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ABsTrRACT. The analyses of many algorithms and data structures (such
as digital search trees) for searching and sorting are based on the rep-
resentation of the keys involved as bit strings and so count the number
of bit comparisons. On the other hand, the standard analyses of many
other algorithms (such as Quicksort) are performed in terms of the num-
ber of key comparisons. We introduce the prospect of a fair comparison
between algorithms of the two types by providing an average-case anal-
ysis of the number of bit comparisons required by Quicksort. Counting
bit comparisons rather than key comparisons introduces an extra loga-
rithmic factor to the asymptotic average total. We also provide a new
algorithm, “BitsQuick”, that reduces this factor to constant order by
eliminating needless bit comparisons.

1. INTRODUCTION AND SUMMARY

Algorithms for sorting and searching (together with their accompanying analy-
ses) generally fall into one of two categories: either the algorithm is regarded as
comparing items pairwise irrespective of their internal structure (and so the anal-
ysis focuses on the number of comparisons), or else it is recognized that the items
(typically numbers) are represented as bit strings and that the algorithm operates
on the individual bits. Typical examples of the two types are Quicksort and digital
search trees, respectively; see [7].

In this extended abstract we take a first step towards bridging the gap between
the two points of view, in order to facilitate run-time comparisons across the gap, by
answering the following question posed many years ago by Bob Sedgewick [personal
communication]: What is the bit complexity of Quicksort?

More precisely, we consider Quicksort (see Section 2 for a review) applied
to n distinct keys (numbers) from the interval (0,1). Many authors (Knuth [7],
Régnier [10], Rosler [11], Knessl and Szpankowski [6], Fill and Janson [3] [4],
Neininger and Ruschendorff [9], and others) have studied K, the (random) num-
ber of key comparisons performed by the algorithm. This is a natural measure of
the cost (run-time) of the algorithm, if each comparison has the same cost. On
the other hand, if comparisons are done by scanning the bit representations of the
numbers, comparing their bits one by one, then the cost of comparing two keys is
determined by the number of bits compared until a difference is found. We call this
number the number of bit comparisons for the key comparison, and let B,, denote
the total number of bit comparisons when n keys are sorted by Quicksort.
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We assume that the keys X;,..., X, to be sorted are independent random vari-
ables with a common continuous distribution F' over (0,1). It is well known that
the distribution of the number K, of key comparisons does not depend on F'. This
invariance clearly fails to extend to the number B,, of bit comparisons, and so we
need to specify F.

For simplicity, we study mainly the case that F' is the uniform distribution, and,
throughout, the reader should assume this as the default. But we also give a result
valid for a general absolutely continuous distribution F' over (0,1) (subject to a
mild integrability condition on the density).

In this extended abstract we focus on the mean of B,,. One of our main re-
sults is the following Theorem 1.1, the concise version of which is the asymptotic
equivalence

E B, ~n(lnn)(lgn) as n — oo.
Throughout, we use In (respectively, 1g) to denote natural (resp., binary) logarithm,
and use log when the base doesn’t matter (for example, in remainder estimates).

The symbol = is used to denote approximate equality, and v = 0.57722 is Euler’s
constant.

Theorem 1.1. If the keys X1,..., X, are independent and uniformly distributed
on (0,1), then the number B, of bit comparisons required to sort these keys using
Quicksort has expectation given by the following exact and asymptotic expressions:

n n 1
(1.1) BBy = 2;(‘1)k (k) (k —1)k[1 — 27 (1]

(1.2) =n(lnn)(lgn) — cinlnn + can + mn + O(log n),

where, with §:= 2w /1n2,
1

= In2

(4 — 2y —1n2) = 3.105,
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is periodic in lgn with period 1 and amplitude smaller than 5 x 1077.

Small periodic fluctuations as in Theorem 1.1 come as a surprise to newcomers
to the analysis of algorithms but in fact are quite common in the analysis of digital
structures and algorithms; see, for example, Chapter 6 in [8].

For our further results, it is technically convenient to assume that the number
of keys is no longer fixed at n, but rather Poisson distributed with mean A and
independent of the values of the keys. (In this extended abstract, we shall not
deal with the “de-Poissonization” needed to transfer results back to the fixed-n
model; for the results here we can simply compare the fixed-n case to Poisson cases
with slightly smaller and larger means, say n + n?/ 3.) In obvious notation, the
Poissonized version of (1.2) is

(1.3) EBA) = AInA)(IgA) — caAIn A + c2A + 1A + O(log M),
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whose proof is indicated in Section 5 [following (5.2)]. We will also see (Proposi-
tion 5.3) that Var B(\) = O(A\?), so B(]) is concentrated about its mean. Since
the number K (A) of key comparisons is likewise concentrated about its mean
EK()\) ~ 2X\In A for large A (see Lemmas 5.1 and 5.2), it follows that

(1.4) 1gi)\ X [B(((i\\)) — 1 in probability as A — oo.

In other words, about %lg A bits are compared per key comparison.

For non-uniform distribution F', we have the same leading term for the asymp-
totic expansion of E B()), but the second-order term is larger. (Throughout, In
denotes the positive part of the natural logarithm function. We denote the uniform
distribution by unif.)

Theorem 1.2. Let X1, X5,... be independent with a common distribution F' over
(0,1) having density f, and let N be independent and Poisson with mean . If
folf(1n+ ) < oo, then the expected number of bit comparisons, call it ps(N), re-
quired to sort the keys X1,..., Xy using Quicksort satisfies

117 (0) = it (V) + 2H (A A + o(Alog )
as A — oo, where H(f) := folflgf > 0 is the entropy (in bits) of the density f.

In applications, it may be unrealistic to assume that a specific density f is known.
Nevertheless, even in such cases, Theorem 1.2 may be useful since it provides a
measure of the robustness of the asymptotic estimate in Theorem 1.1.

Bob Sedgewick (on June 23, 2003, and among others who have heard us speak
on the present material) has suggested that the number of bit comparisons for
Quicksort might be reduced substantially by not comparing bits that have to be
equal according to the results of earlier steps in the algorithm. In the final section,
we note that this is indeed the case: for a fixed number n of keys, the average
number of bit comparisons in the improved algorithm (which we dub “BitsQuick”)
is asymptotically 2(1+5£)n Inn, only a constant (= 3.2) times the average number
of key comparisons [see (2.2)]. A related algorithm is the digital version of Quicksort
by Roura [12]; it too requires ©(nlogn) bit comparisons (we do not know the exact
constant factor).

We may compare our results to those obtained for radix-based methods, for
example radix exchange sorting, see [7, Section 5.2.2]. This method works by bit
inspections, that is comparisons to constant bits, rather than pairwise comparisons.
In the case of n uniformly distributed keys, radix exchange sorting uses asymptot-
ically nlgn bit inspections. Since radix exchange sorting is designed so that the
number of bit inspections is minimal, it is not surprising that our results show
that Quicksort uses more bit comparisons. More precisely, Theorem 1.1 shows
that Quicksort uses about Inn times as many bit comparisons as radix exchange
sorting. For BitsQuick, this is reduced to a small constant factor. This gives us
a measure of the cost in bit comparisons of using these algorithms; Quicksort is
often used because of other advantages, and our results opens the possibility to see
when they out-weight the increase in bit comparisons.

In Section 2 we review Quicksort itself and basic facts about the number K,
of key comparisons. In Section 3 we derive the exact formula (1.1) for E B,,, and
in Section 4 we derive the asymptotic expansion (1.2) from an alternative exact
formula that is somewhat less elementary than (1.1) but much more transparent
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for asymptotics. In the transitional Section 5 we establish certain basic facts about
the moments of K () and B(A) in the Poisson case with uniformly distributed keys,
and in Section 6 we use martingale arguments to establish Theorem 1.2 for the
expected number of bit comparisons for Poisson(\) draws from a general density f.
Finally, in Section 7 we study the improved BitsQuick algorithm discussed in the
preceding paragraph.

Remark 1.3. The results can be generalized to bases other than 2. For example,
base 256 would give corresponding results on the “byte complexity”.

Remark 1.4. Cutting off and sorting small subfiles differently would affect the
results in Theorems 1.1 and 1.2 by O(nlogn) and O(AlogA) only. In particular,
the leading terms would remain the same.

2. REVIEW: NUMBER OF KEY COMPARISONS USED BY QUICKSORT

In this section we briefly review certain basic known results concerning the num-
ber K, of key comparisons required by Quicksort for a fixed number n of keys
uniformly distributed on (0, 1). (See, for example, [4] and the references therein for
further details.)

Quicksort, invented by Hoare [5], is the standard sorting procedure in Unix
systems, and has been cited [2] as one of the ten algorithms “with the greatest
influence on the development and practice of science and engineering in the 20th
century.” The Quicksort algorithm for sorting an array of n distinct keys is very
simple to describe. If n = 0 or n = 1, there is nothing to do. If n > 2, pick a key
uniformly at random from the given array and call it the “pivot”. Compare the
other keys to the pivot to partition the remaining keys into two subarrays. Then
recursively invoke Quicksort on each of the two subarrays.

With Ky := 0 as initial condition, K, satisfies the distributional recurrence
relation

Ky 2Ky, 1+ Ki_y +n—1, n>1,

where £ denotes equality in law (i.e., in distribution), and where, on the right, U,
is distributed uniformly over the set {1,...,n}, K7} £ K, and

Un; Ko,...,anl; KS7,K*

n—1

are all independent.
Passing to expectations we obtain the “divide-and-conquer” recurrence relation

n—1

2
EK, =— EK; -1,
njz:;) jt+n

which is easily solved to give
(2.1) EK,=2(n+1)H, —4n
(2.2) =2nlnn+ 2y —4)n+2Inn+ (2y+1) + O(1/n).

It is also routine to use a recurrence to compute explicitly the exact variance of K,,.
In particular, the asymptotics are

Var K,, = 0?n? — 2nlnn + O(n)
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where 02 := 7 — %772 = 0.4203. Higher moments can be handled similarly. Further,
the normalized sequence

I?n = (Kn - Mn)/n7 n=>1,

converges in distribution to K , where the law of K is characterized as the unique
distribution over the real line with vanishing mean that satisfies a certain distri-
butional identity; and the moment generating functions of K, converge to that
of K.

3. EXACT MEAN NUMBER OF BIT COMPARISONS

In this section we establish the exact formula (1.1), repeated here as (3.1) for
convenience, for the expected number of bit comparisons required by Quicksort
for a fixed number n of keys uniformly distributed on (0,1):

~ (n 1
(3.1) BB, = 2};(_1)k (k) (k= 1k[1 —2-G-1]"

Let Xi,..., X, denote the keys, and X(;) < --- < X(;,) their order statistics.
Consider ranks 1 < i < j < n. Formula (3.1) follows readily from the following
three facts, all either obvious or very well known:

e The event Cj; := {keys X(;) and X(;) are compared} and the random
vector (X(;), X(;y) are independent.

e P(C;;) =2/(j —i+1). [Indeed, C;; equals the event that the first pivot
chosen from among X;),..., X(;) is either X, or X(j).]

e The joint density g, ; of (X(;), X(;)) is given by

n i—1 j—i—1 n—j
5,5 \Ls =1. . . . - 1- I,
Inii (T, Y) (zl,l,le,l,n)x (y —2) (1-y)

Let b(x,y) denote the index of the first bit at which the numbers z,y € (0,1)
differ, where for definiteness we take the non-terminating expansion for terminating
rationals. Then

11
EB, Z P(Cij)/o/b(x,y)gn,i,j(x,y)dydx

1<i<j<n
(3.2) o
= / / b(@,y) pu(@,y) dy dz,
0 Jz
where p,(z,y) has the definition and interpretation

pa(,y) = > P(Cij)gnij(x,y)dyde

1<i<j<n

_ P(keys in (2,2 + dz) and (y,y + dy) are compared)
N dz dy ’

By a routine calculation,

Pn\Z, = 1-— — X n_1+n — X

(z,y) =) [(1—(y—1)) (y — )]

(3.3) n

=230 () -

k=2



6 JAMES ALLEN FILL AND SVANTE JANSON

which depends on x and y only through the difference y — x. Plugging (3.3)
into (3.2), we find

EB, = 2}62:(—1)’c <Z) /Olf:b(a:,y)(y — 2)*2 dy da.

But, by routine (if somewhat lengthy) calculation,

11
/ / b(z,y)(y — z)* 2 dy dx = €—|—1 // (y — x)* 2 da dy
0 Jzx 0<z<y<1:b( 7y) 0+1

o—(£+1)

=Z€+1 25/ / (y — x)" 2 dy dx
=

2-(e+1)
1
T (k= Dk[1—2- -]
This now leads immediately to the desired (3.1).

4. ASYMPTOTIC MEAN NUMBER OF BIT COMPARISONS

Formula (1.1), repeated at (3.1), is hardly suitable for numerical calculations or
asymptotic treatment, due to excessive cancellations in the alternating sum. Indeed,
if (say) n = 100, then the terms (including the factor 2, for definiteness) alternate
in sign, with magnitude as large as 10?°, and yet E B,, = 2295. Fortunately, there
is a complex-analytic technique designed for precisely our situation (alternating
binomial sums), namely, Rice’s method. Because of space limitations, we will not
review the idea behind the method here, but rather refer the reader to (for example)

Section 6.4 of [8]. Let
2

Ma) = g =2 )
and let B(z,w) := I'(2)T'(w)/T'(z + w) denote the (meromorphic continuation) of
the classical beta function. According to Rice’s method, E B,, equals the sum of
the residues of the function B(n + 1,—z)h(z) at
e the triple pole at z = 1;
e the simple poles at z =1+ ik, for k € Z\ {0};
e the double pole at z = 0.

The residues are easily calculated, especially with the aid of such symbolic-manip-
ulation software as Mathematica or Maple. Corresponding to the above list, the
residues equal

2
® 1n2 |:Hn 1

—(4=2)Hy 1 + 36 -2 + HY,|;

. n! .
ﬂk(flfi,@k)l—‘(_l - Zﬁk)F(nfi,@k)’
o —2(H, +2mn2+1),

where H" Zj 177" denotes the nth harmonic number of order r and H,, :=

,(L ), Summlng the residue contributions gives an alternative exact formula for

E B,,, from which the asymptotic expansion (1.2) (as well as higher-order terms)
can be read off easily using standard asymptotics for Hy(f) and Stirling’s formula;
we omit the details.

This completes the proof of Theorem 1.1.
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Remark 4.1. We can calculate E K, in the same fashion (and somewhat more
easily), by replacing the bit-index function b by the constant function 1. Following
this approach, we obtain first the following analogue of (3.1):

EK, = 22(—1)’c (Z) ﬁ

k
Then the residue contributions using Rice’s method are

e 2n(H, —2— 1) at the double pole at z = 1;
e 2(H, + 1), at the double pole at z = 0.

Summing the two contributions gives an alternative derivation of (2.1).

5. POISSONIZED MODEL FOR UNIFORM DRAWS

As a warm-up for Section 6, we now suppose that the number of keys (throughout
this section still assumed to be uniformly distributed) is Poisson with mean A. We
begin with a lemma which provides both the analogue of (2.1)—(2.2) and two other
facts we will need in Section 6.

Lemma 5.1. In the setting of Theorem 1.2 with F' uniform, the expected number
of key comparisons is a strictly convex function of A given by

EK(\) =2 /O)\()\ —y)(e Y —1+y)y ?dy.
Asymptotically, as X — oo we have
EK(\) =2 In A+ (2y —4)A+2In A+ 27+ 2+ O0(e™?)
and as A — 0 we have
EK(\) = 3A° +0(\).

Proof. To obtain the exact formula, begin with

1 1
E K, :/ / pn(xvy)dydx;
0 Jx

cf. (3.2) and recall Remark 4.1. Then multiply both sides by e *A"/n! and sum,
using the middle expression in (3.3); we omit the simple computation. Strict con-
vexity then follows from the calculation %E K(\) =2 =1+ X)/A2 >0, and
asymptotics as A — 0 are trivial: E K ()\) = 2 fo)‘()\ — [ +0(y)]dy = IA2+0(N\3).
We omit the proof of the result for A — oo, but plan to include it in our full-length
paper; comparing the fixed-n and Poisson(\) expansions, note the difference in
constant terms and the much smaller error term in the Poisson case. (]

To handle the number of bit comparisons, we will also need the following bounds
on the moments of K (A). Together with Lemma 5.1, these bounds also establish
concentration of K(\) about its mean when A is large. For real 1 < p < oo, we
let |W|, = (E |W|p)1/p denote LP-norm and use E(W; A) as shorthand for the
expectation of the product of W and the indicator of the event A.
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Lemma 5.2. For every integer p > 1, there exists a constant c, < oo such that
KA —EKM)|p < cpA for \>1,
KN, < Cp/\Z/p for A< 1.

Proof (sketch). The first result is certainly true for A > 1 bounded away from oo.
For A — oo we need only Poissonize standard Quicksort moment calculations; cf.
the very end of Section 2 for the fixed-n case. For A <1 we use

p
EKP(\) <E Kg) N > 2} < 27PE[N?P; N > 2]

oo )\n72
=27P)\2 g e ' n? < cg)\z
n!
n=2

where N is Poisson(\) and ¢, is taken to be at least the finite value

L2, (n2e )] P O

We now turn our attention from K () to the more interesting random vari-
able B(\), the total number of bit comparisons. First, let
Iy =[G = 1)27%,527%)

be the jth dyadic rational interval of rank k, and

By, () := number of comparisons of (k + 1)st bits,

By, ;(A) := number of comparisons of (k + 1)st bits between keys in Ij ;.

Observe that

(5.1) B(A) =Y Bi(A)=>_> Bi;(N).
k=0 k=0 j=1

A simplification provided by our Poissonization is that, for each fixed k, the vari-
ables By j(A\) are independent. Further, the marginal distribution of By ;j(\) is
simply that of K(27%)). Taking expectations in (5.1), we find

(5.2) it () = BB = 3 2B K (275,
k=0

In the full-length paper we (tentatively) plan to include the details of a proof we
have written showing how the two asymptotic estimates in Lemma 5.1 can be used
in conjunction with (5.2) to establish the asymptotic estimate (1.3) for punir(A) as
A — 00. [An alternative approach is to Poissonize (1.2).] Moreover, we are now in
position to establish the concentration of B(\) about pyupnir(A) promised just prior
to (1.4).

Proposition 5.3. There exists a constant ¢ such that Var B(\) < ¢?\? for 0 <
A < oo.
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Proof. For 0 < A\ < 0o, we have by the triangle inequality for || - ||2, independence

and By ;(A) éK(Q_k)\), and Lemma 5.2, with ¢ := c2 > 5o 27%/2,

o0

[VarB(\)]'/? < 3 [Var By(\)]'/?
k=0
< i[2kVarK(2_k)\)]l/2
< iio O

Remark 5.4. (a) In the full-length paper we will show that Proposition 5.3 can
be extended to

IBOY — EBO)l, < &
for any real 1 < p < co (and some finite c’p) and all A > 1.

(b) It is quite plausible that the variables By () are positively correlated [be-
cause, for k > 1, the (k + 1)st bits of two keys can’t be compared unless the kth
bits are|, in which case it is easy to check that Var B(\) = Q()\?) for A > 1, but
we do not know a proof. We would then have || B(A) — EB(\)||, = ©()) for each
real 2 < p < oo. Perhaps it is even true that [B(A\) — E B(A)]/A has a limiting
distribution, but we have no conjecture as to its form.

6. MEAN NUMBER OF BIT COMPARISONS FOR KEYS DRAWN FROM AN
ARBITRARY DENSITY f

In this section we outline martingale arguments for proving Theorem 1.2 for the
expected number of bit comparisons for Poisson(A) draws from a rather general
density f. (For background on martingales, see any standard measure-theoretic
probability text, e.g., [1].) In addition to the notation above, we will use the
following:

pk,j = f7

Ikyj
fr,; = (average value of f over I ;) = 2kpk7j,
fr(z) == fr; forall x eIy,
f7C) = sup fir().
Note for each k > 0 that 3, pr,; = 1 and that fj : (0,1) — [0, 00) is the smoothing

of f to the rank-k dyadic rational intervals. From basic martingale theory we have
immediately the following simple but key observation.

Lemma 6.1. With f = f,
(fr)o<k<oo is @ martingale,
and fr — f almost surely (and in L').

Before we begin the proof of Theorem 1.2 we remark that the asymptotic in-
equality ps(A) > punif(A) observed there in fact holds for every 0 < A < oc.
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Indeed,
o 2F
(6.1) S
> Y 2PER(A27F) = punie(V),
k=0

where the first equality appropriately generalizes (5.2), the inequality follows by the
convexity of E K(\) (recall Lemma 5.1), and the second equality follows by (5.2).

Proof (sketch) of Theorem 1.2. Assume A > 1 and, with m = m(\) := [Ig A], split
the double sum in (6.1) as m ok

(6.2) prN) =D EK(Ap;) + R(N),

k=0 j=1

with R(\) a remainder term. Assuming

(6.3) JERIN RIS

(to be proved in the full-length paper from the assumption on f in the statement
of the theorem, using the maximal inequality for nonnegative submartingales) and
using the estimates of Lemma 5.1, one can show R(A) = O(\). Plugging this and
the consequence

EK(z)=2zlnz + (2y — 4)z + O(z'/?),
which holds uniformly in 0 < z < 0o, of Lemma 5.1 into (6.2), we find

2k:
[QA A+ 20 pejlnpe; + (27 —4HA+ 0 (Al/Qz’“/Q)} +0(N)

j=1

m 2k
prN) =YY" {”\pk,j(ln)\ +Inpe;) + (27 — 4)Apk,; + O ((Apk,j)lﬂ)} +0(N)
k=0 j—1
=2
k=0

— ot + 203 [ fuln i+ O
k=0

where we have used the Cauchy—Schwarz inequality at the second equality and
comparison with the uniform case (f = 1) at the third.
But, by Lemma 6.1, (6.3), and the dominated convergence theorem,

(6.4) /fklnfk—>/flnfask:—>oo,
from which follows

() = ot (3) + 2X(183) [ £121f + o(Alog )

— it () + 201 2) [ £+ oA log ),

as desired. O
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Remark 6.2. If we make the stronger assumption that
f is Holder(a) continuous on [0, 1] for some « > 0,

then we can quantify (6.4) and improve the o(Alog A) remainder in the statement
of Theorem 1.2 to O(X).

7. AN IMPROVEMENT: BITSQUICK

Recall the operation of Quicksort described in Section 2. Suppose that the pivot
[call it & = 0.z(1)x(2) ...] has first bit 2(1) equal to 0, say. Then the subarray
of keys smaller than x all have first bit equal to 0 as well, and it wastes time to
compare first bits when Quicksort is called recursively on this subarray.

We call BitsQuick the obvious recursive algorithm that does away with this
waste. We give one possible implementation in the boxed pseudocode, where L(y)
denotes the result of rotating the register containing key y to the left —i.e., replac-
ing y = .y(1)y(2) ... y(m) by .y(2) ... y(m)y(1) [and similarly R(A) for rotation
of every element of array A to the right]. The input bit b indicates whether or
not the array elements need to be rotated to the right before the routine termi-
nates. The symbol || denotes concatenation (of sorted arrays). (We omit minor

The routine BitsQuick(A4,b)

If |4 <1
Return A
Else
Set A_ «—Qand A, «— 0
Choose a random pivot key x = 0.z(1) z(2) ...
If 2(1)=0
For y € A with y # «x
Ify<z
Set y — L(y) and then A_ — A_ U {y}
Else
Set A, — AL U{y}
Set A_ < BitsQuick(A_,1) and
A, < BitsQuick(Ay4,0)
Set A— A_ || {z} || Ay

Else
For y € A with y # «
Ify<z
Set A_ — A_U{y}
Else

Set y — L(y) and then Ay — A, U{y}
Set A_ «— BitsQuick(A_,0) and
A, « BitsQuick(Ay,1)
Set A— A_| {z} ] As
Ifb=0
Return A
Else
Return R(A)
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implementational details, such as how to do sorting in place and to maintain ran-
dom ordering for the generated subarrays, that are the same as for Quicksort and
very well known.) The routine BitsQuick(A, b) receives a (randomly ordered) ar-

ray

A and a single bit b, and returns the sorted version of A. The initial call is to

BitsQuick(Ap,0), where Ag is the full array to be sorted.

A related but somewhat more complicated algorithm has been considered by
Roura [12, Section 5].

In the full-length paper we plan to present arguments justifying the number of
bit comparisons used by BitsQuick as a fair measure of its overall cost. In the

full-

length paper we will also prove the following analogue of Theorem 1.1 (and

establish further terms in the asymptotic expansion), wherein

and

- 7 15 3 .
C1 .—m+ 9 (m+2)’}/—139

3 —ipk ;
foi= = Y S D(-1 - ifk)ni
Tn T idk ( iBk)n

kEZ: k#0

is periodic in lgn with period 1 and amplitude smaller than 2 x 10~7:

k 1—2-% 1-—92-(k-1)

EQn:i(—m(")k—lF(k_Q)— B N onH, —5n ot 2H, 1

We

(10]
(11]

(12]

k=2

3
= (2 + m)nlnn — &n+ Tan 4+ O(log® n).

have not yet had the opportunity to consider the variability of @Q,,.
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