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SVANTE JANSON

Abstract. We study the distribution of the individual displacements in
hashing with linear probing for three different versions: First Come, Last
Come and Robin Hood. Asymptotic distributions and their moments are
found when the the size of the hash table tends to infinity with the pro-
portion of occupied cells converging to some α, 0 < α < 1. (In the case of
Last Come, the results are more complicated and less complete than in the
other cases.)

We also show, using the diagonal Poisson transform studied by Poblete,
Viola and Munro, that exact expressions for finite m and n can be obtained
from the limits as m,n →∞.

We end with some results, conjectures and questions about the shape of
the limit distributions. These have some relevance for computer applica-
tions.

1. Introduction

The standard version of hashing with linear probing can be described as
follows, where n and m are integers with 0 ≤ n ≤ m. (For a thorough
discussion, see Knuth [15, Section 6.4, in particular Algorithm 6.4.L].)

n items x1, . . . , xn are placed sequentially into a table with m
cells 1, . . . ,m, using n integers hi ∈ {1, . . . ,m}, by inserting
xi into cell hi if it is empty, and otherwise trying cells hi + 1,
hi + 2, . . . , until an empty cell is found; all positions being
interpreted modulo m.

For our probabilistic treatment, we assume that the hash addresses hi are
independent random numbers, uniformly distributed on {1, . . . ,m}. In other
words, each of the mn possible hash sequences (hi)

n
1 has the same probability

m−n.
If item xi is inserted into cell qi, then its displacement is di := (qi−hi) mod

m. This is the number of unsuccessful probes when this item is inserted, as
well as each time we later search for the item in the table. (The number of
probes to find the item in the table is thus di + 1. This should be noted

Date: June 15, 2003; revised November 21, 2003; June 1, 2005.
1991 Mathematics Subject Classification. Primary: 68W40, 68P10; Secondary: 60C05,

60F05.
This work was first presented at the Knuthfest in honour of Donald Knuth’s 64th birthday

in January 2002.
This is a preprint of an article accepted for publication in ACM Transactions on Algo-

rithms c© 2005 by the Association for Computing Machinery, Inc.
1



2 SVANTE JANSON

when comparing the results below with other papers.) The displacement is a
measure of the time (or cost) to find the item in the table; for simplicity we
say that the search time is the displacement.

We began our study of hashing with linear probing in [10], where we studied
the total displacement

∑
i di. In the present paper, we will study the individual

displacements.
It turns out that the version of hashing described above leads to large varia-

tions among the displacements, especially for full or almost full tables. Several
people have therefore suggested variations of the basic algorithm. We will
study three versions of hashing with linear probing, differing in their insertion
policies when there is a conflict.

FC First-Come(-First-Served). The usual version described above where
the first item that probes a cell is inserted there and remains there.

LC Last-Come(-First-Served), see Poblete and Munro [22]. Each new item
is inserted where it arrives. If the cell is already occupied, the old
inhabitant is moved to the next cell. If that too is occupied, its old
inhabitant is moved, etc.

RH Robin Hood, see Celis, Larson and Munro [4] and [15, Answer 6.4-
67]. When an item wants a cell that is already occupied by another
item, the item (of the two) with the largest current displacement is
put in the cell and the other is moved to the next cell, where the
same rule applies recursively. (Ties are resolved in either way.) Robin
Hood hashing minimizes the variance of the displacements for all linear
probing algorithms [3], [23].

Note that the insertion of a sequence of items results in the same set of
occupied cells in all three versions, and thus the same total displacement,
while the individual displacements may differ. As has been shown before, and
is seen by our results below, the Last Come and Robin Hood versions tend to
give more evenly distributed displacements, thus reducing extreme values that
may be annoying or dangerous.

Remark 1.1. It has been suggested [22, 23] that the displacements in the LC
and RH versions may be so concentrated around their mean that searches would
be quicker using centered probing, first probing cells at the mean displacement
from the hash address. This seems to be true for double hashing and random
probing, but we will see in Section 11 that for hashing with linear probing,
this is not the case.

The situation we consider in this paper is a computer program where a
large hash table is constructed once, and then used many times for finding the
items. We mainly consider successful searches, although we give results for
unsuccessful searches too, and we always assume that each item in the table
is equally likely to be requested. We therefore have two levels of randomness:
given a hash table T , and its displacements (di), the time to find a random
element in the table is a random variable d(T ) = dI , where I ∈ {1, . . . , n}
is a uniformly distributed random index. As the program runs with many
searches in the hash table, the search times are independent observations of
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this random variable. It is thus interesting to study the distribution of this
random variable and its properties such as its mean and variance, and perhaps
the probability of extremely large values. Note that this distribution depends
on T .

On the other hand, the hash table T is itself random; another run of the pro-
gram yields another T and another set of displacements. Hence the distribu-
tion of the displacement d(T ) is a random distribution and its mean E(d(T )|T )
and variance Var(d(T )|T ) = E(d(T )2|T )− E(d(T )|T )2 are random variables.

As has been noted earlier, see e.g. [10], the asymptotic behaviour of hashing
with linear probing when n and m and tend to ∞ depend on the relative size
of m and n. We will in the present paper, for simplicity as well as for lack of
time and space, only consider the case n/m→ α with 0 < α < 1. (This is also
the range of most interest for computer applications.) The case n/m → 0 is
more degenerate, with most displacements 0, and will be ignored. (It can be
treated by similar methods, cf. the discussion of the total displacement in [10].)
It will be seen below, that in this range, the dependency on T is negligible.
For example, the mean and variance above, which are functions of T , converge
after suitable scaling in probability to some constants. In other words, we
observe essentially the same distribution of search times for every run of the
program.

The case n/m→ 1 is mathematically very interesting, and we plan to treat
it in a later paper (jointly with Philippe Chassaing). There are two subcases,
again cf. [10]: If m − n �

√
n, the results are similar to those in the present

paper (but in some respects simpler); in particular, the random variation be-
tween different hash tables T is insignificant. On the other hand, in the almost
full case when (m−n)/

√
n→ c for some c ≥ 0, the dependency on T is impor-

tant and e.g. the mean E(d(T )|T ) has a non-degenerate limit in distribution.
Moreover, this is the Brownian phase, where the limits can be described using
Brownian motion and derivatives of it such as the Brownian excursion.

The paper begins with some definitions and other preliminaries in Sections
2 and 3. A general limit theorem is given in Section 4 together with some
variations.

In Section 5 we review these limit results in the context of the diagonal
Poisson transform introduced by Poblete, Viola and Munro [23, 28]. This
will show that the limit as m,n → ∞ with n/m → α of, for example, a
certain moment of the displacements in random hash tables, equals a certain
generating function (the Poisson transform) of the same moment. By inverting
the Poisson transform, we are thus able to derive exact expressions for finite
m and n from the limits as m,n→∞, a rather unusual situation!

The limit distributions for the different versions are found explicitly (more
or less) in Sections 6–9. The reader will observe that our results for Last Come
are much less satisfactory than for the other versions, and it is possible that
others will succeed to find simpler forms of the result.

To illustrate the limit distributions, some numerical probabilities are given
in Section 10.
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Finally, the mode of the limit distributions are studied in Section 11, with
a mixture of theorems, numerically based conjectures and open questions.
nk := n(n− 1) · · · (n− k + 1) denotes the falling factorial.

Acknowledgements. This paper is part of a joint project with Philippe Chas-
saing. I am also grateful to Alfredo Viola and Patricio Poblete for helpful
discussions. Many related results, including some of the results below, have
independently been found by Viola [29] by related but differently formulated
methods. The reader is invited to compare (and combine) the two approaches.

2. Preliminaries

By a hash table T we mean not only the final table, but also its construction
history; moreover, we consider the three possible results and construction his-
tories under the three different policies together. Formally, a hash table can be
regarded as encoded by the numbers m and n and the sequence (h1, . . . , hn) of
hash addresses. We always let m = m(T ) be the number of cells and n = n(T )
the number of items in the table. Thus there are m−n empty cells. We always
have 0 ≤ n ≤ m. We sometimes exclude the cases n = 0 or n = m to avoid
trivial complications.

Our prime object of study is the random hash table Tm,n with m cells and n
items (0 ≤ n ≤ m) and the hash addresses h1, . . . , hn i.i.d. random variables,
uniformly distributed on {1, . . . ,m}. (This random hash table thus has a fixed
size. In the analysis below we will also meet random hash tables where both
the size and the number of items are random, see Section 3.)

We say that a hash table is confined if it leaves the last cell empty. We let
T ′

m,n (n < m) denote a random confined hash table, defined as Tm,n conditioned
on the last cell being empty. By symmetry, the sequence of displacements has
the same distribution for T ′

m,n as for Tm,n.
We denote the three insertion policies defined in the introduction by FC, LC

and RH, and use Ξ to denote any of these.
Given a hash table T , random or not, and a policy Ξ ∈ {FC, LC,RH}, we

let dΞ
i (T ) be the (final) displacement of the i:th item, 1 ≤ i ≤ n, and

nΞ
k (T ) := #{i : dΞ

i (T ) = k}, k = 0, 1, . . . ,

the number of items with displacement k. Note that∑
k

nΞ
k (T ) = n. (2.1)

The total displacement is

d∗(T ) :=
n∑

i=1

dΞ
i (T ) =

∞∑
k=0

knΞ
k (T )

and the average displacement is, when n > 0,

d̄(T ) :=
1

n
d∗(T ) =

1

n

n∑
i=1

dΞ
i (T ).
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As remarked above, d∗(T ) and d̄(T ) do not depend on the policy Ξ.
If n > 0, we let dΞ(T ) denote a randomly chosen displacement in a given hash

table T using policy Ξ, i.e. the random variable dΞ
I (T ) where I ∈ {1, . . . , n}

is a random index with a uniform distribution. Thus, given T , dΞ(T ) has the
distribution

P
(
dΞ(T ) = k

)
=

1

n
nΞ

k (T ) (2.2)

and the expectation

E dΞ(T ) = d̄(T ).

Similarly, we let dU
j (T ) denote the number of occupied cells encountered in

an unsuccessful search starting at hash address j, 1 ≤ j ≤ m, and let dU(T )
denote the number of occupied cells encountered in a random unsuccessful
search, i.e. dU(T ) := dU

J (T ), where J ∈ {1, . . . ,m} is a uniformly distributed
random index. (As for successful searches, the number of probes thus is one
more, dU

j (T ) + 1 and dU(T ) + 1.) We further let

nU
k (T ) := #{j : dU

j (T ) = k}, k = 0, 1, . . . ,

and note that now, in contrast to (2.1),∑
k

nU
k (T ) = m. (2.3)

Thus, given T , dU(T ) has the distribution

P
(
dU(T ) = k

)
=

1

m
nU

k (T ).

2.1. Blocks. A block in a hash table (with n < m) is a sequence of cells
{i+ 1, . . . , j} (modulo m) where i and j are two consecutive empty cells; thus
the last cell in a block is empty but all others are occupied. Clearly, T contains
m−n blocks which form a partition of {1, . . . ,m}. We denote the block lengths
in T by `1(T ), . . . , `m−n(T ). (In the confined case, we take the blocks in the
natural order, but in the unconfined case we start at a randomly chosen block.
Otherwise, if for example in the unconfined case we would let the first block
be the block containing cell 1, we would introduce an unwanted bias.)

Note that by our convention, each block includes the final, empty cell. Hence
each block length is ≥ 1, and a block of length 1 is just a single empty cell
(preceded by another empty cell). Further,

m−n∑
i=1

`i(T ) = m.

Each block may be regarded as an almost full confined hash table, with `
cells and `− 1 items, where ` is the length of the block.

The block lengths `i do not depend on the insertion policy.
If B is a block of length ` in T , then the ` values of dU

j (T ) for j ∈ B are
`− 1, `− 2, . . . , 0. Hence, for k = 0, 1, . . . ,

nU
k (T ) = #{i : `i(T ) > k}. (2.4)
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We further see that dU
j (T ) and dU(T ) do not depend on the insertion policy.

2.2. Profile. Let, for j = 1, . . . ,m, Xj := {i : hi = j} be the number of items
with hash address j. Further, let Hj be the number of items that make an
attempt to be inserted in cell j, whether they succeed or not. We extend these
definitions to arbitrary integer indices by interpreting the index j modulo m.
We call (Hj)

m
j=1 the profile of the hashing. If Hj ≥ 1, then exactly one of the

Hj items that try cell j ends up there, while the remaining Hj−1 items either
are rejected immediately or are admitted first but later thrown out; thus these
continue to cell j + 1, and

Hj+1 = Xj+1 + (Hj − 1)+.

When n < m, this set of equations has a unique solution [15, Exercise 6.4-32],
[10, Lemma 2.1]

Hj = max
−∞<i≤j

( j∑
k=i

Xk − (j − i)

)
.

In particular, the profile does not depend on the insertion policy.
The profile has a simple relation to Robin Hood hashing.

Lemma 2.1. For Robin Hood,

nRH
k (T ) = #{i : dRH

i = k} = #{j : Hj = k + 1}.

In other words, the displacements
(
dRH

i

)n

i=1
are a permutation of the numbers

(Hj − 1)m
j=1, ignoring the m− n negative values when Hi = 0.

Proof. Consider a cell j and the Xj items that arrive at j. Under the RH rule,
the final order of the items in a block is the same as the order of their places
of arrivals. Hence, the (Hj−1 − 1)+ items that try cell j − 1 but are rejected
(immediately or later) and therefore continue and try cell j, will end up in cells
j, . . . , j+(Hj−1 − 1)+−1, and the Xj items that arrive at place j will end up in
j+(Hj−1 − 1)+, . . . , j+(Hj−1 − 1)++Xj−1, Consequently, the displacements
of these Xj items are (Hj−1 − 1)+, . . . , (Hj−1 − 1)+ + Xj − 1 = Hj − 1. In
particular, these displacements are all different, and, if k ≥ 0, one of them
equals k if and only if Hj−1 − 1 ≤ k ≤ Hj − 1. Hence,

nRH
k = #{j : Hj−1 − 1 ≤ k ≤ Hj − 1}

= #{j : Hj−1 ≤ k + 1 ≤ Hj}.
(2.5)

Consider the sequence {Hj}, where the index runs through {1, . . . ,m} regarded
as a cycle, with 1 followingm. The number of timesHj increases across [k, k+1]
has to equal the number of times it decreases across the same interval, and
since Hj − Hj−1 ≥ −1 always, such a decrease can only be from k + 1 to k.
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Hence, (2.5) yields

nRH
k = #{j : Hj−1 ≤ k + 1 ≤ Hj}

= #{j : Hj−1 = k + 1 ≤ Hj}+ #{j : Hj−1 ≤ k < k + 1 ≤ Hj}
= #{j : Hj−1 = k + 1 ≤ Hj}+ #{j : Hj−1 = k + 1 > k = Hj}
= #{j : Hj−1 = k + 1}. �

3. Random blocks and infinite hashing

Let T (z) be the tree function

T (z) :=
∞∑
l=1

ll−1zl

l!
, |z| ≤ e−1. (3.1)

Recall the well-known formulas T (z)e−T (z) = z (|z| ≤ e−1), T (αe−α) = α
(0 ≤ α ≤ 1),

∞∑
l=1

ll−2zl

l!
= T (z)− 1

2
T (z)2 (3.2)

and

T ′(z) =
T (z)

z
(
1− T (z)

) . (3.3)

We say, for 0 ≤ α ≤ 1, that a random variable Bα has the Borel distribution
Bo(α) if

P(Bα = l) =
ll−1

l!
αl−1e−lα =

1

T (αe−α)

ll−1

l!
(αe−α)l, l = 1, 2, . . . (3.4)

(Bα always denotes such a variable.) The probability generating function of
the Borel distribution is

E zBα =
∞∑
l=1

P(Bα = l)zl =
T (αe−αz)

T (αe−α)
=
T (αe−αz)

α
. (3.5)

Moments are easily computed from this. In particular, see e.g. [10, §4],

EBα =
1

1− T (αe−α)
=

1

1− α
, (3.6)

EB2
α =

1

(1− α)3
. (3.7)

As shown in [10, Lemma 4.1], for any α > 0, the sequence of block lengths
{`i(Tm,n)}m−n

i=1 of the random hash table Tm,n or T ′
m,n has the same distribution

as a sequence {Xi}m−n
i=1 of independent random variables Xi with the common

distribution Bo(α), conditioned on
∑m−n

i=1 Xi = m. Moreover, conditioned on
the block lengths `i, the internal structures of the blocks are independent, and
the same as for a sequence of independent random almost full confined hash
tables T ′

`i,`i−1, i = 1, . . . ,m− n.
We let Tα, where 0 ≤ α ≤ 1, denote the random hash table of random size

constructed by first selecting ` at random with the Borel distribution Bo(α),
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and then taking a random confined hash table T ′
`,`−1. (Thus Tα is a confined

hash table.) The result just quoted then implies the following.

Lemma 3.1. The random confined hash table T ′
m,n can be obtained by juxta-

posing m − n independent copies of Tα, conditioning on the total size being
m. The random hash table Tm,n can be obtained by first constructing T ′

m,n

in this way, followed by a random cyclic shift. Here α is any number with
0 < α ≤ 1. �

Remark 3.2. There is a one-to-one correspondence between hash tables and
rooted forests, see e.g. [15, Exercise 6.4-31] and [5], and the lemma is essen-
tially equivalent to a result for random rooted forests by Pavlov [17, 19, 20].
Furthermore, Lemma 3.1 is closely related to results for generating functions
for the total displacement in [7, 16].

Next, let us observe that the Borel distribution arises in connection with
random walks. More precisely, let ξ1, ξ2, . . . be i.i.d. random variables with
the Poisson distribution Po(α), and let Sk :=

∑k
i=1(ξi − 1) be a random walk

starting at S0 = 0 with increments ξi − 1. Then τ := min{k : Sk = −1} has
the Borel distribution Bo(α) [11, 12]; see also [6, 21].

Remark 3.3. It is easily seen that this result has equivalent reformulations
in the theories of queues and branching processes: Bo(α) is the distribution of
the number of customers in a busy period in a queue with arrivals according to
a Poisson process and constant service time; Bo(α) is also the total progeny of
a Galton–Watson process where each individual has Po(α) children. For these
results and generalizations, see e.g. [2, 18, 13, 27, 25, 26, 6, 21].

Furthermore, let us use this random walk to construct a hash table T̃ on
{1, . . . , τ} by taking ξi items with hash address i, 1 ≤ i ≤ τ , inserting them
in the table in random order. Then, for 1 ≤ k ≤ τ , the number of probes at
cell k, i.e. Hk, is Sk + 1; thus the number of unsuccessful probes at k is Sk for
k < τ , and τ is the first empty cell. It is easily seen that, conditioned on τ = l,
the resulting table has a uniform distribution over all almost full confined hash

tables of length l, i.e. it is T ′
l,l−1 Consequently, the random hash table T̃ equals

(in distribution) Tα. This yields the following description of the profile.

Lemma 3.4. Let 0 < α < 1. The profile (Hj)
m(Tα)
j=1 of Tα has the same

distribution as (Sj + 1)τ
j=1, where ξ ∈ Po(α), Sk and τ are as above. �

This may also be expressed using the following random infinite hashing.
Consider a hash table with infinitely many cells 1, 2, 3, . . . and suppose that

items arrive to the cells according to independent Poisson processes with rate 1.
When an item arrives, it is placed in the cell if the cell is empty, otherwise
either the new or the old item (according to the chosen policy) is moved to the
next cell, and so on. All movements are instantaneous. Denote the resulting
table at time t ≥ 0 by T∞(t). We define blocks in T∞(t) as for finite tables,
starting at cell 1; we also consider an infinite string of occupied cells as a block.
There are either an infinite number of finite blocks, or a finite (possibly zero)
number of finite blocks followed by a single infinite block.
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Lemma 3.5. If 0 ≤ α ≤ 1, then the first block in T∞(α) equals Tα in distri-
bution.

Proof. Let ξi be the number of items arriving to cell i up to time α. Then ξ1, ξ2,
. . . are i.i.d. Po(α) as above, and we define Sk and τ as before. Thus, for k ≤ τ ,
the number of items probing cell k up to time α is Sk + 1, and τ is the first
empty cell at time α, i.e. the length of the first block in T∞(α). Conditioned
on τ and ξ1, . . . , ξτ , the τ − 1 items that have arrived to {1, . . . , τ} have come

in random order, and we are in the situation of T̃ discussed above. �

Remark 3.6. As a digression, let us study T∞(α) further.
For α ≤ 1, the random walk Sk defined above has negative or zero drift and

thus a.s. hits −1, i.e. τ <∞ (as is implicit in the discussion above). After cell
τ , the same process starts again, and thus T∞(α) consists of an infinite string
of independent random blocks, each a copy of Tα. In particular, the description
above of the blocks in Tm,n is equivalent to the fact that if we condition T∞(α)
on the (m−n):th empty cell being cell m, then the m first cells form a random
confined hash table T ′

m,n, which easily is seen directly.
For α > 1, the random walk {Sk} has positive drift and thus has positive

probability of never hitting −1. This means that T∞(α) may have one or
several finite blocks in the beginning, but, a.s., eventually there is an infinite
block covering the rest of the table. As a consequence, the infinite hashing
works for time α ≤ 1, but for α > 1 it fails because items are moved away to
infinity (in zero time) and lost. In other words, there is a phase transition at
time 1.

For α > 1, the probability of the first block being finite is α′/α, where α′ :=
T (αe−α) < 1, and conditioned on being finite, the block has the distribution
of Tα′ . In particular, its length then has the Borel distribution Bo(α′) with
mean 1/(1− α′).

Hence, the number of finite blocks has the geometric distribution Ge(1 −
α′/α) with mean α′/(α− α′). As a consequence, the expected number of cells
in the finite blocks equals α′

α−α′
1

1−α′
.

Finally, we note that T∞(α) is a discrete version of the queueing process
studied by Borel [2].

Remark 3.7. We can similarly define two-way infinite hashing with the cells
indexed by Z, all integers. This can be regarded as infinite unconfined hashing,
while the one-way infinite hashing on Z+ is infinite confined hashing.

In this case, we have a similar structure as for the one-way infinite case. If
the time α ≤ 1, the table consists a.s. of an infinite number of finite blocks.
On the other hand, for α > 1, the whole table is filled a.s.

4. A general limit theorem

We begin with a general limit theorem for the distribution of the individual
displacements (in the case n/m→ α, 0 < α < 1).

Recall that we first take a random hash table Tm,n and then consider the
distribution of a random displacement for that hash table, i.e. we consider the
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conditional distribution of a random displacement given the hash table. We
are thus really studying a random probability distribution; the reader who
finds this too mind-boggling can instead think of the proportions nΞ

k (Tm,n)/n
of items with given displacements in the table, which is the same thing by
(2.2).

Theorem 4.1. Suppose that m,n→∞ with n/m→ α, where 0 < α < 1, and
let Ξ ∈ {FC, LC,RH}.
(i) For every k = 0, 1, . . . ,

P
(
dΞ(Tm,n) = k

∣∣ Tm,n

)
=

1

n
nΞ

k (Tm,n)
p→ pΞ

α(k) :=
1− α

α
EnΞ

k (Tα), (4.1)

and pΞ
α = {pΞ

α(k)}∞k=0 is a probability distribution on N.
(ii) More precisely, for every k = 0, 1, . . . and jointly for all k,
√
n
(
P(dΞ(Tm,n) = k | Tm,n)− pΞ

n/m(k)
)

= n−1/2
(
nΞ

k (Tm,n)− npΞ
n/m(k)

) d→ ZΞ
k ,

(4.2)
where ZΞ

k are some Gaussian random variables with means EZΞ
k = 0 and a

nondegenerate covariance matrix given by

Cov(ZΞ
k , Z

Ξ
l ) =

1− α

α

(
Cov

(
nΞ

k (Tα), nΞ
l (Tα)

)
− (1− α)3 Cov

(
nΞ

k (Tα),m(Tα)
)
Cov

(
nΞ

l (Tα),m(Tα)
))

;

(4.3)

furthermore, all moments converge too. In particular, with Nk := nΞ
k (Tm,n),

ENk = npΞ
n/m(k) + o(n1/2) = npΞ

α(k) + o(n),

(Nk − ENk)/(VarNk)
1/2 d→ N(0, 1).

Remark 4.2. A more fancy formulation of part (i) of the theorem is that
the distribution of dΞ(Tm,n) converges to pΞ

α in probability, in the space of all
probability measures on N, equipped with the weak topology (which coincides
with the `1 topology on this space); see [1] for definitions.

We will find (more or less explicit) formulas for the limit probabilities pΞ
α

in Sections 7–9. It seems possible that the variances and covariances can be
found by the same methods, but we have not attempted to find them.

The theorem says that a typical instance of the random hash table Tm,n

has its displacements distributed approximately according to pΞ
α, with some

normal fluctuations. In particular, different realizations of Tm,n have (with
large probability) almost the same distribution. Taking the expectation over
the possible choices of Tm,n, this yields the following, conceptually simpler,
corollary on the distribution of the displacement of a random item in a random
hash table.

Corollary 4.3. If n/m→ α < 1 and Ξ ∈ {FC, LC,RH}, then

dΞ(Tm,n)
d→ DΞ

α ,
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where DΞ
α is a random variable with distribution

P(DΞ
α = k) = pΞ

α(k). �

Proof of Theorem 4.1. Let αn := n/m and let T1, T2, . . . be independent copies
of Tαn . By Lemma 3.1, nΞ

k (Tm,n) has the same distribution as
∑m−n

i=1 nΞ
k (Ti)

conditioned on
∑m−n

i=1 m(Ti) = m.

We define Xi := m(Ti) and Yi := nΞ
k (Ti) and are thus led to study

∑m−n
i=1 Yi

conditioned on
∑m−n

i=1 Xi = m. We use, as in [10], the following conditional
limit theorem proved in [9].

Lemma 4.4. Suppose that, for each ν, (X, Y ) = (X(ν), Y (ν)) is a pair of
random variables such that X is integer valued, and that N = N(ν) and m =
m(ν) are integers. Suppose further that for some γ and c (independent of ν),
with 0 < γ ≤ 2 and c > 0, the following hold, where σ2

X := VarX, σ2
Y := VarY

and all limits are taken as ν →∞:

(i) EX = m/N .
(ii) 0 < σ2

X <∞.
(iii) For every integer r ≥ 3, E |X − EX|r = o(N r/2−1σr

X).
(iv) σ2

X = O(N2/γ−1).
(v) ϕX(s) := E eisX satisfies 1− |ϕX(s)| ≥ cmin(|s|γ, s2σ2

X) for |s| ≤ π.
(vi) 0 < σ2

Y <∞.
(vii) For every integer r ≥ 3, E |Y − EY |r = o(N r/2−1σr

Y ).
(viii) The correlation ρ := Cov(X,Y )/σXσY satisfies lim sup |ρ| < 1.

Let, for each ν, (Xi, Yi) be i.i.d. copies of (X, Y ), and let SN :=
∑N

1 Xi,

TN :=
∑N

1 Yi and τ 2 := σ2
Y (1− ρ2) = σ2

Y −Cov(X, Y )2/σ2
X . Then, as ν →∞,

the conditional distribution of (TN−N EY )/N1/2τ given SN = m converges to
a standard normal distribution. In other words, if U = Uν is a random variable
whose distribution equals the conditional distribution of TN given SN = m, then

U −N EY
N1/2τ

d→ N(0, 1). (4.4)

Moreover, EU = N EY + o(N1/2τ) and VarU ∼ Nτ 2, and thus also

U − EU
(VarU)1/2

d→ N(0, 1). (4.5)

The limits (4.4) and (4.5) hold with convergence of all moments. �

To apply Lemma 4.4, we consider a sequence (m,n) = (m(ν), n(ν)) tending
to infinity and let N := m − n. First, fix k ≥ 1 and let X := m(Tn/m) and
Y := nΞ

k (Tn/m). By the remarks before the lemma, nΞ
k (Tm,n) has the same

distribution as TN conditioned on SN = m, i.e. the same distribution as U in
the lemma.

We have to verify all conditions of the lemma. First, X ∈ Bo(n/m) and
thus, by (3.6), EX = 1/(1−αn) = m/N , which verifies (i). Next, n/m→ α ∈
(0, 1), and thus Tn/m

d→ Tα and (X, Y )
d→ (X̄, Ȳ ) :=

(
m(Tα), nΞ

k (Tα)
)
, with

convergence of all moments. Further, N →∞, the distribution of X̄ has span
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1 (because P(X̄ = 1) > 0) and Ȳ is not a.s. equal to a linear function of X̄
because both P(X̄ = k+2, Ȳ = 0) > 0 and P(X̄ = k+2, Ȳ = 1) > 0. It follows
easily, see [9, Corollary 2.1] for a general statement, that all other conditions
of the lemma hold for γ = 2, with τ 2 = Var(Ȳ )− Cov(Ȳ , X̄)2/Var(X̄).

We may thus apply Lemma 4.4. We have

N EY = n
1− n/m

n/m
EnΞ

k (Tn/m) = npΞ
n/m(k),

and (4.2) follows for a single k, with Var(ZΞ
k ) = lim(N/n)τ 2 =

(
(1− α)/α

)
τ 2.

(Note that we divide by n1/2 in (4.2) but N1/2 in (4.4).) Furthermore, the same
argument applies with the Y above replaced by a linear combination Y :=∑K

0 akn
Ξ
k (Tn/m), which by the Cramér–Wold device yields joint convergence

and, using (3.7), (4.3), see [9, Corollary 2.2] for details.
Again, no such Y is equal to a linear function of X, and thus every nontrivial

finite linear combination
∑K

0 akZ
Ξ
k has nonzero variance.

Part (ii) of Theorem 4.1 thus follows from Lemma 4.4. Part (i) follows from
part (ii) and (2.1) and (3.6), which yields
∞∑

k=0

pΞ
α(k) =

1− α

α
E

∞∑
k=0

nΞ
k (Tα) =

1− α

α
En(Tα) =

1− α

α
E

(
m(Tα)− 1

)
= 1.

�

We have similar results, with minor differences, for the unsuccessful searches.

Theorem 4.5. Suppose that m,n→∞ with n/m→ α, where 0 < α < 1.
(i) For every k = 0, 1, . . . ,

P
(
dU(Tm,n) = k

∣∣ Tm,n

)
=

1

m
nU

k (Tm,n)
p→ pU

α(k) := (1− α) P(Bα > k),

where Bα ∈ Bo(α), and pU
α = {pU

α(k)}∞k=0 is a probability distribution on N.
(ii) More precisely, for every k = 0, 1, . . . and jointly for all k,

√
n
(
P(dU(Tm,n) = k | Tm,n)− pU

n/m(k)
)

=
n1/2

m

(
nU

k (Tm,n)−mpU
n/m(k)

) d→ ZU
k ,

where ZU
k are some Gaussian random variables with means EZU

k = 0 and a
covariance matrix given by

Cov(ZU
k , Z

U
l ) = α(1− α)

(
Cov

(
1[Bα ≤ k],1[Bα ≤ l]

)
− (1− α)3 Cov

(
1[Bα ≤ k], Bα

)
Cov

(
1[Bα ≤ l], Bα

))
;

furthermore, all moments converge too. In particular, with Nk := nU
k (Tm,n),

ENk = mpU
n/m(k) + o(m1/2) = mpU

α(k) + o(m),

(Nk − ENk)/(VarNk)
1/2 d→ N(0, 1).

The case k = 0 is trivial, nU
0 (Tm,n) = m−n = mpU

n/m(0) and thus ZU
0 = 0, but

the variables ZU
k , k ≥ 1, are linearly independent.
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Proof. We argue as in the proof of Theorem 4.1, now taking Y := nU
k (Tn/m),

or a linear combination
∑K

0 akn
U
k (Tn/m) of such variables. By (2.4), recalling

that Tα has a single block, nU
k (Tn/m) = 1[m(Tn/m) > k] and thus

N EnU
k (Tn/m) = m(1− n/m) P

(
m(Tn/m) > k

)
= mpU

n/m(k),

and the result follows from Lemma 4.4 as above, if we recall that m(Tα) ∈
Bo(α) so m(Tα)

d
= Bα, and use 1[Bα > k] = 1− 1[Bα ≤ k]. �

Corollary 4.6. If n/m→ α < 1, then

dU(Tm,n)
d→ DU

α ,

where DU
α is a random variable with distribution

P(DU
α = k) = pU

α(k). �

In the proofs above we used finite linear combinations
∑K

0 akn
Ξ
k (T ), but

we can just as well take infinite sums
∑∞

0 f(k)nΞ
k (T ), provided the func-

tion f grows subexponentially, i.e. f(k) = exp
(
o(k)

)
, which implies that∑∞

0 f(k)nΞ
k (Tα) has finite moments of all orders. In fact, this was done in

[10] to study the total displacement d∗(Tm,n), which is obtained by the choice
f(k) = k.

We obtain the following result, leaving the formulas for the asymptotic vari-
ances to the reader.

Theorem 4.7. Let f be a function of subexponential growth on N, for example
a polynomial. Suppose that m,n → ∞ with n/m → α, where 0 < α < 1. For
every Ξ ∈ {FC, LC,RH},

1

n

n∑
i=1

f(dΞ
i (Tm,n)) =

1

n

∞∑
k=0

f(k)nΞ
k (Tm,n)

p→
∞∑

k=0

f(k)pΞ
α(k) =

1− α

α
E

∞∑
k=0

f(k)nΞ
k (Tα) =

1− α

α
E

n(Tα)∑
i=1

f(dΞ
i (Tα)).

and, similarly, with Bα ∈ Bo(α),

1

m

m∑
j=1

f(dU
j (Tm,n)) =

1

m

∞∑
k=0

f(k)nU
k (Tm,n)

p→
∞∑

k=0

f(k)pU
α(k) = (1− α) E

Bα−1∑
k=0

f(k).

The convergences hold in Lp too, for any p < ∞; in particular, the expecta-
tions of the left hand sides converge to the right hand sides. Moreover, the
random variables on the left hand side are asymptotically normal, with vari-
ances O(n−1). �
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Corollary 4.8. Suppose that m,n → ∞ with n/m → α, where 0 < α < 1,
and let Ξ ∈ {FC, LC,RH,U}. Then

E(dΞ(Tm,n) | Tm,n)
p→ EDΞ

α , (4.6)

Var(dΞ(Tm,n) | Tm,n)
p→ VarDΞ

α . (4.7)

The expectations of the left hand sides converge to the same limits.

Proof. Apply Theorem 4.7 with f(k) = k and f(k) = k2. �

Note that if Ξ ∈ {FC, LC,RH}, then E(dΞ(Tm,n) | Tm,n) = d̄(Tm,n), the
average displacement. We thus have the orthogonal decomposition dΞ(Tm,n) =(
dΞ(Tm,n)− d̄(Tm,n)

)
+ d̄(Tm,n) and the decomposition of the variance

Var
(
dΞ(Tm,n)

)
= Var

(
dΞ(Tm,n)− d̄(Tm,n)

)
+ Var

(
d̄(Tm,n)

)
= E

(
Var

(
dΞ(Tm,n) | Tm,n

))
+ Var

(
d̄(Tm,n)

)
→ Var(DΞ

α).

The second term, i.e. the part of the variance that comes from the variation
between different hash tables is of order O(n−1) only by Theorem 4.7, and thus
much smaller than the first term which is the part of the variance coming from
the variation between different items in the table. This, again, shows that the
variation between tables is insignificant in the sparse range.

A similar result holds for dU. Furthermore, we obtain similar results for
higher moments by taking f(k) = kr, r > 0. In particular, we can sharpen
Corollaries 4.3 and 4.6.

Corollary 4.9. If n/m → α < 1 and Ξ ∈ {FC, LC,RH,U}, then dΞ(Tm,n)
d→

DΞ
α with all moments, i.e.

E
(
dΞ(Tm,n)

)r → E
(
DΞ

α

)r
, r ≥ 0. �

We have so far treated all three insertion policies together. In Sections 6–
9, we will study them one by one (beginning with unsucessful searches) and
identify the limit distributions pΞ

α, i.e. the distributions of the limit random
variables DΞ

α .

5. Exact distributions

Although we are mainly interested in asymptotic result, we make in this sec-
tion a digression and consider exact formulas for the distributions of dΞ(Tm,n)
and, in particular, their moments. For simplicity, we consider only Ξ ∈
{FC, LC,RH} in this section, and leave the case of unsuccessful searches to
the next section. Using results by Poblete, Viola and Munro [23, 28], we
will see that the moments of DΞ

α not only are the limits of the moments of
dΞ(Tm,n) as m,n → ∞ with n/m → α, they can also be regarded as Poisson
transforms of the moments of dΞ(Tm,n). The same is true for the probabilities
P(dΞ(Tm,n) = k) and for the probability generating function. This provides an
interesting relation between the values of these moments (probabilities) and
their limits. Moreover, it is possible to invert the Poisson transform and thus



INDIVIDUAL DISPLACEMENTS FOR HASHING 15

derive exact formulas from the limits. This yields interesting connections with
earlier results by various authors.

We denote the probability generating function of DΞ
α by ψΞ

α and have by
(4.1), for 0 < α < 1, at least for |z| ≤ 1,

ψΞ
α(z) := E zDΞ

α =
∞∑

k=0

zkpΞ
α(k) =

1− α

α

∞∑
k=0

zk EnΞ
k (Tα). (5.1)

Recall that the probabilities pΞ
α(k) can be obtained by differentiating ψΞ

α(z)
at z = 0, and that the (factorial) moments are obtained by differentiation at
z = 1.

Remark 5.1. Since no displacement is larger than the size of the table, we
have the bound EnΞ

k (Tα) ≤ E
(
m(Tα)1[m(Tα) ≥ k]

)
, which together with (3.4)

easily implies that the sums in (5.1) converge at least for |z| <
(
αe1−α

)−1
.

Hence, for each α < 1, ψΞ
α(z) is analytic in a disc with radius greater than 1,

and (5.1) is valid there. The same applies to various formulas for generating
functions below; they are always valid for |z| ≤ 1, and actually in some larger
open domain (possibly depending on parameters such as α and Ξ), but we will
usually ignore mentioning this restriction on z.

Furthermore, for 1 ≤ n ≤ m, let

ϕΞ
m,n(z) := E zdΞ(Tm,n), (5.2)

the probability generating function of dΞ(Tm,n). When n < m, dΞ(T ′
m,n) has

the same distribution as dΞ(Tm,n), see Section 2, and thus the same probability
generating function ϕΞ

m,n(z).

Let, for ` ≥ 1, ΦΞ
` (z) be the sum of zdΞ

i (T ) over all ``−2 confined almost full
hash tables of length `, and all i ∈ {1, . . . , l − 1}. Thus ΦΞ

1 (z) = 0, and for
` ≥ 2, ΦΞ

` (z) = (`− 1)``−2ϕΞ
`,`−1(z). Further,

ΦΞ
` (z) = ``−2 E

`−1∑
i=1

zdΞ
i (T ′

`,`−1) = ``−2 E
∞∑

k=0

nΞ
k (T ′

`,`−1)z
k. (5.3)

Hence, by (5.1), the definition of Tα and (3.4),

ψΞ
α(z) =

1− α

α

∞∑
k=0

zk EnΞ
k (Tα) =

1− α

α

∞∑
`=1

P(Bα = `)`−(`−2)ΦΞ
` (z)

= (1− α)
∞∑

`=2

α`−2e−`α

(`− 1)!
ΦΞ

` (z) (5.4a)

= (1− α)
∞∑

`=2

(`α)`−2e−`α

(`− 2)!
ϕΞ

`,`−1(z)

= (1− α)
∞∑
i=0

((i+ 2)α)ie−(i+2)α

i!
ϕΞ

i+2,i+1(z). (5.4b)



16 SVANTE JANSON

In terms of the transforms defined in Poblete, Viola and Munro [23], (5.4b)
shows that ψΞ

α(z) is the diagonal Poisson transform D2[ϕ
Ξ
n+2,n+1;α].

Before proceeding, we note that (5.4b) also shows that ψΞ
α(z) is an analytic

function of α too (in a suitable domain).
Fix z and let fm,n−1 := ϕΞ

m,n(z), 0 ≤ n < m. (Thus fm,n refers to a hash
table of size m with n + 1 items; we follow here the notation in [23].) This is
the expectation of a random variable that depends on a randomly chosen item
and the block it belongs to. Poblete, Viola and Munro [23, §4.1] show that
for such quantities fm,n, it is easy to express fm,n (n < m− 1) in terms of the
values for almost full tables fi+2,i, see [23, (28)].

Using this formula [23, (28)] as a definition of fm,n for n ≥ m− 1 too, it is
further shown in [23, (29)] that the diagonal Poisson transform D2[fn+2,n;x]
equals the Poisson transform Pm[fm,n;x], which is defined as E fm,N where
N ∈ Po(mx). (In particular, the latter transform is independent of m.) This
leads to the following result.

Theorem 5.2. For every m ≥ 1 and Ξ ∈ {FC, LC,RH}, ϕΞ
m,n can be defined

for n > m too such that for 0 ≤ α < 1

ψΞ
α(z) = Pm[ϕΞ

m,n+1(z);α] = e−mα

∞∑
n=0

(mα)n

n!
ϕΞ

m,n+1(z) (5.5)

and

ϕΞ
m,n(z) =

(n− 1)!

mn−1
[αn−1]

(
emαψΞ

α(z)
)

=
n−1∑
k=0

(n− 1)k

mk
[αk]ψΞ

α(z). (5.6)

Note that the functions ϕΞ
m,n that appear here only have a formal meaning

when n > m. At least, we do not know any probabilistic interpretation of
them in this case, and they are not always probability generating functions.
(For example, it follows easily from Theorem 5.2 and Theorem 8.1 below that
ϕRH

1,3(z) = 1
3
z2 + 4

3
z− 2

3
.) It would be interesting to find such an interpretation,

and a probabilistic proof of Theorem 5.2.

Proof. We have already shown (5.5), with ϕΞ
m,n(z) = fm,n−1 given by [23, (28)]

for n ≥ m.
To invert the Poisson transform, we multiply (5.5) by emα and extract the

coefficient of αn, which yields

ϕΞ
m,n+1(z) =

n!

mn
[αn]

(
emαψΞ

α(z)
)

=
n!

mn

n∑
k=0

mn−k

(n− k)!
[αk]ψΞ

α(z)

=
n∑

k=0

nk

mk
[αk]ψΞ

α(z).

One subtle problem remains: The argument in [23] leading to [23, (28)] uses
confined hash tables, and is thus restricted to fm,n for n+ 1 < m. Hence, the
ϕΞ

m,n(z) that appears in (5.5) and (5.6) is indeed given by (5.2) for n < m, but
it remains to show that this is true for n = m too. In order to see this, fix z
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and n, and note that the right hand side of (5.6) is a polynomial in 1/m. We
claim that the same is true for ϕΞ

m,n for all m ≥ n; since the equality is verified
for m > n, it then holds for m = n too, and the theorem is completely proved.

To verify the claim, define a graph on the set {1, . . . , n} where i and j
are joined by an edge if items i and j conflict over the same cell sometime
during the construction of the hash table (using the policy Ξ), and call the
components of this graph strict blocks. It is easily seen that any partition of
{1, . . . , n} into strict blocks together with some given internal structure in the
strict blocks has a probability that is a polynomial in 1/m for m ≥ n, and the
result follows. �

We can take derivatives at z = 1 in Theorem 5.2 to obtain the corresponding
result for fractional moments, and then take suitable linear combinations to
obtain the moments. Similarly, taking derivatives at z = 0 we obtain results
for the point probabilities. Alternatively, we can argue as above using moments
or probabilities for fm,n. We thus obtain the following result.

Corollary 5.3. Let m ≥ 1 and Ξ ∈ {FC, LC,RH}. Then, for every r ≥ 0,

E
(
DΞ

α

)r
= Pm[E(dΞ(Tm,n+1))

r;α] = e−mα

∞∑
n=0

(mα)n

n!
E(dΞ(Tm,n+1))

r

and, for k ≥ 0,

P
(
DΞ

α = k
)

= Pm[P(dΞ(Tm,n+1) = k);α] = e−mα

∞∑
n=0

(mα)n

n!
P(dΞ(Tm,n+1) = k)

where E(dΞ(Tm,n+1))
r and P(dΞ(Tm,n+1) = k) only have a formal meaning for

n+ 1 > m. Conversely, for 1 ≤ n ≤ m,

E
(
dΞ(Tm,n)

)r
=

(n− 1)!

mn−1
[αn−1]

(
emα E

(
DΞ

α

)r)
=

n−1∑
i=0

(n− 1)i

mi
[αi] E

(
DΞ

α

)r
,

P
(
dΞ(Tm,n) = k

)
=

(n− 1)!

mn−1
[αn−1]

(
emα P(DΞ

α = k)
)

=
n−1∑
i=0

(n− 1)i

mi
[αi] P

(
DΞ

α = k
)
. �

An important example is provided by the transform (1− α)−r−1, which has
the inverse Poisson transform

n!

mn
[αn]

(
emα(1− α)−r−1

)
=

n!

mn

n∑
k=0

mn−k

(n− k)!

(
r + k

k

)
= Qr(m,n),

the Q function defined in [15, Theorem 6.4.K]. Here r may be any real number.
Note, in particular, that Q−1(m,n) = 1 and Q−2(m,n) = 1− n/m.

Consequently, we have an explicit formula, covering several cases below.
(We use the simple, well-known, identity [16, (5.8)] for Qr(m,n− 1).)
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Corollary 5.4. Let r ≥ 1 and Ξ ∈ {FC, LC,RH}, and suppose that

E
(
DΞ

α

)r
=

∑
j∈J

cj(1− α)−j, 0 < α < 1,

for some finite set J ⊂ Z and numbers cj. Then, for 1 ≤ n ≤ m,

E
(
dΞ(Tm,n)

)r
=

∑
j∈J

cjQj−1(m,n− 1)

=
m

n

∑
j∈J

cj
(
Qj−1(m,n)−Qj−2(m,n)

)
. �

Of course, the converse of this corollary is immediate.

6. The limit distribution for unsuccessful searches

By Theorem 4.5 and (3.4),

pU
α(k) = (1− α) P(Bα > k) = (1− α)

(
1−

k∑
l=1

ll−1

l!
αl−1e−lα

)
. (6.1)

In particular, pU
α(0) = 1− α, pU

α(1) = (1− α)(1− e−α) and
pU

α(2) = (1− α)(1− e−α − αe−2α).
We have the following further results.

Theorem 6.1. The probability generating function of DU
α is

ψU
α(z) := E zDU

α =
∞∑

k=0

zkpU
α(k) =

1− α

α
· T (αe−α)− T (αe−αz)

1− z
.

The first moments are given by

EDU
α =

2α− α2

2(1− α)2
= 1

2
(1− α)−2 − 1

2
,

E(DU
α)2 =

6α+ 3α2 − 4α3 + α4

6(1− α)4
= (1− α)−4 − 2

3
(1− α)−3 − 1

2
(1− α)−2 + 1

6
,

Var(DU
α) =

12α− 6α2 + 4α3 − α4

12(1− α)4
= 3

4
(1− α)−4 − 2

3
(1− α)−3 − 1

12
.

Proof. By Theorem 4.5 and (3.4), or Theorem 4.7 with f(k) = zk (for |z| ≤ 1),
together with (3.5),

ψU
α(z) =

∞∑
k=0

zkpU
α(k) =

∞∑
k=0

zk(1− α) P(Bα > k) = (1− α) E
Bα−1∑
k=0

zk

= (1− α) E
1− zBα

1− z
= (1− α)

1− T (αe−αz)/α

1− z
.

The moments are computed by calculating the derivatives of ψU
α(z) at z = 1.

(A computer algebra program is helpful.) �
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To obtain exact formulas for moments of dU(Tm,n), we cannot directly apply
the results of Section 5, since dU is defined by taking a random new hash
address rather than a random item. We circumvent this by defining du(T ) to
be dU(T ) conditioned on being nonzero; this equals the remaining length of
the current block at a random item, and the arguments above apply. The limit
random variable is Du

α, defined as DU
α conditioned on being nonzero. We have,

using Theorem 6.1 and P(DU
α > 0) = 1− pU

α(0) = α,

EDu
α = α−1 EDU

α =
2− α

2(1− α)2
= 1

2
(1− α)−2 + 1

2
(1− α)−1 (6.2)

and Corollary 5.4 yields, since P
(
dU(Tm,n) > 0

)
= n/m,

E dU(Tm,n) =
n

m
E du(Tm,n)

= 1
2

(
Q1(m,n)−Q0(m,n)

)
+ 1

2

(
Q0(m,n)−Q−1(m,n)

)
= 1

2
Q1(m,n)− 1

2
,

in accordance with [14], [15, Theorem 6.4.K] (where dU + 1 is studied). Simi-
larly,

E(Du
α)2 = α−1 E(DU

α)2 =
6 + 3α− 4α2 + α3

6(1− α)4

= (1− α)−4 + 1
3
(1− α)−3 − 1

6
(1− α)−2 − 1

6
(1− α)−1

(6.3)

and Corollary 5.4 yields

E
(
dU(Tm,n)

)2
=

n

m
E

(
du(Tm,n)

)2

= Q3(m,n)− 2
3
Q2(m,n)− 1

2
Q1(m,n) + 1

6
,

in accordance with the formula for E
(
dU(Tm,n) + 1

)2
in [15, Answer 6.4-28].

We finally observe from Theorem 6.1 that the radius of convergence rU(α)

of ψU
α(z) equals

(
αe1−α

)−1
, which is the radius of convergence for E zBα too.

7. The limit distribution for FC

Theorem 7.1. The distribution of DFC
α , 0 < α < 1, is given by

pFC
α (k) = P(DFC

α = k) =
1

α

∫ α

0

pU
x (k) dx = 1− α

2
−

k∑
l=1

ll−2

l!
αl−1e−lα. (7.1)

The probability generating function is

ψFC
α (z) := E zDFC

α =
∞∑

k=0

zkpFC
α (k) =

(
1− T (zαe−α)

)2 −
(
1− α

)2

2α(1− z)
. (7.2)
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The first moments are

EDFC
α =

α

2(1− α)
= 1

2
(1− α)−1 − 1

2
, (7.3)

E(DFC
α )2 =

3α− α3

6(1− α)3
= 1

3
(1− α)−3 − 1

2
(1− α)−1 + 1

6
, (7.4)

Var(DFC
α ) =

6α− 3α2 + α3

12(1− α)3
= 1

3
(1− α)−3 − 1

4
(1− α)−2 − 1

12
. (7.5)

Proof. In a random hash table Tm,n using the FC rule, the insertion of i:th item
can be regarded as an unsuccessful search in the table Tm,i−1 constructed so
far; hence

dFC
i (Tm,n)

d
= dU(Tm,i−1), 1 ≤ i ≤ n, (7.6)

and

EnFC
k (Tm,n) =

n∑
i=1

P
(
dFC

i (Tm,n) = k
)

=
n∑

i=1

P
(
dU(Tm,i−1) = k

)
.

Consequently, using Corollary 4.6 and dominated convergence,

1

n
EnFC

k (Tm,n) =
1

n

n−1∑
i=0

P(dU(Tm,i) = k) =
m

n

∫ n/m

0

P(dU(Tm,bmxc) = k) dx

→ 1

α

∫ α

0

P(DU
x = k) dx =

1

α

∫ α

0

pU
x (k) dx,

which by Theorem 4.1 yields pFC
α (k) = 1

α

∫ α

0
pU

x (k) dx, which is the first part of
(7.1). The final equality in (7.1) is verified, using (6.1), by multiplying the last
expression by α and differentiating.

As a consequence of (7.1) and (3.2),

ψFC
α (z) =

∞∑
k=0

zkpFC
α (k) =

∞∑
k=0

zk
(
1− α

2

)
−

∑
1≤l≤k<∞

zk l
l−2

l!
αl−1e−lα

=
1− α/2

1− z
− 1

1− z

∞∑
l=1

zl l
l−2

l!
αl−1e−lα

=
1− α/2

1− z
−
T (zαe−α)− 1

2
T (zαe−α)2

(1− z)α
,

which can be rewritten as (7.2). The moments are obtained by differentiation.
�

For example, pFC
α (0) = 1 − 1

2
α, pFC

α (1) = 1 − 1
2
α − e−α, pFC

α (2) = 1 − 1
2
α −

e−α − 1
2
αe−2α.

From (7.3) and Corollary 5.4 we obtain the well-known formula [14], [15,
Theorem 6.4.K]

E dFC(Tm,n) = 1
2
Q0(m,n− 1)− 1

2
.
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Similarly, (7.4) and Corollary 5.4 yields

E
(
dFC(Tm,n)

)2
=
m

n

2Q2(m,n)− 2Q1(m,n)− 3Q0(m,n) + 3

6
+

1

6
,

in accordance with [15, Answer 6.4-67].
It can be seen from the form of ψFC

α in (7.2) and (3.3) that every integer
moment E(DFC

α )r is a polynomial in 1/(1 − α), and thus Corollary 5.4 shows
that every moment of dFC(Tm,n) can be expressed in Q functions. We leave
it to the reader as an exercise to find explicit formulas for, say, the third and
fourth moments.

Similarly, we can obtain an exact formula for the distribution of dFC(Tm,n).

Theorem 7.2.

P
(
dFC(Tm,n) = k

)
= 1− n− 1

2m
−

k∑
l=1

ll−2(n− 1)l−1(m− l)n−l

l!mn−1
.

Proof. By Corollary 5.3 and (7.1), the probability equals

(n− 1)!

mn−1
[αn−1]

(
emα − α

2
emα −

k∑
l=1

ll−2

l!
αl−1e(m−l)α

)
and the result follows. �

We finally observe from Theorem 7.1 that the radius of convergence rFC(α)

of ψFC
α (z) equals rU(α) =

(
αe1−α

)−1
. Hence, pFC

α (k) decrease geometrically

roughly as rFC(α)−k as k →∞. More precisely, we have the following asymp-
totics.

Theorem 7.3. Let 0 < α < 1 be fixed. Then, as k →∞,

pFC
α (k) ∼ 1√

2π(eα−1 − α)
k−5/2

(
αe1−α

)k
.

Proof. A simple consequence of (7.1) and Stirling’s formula. We omit the
details. �

8. The limit distribution for RH

For Robin Hood hashing, we have the following explicit formula for the
generating function of the limit distribution in the sparse case.

Theorem 8.1. The probability generating function of DRH
α , 0 < α < 1, is

ψRH
α (z) := E zDRH

α =
∞∑

k=0

zkpRH
α (k) =

1− α

α
· e

α(1−z) − 1

1− zeα(1−z)
=

1− α

α
· e

αz − eα

zeα − eαz
.
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The first moments are

EDRH
α =

α

2(1− α)
= 1

2
(1− α)−1 − 1

2
, (8.1)

E(DRH
α )2 =

3α− α2 + α3

6(1− α)2
= 1

2
(1− α)−2 − 2

3
(1− α)−1 + 1

6
+ 1

6
α, (8.2)

Var(DRH
α ) =

6α− 5α2 + 2α3

12(1− α)2
= 1

4
(1− α)−2 − 1

6
(1− α)−1 − 1

12
+ 1

6
α. (8.3)

Remark 8.2. The probabilities pRH
α can be obtained from the generating func-

tion ψRH
α . For example,

pRH
α (0) = (1− α)

eα − 1

α
, (8.4)

pRH
α (1) = (1− α)eα e

α − 1− α

α
. (8.5)

Moreover, as pointed out by the referee, there is a connection with Eulerian
numbers [15, Section 5.1.3], [8, Section 6.2]. Indeed, from the formula above
for ψRH

α (z) and [8, (7.60)] or [15, 5.1.3-(20)] follows easily

pRH
α (k) =

∞∑
l=1

(1− α)αl−1

〈
l

k

〉/
l!.

This shows the curious fact that DRH
α has the same distribution as the number

of descents in a random permutation of random length L, where L has the
geometric distribution P(L = l) = (1− α)αl−1, l ≥ 1.

Proof. Let F (z) be the generating function
∑∞

k=0 EnRH
k (Tα)zk; thus ψRH

α (z) =(
(1− α)/α

)
F (z) by Theorem 4.1. By Lemmas 2.1 and 3.4,

F (z) = E
τ−1∑
i=1

zdRH
i = E

τ−1∑
j=1

zHj−1 = E
τ−1∑
j=1

zSj ,

where Sj and τ are as in Section 3.
Recall that the random walk Sj starts with S0 = 0 and ends with Sτ = −1.

We also consider the shifted random walk Sj + r, starting with r ≥ 0, which
we run until it hits 0, i.e. until τr := min{j ≥ 0 : Sj = −r}. We define

Gr(z) := E
τr∑

j=1

zSj+r,

and note that G0(z) = 0 and G1(z) = zF (z) + 1.
If r ≥ 1, then τ = τ1 is the time the shifted random walk first hits r − 1,

and Sτ + r, Sτ+1 + r, . . . , Sτr + r is a random walk starting at r−1 and stopped
when it hits 0, i.e. a copy of S0 + (r − 1), . . . , Sτr−1 + (r − 1). Hence,

Gr(z) = E
τ∑

j=1

zSj+r + E
τr∑

j=τ+1

zSj+r = zr−1G1(z) +Gr−1(z),
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and thus

Gr(z) = (zr−1 + · · ·+ 1)G1(z) =
1− zr

1− z
G1(z), r ≥ 0.

Moreover, taking r = 1, we start at S0 + 1 = 1 and the next element is
S1 + 1 = ξ1 ∈ Po(α), so the remainder of the random walk is a random walk
started at ξ1. Conditioning on ξ1, we thus find

G1(z) =
∞∑

r=0

P(ξ1 = r)
(
zr +Gr(z)

)
=

∞∑
r=0

P(ξ1 = r)
(
zr +

1− zr

1− z
G1(z)

)
=

∞∑
r=0

P(ξ1 = r)zr
(
1− 1

1− z
G1(z)

)
+

1

1− z
G1(z)

= eαz−α
(
1− 1

1− z
G1(z)

)
+

1

1− z
G1(z)

with the solution

G1(z) =
1− z

1− zeα(1−z)
.

Hence,

F (z) =
G1(z)− 1

z
=

eα(1−z) − 1

1− zeα(1−z)
.

The formula for ψRH
α follows, and the moments are obtained by differentiations

at z = 1. �

Note that EDRH
α = EDFC

α , as we already know since the average dis-
placement is the same for any insertion policy. Similarly, E dRH(Tm,n) =
E dFC(Tm,n) = 1

2
Q0(m,n−1)− 1

2
. For the second moment, (8.2) can be written

E(DRH
α )2 = 1

2
(1− α)−2 − 2

3
(1− α)−1 + 1

3
− 1

6
(1− α),

and Corollary 5.4 yields, using Q−2(m,n) = 1− n/m,

E
(
dRH(Tm,n)

)2
=

1

2
Q1(m,n− 1)− 2

3
Q0(m,n− 1) +

1

6
+
n− 1

6m

=
m

n

3Q1(m,n)− 7Q0(m,n) + 4

6
+

1

6
+
n− 1

6m
,

which easily is shown to be equivalent to the formula in [15, Answer 6.4-67].
It is easily seen that each integer moment of DRH

α is a rational function in α,
with denominator a power of 1−α. Hence each integer moment E

(
dRH(Tm,n)

)r

can be expressed in Q functions (allowing negative indices; these terms form
a polynomial in n/m and 1/m).

We can also find exact formulas for point probabilities. For example, by
Corollary 5.3 and (8.4),

P
(
dRH(Tm,n) = 0

)
=

(n− 1)!

mn−1
[αn−1]

(
emα 1− α

α

(
eα − 1

))
=

1

n

(
(m+ 1− n)

(
1 +

1

m

)n−1

− (m− n)
)
.
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By the formula in Theorem 8.1, ψRH
α (z) is a meromorphic funcion of z in the

entire complex plane. The poles are the roots of z = eα(z−1), except z = 1.
Since the Taylor coefficients pRH

α are non-negative, the pole closest to the origin
lies on the positive real axis; moreover, it is easily seen that all other poles
have strictly larger absolute values. The following theorem follows easily.

Theorem 8.3. Let 0 < α < 1. The radius of convergence rRH(α) of ψRH
α (z) is

the unique root r > 1 of r = eα(r−1). If α∗ > 1 satisfies α∗e−α∗ = αe−α, then
rRH(α) = α∗/α. Moreover, as k →∞,

pRH
α (k) ∼ (1− α)(α∗ − α)

αα∗(α∗ − 1)
rRH(α)−k.

Note that rRH(α) > 1/α > rFC(α); another expression of the fact that large
deviations are less likely for RH than for FC.

9. The limit distribution for LC

The Last Come policy seems to be the most difficult to analyse, and we are
not able to give as explicit results as for the other policies. The simplest form
of the probability generating function that we have been able to find is the
following. It is quite possible that others may simplify the result, but the ex-
pression for the variance shows that this case is intrinsically more complicated
than the two other policies considered here.

Theorem 9.1. Define

u(α, β, z) :=
1

z + (1− z)eα−β
=

eβ

(1− z)(eα − eβ) + eβ
,

v(α, β, z) := u(α, β, z)βe−β =
β

zeβ + (1− z)eα
,

w(α, β, z) :=

∫ α

β

u(α, γ, z)

1− T (v(α, γ, z))
dγ.

Then, for 0 < α < 1,

ψLC
α (z) =

1− α

α

∫ α

0

ezw(α,β,z) u(α, β, z)

T (v(α, β, z))

β − T (v(α, β, z))

1− u(α, β, z)
dβ

=
1− α

α

∫ α

0

ezw(α,β,z) v(α, β, z)

T (v(α, β, z))

∫ 1

0

T ′((1− t+ tu(α, β, z))βe−β
)
dt dβ.

(9.1)
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The first moments are

EDLC
α =

α

2(1− α)
=

1

2(1− α)
− 1

2
, (9.2)

E(DLC
α )2 =

1

2(1− α)2
− 1

6(1− α)
− eα − 1

3α
− eα−1

6α

(
Ei(1)− Ei(1− α)

)
+

1

6
,

(9.3)

Var(DLC
α ) =

1

4(1− α)2
+

1

3(1− α)
− eα − 1

3α
− eα−1

6α

(
Ei(1)− Ei(1− α)

)
− 1

12
.

(9.4)

Here Ei is the exponential integral function, Ei(1)−Ei(1− α) =
∫ 1

1−α
ex

x
dx.

Proof. We build heavily on the analysis of the first two moments by Poblete,
Viola and Munro [23, 24, 28], who proved (9.3) and (9.4) (in a different form).

We use (5.3) and (5.4a). To keep track of the displacements and obtain
formulas for ΦLC

` (z), we keep track also of the positions of the items in their
blocks (in the final table). Thus, let li(T ) be the number of items with final
position before item i in the same block in the hash table T with the LC rule,
and consider the bivariate generating function Φ`(z, y) equal to the sum of

zdLC
i (T )yli(T ) over all ``−2 confined almost full hash tables of length `, and all

i ∈ {1, . . . , `−1}. Hence, in the notation of (5.3) and (5.4a), ΦLC
` (z) = Φ`(z, 1).

In the notation of [23],

Φk(z, y) =
∑

l+r+2=k

z−1Fl,r(z)y
l (9.5)

(the factor z−1 is because [23] studies the number of probes, i.e. 1 + the dis-
placement); moreover, their Ci(z) :=

∑
l+r=i Fl,r(z) = zΦi+2(z, 1) = zΦLC

i+2(z).
Further, define the trivariate generating function (note that Φ1(z, y) = 0)

Ψ(z, y, λ) :=
∞∑
i=0

λi

i!
Φi+1(z, y) =

∞∑
i=0

λi+1

(i+ 1)!
Φi+2(z, y)

=
∑
l,r≥0

z−1Fl,r(z)y
l λl+r+1

(l + r + 1)!
.

(9.6)

The sums converge at least for |z| ≤ 1, |y| ≤ 1, |λ| < e−1, and Ψ is continuous
in that domain and analytic in its interior. By (5.4a) and (9.6), we have

ψLC
α (z) =

1− α

α
e−α

∞∑
`=1

(
αe−α

)`−1

(`− 1)!
Φ`(z, 1) =

1− α

α
e−αΨ(z, 1, αe−α). (9.7)
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Poblete, Viola and Munro [23, (70)] give the recursion formula, for all l, r ≥ 0
with the convention that Fl,r = 0 if l < 0 or r < 0,

Fl,r(z) = z
∑

0≤k≤r

(
l + r

k

)
(k + 1)k−1(l + r − k + 1)l+r−k−1

+
∑

0≤k≤l+r

(
l + r

k

)
(k + 1)k−1

(
Fl−k−1,r(z)(k + 1) + lzFl−1,r−k(z)

+ (r − k)Fl,r−k−1(z)
)
.

Hence, using (9.6), with 1/i! = 0 if i < 0,

z
∂Ψ(z, y, λ)

∂λ
=

∑
l,r≥0

λl+r

(l + r)!
ylFl,r(z)

= z
∑

r≥k≥0
l≥0

λl+ryl

(l + r − k)! k!
(k + 1)k−1(l + r − k + 1)l+r−k−1

+
∑
k,l,r

λl+ryl

(l + r − k)! k!
(k + 1)kFl−k−1,r(z)

+ z
∑
k,l,r

λl+ryl

(l + r − k)! k!
(k + 1)k−1lFl−1,r−k(z)

+
∑
k,l,r

λl+ryl

(l + r − k)! k!
(k + 1)k−1(r − k)Fl,r−k−1(z)

= zSI + SII + zSIII + SIV .

(9.8)

To evaluate the sums SI , SII , SIII , SIV , we first rewrite (3.1) as

T (z) =
∞∑

j=0

(j + 1)jzj+1

(j + 1)!
=

∞∑
j=0

(j + 1)j−1zj+1

j!
(9.9)

and further differentiate to obtain, using (3.3),

∞∑
j=0

(j + 1)jzj+1

j!
= zT ′(z) =

T (z)

1− T (z)
. (9.10)
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We now change summation indices, using j = l + r − k, and obtain by (9.9)

SI =
∑
j,k,l

j≥l≥0

λj+kyl

j! k!
(k + 1)k−1(j + 1)j−1

=
∑
j,k≥0

λk

k!
(k + 1)k−1λ

j

j!
(j + 1)j−1 1− yj+1

1− y

=
1

1− y

∑
k

λk

k!
(k + 1)k−1

∑
j

λj+1 − (yλ)j+1

λj!
(j + 1)j−1

=
1

1− y

T (λ)

λ

T (λ)− T (yλ)

λ
.

Similarly, using also m = l − k − 1 and (9.10), (9.6),

SII =
∑
j,k,m

λj+kym+k+1

j! k!
(k + 1)kFm,j−m−1(z)

= λ−1
∑

k

(λy)k+1

k!
(k + 1)k

∑
j,m

λj

j!
ymFm,j−m−1(z)

= λ−1 T (yλ)

1− T (yλ)
zΨ(z, y, λ),

SIII =
∑
j,k,l

λj+kyl

j! k!
(k + 1)k−1lFl−1,j−l(z)

=
T (λ)

λ
y

∑
j,l

λj

j!
lyl−1Fl−1,j−l(z)

=
T (λ)

λ
y
∂

∂y

(
zyΨ(z, y, λ)

)
,

SIV =
∑
j,k,l

λj+kyl

j! k!
(k + 1)k−1(j − l)Fl,j−l−1(z)

=
T (λ)

λ

(
λ
∂

∂λ
− y

∂

∂y

) ∑
j,l

λj

j!
ylFl,j−l−1(z)

=
T (λ)

λ

(
λ
∂

∂λ
− y

∂

∂y

)(
zΨ(z, y, λ)

)
.
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Summing up, (9.8) yields

∂Ψ(z, y, λ)

∂λ
=

1

λ2(1− y)
T (λ)

(
T (λ)− T (yλ)

)
+

1

λ

T (yλ)

1− T (yλ)
Ψ(z, y, λ)

+
1

λ
T (λ)yzΨ(z, y, λ) +

1

λ
T (λ)zy2∂Ψ(z, y, λ)

∂y

+ T (λ)
∂Ψ(z, y, λ)

∂λ
− y

λ
T (λ)

∂Ψ(z, y, λ)

∂y
,

which after multiplication by λ can be rearranged to

λ
(
1− T (λ)

)∂Ψ(z, y, λ)

∂λ
+ T (λ)y(1− yz)

∂Ψ(z, y, λ)

∂y

=
(
T (λ)yz +

T (yλ)

1− T (yλ)

)
Ψ(z, y, λ) + T (λ)

T (λ)− T (yλ)

λ(1− y)
(9.11)

We simplify a little by the change of variable λ = αe−α. We then have α = T (λ)
and ∂/∂α = (1 − α)e−α∂/∂λ. We write Ψ̃(z, y, α) = Ψ(z, y, αe−α), noting for
later use that this conveniently also appears in (9.7), which can be written

ψLC
α (z) =

1− α

α
e−αΨ̃(z, 1, α). (9.12)

Returning to (9.11), we obtain after substitution, and division by α,

∂Ψ̃(z, y, α)

∂α
+ y(1− yz)

∂Ψ̃(z, y, α)

∂y

=
(
yz +

T (yαe−α)

α
(
1− T (yαe−α)

))
Ψ̃(z, y, α) +

α− T (yαe−α)

αe−α(1− y)
, (9.13)

valid at least for |z| ≤ 1, |y| ≤ 1 and 0 ≤ α < 1. Note that this partial
differential equation contains no ∂/∂z; hence we may regard z as a constant.
We solve the differential equation in the standard way: The characteristics of
(9.13) are given by

dy

dα
= y(1− yz) (9.14)

or
dα

dy
=

1

y(1− yz)
=

1

y
+

z

1− yz
with the solutions

α− α1 = ln y − ln(1− yz) + ln(1− z),

where α1 is a constant (the value of α when y = 1), or, equivalently,

y =
1

z + (1− z)eα1−α
= u(α1, α, z). (9.15)

Assume that 0 ≤ z ≤ 1 and 0 ≤ α1 < 1 and define y(α) by (9.15). Then (9.13)
gives, renaming α to β,

dΨ̃(z, y(β), β)

dβ
= g(β)Ψ̃(z, y(β), β) + h(β) (9.16)
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with, where y = y(β) = u(α1, β, z),

g(β) = yz +
T (yβe−β)

β
(
1− T (yβe−β)

) = yz +
T (v(α1, β, z))

β
(
1− T (v(α1, β, z))

)
and

h(β) =
β − T (yβe−β)

βe−β(1− y)
=

∫ 1

0

T ′((1− t+ ty)βe−β
)
dt.

The solution to (9.16) is, because Ψ̃(z, y, 0) = Ψ(z, y, 0) = 0 by (9.6),

Ψ̃(z, y(α), α) =

∫ α

0

eG(α)−G(β)h(β) dβ (9.17)

where G′ = g. Since, by (9.14),

d

dβ

(
y(β)βe−β

)
= y(1− yz)βe−β + ye−β − yβe−β = y(1− yzβ)e−β

we have, using (3.3), with T = T (yβe−β) = T (v(α1, β, z)),

d

dβ
T

(
y(β)βe−β

)
=

T

1− T

y(1− yzβ)e−β

yβe−β

=
T

1− T

( 1

β
− yz

)
= g(β)− yz

(
1 +

T

1− T

)
.

Hence, we can choose

G(β) = T
(
v(α1, β, z)

)
− zw(α1, β, z)

and (9.17) yields, with α = α1 and dropping the subscript,

Ψ̃(z, 1, α) =

∫ α

0

eT (v(α,α,z))−T (v(α,β,z))+zw(α,β,z)h(β) dβ.

Finally, we use (9.12) and the facts that T
(
v(α, α, z)

)
= T (αe−α) = α and

e−T (v) = v/T (v). The formula (9.1) follows.
In principle, the moments can be computed by repeated differentiation of

(9.1) with respect to z (under the integral signs) and then letting z = 1, noting
that u(α, β, 1) = 1, v(α, β, 1) = βe−β and w(α, β, 1) = ln(1 − β) − ln(1 − α).
However, the expressions become very complicated. Indeed, even to verify the
trivial ψLC

α (1) = 1 from (9.1) takes a little effort. We have verified the first
moment (9.2) this way, using computer algebra (Maple), but failed to obtain
the formulas (9.3), (9.4) for the second moment. (No doubt, a more skillful
person would succeed.)

A much shorter proof is to simply refer to the asymptotic formulas in
Poblete, Viola and Munro [23], in particular [23, Theorem 28], together with
Corollary 4.9.

We will, however, give a third proof, which is closely related to the proof
in [23] but formulated using the functions and equations used above; we hope
that this may illuminate the arguments used in [23] and their connection to
the present paper.

As a warm-up, we begin with the mean (9.2), although we already know the
result because EDLC

α = EDFC
α = EDRH

α . We let Dα, Dz, Dy denote the partial



30 SVANTE JANSON

differential operators. Applying Dz to (9.13) and then setting z = y = 1 we
find

Dz Dα Ψ̃(1, 1, α)−Dy Ψ̃(1, 1, α) = Ψ̃(1, 1, α)+
(
1+

1

1− α

)
Dz Ψ̃(1, 1, α). (9.18)

For convenience, we define

F (z, y, α) := (1− α)e−αΨ̃(z, y, α)

and write f(α) := F (1, 1, α), fz(α) := Dz F (1, 1, α), fy(α) := Dy F (1, 1, α),
fzz(α) := D2

z F (1, 1, α), and so on. Then (9.18) yields, after simple calculations,
the ordinary differential equation in the three functions f(α), fz(α), fy(α)

Dα fz(α)− fy(α) = f(α). (9.19)

(It may be more natural to consider α−1F , cf. (9.12), which for fixed α is a
bivariate probability generating function, but the extra factor α simplifies the
differential equations.)

Note that, by (9.12), ψLC
α (z) = α−1F (z, 1, α), and thus

f(α) = αψLC
α (1) = α,

fz(α) = αDz ψ
LC
α (1) = αEDLC

α , (9.20)

fzz(α) = αD2
z ψ

LC
α (1) = αEDLC

α

(
DLC

α − 1
)
, (9.21)

and so on.
To solve (9.19), we first have to find fy(α). One possibility is to use the

definition of Φ` or (9.5) so see

Φ`(1, y) = ``−2

`−1∑
i=1

yi−1 = ``−2 1− y`−1

1− y

and thus, by (9.6) and (3.1)

Ψ(1, y, λ) =
∞∑
i=1

λi−1

(i− 1)!
ii−2 1− yi−1

1− y
=

1

1− y

(T (λ)

λ
− T (λy)

λy

)
which leads to

F (1, y, α) =
1− α

1− y

(
1− T (αe−αy)

αy

)
.

A calculation using (3.3) yields

fy(α) = Dy F (1, 1, α) =
3α2 − 2α3

2(1− α)2
.

Alternatively, we may observe that if we as in Section 6 use the superscript
u for unsuccessful searches conditioned on starting at an existing item, (5.3)
yields

Φu
k(y) = yΦk(1, y).

Beneath our formalism, this simply reflects the fact that the number of items
in a block to the right of a distinguished item has the same distribution as the
number of items to the left; the factor y is because the distinguished element
is included in the count defining du but not for Φk(z, y).
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By (5.4a) and (9.6), we thus have

ψu
α(y) =

1− α

α
e−α

∞∑
`=1

(αe−α)`−1

(`− 1)!
Φu

` (y) = y
1− α

α
e−αΨ̃(1, y, α)

and so

yF (1, y, α) = αψu
α(y). (9.22)

Applying Dy we find at y = 1, using (6.2),

f(α) + fy(α) = αDy ψ
u
α(y) = αEDu

α = α
2− α

2(1− α)2
. (9.23)

We can now integrate (9.19), noting F (z, y, 0) = 0 and thus fz(0) = 0:

fz(α) =

∫ α

0

(
f(β) + fy(β)

)
dβ =

α2

2(1− α)
, (9.24)

which by (9.20) yields (9.2).
For the second moment we argue similarly. We apply Dz Dz to (9.13) and

obtain for z = y = 1

Dz Dz Dα Ψ̃− 2 Dz Dy Ψ̃ = 2 Dz Ψ̃ +
(
1 +

1

1− α

)
Dz Dz Ψ̃

which implies

Dα fzz(α)− 2fzy(α) = 2fz(α). (9.25)

In order to solve this, we first need fzy(α), which we find in the same way. We
apply Dy Dz to (9.13) and obtain for z = y = 1

Dy Dz Dα Ψ̃−Dz Dy Ψ̃−D2
y Ψ̃− 2 Dy Ψ̃ =(

1 +
1

1− α

)
Dy Dz Ψ̃ +

(
1 +

1

(1− α)3

)
Dz Ψ̃ + Dy Ψ̃ + Ψ̃

and hence

Dα fzy(α) = fzy(α) + fyy(α) + 3fy(α) +
(
1 +

1

(1− α)3

)
fz(α) + f(α). (9.26)

To solve this, we first need fyy(α). We find from (9.22) and (6.2), (6.3)

fyy(α) = αE(Du
α−1)(Du

α−2) = αE
(
Du

α

)2−3αEDu
α+2α =

16α3 − 19α4 + 6α5

3(1− α)4
.

(9.27)
(Alternatively, it is possible to continue in the same manner as above by ap-
plying D2

y to (9.13) at z = y = 1; this yields a differential equation for fyy(α)
that can be solved. The same applies to fy(α) above, which also can be found
by applying Dy to (9.13).)

We can now put everything together. Noting that (9.27) and (9.23) imply

fyy(α) + 3fy(α) + f(α) = αE
(
Du

α

)2
, we find the solution to (9.26), using (6.3)
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and (9.24),

fzy(α) = eα

∫ α

0

e−t
(
tE

(
Du

t

)2
+

(
1 +

1

(1− t)3

)
fz(t)

)
dt

=
1

2(1− α)3
− 7

12(1− α)2
− 7

12(1− α)
+

5

6
+
α

2
− eα

6

− 1

12
eα−1

(
Ei(1)− Ei(1− α)

)
.

Next, (9.25) is solved by, using (9.26),

fzz(α) = 2fzy(α) + 2

∫ α

0

(
fz(t)− tE

(
Du

t

)2 −
(
1 +

1

(1− t)3

)
fz(t)

)
dt

=
1

2(1− α)2
− 7

6(1− α)
+ 1 +

2

3
α− eα

3
− 1

6
eα−1

(
Ei(1)− Ei(1− α)

)
.

Finally, (9.3) and (9.4) follow from (9.21) and (9.2). �

Remark 9.2. The reader who wants to make a detailed comparison with [23]
should note that, by (9.6) and the definitions in [23], their

c̀2(x, z) =
(1− x)e−x

x
zΨ̃(z, 1, x) =

1

x
zF (z, 1, x),

g̀2(x, z) =
(1− x)e−x

x
z(Dy +1)Ψ̃(z, 1, x) =

1

x
z(Dy +1)F (z, 1, x),

h̀2(x) = Dz g̀2(x, 1) =
1

x
(Dz +1)(Dy +1)F (1, 1, x)

=
1

x

(
fzy(x) + fz(x) + fy(x) + f(x)

)
.

In principle, expressions for the probabilities P(DLC
α = k) can be obtained

from (9.1) by differentiating at z = 0 (or making Taylor expansions). However,
even for the simplest case k = 0, we obtain a rather complicated formula. We
leave it to the reader to find a simpler formula, and to treat k ≥ 1.

Theorem 9.3. For 0 < α < 1,

pLC
α (0) = P(DLC

α = 0) = ψLC
α (0) =

1− α

α

∫ α

0

(eα−t − 1)eα−t(1− t)

eα−teα−t − 1
dt. (9.28)

Proof. Taking z = 0 in Theorem 9.1 we have u(α, β, 0) = eβ−α and v(α, β, 0) =
βe−α. Hence (9.1) yields

ψLC
α (0) =

1− α

α

∫ α

0

eβ−α

T (βe−α)

β − T (βe−α)

1− eβ−α
dβ.

The change of variables t = T (βe−α) yields β = teα−t and dβ/dt = (1− t)eα−t,
and (9.28) follows by simple calculations. �

Various substitutions are possible, but none seems to give a simpler integral.
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10. Some numerical values

Numerical values of pFC
α (k) and pRH

α (k) for given α and k are easily computed
from the formulas in Theorems 7.1 and 8.1, see Remark 8.2. As examples we
give some values (computed by Maple) in Table 1. The last line gives the sum
for all k > 10.

Note that the fact that FC gives higher probabilities than RH for zero dis-
placement hardly is an advantage, as might be believed. Since the average
displacements are the same, this is compensated by higher probability for
large displacements, which is worse.

k pFC
0.5(k) pRH

0.5(k) pFC
0.9(k) pRH

0.9(k)
0 0.750 0.649 0.550 0.162
1 0.143 0.245 0.143 0.153
2 0.051 0.076 0.069 0.128
3 0.024 0.022 0.042 0.104
4 0.012 0.0062 0.029 0.085
5 0.0070 0.0017 0.021 0.069
6 0.0042 0.00050 0.016 0.056
7 0.0026 0.00014 0.013 0.046
8 0.0017 0.000041 0.011 0.037
9 0.0011 0.000011 0.009 0.031

10 0.0007 0.000003 0.008 0.024
≥ 11 0.0018 0.000001 0.090 0.106

Table 1. Some numerical values

In principle, pLC
α (k) can be calculated similarly from (9.1), but we have only

done so for k = 0. We find, for example, by Theorem 9.3 and numerical
integration, pLC

0.5(0)
.
= 0.686 and pLC

0.9(0)
.
= 0.212.

11. Monotonicity properties of the limit distributions

For FC, it follows immediately from (7.1) that the probabilities pFC
α (k) de-

crease, pFC
α (0) > pFC

α (1) > . . . . Moreover, we have monotonicity for finite
m and n too; it follows from (7.6) that for each m and n, the probabilities
P
(
dFC

i (Tm,n) = k
)

are non-increasing in k.
This has the practical consequence that searching in a hash table constructed

by the FC rule is best done in the standard way, probing at h, h + 1, h + 2,
and so on, where h is the hash address of the searched item.

It has been suggested that for RH and LC hashing, where the variances of the
individual displacements are smaller, the displacements might be concentrated
about their mean E d so that it would be more efficient to start probing at
locations close to h+ E d. This seems to be the case for random probing and
double hashing, see [3, 22]. However, we will see that this hardly is the case
for linear probing. It would be the case (for a large table) for an insertion
policy Ξ if pΞ

α(k) is larger when k is close to E d than when k is close to 0, so
we study these probabilities.
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First, for Robin Hood hashing we have the following precise result; we post-
pone the proof.

Theorem 11.1. Let α1
.
= 0.931 be the unique positive root of

e2α − (2 + α)eα + 1 = 0

If α ∈ [0, α1], then pRH
α (0) ≥ pRH

α (1) > pRH
α (2) > . . . .

Conversely, if α ∈ (α1, 1), then pRH
α (0) < pRH

α (1).

Hence, it is only for α close to 1 that a different probing sequence might
be better. However, even for α > α1, small displacements seems to be more
likely than displacements close to E d. One reason is that it follows easily from

Theorem 8.1 that as α → 1, (1 − α)DRH
α

d→ Exp(1/2). Hence, for α close to
1, the distribution of DRH

α is approximatively exponential. Although this does
not imply corresponding asymptotics of individual probabilities, it implies that
the average of the values of pRH

α (k) for k in a suitable interval close to E d is
about e−1 times the average of the values for k in an interval close to 0. This
suggests that the standard probing sequence is close to optimal when α is close
to 1, when the differences between different methods ought to be greatest.

Nevertheless, it is interesting to ask for the mode of the distribution of DRH
α ,

i.e. the value of k that maximizes pRH
α (k). Theorem 11.1 shows that the mode

is 0 for α < α1, but not for larger α.
Numerical calculations with Maple suggest the following; we have, however,

no rigorous proof.

Conjecture 11.2. The mode of DRH
α is

0, 0 < α < α1
.
= 0.9308

1, α1 < α < α2
.
= 0.9888

2, α2 < α < α3
.
= 0.9989

3, α3 < α < α4
.
= 0.999995

4, α4 < α < 1.

Of course, these results have merely theoretical interest; hashing with linear
probing with n/m > .93 should probably be avoided. (In particular, this
applies to the last case; if α > α4, then the expectation of the displacement
is over 100000.) Moreover, the differences are rather minor in this range;
according to numerical calculations, no probability is ever more than 16.4%
higher than pRH

α (0), and the absolute differences pRH
α (k)− pRH

α (0) are less than
0.004. Hence, even when another probing sequence is better, the difference in
performance seems to be small, and probably out-weighted by the additional
steps required in the program.

It is somewhat surprising that the conjectured sequence of modes stops at
4. However, we have a another asymptotic result explaining this.
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Theorem 11.3. As α → 1, (1 − α)−1pRH
α (k) → Lk+1 for every k ≥ 0, where

Lk have the generating function

∞∑
k=1

Lkz
k = z

1− ez−1

ez−1 − z
.

Proof. Theorem 8.1 implies that as α→ 1, at least for |z| ≤ 1,

(1− α)−1ψRH
α (z) → e1−z − 1

1− ze1−z
=

1− ez−1

ez−1 − z
=

∞∑
k=0

Lk+1z
k,

and the result follows. �

This generating function equals the one in Knuth [15, 5.1.3-(25)], and thus
the limits Lk coincide with the numbers Lk defined there as the average lengths
of the successive increasing runs in a random sequence. As shown in Knuth
[15, Section 5.1.3], these numbers Lk converge rapidly to 2 as k → ∞, but
the convergence is not monotone; the smallest is L1 = e − 1

.
= 1.718 and the

largest is L5
.
= 2.00006. This and Theorem 11.3 strongly suggest (although

do not strictly prove) that for α close to 1, the largest value of pRH
α (k) is for

k + 1 = 5, i.e. k = 4, as asserted in Conjecture 11.2.

Proof of Theorem 11.1. By (4.1), we can study EnRH
k (Tα) instead of pRH

α (k).
Let k ≥ 0. By Lemmas 2.1 and 3.4, EnRH

k (Tα) and EnRH
k+1(Tα) are the

expected number of visits of the random walk Si to k and k + 1, respectively.
We compare these numbers by studying the excursions of {Si} above k − 1.
Since the only negative step is −1, every such excursion ends at k. At each
visit to k, the probability of exiting is e−α, and if the random walk does not
exit, it will sooner or later (perhaps immediately) return to k. Consequently,
the number of visits to k in an excursion has a geometric distribution with
expectation 1/e−α = eα.

Furthermore, at each visit to k, the probability of going to k+1 or higher is
P
(
Po(α) ≥ 2

)
= 1− e−α−αe−α; each such step leads, by the argument above,

to an average of eα visits to k + 1 before the first return to k. In an excursion
beginning at k, there are thus on the average

eα
(
1− e−α − αe−α

)
eα = eα

(
eα − 1− α

)
visits to k + 1.

In an excursion beginning at l ≥ k+1, there are on the average an additional
eα visits to k + 1 before the first visit to k, and thus in total eα

(
eα − α

)
visits

to k + 1.
The average number of excursions above k − 1 starting at l ≥ k is

P(ξ0 = l + 1) +
k−1∑
j=0

EnRH
j (Tα) P(ξ1 = l − j + 1). (11.1)
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For k = 0, we thus find, in agreement with (4.1) and (8.4), (8.5),

EnRH
0 (Tα) = P(ξ0 ≥ 1)eα = eα − 1, (11.2)

EnRH
1 (Tα) = P(ξ0 = 1)eα(eα − 1− α) + P(ξ0 ≥ 2)eα(eα − α) = eα(eα − 1− α),

(11.3)

and hence

EnRH
0 (Tα)− EnRH

1 (Tα) = P(ξ0 = 1)A− P(ξ0 ≥ 2)B,

with A := eα(2 + α − eα) > 0 and B := eα(eα − 1 − α) > 0. Consequently,
EnRH

0 (Tα) ≥ EnRH
1 (Tα) if and only if P(ξ0 ≥ 2)/P(ξ0 = 1) ≤ A/B.

Similarly, for k ≥ 1, using (11.1),

EnRH
k (Tα)− EnRH

k+1(Tα)

=
k−1∑
j=0

(
EnRH

j (Tα) + 1[j = 0]
)(

P(ξ0 = k − j + 1)A− P(ξ0 ≥ k − j + 2)B
)
.

(11.4)

For a Poisson distributed variable ξ, P(ξ = j + 1)/P(ξ = j) is a decreas-
ing function of j, and thus so is P(ξ ≥ j + 1)/P(ξ = j). Consequently, if
EnRH

0 (Tα) ≥ EnRH
1 (Tα), then for each j ≥ 2

P(ξ ≥ j + 1)/P(ξ = j) < P(ξ ≥ 2)/P(ξ = 1) ≤ A/B,

and thus, by (11.4), EnRH
k (Tα)− EnRH

k+1(Tα) > 0 for every k ≥ 1.
Finally, by (11.2) and (11.3),

EnRH
1 (Tα)− EnRH

0 (Tα) = e2α − (2 + α)eα + 1.

Denote this function by f(α). It is easily seen that f(0) = 0, f ′(0) < 0,
f(1) > 0 and f ′′(α) > 0 for α > 0. Hence f is a convex function on [0, 1] with
exactly one zero α1 > 0, and f(α) < 0 for 0 < α < α1 while f(α) > 0 for
α1 < α < 1. The result follows. �

For LC hashing, we do not have any similar exact results, in view of the
complicated expressions in Theorem 9.1. However, as will be shown in a sequel
to this paper, as α→ 1, the difference between RH and LC becomes negligible;

in particular, just as for RH, (1− α)DLC
α

d→ Exp(1/2). This suggests that the
standard probing sequence is almost optimal for LC hashing too. Moreover, it
follows from Theorem 9.3 that as α→ 1,

(1− α)−1pLC
α (0) →

∫ 1

0

(e1−t − 1)e1−t(1− t)

e1−te1−t − 1
dt

.
= 2.647.

This limit is larger than the corresponding limit L1 = e−1 for RH found above.
Hence, for α close to 1 at least, pLC

α (0) > pRH
α (0), which suggests that 0 may

be the mode of DLC
α too for a wide range of α. It would be interesting to have

any results on the mode of DLC
α . We conjecture, in contrast to RH, that it is 0

for all α.
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