each time.) It
follows that a ·Xn = nm + a ·X0 > 0; in particular the urn never becomes
empty.

Urn models of this type have been studied by many authors, see the
references in [11].

3. Preliminaries

We let A denote the q × q matrix

A := (ajξji)
q
i,j=1. (3.1)

Thus the j:th column of A is ajξj . (E.g. [16, 17] use the transpose matrix.)
By (2.1), A + αI is a non-negative matrix if α is large enough, so by

the standard Perron–Frobenius theory, A has a largest real eigenvalue λ1

such that every other eigenvalue λ satisfies Re λ < λ1 (see e.g. [21, Chapter
1 and Theorem 2.6] or [13, Appendix 2]). We order the eigenvalues with
decreasing real parts: λ1 > Re λ2 ≥ Re λ3 ≥ . . . .

We let a denote the (column) vector (a1, . . . , aq) of activities, and let u1

and v1 denote left and right eigenvectors of A corresponding to the largest
eigenvalue λ1, i.e. vectors satisfying

u′1A = λ1u
′
1, Av1 = λ1v1.

By the Perron–Frobenius theory [13], [21], (applied to A+αI for suitable α),
u1 and v1 are unique up to scalar factors; they may be chosen with positive
components and they are the only positive eigenvectors.

By (2.4) and (3.1),

(a′A)j =
∑

i

aiajξji = aja · ξj = maj .
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So a is a positive left eigenvector and thus a multiple of u1, and λ1 = m.
We normalize u1 and v1 such that u1 = a and

u1 · v1 = a · v1 = 1. (3.2)

We define Pλ1 as the matrix

Pλ1 = v1u
′
1, (3.3)

which has rank 1 and is a projection onto the one-dimensional eigenspace
{v : Av = λ1v}. We will in this paper only consider the case Re λ2 < 1

2λ1.
We then further define PI := I − Pλ1 , the complementary projection, and
the following q × q matrices, regarding ξi as a column matrix,

B :=
q∑

i=1

v1iaiξiξ
′
i, (3.4)

ΣI :=
∫ ∞

0
PIe

sABesA′
P ′

Ie
−λ1s ds. (3.5)

The general result that we use is the following, which summarizes and
simplifies some of the results in [11]. The a.s. convergence and the asymp-
totic normality (without explicit covariance matrix) are due to [1], see also
[2, Section V.9]. (At least when (2.2) holds, which easily implies the general
case, see [11, Remark 4.2].) See also similar results in [22], [4], [5].

Theorem 3.1. Assume that the urn is irreducible and tenable, and that
(2.4) holds with m > 0. Then n−1Xn

a.s.→ λ1v1 as n →∞. If further Re λ2 <
1
2λ1, then also the following hold.

(i) n−1/2
(
Xn − nλ1v1

) d→ N(0,mΣI).
(ii) More generally, in D[0,∞),

n−1/2
(
Xbxnc − xnλ1v1

) d→ V (x),

where V (x) is a continuous Gaussian vector-valued process with
V (0) = 0, mean E V (x) = 0, and

E V (x)V (y)′ =

{
mxΣI

(
y/x

)m−1A′
, 0 < x ≤ y,

my
(
x/y

)m−1AΣI , 0 < y ≤ x.
(3.6)

Proof. If (2.2) holds, then all assumptions (A1)–(A6) in [11] are satisfied:
(A1) and (A2) hold by assumption, (A3) follows from λ1 = m, and (A4)–
(A6) hold because the urn is irreducible. The general tenable case is easily
reduced to this case, see [11, Remark 4.2].

Hence we can apply the results of [11]. Theorem 3.21 there (or [1]) yields
n−1Xn

a.s.→ λ1v1 and Theorem 3.22 (or [1]) yields asymptotic normality, with
the asymptotic covariance matrix equal to mΣI by Lemma 5.4 in [11]. Sim-
ilarly, the functional convergence follows from Theorem 3.31(i) in [11], and
(3.6) for x ≤ y follows by Remark 5.7 in [11]; the case y ≤ x follows by
taking the transpose and relabelling. �
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Remark 3.2. Several formulas for easy evaluation of ΣI and the covariances
in (3.6) are given in [11, Section 5]. We will use some of them below.

Remark 3.3. The results extend to random ξij with only minor changes.
Assume that (2.1) and (2.2) or (2.3) (with di non-random) hold with proba-
bility 1, and that ξ2

ij < ∞ for all i and j. Assume further that (2.4) holds on
the average, i.e. a ·E ξi = m for some m > 0. Define A and B by taking the
expectations of the right-hand sides of (3.1) and (3.4). Then Theorem 3.1
still holds, see [11].

Remark 3.4. The assumption (2.4) is not necessary, and can be replaced
by the assumptions that λ1 > 0 and that extinction is impossible; however,
the variance mΣI and the covariance formula (3.6) in Theorem 3.1 have to
be replaced by more complicated expressions, see [11, Theorems 3.22 and
3.31].

Remark 3.5. When Re λ2 = 1
2λ1, there are similar results but the right

normalization factor is (n logd n)−1/2 for some d ≥ 1. The case Re λ2 >
1
2λ1 is quite different and asymptotic normality does not hold (at least in
general). See e.g. [1], [2], [11].

4. Random recursive trees

We apply Theorem 3.1 to random recursive trees as follows.

Proof of Theorem 1.1. Following Mahmoud and Smythe [16], we observe
that the distribution of outdegrees is the same as the distribution of types in
a generalized Pólya urn with infinitely many types {0, 1, 2, . . . }, all activities
ai = 1, and the rule that if a ball with type i is drawn, it is removed and
replaced by a ball of type i + 1 and a ball of type 0. (We start at time 1
with a single ball of type 0.) In our notation, ξi = −δi + δi+1 + δ0, where δi

is the unit vector defined by (δi)j = δij .
Theorem 3.1 assumes that the number of types is finite, but luckily we can

in this application truncate and lump all high degrees together. Thus, let
M ≥ 1 be an integer and use the types {0, 1, . . . ,M} only (thus q = M +1),
where now type M represents all outdegrees ≥ M . The replacement vectors
ξi are as in the infinite model when i < M , while now ξM = δ0. For example,
for M = 3 (the case treated in [16]) we have

A =


0 1 1 1
1 −1 0 0
0 1 −1 0
0 0 1 0

 . (4.1)

Exactly one ball is added each time, so (2.4) holds with m = 1, and
thus λ1 = 1 and u1 = a = (1, 1, . . . , 1). It is easily verified that v1 =
(1/2, 1/4, . . . , 2−M , 2−M ), i.e. v1i = 2−i−1 for 0 ≤ i < M and v1M = 2−M .
In particular, Theorem 3.1 shows that Xni/n

a.s.→ 2−i−1 for every i ≥ 0 (by
taking M > i).
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To find the other eigenvalues of A, we regard Cq = CM+1 as a subspace
of `1 = `1(N) and let πM : `1 → Cq be the projection (x0, x1, . . . ) 7→
(x0, . . . , xM−1,

∑∞
M xi). (C is the set of complex numbers.) Let S be the

shift operator on `1, S(x0, x1, . . . ) = (0, x0, x1, . . . ). Then Av = −v + (u1 ·
v)δ0 + πMSv, v ∈ Cq.

Let E′ := {v ∈ Cq : u1 · v = 0}. Then A maps E′ into itself (because
u1 is a left eigenvector) and, on E′, A = −I + πMS. Thus, for v ∈ E′,
(A + I)v = πMSv and, by induction, since πMSπM = πMS,

(A + I)kv = πMSkv, for v ∈ E′ and k ≥ 0. (4.2)

In particular, (A + I)Mv = πMSMv = 0 for v ∈ E′, so A + I is nilpotent
on E′ and the restriction of A to E′ has the single eigenvalue −1. Since
E′ + Cv1 = Cq, it follows that the eigenvalues of A are 1 and −1, the latter
with algebraic multiplicity M . We see further that (A + I)M−1 6= 0 on E′,
so A is not diagonalizable when M ≥ 2. (The geometric multiplicity of the
eigenvalue −1 is 1.)

Since thus λ2 = −1, Theorem 3.1 applies, and the vector
(
n−1/2(Xni −

2−i−1n)
)M−1

i=0
converges in distribution to a Gaussian vector. Since M is

arbitrary, this means joint convergence of for all i, see Remark 1.2.
It remains to find the (co)variances σjk := Cov(Vj , Vk). Thus, take any

M > j, k. By [11, Lemma 5.1],

σjk =
∫ ∞

0

∑
i

v1i

(
gi(s)

)
j

(
gi(s)

)
k
e−λ1sλ1 ds, (4.3)

where gi(s) = AesA(I − Pλ1)δi. Since (I − Pλ1)δi ∈ E′ and Pλ1δi = v1(u1 ·
δi) = v1, it follows from (4.2) that

gi(s) = AesA(δi − v1) = e−s(A + I − I)es(A+I)(δi − v1)

= e−sπM

(
(S − I)esS(δi − v1)

)
.

Consequently, (4.3) yields

σjk =
∑

i

v1i

∫ ∞

0

(
(S−I)esS(δi−v1)

)
j

(
(S−I)esS(δi−v1)

)
k
e−3s ds. (4.4)

We may obtain an expression with finite sums only by expanding the terms
in this integral. However, we prefer to compute the bivariate generating
function of σjk instead.

In (4.4), v1 really depends on our choice of M , and thus implicitly on
j and k, but it is easily seen that we can replace v1 by ṽ1 := (2−i−1)∞i=0
(the limit of v1 as M → ∞), since the integrand does not depend on i for
i > max(j, k). Let F be the map of `1 into the set of analytic functions in the
unit disc given by F(v)(z) =

∑∞
i=0 viz

i. Note that F(Sv)(z) = zF(v)(z).
Let ṽ(z) := F(ṽ1)(z) =

∑
i 2

−i−1zi = 1/(2 − z). Then (4.4) yields, for
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|z|, |w| ≤ 1, say, when absolute summability easily is checked,
∞∑

j,k=0

σjkz
jwk =

∞∑
i=0

2−i−1

∫ ∞

0
F

(
(S − I)esS(δi − ṽ1)

)
(z)F

(
(S − I)esS(δi − ṽ1)

)
(w)e−3s ds

=
∞∑
i=0

2−i−1

∫ ∞

0
(z − 1)esz

(
zi − ṽ(z)

)
(w − 1)esw

(
wi − ṽ(w)

)
e−3s ds

= (z − 1)(w − 1)
( 1

2− zw
− ṽ(z)ṽ(w)

) ∫ ∞

0
e−(3−z−w)sds,

which yields (1.1). �

Proof of Theorem 1.4. The functional convergence (1.2) follows immediately
from Theorem 3.1(ii).

We find the covariance functions as follows. Given j and k we again take
M > j, k and combine all high degrees as above. Assume 0 < x ≤ y. By
(3.6), E V (y)V (x)′ = x(y/x)AΣI . Since u′1Xn is deterministic, u′1V (x) = 0
and thus u′1ΣI = E

(
u′1V (1)V (1)′

)
= 0. Hence we can use (4.2) and obtain,

for 0 < x ≤ y,

E Vk(y)Vj(x) = x
((y

x

)A
ΣI

)
kj

=
x2

y

((y

x

)A+I
ΣI

)
kj

=
x2

y

((y

x

)πMS
ΣI

)
kj

=
x2

y

k∑
i=0

lni(y/x)
i!

(
(πMS)iΣI

)
kj

=
x2

y

k∑
i=0

lni(y/x)
i!

σk−i,j . �

5. Random plane recursive trees

Proof of Theorem 1.3. The outdegrees in the random plane recursive trees
studied by Mahmoud, Smythe and Szymański [17] can be modelled using a
generalized Pólya urn with infinitely many types as in Section 4; the ξi are
the same, but now the activity ai = i + 1.

It is advantageous to modify the urn so that the activities become the
same. We thus replace each ball of type i by i + 1 balls of the same type;
equivalently, we let the balls represent external vertices as in [17]. This gives
a new generalized Pólya urn with infinitely many types, all activities 1, and
the transitions given by

ξij = −(i + 1)δij + (i + 2)δi+1,j + δ0j .

The number of balls of type i in this urn is thus (i + 1)Yni.
We truncate as in Section 4 and use the M + 1 types 0, . . . ,M only, with

ξMj changed to δ0j + δMj . (Note that such truncation does not work in the
original urn model representing internal nodes, since the activities vary.)
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For example, for M = 3 (the case treated in [17]) we have

A =
(
ξji

)M

i,j=0
=


0 1 1 1
2 −2 0 0
0 3 −3 0
0 0 4 1

 . (5.1)

Two balls are added each time, so (2.4) holds with m = 2, and thus λ1 = 2.
It is not difficult to compute the characteristic polynomial of A (by in-

duction) and thus find the other eigenvalues. We will, however, instead find
both the eigenvalues and eigenvectors directly.

For the left eigenvectors, u(λ) say, we have the equations

u
(λ)
0 − (i + 1)u(λ)

i + (i + 2)u(λ)
i+1 = λu

(λ)
i , 0 ≤ i < M, (5.2a)

u
(λ)
0 + u

(λ)
M = λu

(λ)
M . (5.2b)

Let ∆u
(λ)
i := u

(λ)
i+1 − u

(λ)
i , 0 ≤ i < M , and ∆u

(λ)
M := 0. Then (5.2) can be

written
(i + 2)∆u

(λ)
i = (λ− 1)u(λ)

i − u
(λ)
0 , 0 ≤ i ≤ M.

Hence, for i < M ,

(i + 3)∆u
(λ)
i+1 − (i + 2)∆u

(λ)
i = (λ− 1)

(
u

(λ)
i+1 − u

(λ)
i

)
= (λ− 1)∆u

(λ)
i

or
(i + 3)∆u

(λ)
i+1 = (i + 1 + λ)∆u

(λ)
i , 0 ≤ i < M,

with the solution (where c = 2∆u
(λ)
0 ∈ C)

∆u
(λ)
i =

∏i
j=1(j + λ)
(i + 2)!

c, 0 ≤ i ≤ M. (5.3)

If all ∆u
(λ)
i = 0, u

(λ)
i is a multiple of a = (1, . . . , 1); we already know that

these are the left eigenvectors with eigenvalue λ1 = 2. For λ 6= 2, we thus
have c 6= 0; since ∆u

(λ)
M = 0, (5.3) implies that j + λ = 0, i.e. λ = −j, for

some j ∈ {1, . . . ,M}. With λ = −k, (5.3) can be written

∆u
(−k)
i =

(1− k) · · · (i− k)
(i + 2)!

c = (−1)i

(
k + 1
i + 2

)
c

k(k + 1)
= (−1)i

(
k + 1
i + 2

)
c1,

say. This is solved by

u
(−k)
i = (−1)i−1

(
k

i + 1

)
c1 + c2. (5.4)

In particular, u
(−k)
0 = −kc1 + c2 and u

(−k)
M = c2. Hence (5.2b) yields −kc1 +

2c2 = −kc2 and thus c2 = k(k + 2)−1c1. Conversely, for any such c1 and c2,
(5.4) solves (5.2) with λ = −k.

Hence A has the eigenvalues 2, −1, −2, . . . , −M . In particular, λ2 =
−1 < 1

2λ1, so Theorem 3.1 applies. We also see that A has q = M + 1
distinct eigenvalues and thus is diagonalizable.
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For the right eigenvectors, we have the equations
M∑

j=1

v
(λ)
j = λv

(λ)
0 (5.5a)

(i + 1)v(λ)
i−1 − (i + 1)v(λ)

i = λv
(λ)
i , 1 ≤ i < M, (5.5b)

(M + 1)v(λ)
M−1 + v

(λ)
M = λv

(λ)
M . (5.5c)

For λ = λ1 = 2, v(λ) = v1 and (5.5b) yields (i+1)v1,i−1 = (i+3)v1,i and thus
v1i = c/(i+2)(i+3), 0 ≤ i < M . With our normalization a·v1 =

∑M
0 v1i = 1,

(5.5a) yields 1 = 3v10; thus c = 2 and, using also (5.5c),
v1i =

2
(i + 2)(i + 3)

, 0 ≤ i < M,

v1M =
2

M + 2
.

(5.6)

Theorem 3.1 thus shows that (i + 1)Yni/n
a.s.→ 4/(i + 2)(i + 3) as n →∞.

Moreover, it is easily verified that for each k = 1, . . . ,M ,

v
(−k)
i =

(
i + 1

k

)
, 0 ≤ i < M,

v
(−k)
M = −

(
M + 1
k + 1

)
solves (5.5) with λ = −k.

Recall that u · v = 0 whenever u is a left and v a right eigenvector with
different eigenvalues. Moreover, if u(−k) is given by (5.4),

u(−k)·v(−k) = (u(−k)−c2a)·v(−k) =
k−1∑
i=0

(−1)i−1

(
k

i + 1

)
c1

(
i + 1

k

)
= (−1)kc1,

since the only non-zero term is for i = k − 1. Consequently, if we choose
c1 = (−1)k in (5.4), i.e.

u
(−k)
i = (−1)k+i+1

(
k

i + 1

)
+ (−1)k k

k + 2
, (5.7)

and write uj = u(1−j), vj = v(1−j), 2 ≤ j ≤ M + 1, then ui · vj = δij and
{ui}M+1

1 and {vi}M+1
1 are dual bases of eigenvectors.

It is now easy to evaluate the integral in (3.5) and obtain, see [11, Lemma
5.3(ii)], with D the diagonal matrix with Dii = v1i,

ΣI =
M+1∑
i,j=2

λiλju
′
iDuj

λ1 − λi − λj
viv

′
j =

M∑
k,l=1

kl(u(−k)′Du(−l))
2 + k + l

v(−k)v(−l)′. (5.8)

Theorem 3.1 thus shows that

n−1/2
(
(i + 1)Yni −

4
(i + 2)(i + 3)

n
)

d→ Ŵi,
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jointly for all i = 0, . . . ,M −1, where Ŵi are jointly Gaussian variables with
means 0 and covariances

Cov(Ŵi, Ŵj) =
(
mΣI

)
ij

= 2
M∑

k,l=1

kl(u(−k)′Du(−l))
k + l + 2

v
(−k)
i v

(−l)
j

= 2
i+1∑
k=1

j+1∑
l=1

kl

k + l + 2

(
i + 1

k

)(
j + 1

l

)
u(−k)′Du(−l)

= 2
i+1∑
k=1

j+1∑
l=1

(i + 1)(j + 1)
k + l + 2

(
i

k − 1

)(
j

l − 1

)
u(−k)′Du(−l).

(5.9)

The result follows, with Wi = Ŵi/(i + 1), by the following lemma (and
k 7→ k + 1, l 7→ l + 1). �

Lemma 5.1. For 1 ≤ k, l ≤ M ,

u(−k)′Du(−l) = (−1)k+l

(
2

(k + l + 2)!
(k + 2)! (l + 2)!

− 1− kl

(k + 2)(l + 2)

)
.

Proof. Let, see (5.7),

wkl :=
(
(−1)ku(−k) − k

k + 2
u1

)′
D

(
(−1)lu(−l) − l

l + 2
u1

)
=

M∑
i=0

v1i

(
k

i + 1

)(
l

i + 1

)
=

∞∑
i=0

2
(i + 2)(i + 3)

(
k

i + 1

)(
l

i + 1

)
,

because
(

k
i+1

)
= 0 when i ≥ M ≥ k. Hence, wkl does not depend on M , and

we may regard wkl as defined for all k, l ≥ 1. Moreover, since u(−k)′Du1 =
u(−k)′v1 = 0 and similarly u′1Du(−l) = 0, while u′1Du1 = u′1v1 = 1,

wkl = (−1)k+lu(−k)′Du(−l) +
kl

(k + 2)(l + 2)
, k, l ≤ M. (5.10)

Let

f(x) :=
∞∑
i=0

xi

(i + 2)(i + 3)
=

∞∑
i=0

xi
( 1

(i + 2)
− 1

(i + 3)

)
= x−2

(
− ln(1− x)− x

)
− x−3

(
− ln(1− x)− x− 1

2x2
)

= x−3
(
(1− x) ln(1− x) + x− 1

2x2
)
.
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Then, for |z|, |w| < 1/2, or as formal power series,
∞∑

k,l=1

wklz
kwl =

∞∑
i=0

2
(i + 2)(i + 3)

∞∑
k=1

(
k

i + 1

)
zk

∞∑
l=1

(
l

i + 1

)
zl

=
∞∑
i=0

2
(i + 2)(i + 3)

zi+1

(1− z)i+2

wi+1

(1− w)i+2

=
2zw

(1− z)2(1− w)2
f
( zw

(1− z)(1− w)

)
=

2(1− z)(1− w)
z2w2

((
1− zw

(1− z)(1− w)

)
ln

(
1− zw

(1− z)(1− w)

)
+

zw

(1− z)(1− w)
− z2w2

2(1− z)2(1− w)2

)
=

2
z2w2

(
(1− z − w)

(
ln(1− z − w)− ln(1− z)− ln(1− w)

)
+ zw

)
− 1

(1− z)(1− w)
.

Hence
wkl = 2[zk+2wl+2]

(
(1− z − w) ln(1− z − w)

)
− 1

= 2[zk+2wl+2]
( ∞∑

i=2

(z + w)i

i(i− 1)
− z − w

)
− 1

= 2
1

(k + l + 4)(k + l + 3)

(
k + l + 4

k + 2

)
− 1

and the result follows by (5.10). �

Proof of Theorem 1.5. This follows from Theorem 3.1(ii), using the urn for
external vertices with truncation (and dividing by i + 1) as in the proof of
Theorem 1.3. The covariance matrix (3.6), for 0 < x ≤ y, is by (5.8), since
v(−l)′A′ = −lv(−l)′,

mxΣI

(
y/x

)m−1A′
= 2x

M∑
k,l=1

kl(u(−k)′Du(−l))
k + l + 2

v(−k)v(−l)′
(y

x

)−l/2
. (5.11)

The result follows by a calculation as in (5.9) and Lemma 5.1. �

6. Random recursive d-ary trees

Another related random tree is the random recursive binary tree defined
by growing a subtree of a complete infinite binary tree; we start with the
root and add new nodes, each new nodes being randomly put in one of the
vacant positions as a child of an existing node. Equivalently, we start with
one internal node having two external nodes as children, and in each step a
randomly chosen external node is converted to an internal node, with two
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new external nodes as children. This is the same as a random binary search
tree. Let Zni be the number of (internal) vertices with outdegree i when the
tree has n vertices.

The distribution of out-degrees in this random tree was studied by De-
vroye [10], both by an urn model and by another method. In the urn method
approach, we observe that the distribution of out-degrees is given by a gen-
eralized Pólya urn with 3 types 0, 1, 2; ξi is again as in Section 4 but now
the activity is ai = 2− i.

Alternatively, we may consider external nodes; then there are 2 types 0
and 1, ai = 1 and ξ0 = δ1, ξ1 = 2δ0 − δ1.

The matrix A has eigenvalues 1 and −2 in the external version, and
1, 0,−2 in the internal version. Hence λ2 < 1

2λ1, and Theorem 3.1 yields
a.s. convergence and asymptotic normality, as shown by [10]. For example,
using e.g. [11, Lemma 5.3] to compute the variance, n−1/2(Zn0 − n/3) d→
N(0, 2/45) [10].

This is easily generalized to a random recursive d-ary tree, for any fixed
d ≥ 2. This tree is defined in the same way as a subtree of a complete
infinite d-ary tree. In the internal urn model, we have d + 1 types 0, . . . , d,
the same ξi as in Section 4 and activities ai = d − i. In the external urn
model, we have only d types 0, . . . , d−1, ξi = dδ0− (d− i)δi +(d− i−1)δi+1

and ai = 1.
Arguments as in Section 5 show that the eigenvalues are λ1 = d− 1 and

−2,−3, . . . ,−d in the external version (and also 0 in the internal version).
Again, Theorem 3.1 applies (now to either version) and yields a.s. conver-
gence and asymptotic normality. As in Section 5, the eigenvectors are easily
computed explicitly, which gives explicit formulas. In particular, for the
external version, v1i =

(
2d−i−2

d−1

)
/
(
2d−1

d

)
, i = 0, . . . , d− 1, which leads to

Zni

n

a.s.→
(

2d− i− 2
d− 2

) / (
2d− 1
d− 1

)
=

(d− 1)(d)i

(2d− 1)i
, 0 ≤ i ≤ d.

The limiting distribution is the same as the distribution of the number of
white balls drawn (without replacement) before the first black from an urn
with d white and d−1 black balls; this is known as a negative hypergeometric
distribution (shifted by 1) [12, §2.5]. The limiting distribution of the types
of external vertices is similarly given by another negative hypergeometric
distribution, this time taking d− 1 white and d black balls.

For the leaves we have, generalizing the result by [10] given above for
d = 2,

n−1/2
(
Zn0 −

d− 1
2d− 1

n
)

d→ N
(
0,

d(d− 1)2

(3d− 1)(2d− 1)2
)
.

We leave the verification and formulas for variances and covariances for types
other than 0 as an exercise.

Note that for d ≥ 3, this random recursive d-ary tree is not the same as
a random d-ary search tree. The latter can also be treated by an urn model
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[15], but Re λ2 < 1
2λ1 only for d ≤ 26; for larger d asymptotic normality

does not hold [9]; see also [14] and [8].
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