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Abstract. We investigate when a hedger who over-estimates the volatil-
ity will superreplicate a convex claim on several underlying assets. It
is shown that the classical Black and Scholes model is the only model,
within a large class, for which over-estimation of the volatility yields
the desired superreplication property. This is in contrast to the one-
dimensional case, in which it is known that over-estimation of the volatil-
ity with any model guarantees superreplication of convex claims.

1. Introduction

For options written on one underlying asset it is well-known that convexity
of the contract function ensures certain monotonicity properties of the option
price with respect to the volatility. For example, if the contract function
is convex, then the option price increases with the volatility, see Bergman,
Grundy and Wiener (1996), El Karoui, Jeanblanc-Picque and Shreve (1998),
Hobson (1998) or Janson and Tysk (2003a). It is also known that a hedger
who over-estimates the volatility with any model will superreplicate a given
convex claim, see El Karoui et al (1998) or Hobson (1998). Crucial both
for the monotonicity result and for the superreplication property is the fact
that the price of a convex claim is convex (as a function of the current stock
price) at any time before maturity. This fact, however, is one-dimensional
in nature; it is easy to find examples of an option with a convex pay-off of
two underlying assets which has a non-convex price, see Janson and Tysk
(2003a).

Janson and Tysk (2003b) consider second order parabolic differential
equations of the form

(1)
∂G

∂t
= LG,

where the differential operator

L =
n

∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n
∑

i=1

bi(x, t)
∂

∂xi
+ c(x, t)

is elliptic. The authors find a necessary and sufficient local condition on the
operator L that guarantees that the unique (satisfying appropriate growth
conditions) solution to the equation (1) remains convex at every time t > 0
provided the initial condition is convex. If L satisfies the condition it is said
to be locally convexity preserving (LCP). In the present paper we apply the
results of Janson and Tysk (2003b) to the problem of monotonicity in the
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volatility; in particular we study the problem of superreplication of options
written on several underlying assets.

Consider a market consisting of a bank account with price process

B(t) = B(0) exp
{

∫ t

0

r(u) du
}

,

where the interest rate r is a deterministic function, and n risky assets, with
the price Xi of the ith asset satisfying the stochastic differential equation

(2) dXi = µi(X, t) dt +

n
∑

j=1

βij(X, t) dWj .

In this equation the drift µi is some deterministic function of the current
stock prices and time, W is an n-dimensional Brownian motion and the
diffusion matrix β = (βij(x, t))n

i,j=1 is assumed to be non-singular for all
x with positive components. Note that the only source of randomness in
the diffusion matrix β is in the dependence on the current stock prices. In
finance it is natural to consider stock prices that cannot become negative.
Therefore we let 0 be an absorbing barrier, i.e. if Xi is 0 at some time, then
Xi remains 0 forever.

Given a finite time horizon T > 0, there exists a unique probability mea-
sure P̃ equivalent with the original measure P such that

dXi = r(t)Xi dt +
n

∑

j=1

βij(X, t) dW̃j

for some P̃-Brownian motion W̃ , i.e. B−1
t Xt is a local martingale under P̃.

Let g : R
n
+ → R be continuous and of at most polynomial growth. Standard

arbitrage theory yields that the price at time t of the option which at time
T0 ≤ T pays g(X(T0)) is F (X(t), t), where

(3) F (x, t) = exp
{

−

∫ T0

t
r(u) du

}

Ẽx,tg(X(T0)).

Here Ẽ denotes expected value with respect to the measure P̃ and the indices
indicate that Xt = x. Moreover, this pricing function F solves the Black-
Scholes parabolic differential equation

(4)
∂F

∂t
+ LF = 0,

where

(5) L =
1

2

n
∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n
∑

i=1

rxi
∂

∂xi
− r,

with terminal condition
F (x, T0) = g(x).

In this equation the coefficients aij = aij(x, t) are the entries of the n× n-
matrix ββ∗. Note that the invertibility of β guarantees parabolicity of the
equation (4) (since the direction of the time variable is opposite to the
customary one).

We will say that a model for the stock price vector X (or the diffusion
matrix β) is convexity preserving if, for any T0 ≤ T , the price of an option
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with a convex pay-off g(X(T0)) at T0 is convex in X(t) at all times t prior to
T0. In Section 2 we introduce the LCP-condition. Then we show that, for
n ≥ 2, the only convexity preserving model which is standard, see Definition
2.5, is geometric Brownian motion. In Section 3 we show that if the hedger
uses a convexity preserving model, then over-estimation of the diffusion ma-
trix (in the sense of quadratic forms, see below) guarantees superreplication
of convex claims.

2. Convexity preserving models

Assume that the diffusion coefficients βij are linear in xi and independent

of xl, l 6= i. Then, under the measure P̃, the stock price vector X satisfies

(6) dXi = r(t)Xi dt + Xi

n
∑

j=1

σij(t) dW̃j

for some deterministic functions σij. Such a process X is called n-dimensional
geometric Brownian motion with time-dependent volatility, or simply geo-
metric Brownian motion. Thus, to show that a process X defined by (2) is
geometric Brownian motion one has to show that βij(x, t) = xiσij(t) for all
i and j.

Theorem 2.1. Geometric Brownian motion is convexity preserving.

Proof. Let T0 ≤ T . It is well-known that if X is geometric Brownian motion
as in (6), then

Xi(T0) = xi exp
{

∫ T0

t

(

r(u)−
1

2

n
∑

j=1

σ2
ij(u)

)

du +

n
∑

j=1

∫ T0

t
σij(u) dW̃j

}

,

where xi = Xi(t). Let g : R
n
+ → R be convex. The price F (X(t), t) at time

t of an option which at time T0 pays g(X(T0)) is given by

F (x, t) = exp
{

−

∫ T0

t
r(u) du

}

Ẽx,tg(X(T0)),

which is convex in x since Xi(T0) is linear in xi and g is convex. Thus
geometric Brownian motion is convexity preserving. �

Next we investigate which models are convexity preserving. It turns out
that if one imposes some conditions on the diffusion matrix, then geometric
Brownian motion is the only model which is convexity preserving. We first
introduce the LCP-condition:

Definition 2.2. Assume that the coefficients of the differential operator L
are in C3(Rn

+ × [0, T ]). Let x ∈ R
n
+ be an interior point, and let t ∈ [0, T ].

Then L is said to be locally convexity preserving (LCP) at (x, t) if

Duu(Lf)(x, t) ≥ 0

whenever u ∈ R
n \ {0}, f ∈ C∞(Rn

+) is convex in a neighborhood of x and
Duuf(x) = 0.
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If G is a solution to (1), then the infinitesimal change of G during a
short time interval ∆t is approximately ∆t(LG). Thus the LCP-condition
is intuitively the right condition to preserve convexity: if, at some instant,
convexity is almost lost in some direction u, then the infinitesimal change
of G is convex in that direction.

For simplicity we will in this paper work under the following assumption.

Hypothesis 2.3. The diffusion matrix β is in C(Rn
+ × [0, T ]) ∩ C3(Rn

+ ×
[0, T ]) and is such that, for any vector of non-negative initial values of the
stocks, there exists a unique strong solution X to (2) with absorption at 0
of the i:th component Xi for all i.

We also assume that the diffusion matrix β is such that, for any smooth
terminal value g, the function F defined by (3) has continuous derivatives
Dk

xDm
t F , m ∈ {0, 1}, 0 ≤ |k|+ 2m ≤ 4 up to time T0.

Remark The assumption that β is C3 is unnecessarily strong, see section 3
in Janson and Tysk (2003b). To clarify the presentation, however, we keep
this assumption.

Theorem 2.4. Let the diffusion matrix β satisfy Hypothesis 2.3, and let L
be the corresponding differential operator as in (5). Now, if β is convexity
preserving, then L is LCP at all points (x0, T0) such that x0 ∈ R

n
+ is interior

and T0 ∈ (0, T ).

Proof. Suppose that f ∈ C∞(Rn
+) is convex in a neighborhood of some

point x0 in the interior of R
n
+, and suppose that Duuf(x0) = 0 for some

direction u 6= 0. Then there exists a smooth convex function g : R
n
+ → R

which equals f in a neighborhood of x0, for details see Lemma 3.2 in Janson
and Tysk (2003b). Since β is convexity preserving there exists a solution
F (x, t) (defined by (3)), which is convex in x for all t ≤ T0, to equation
(4) with terminal condition F (x, T0) = g(x). By assumption, Dk

xDm
t F ,

m ∈ {0, 1}, 0 ≤ |k| + 2m ≤ 4, exist and are continuous up to time T0.
Since DuuF (x0, t) ≥ 0 for all t ≤ T0 and DuuF (x0, T0) = 0, we have that
DtDuuF (x0, T0) ≤ 0. Therefore, using equation (4),

Duu(Lf)(x0, T0) = Duu(LF )(x0, T0) = −Duu(DtF )(x0, T0)

= −DtDuuF (x0, T0) ≥ 0.

�

Remark Janson and Tysk (2003b) show that the LCP-condition is both
necessary and sufficient to guarantee that an operator L defined on R

n ×
[0, T ] is convexity preserving. To get sufficiency in the present setting we
would have to add some conditions on the boundary of R

n
+ in the definition

of LCP. In our analysis, however, we only need that LCP is a necessary
condition, and we therefore leave the rather technical considerations about
the appropriate LCP-condition for boundary points.

We now present the class of models under consideration.

Definition 2.5. A model with a diffusion matrix β that satisfies Hypothe-
sis 2.3 is standard if the following conditions are satisfied:

(i) the diffusion coefficient βij is a function only of xi and t;
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(ii) the diffusion coefficient βij = 0 for xi = 0;
(iii) for all i = 1, .., n and fixed times t, the volatility

√

aii(xi, t)/xi =
√

β2
i1(xi, t) + .. + β2

in(xi, t)/xi

of the i:th asset is not an increasing function of xi, unless it is
constant.

Remark Note that (i) does not exclude dependence between the assets.
Instead it merely says that the volatility of the ith asset depends only on
the value of that asset and time. Note further that condition (ii) allows
volatilities tending to infinity for asset values close to zero. Condition (iii)
seems to be satisfied for virtually all models for option pricing; in fact many
models have larger volatilities at zero than at infinity.

We can now state our main theorem.

Theorem 2.6. Let n ≥ 2. Then geometric Brownian motion (with time-
dependent volatility) is the only standard model that is convexity preserving.

Remark It follows, for example, that the constant elasticity of variance
model (which is a standard model) in which the price of the ith asset is
given by

dXi = r(t)Xi dt + σiX
γ
i dW̃i

with 0 < γ < 1, is not convexity preserving.

We start with a lemma.

Lemma 2.7. Let β be a C2 diffusion matrix such that βij is a function of xi

alone, and such that the property (ii) in Definition 2.5 is satisfied. Assume
that there exist constants Bij such that

(7)

n
∑

k=1

βik(xi)βjk(xj) = Bijxixj

for all i, j with i 6= j. Then there exists an index l ∈ {1, ..., n} such that
(βl1, ..., βln) = f(xl)v for some constant vector v ∈ R

n and some function f .
If, in addition, (7) also holds for i = j, then β is the diffusion matrix of

a geometric Brownian motion.

Proof. Let βi = (βi1, ..., βin) and β′′i = (β′′i1, ..., β
′′

in) for i = 1, ..., n. Here
the double primes refer to differentiation with respect to the xi-variables. If
β′′i ≡ 0 for some i, then all components of βi are affine functions of xi. From
(ii) it follows that the components in fact are linear, and thus the lemma is
true in this particular case.

Now, assume that we can choose coordinates x1, ..., xn > 0 such that
β′′i (xi) 6= 0. From (7) we have

(8) β′′i (xi) · βj(xj) = 0

for i 6= j. Since β1(x1), ..., βn(xn) are linearly independent (recall that the
diffusion matrix is assumed to be non-singular), it follows from (8) that
β′′1 (x1), ..., β

′′

n(xn) are linearly independent. Now, still keeping x1, ..., xn−1

fixed it follows from (8) that, for any xn, βn(xn) is in the orthogonal (1-
dimensional) complement of β ′′1 (x1), ..., β

′′

n−1(xn−1). Thus βn(xn) = f(xn)v
for some constant vector v ∈ R

n, which finishes the first part of the lemma.
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Next, assume in addition that (7) also holds for i = j, i.e. that aii(xi) =
Biix

2
i for some positive constants Bii. Fix x2, ..., xn and let vi = 1

xi
βi(xi) for

i = 2, ..., n. Then
1

x1

β1(x1) · vi = B1i

for all x1. Since vi, i = 2, ..., n are linearly independent it follows that

1

x1

β1(x1) ∈ {β1(1) + tw; t ∈ R}

for some vector w ∈ R
n. But since the inner product

( 1

x1

β1(x1)
)

·
( 1

x1

β1(x1)
)

= B11

is constant we find that 1
x1

β1(x1) is a vector of constant length. By continuity

it follows that 1
x1

β1(x1) is a constant vector. Similarly we deduce that all
entries in the ith row of β are linear in xi, and thus the lemma follows. �

Proof of Theorem 2.6. Assume that β is a standard diffusion matrix which
is convexity preserving, and let L be the corresponding differential operator
appearing in the Black-Scholes equation (4). We suppress the time variable t
in the calculations below. First choose two components xi and xj. For fixed
s, let f(xi, xj) = 1

2
(sxi−xj)

2. Then f is constant along lines xj = sxi +xi,0,
where xi,0 is a constant. If u = ei +sej then, since L is convexity preserving,
it follows from Theorem 2.4 that

0 ≤ 2Duu(Lf)

= (∂2
xi

+ 2s∂xi
∂xj

+ s2∂2
xj

)(

n
∑

i,j=1

aij
∂2f

∂xi∂xj
+ 2r

n
∑

i=1

xi
∂f

∂xi
− 2rf)

= (∂2
xi

+ 2s∂xi
∂xj

+ s2∂2
xj

)(s2aii − 2saij + ajj + 2rxifxi
+ 2rxjfxj

− 2rf)

= −2s3∂2
xj

aij + s2(∂2
xi

aii − 4∂xi
∂xj

aij + ∂2
xj

ajj)− 2s∂2
xi

aij.

Since s is arbitrary we find that

∂2
xj

aij = ∂2
xi

aij = 0,

so aij = Bijxixj + B1xi + B2xj + B3. The condition (ii) guarantees that
aij(xi, xj) vanishes for xi = 0 and for xj = 0. It follows that B1 = B2 =
B3 = 0. Hence aij = Bijxixj for i 6= j. It remains to show the same for the
diagonal elements aii. Using the first part of Lemma 2.7 we may assume
that say βn(xn) = f(xn)v for some constant vector v ∈ R

n.
Now, choose a row βi, i ∈ {1, .., n − 1}, in the diffusion matrix, and

consider the matrix block

Ain =

(

aii ain

ani ann

)

=

(

aii(xi) Binxixn

Binxixn ann(xn)

)

.

If A is convexity preserving we must have that Ain is convexity preserving
for equations in two spatial variables xi and xn. Two different cases can
occur. First, assume that Bin = 0. Then

(9) Ain =

(

g2(xi) 0
0 h2(xn)

)

,
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where g and h are some positive functions. From Example 5.3 in Janson and
Tysk (2003b) we see that in order to have a convexity preserving operator
we must have

g(xi)g
′′(xi) + h(xn)h′′(xn) ≥ 0

for all xi and xn. Hence at least one of g and h is convex. Let this function
be g. By (ii) in Definition 2.5 we conclude that g(0) = 0. From (iii) the

function g is seen to be linear using the fact that g(xi)/xi =
√

aii(xi, t)/xi

is increasing since g is a convex function vanishing at 0. Then the above
inequality has only one term, so h is convex, and thus also linear by the
same argument. Therefore aii(xi) = C2

1x2
i and ann(xn) = C2

2x2
n for some

constants C1 and C2.
Next, if Bin 6= 0, then

ain(xi, xn) = Binxixn = βi(xi) · βn(xn) = f(xn)(βi(xi) · v)

for some constant vextor v. It follows that βn(xn) = xnu for some constant
vector u ∈ R

n. Therefore

Ain =

(

g2(xi) + D2x2
i DExixn

DExixn E2x2
n

)

for some non-zero constants D and E and some function g which is strictly
positive for xi > 0. From Corollary 5.2 by Janson and Tysk (2003b) it
follows that

(10) Duu

√

b2aii(xi)− 2abDExixn + a2E2x2
n ≥ 0

for all directions u = aei + ben. Direct calculations show that

Duu

√

b2aii(xi)− 2abDExixn + a2E2x2
n

= a2b2(b2aii(xi)− 2abDExixn + a2E2x2
n)−3/2 ·

(

(

b(D −E)g(xi)− (bDxi − aExn)g′(xi)
)2

+
(

b2g2(xi) + (bDxi − aExn)2
)

g(xi)g
′′(xi)

)

.

Here

b2aii − 2abDExixn + a2E2x2
n = b2g2(xi) + (bDxi − aExn)2 > 0

if b 6= 0 and xi > 0. We claim that

(11) g′′(xi) ≥ 0

for all xi. Indeed, for given xi and xn, let K1 = Exng′(xi) and K2 =
(D −E)g(xi)−Dxig

′(xi). Then we know that

(K1a + K2b)
2 + (b2g2(xi) + (bDxi − aExn)2)g(xi)g

′′(xi) ≥ 0

for all a, b 6= 0. If K1 and K2 both are 0, then (11) follows immediately. If K1

and K2 both are non-zero, then a, b 6= 0 can be chosen so that K1a+K2b = 0,
and thus (11) follows. If K1 = 0, K2 6= 0 and g(xi)g

′′(xi) < 0, then b = 1
and a very big yields a contradiction, so (11) follows. The case K1 6= 0 = K2

is similar. Considering the inequality (11) together with the assumptions
(ii) and (iii) of Definition 2.5 we find that aii(xi) = C2x2

i for some constant
C. �
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Remark The theorem tells us that to be sure to preserve convexity, regard-
less of the (convex) contract function, geometric Brownian motion should
be used to model the asset prices. However, given a particular convex
claim, it can of course be the case that the class of models that guaran-
tee convex option prices is bigger. For example, if the contract function
g(x1, x2) = g1(x1) + g2(x2), where g1 and g2 both are convex, then all
models with diagonal diffusion matrices satisfying (i) in Definition 2.5 are
convexity preserving. The reason is that such a claim is the sum of two
one-dimensional claims, both of which have convex prices.

3. Superreplication of convex claims

Assume that an option writer believes that the diffusion matrix is β as in
(2), whereas the true stock price vector X̃ evolves according to

(12) dX̃i = µ̃i(X̃, t) dt +
n

∑

j=1

β̃ij(X̃, t) dWj

for some functions µ̃i and β̃ij . He will then (incorrectly) price an option
on the stocks according to (3), where X is a diffusion with diffusion matrix
β. Moreover, if he tries to replicate the option with the hedging strategy
suggested by his model, then he will form a self-financing portfolio which
has initial value F (X(0), 0) and is such that it at each instant t contains
∂F
∂xi

(X̃(t), t) numbers of shares of the ith asset (and the remaining amount

invested in the bank account). In this section we provide conditions under
which the terminal value of the hedger’s portfolio exceeds the option pay-off
g(X(T0)) almost surely.

Given two diffusion matrices β and β̃ we say that β dominates β̃ if
A(x, t) = β(x, t)β∗(x, t) ≥ β̃(x, t)β̃∗(x, t) = Ã(x, t) as quadratic forms for
all x and t.

Theorem 3.1. Assume that a hedger overestimates (underestimates) the
volatility, i.e he uses a diffusion matrix β which dominates (is dominated by)

the true diffusion matrix β̃. Moreover, assume that β is convexity preserving.
Then the hedger will superreplicate (subreplicate) any convex claim written
on X.

Proof. Let g : R
n
+ → R be a convex contract function, and define F as in

(3). Since β is convexity preserving, F (x, t) is convex in x for all t ∈ [0, T0].

The value V (t) of the self-financing portfolio with ∂F
∂xi

(X̃i(t), t) shares of the

ith asset and initial value V (0) = F (X̃(0), 0) has the dynamics

dV = r
(

V (t)−

n
∑

i=1

X̃i(t)
∂F

∂xi
(X̃(t), t)

)

dt +

n
∑

i=1

∂F

∂xi
(X̃(t), t) dX̃i(t).
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Consider the process Y (t) := V (t)−F (X̃(t), t). From Ito’s formula it follows
that

dY = dV −
∂F

∂t
(X̃(t), t) dt−

n
∑

i=1

∂F

∂xi
(X̃(t), t) dX̃i

−
1

2

n
∑

i=1

n
∑

j=1

ãij(X̃(t), t)
∂2F

∂xi∂xj
(X̃(t), t) dt

= rV (t) dt−
∂F

∂t
(X̃(t), t) dt− r

n
∑

i=1

X̃i(t)
∂F

∂xi
(X̃(t), t) dt

−
1

2

n
∑

i=1

n
∑

j=1

ãij(X̃(t), t)
∂2F

∂xi∂xj
(X̃(t), t) dt

= r(V (t)− F (X̃(t), t)) dt

+
1

2

n
∑

i=1

n
∑

j=1

(

aij(X̃(t), t)− ãij(X̃(t), t)
) ∂2F

∂xi∂xj
(X̃(t), t) dt

= rY (t) dt +
1

2

n
∑

i=1

n
∑

j=1

(

aij(X̃(t), t)− ãij(X̃(t), t)
) ∂2F

∂xi∂xj
(X̃(t), t) dt,

where we have used that F solves the Black-Scholes equation (4) with dif-
fusion matrix β. Now, assume that the hedger overestimates the volatility,
i.e. that β(x, t) dominates β̃(x, t) for all x and t. Then, since F is con-
vex, the last double sum is non-negative. Thus Y (0) = 0 and Y (T0) ≥
0. It follows that the final value V (T0) of the hedger’s portfolio satisfies

V (T0) ≥ F (X̃(T0), T0) = g(X̃(T0)), so the hedger superreplicates. The case
of underestimation of the volatility is similar. �

Theorem 2.6 together with Theorem 3.1 shows that if a hedger wants to
be sure to superreplicate a convex claim on several underlying assets, then
he should overestimate the true diffusion matrix β̃ with a diffusion matrix
β such that βij(x, t) = xiσij(t) for some functions σij(t). Note that there is
no assumption on the true diffusion matrix to be LCP; what matters is that
the hedger should use a model which is LCP. Actually, it is not essential
that the true diffusion matrix β̃ is a function of time and the current stock
prices. In fact, the theorem is true also in the case when β̃ is some adapted
process dominated by β(X̃(t), t) for all t almost surely. This is of course
in analogy with the one-dimensional case, see El Karoui, Jeanblanc-Picque
and Shreve (1998).

Remark By considering an American option as the limit of a sequence of
European options (for the one-dimensional case, see El Karoui, Jeanblanc-
Picque and Shreve (1998) or Ekström (2003)) it is clear that a model which
gives convex European option prices also gives convex American option
prices. For American claims, an option writer needs to be sure that the
value V of his hedging portfolio at each instant t satisfies Vt ≥ g(X̃(t)). It
can be shown that this is indeed the case if the option writer overestimates
the diffusion matrix with a convexity preserving model.
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Remark Janson and Tysk (2003b) show that if A ≥ Ã as quadratic forms,

and if either A or Ã is convexity preserving, then the corresponding solutions
F and F̃ satisfy the inequality F (x, t) ≥ F̃ (x, t) for all x and t. Thus, if one
knows that the true diffusion matrix can be bounded both above and below
by some diffusion matrices corresponding to geometric Brownian motions,
then one also has upper and lower bounds for the price of an option. This
can also be seen as a consequence of Theorem 3.1.
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