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Abstract

The aim of this paper is to study the emergence of the giant component
in the uniformly grown random graph Gn(c), 0 < c < 1, the graph on
the set [n] = {1, 2, . . . , n} in which each possible edge ij is present with
probability c/ max{i, j}, independently of all other edges. Equivalently,
we may start with the random graph Gn(1) with vertex set [n], where
each vertex j is joined to each ‘earlier’ vertex i < j with probability 1/j,
independently of all other choices. The graph Gn(c) is formed by the
open bonds in the bond percolation on Gn(1) in which a bond is open
with probability c.

The model Gn(c) is the finite version of a model proposed by Dubins
in 1984, and is also closely related to a random graph process defined by
Callaway, Hopcroft, Kleinberg, Newman and Strogatz [8].

Results of Kalikow and Weiss [15] and Shepp [19] imply that the per-
colation threshold is at c = 1/4. The main result of this paper is that for
c = 1/4 + ε, ε > 0, the giant component in Gn(c) has order

exp
`
−Θ(1/

√
ε)

´
n.

In particular, the phase transition in the bond percolation on Gn(1) has
infinite order. Using non-rigorous methods, Dorogovtsev, Mendes and
Samukhin [9] showed that an even more precise result is likely to hold.

1 Introduction

The emergence of a giant component is one of the most frequently studied phe-
nomena in the theory of random graphs. Much of the interest is due to the fact
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that a giant component in a finite graph corresponds to an infinite component,
or ‘infinite cluster’, in percolation on an infinite graph. In fact, it can be ar-
gued that it is more important and more difficult to study detailed properties of
the emergence of the giant component than to study the corresponding infinite
percolation near the critical probability.

The quintessential example of the emergence of a giant component is in the
classical random graph model Gn,p, the graph with vertex set {1, 2, . . . , n} in
which each pair of vertices is joined with probability p, independently of all
other pairs. Let us say that an event holds with high probability (whp), if it
holds with probability tending to 1 as n →∞. In 1960, Erdős and Rényi [12, 13]
showed that the critical probability for Gn,p is 1/n: if c < 1 is a constant then
whp the largest component of Gn,c/n has O(log n) vertices, while there is a
function θ(c) > 0 such that for constant c > 1, whp Gn,c/n has a component of
order (θ(c)+o(1))n, and no other component of order larger than O(log n). The
proper ‘window’ of the phase transition was found much later by Bollobás [3] and
 Luczak [17]; for numerous other detailed and deep related results see [16, 14, 4].
In Gn,c/n the giant component emerges rather rapidly: the right-derivative of
θ(c) at c = 1 is 2; this makes the study of the phenomenon manageable. For a
discussion of this see [2].

Our task in this paper is considerably harder, since in the model we shall
study the giant component emerges much more slowly. Our model, Gn(c), is
the finite version of a model first proposed by Dubins in 1984 (see [15, 19]),
see below for details: it is parametrized by n, the number of vertices, and a
constant c > 0 to which edge probabilities are proportional, just as for Gn,c/n.
It can be read out of results of Kalikow and Weiss [15] and Shepp [19] that
there is a critical value c = 1/4 above which a giant component is present.
In Gn(c), the transition from having no giant component to having a giant
component is rather tantalizing, since it is very slow indeed. As we shall see,
for any c less than 1/4, whp the largest component of Gn(c) already contains
nΘ(1) vertices, which is much larger than the O(log n) we have in Gn,a/n, a < 1.
For c > 1/4, whp there is a giant component of order proportional to n, and
the other components are small. In fact, it is more than likely that there is a
function φ(c), equal to 0 for c ≤ 1/4 but positive for c > 1/4, such that whp
the largest component of Gn(c) has order (φ(c) + o(1))n. However, rather than
having positive right-derivative at the critical point, in this case every derivative
of φ(c) at c = 1/4 is zero. This phenomenon is often called a phase transition of
infinite order. Somewhat surprisingly, in spite of this extremely gentle growth of
the giant component, we shall be able to give good bounds on φ(c) from above
and below, showing, in particular, that φ(k)(1/4) = 0 for every k.

A somewhat similar, although less surprising, phenomenon was studied in [6],
where for a different model it was shown that for every positive value of the
appropriate parameter c there is a giant component, but its normalized size
has all derivatives zero at c = 0. Nevertheless, a gentle increase at the very
beginning is considerably less difficult to handle than a ‘sudden’ gentle increase
in a function which is zero up to some positive value.

Turning to the model, in [8], Callaway, Hopcroft, Kleinberg, Newman and
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Strogatz introduced a simple new model (which we shall call the CHKNS model)
for random graphs growing in time. They gave heuristic arguments to find the
critical point for the percolation phase transition in this graph, and numerical
results (from integrating an equation, rather than just simulating the graph)
to suggest that this transition has infinite order. Durrett [10] has recently
proved, among other results, that the critical probability they obtain is correct
(we return to this later). Non-rigorous arguments for an infinite order phase
transition in this and other models have been given by Dorogovtsev, Mendes
and Samukhin [9].

Here we consider an even simpler and more natural model, the uniformly
grown random graph, or ‘1/j-graph’. This is the finite version of a model pro-
posed by Dubins in 1984. We define the 1/j-graph G

1/j
n as the random graph

on {1, 2, . . . , n} in which each pair i < j of vertices is joined independently with
probability 1/j. We may think of Gn = G

1/j
n as a graph growing in time, where

each vertex joins to a set of earlier vertices chosen uniformly at random, the set
itself having a random size, which is essentially Poisson with mean 1. We study
the random subgraph Gn(c) of Gn obtained by selecting edges independently
with probability c < 1. Of course, Gn(c) can be defined directly by specifying
that each pair i < j is joined independently with probability c/j. With this
definition, values of c greater than one make sense, provided we replace c/j by
min{c/j, 1}. Since we are interested in behaviour below, at, or just above the
critical value c = 1/4, we shall not consider c > 1 here.

Kalikow and Weiss [15] showed that for c < 1/4 the infinite version G∞(c)
of Gn(c) is disconnected with probability one. It is implicit in their work that
whp the largest component in the finite graph Gn(c), c < 1/4, has order o(n).
In the other direction, Shepp [19] showed that for c > 1/4, G∞(c) is connected
with probability 1; his proof involved showing that Gn(c) has a component of
order Θ(n) with probability bounded away from zero. Hence, the threshold for
the emergence of a giant component in Gn(c) is at c = 1/4. A similar result for
a more general model was proved by Durrett and Kesten [11].

Here we study the size of the giant component above the threshold, showing
that the giant component emerges very slowly, having size exp(−Θ(ε−1/2))n as
n → ∞ with c = 1/4 + ε. Thus the phase transition is of ‘infinite order’. Our
method involves counting paths in the subcritical graph (with c < 1/4). We shall
comment on related results of Shepp [19], Durrett and Kesten [11], Zhang [24]
and Durrett [10] in the body of the paper.

Although we work throughout in terms of the 1/j-graph, as it has a simpler
and more natural static description, we shall show at the end that all our results
carry over to the CHKNS model. This is also true of the earlier threshold results,
which predate the CHKNS model by more than 10 years!

The threshold for emergence, and even the size, of the giant component has
been studied for various inhomogeneous random graphs by several people. For
example, Söderberg [20, 21, 22] considers a general model with finitely many
types of vertices, giving formulae for the critical point and giant component
size without proof. This model does not cover cases such as that studied here.
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Other specific models are the LCD graph of [5], or the Barabási-Albert model
of [1]; see [6] for results about these models as well as further references. Yet
another growing graph model was introduced by Turova [23]. Although we shall
not consider this model here, it may well be that our methods are applicable to
it.

1.1 Relationship to earlier rigorous work

We shall make frequent reference to the work of Durrett [10] on the CHKNS
model. The relationship of our work to his is as follows. The existence of
Durrett’s work was public before our work started (see [18]). Durrett’s paper [10]
was published, and we became aware of his work, after the first draft of this
paper was completed.

Using non-rigorous methods, Dorogovtsev, Mendes and Samukhin [9] ob-
tained an extremely precise formula for the size of the giant component in the
CHKNS model, which would imply our main results, namely Theorems 3 and 4
(see Section 11). However, as rigorous mathematical theorems, these results are
new. Certain of our intermediate results were proved in different forms in [10],
and some in even earlier work. In some cases the results in [10] are stronger, in
some cases our results are stronger. For the most important case, equation (5)
of Theorem 7, the bound given by Durrett [10] is exactly the same, although his
methods are entirely different from ours.

For the value of the critical probability, Durrett [10] gave the first proof
for the CHKNS model. As we have pointed out, the result for the 1/j-graph,
our main focus, follows immediately from results of Kalikow and Weiss [15]
and Shepp [19]. One can easily translate this result to the CHKNS model.
Durrett argues directly in the CHKNS model using the method of Durrett and
Kesten [11], which generalizes [19]. In any case, as stated in [10], the value
of the critical probability for the CHKNS model was (essentially) determined
rigorously at least 10 years before the introduction of the model.

2 Results

For a graph G we write C1(G) for the order of the largest component of G. We
say that an event holds with high probability (whp) if it holds with probability
tending to 1 as n → ∞. Although our focus is the supercritical graph Gn(c),
c > 1/4, we shall prove our results by counting paths in the subcritical graph
Gn(c), c < 1/4. In addition to proving the new bound we shall actually need,
our path counting methods give us as a side effect different proofs of some
known results. In particular, we shall re-prove the following result, an immediate
consequence of results of Zhang [24].

Theorem 1 (Implicit in Zhang [24]). If ω(n) → ∞ then whp we have
C1(Gn(1/4)) ≤ ω

√
n log n.

In other words, C1(Gn(1/4)) = Op(
√

n log n). In particular, at, or below,
c = 1/4 there is no giant component in Gn(c). A stronger bound, removing
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the log factor, follows from results of Durrett [10], who also gives a bound
O(
√

n/ log n) on the size of the component containing vertex 1.
Below the critical point, Gn(c) and the classical model Gn,a/n behave very

differently. For 0 < a < 1, the largest component of Gn,a/n has order O(log n)
whp as n → ∞. In contrast, for any 0 < c < 1/4, the graph Gn(c) has
whp a component of order some power of n. In the following result, β(c) =
1/2−

√
1/4− c, a function that will play an important role in all our proofs.

Theorem 2. For any c < 1/4 the expected size of the component of Gn(c)
containing the vertex 1 is O(nβ(c)). Also, for any 0 < c′ < c < 1/4, whp the
component of Gn(c) containing the vertex 1 has size at least nc′ .

The upper bound in Theorem 2 has been obtained independently by Dur-
rett [10]; see Section 5.1 for details. The rather crude lower bound establishes
that for any positive c the largest component of Gn(c) has order nΘ(1).

We now turn to our main results, giving upper and lower bounds on the size
of the giant component for c > 1/4. Perhaps the most important is the upper
bound, which shows that the phase transition has infinite order.

Theorem 3. For any η > 0 there is an ε(η) > 0 such that if 0 < ε < ε(η) then

C1(Gn(1/4 + ε)) ≥ exp
(
−π + η

2
√

ε

)
n

holds whp as n →∞.

Theorem 4. For any η > 0 there is an ε(η) > 0 such that if 0 < ε < ε(η) then

C1(Gn(1/4 + ε)) ≤ exp
(
−1− η

2
√

ε

)
n

holds whp as n →∞.

Taken together, Theorems 3 and 4 show that as n → ∞ with ε fixed, the
largest component of Gn(1/4 + ε) has order exp(−Θ(1/

√
ε))n, where the Θ(.)

refers to ε → 0.
For the closely related CHKNS model, Dorogovtsev, Mendes and Samukhin [9]

use very different methods to obtain a very precise formula for the size of the
giant component (although presumably one should interpret = in their equation
(C10) as ∼). Their argument is not rigorous (see Section 11, or [10]); however,
it may well be possible to make it rigorous. In this case, it would certainly
follow that

C1(Gn(1/4 + ε)) = exp
(
−π + o(1)

2
√

ε

)
n.

The formula in [9] for the CHKNS model gives even the limiting value as ε → 0
of the constant in front of the exponential factor, but there would be some loss
of accuracy involved when translating this result to Gn(c) by a straightforward
comparison argument.
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A much weaker lower bound than Theorem 3 is implicit in the work of
Shepp [19] who used it to show that the infinite graph is connected with prob-
ability 1. Using his method, or that of Durrett and Kesten [11], one obtains a
bound with C/ε in the exponent, rather than C/

√
ε. For the CHKNS model, a

lower bound with C/ε in the exponent has been obtained in this way by Dur-
rett [10]. Our lower bound is obtained using a general result bounding from
below the size of the giant component in a certain inhomogeneous graph, in
terms of an eigenfunction of the associated continuous operator. This result,
given in Section 8, is not in general best possible but gives a very good bound
here. Indeed, the arguments of [9] suggest that the constant π/2 in the exponent
in Theorem 3 is best possible.

As mentioned in the introduction, above the critical probability, the second
largest component is rather small.

Theorem 5. Let c > 1/4 be fixed. Then whp the second largest component of
Gn(c) has order at most (log n)4.

Most likely, the real size of the second largest component is O(log n) above
the critical probability, as in G(n, c/n). This is what one would expect from the
exponential decay of exponent sizes described in [9].

So far we have considered the graph analogue of bond percolation. In-
stead one could consider the analogue of site percolation: starting with a graph
G = Gn, instead of selecting edges independently with probability c to obtain
a subgraph G(c), we could select vertices independently with probability c to
obtain an induced subgraph G′(c). Both types of deletion are commonly con-
sidered in percolation questions: in some contexts, for example looking at the
robustness of the internet graph, vertex deletion is more natural. Here there is
no difference.

Remark. All the results of this section hold with the vertex deleted graph
G′

n(c) in place of Gn(c).

This is easy to see from the nature of the arguments we use. In particular, we
prove all our upper bounds on component sizes by counting expected numbers
of paths. For any G, any given path is less likely to be present in G′(c) than in
G(c), in fact by exactly a factor c. So all bounds on expected numbers of paths
proved for Gn(c) are valid for G′

n(c). For the lower bound, Theorem 3, we use
a neighbourhood expansion argument. Usually such arguments have an extra
factor c for vertex deletion (which would not affect the result as stated); in fact,
looking at the details of the non-standard argument in Section 8, the proof goes
through essentially unchanged for G′

n(c), with no extra factor.
In the proofs that follow we shall omit b.c and d.e signs where their omission

makes no difference to the argument. Surprisingly, in one of our arguments we
cannot simply replace x by bxc, even when x is large; see the end of Section 6.
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3 Exponents

To prove Theorems 1 and 4 we use path counting arguments, bounding the
expected number of paths between certain vertices in Gn(c). Much of the time,
it will be more convenient to work in the infinite graph G∞(c) with vertex set
{1, 2, . . . , }, in which each pair i < j is joined independently with probability
c/j. We shall write K∞ for the complete graph on {1, 2, . . . , }, so G∞(c) ⊂ K∞.

The arguments in the next two sections will use a ‘renormalization’ method,
in which paths in G∞(c) are replaced by paths in a similarly defined graph
with different edge probabilities, of the form α(j/i)β/j. Repeated application
of this argument leads to a series of exponents αk, βk whose limiting behaviour
we shall need to analyze. Throughout this paper c will be the edge-probability
parameter used to define Gn(c) or G∞(c). For this and the next two sections,
we restrict our attention to c ≤ 1/4.

Let (α0, β0) = (c, 0), and for k ≥ 0 let

(αk+1, βk+1) =
(

α2
k

1− 2(αk + βk)
, αk + βk

)
, (1)

assuming for the moment that αk +βk < 1/2 for every k, so there is no problem
with the division, and αk+1 is positive. Note that βk =

∑
i<k αi, so βk is an

increasing sequence. Let β = β(c) = limk→∞ βk.
If c = 1/4, then it is easy to check that αk = 2−(k+2), βk = 1/2 − 2−(k+1),

and β = 1/2. Now, for each k > 0, αk and βk are increasing functions of αk−1,
βk−1, and hence, inductively, of c. Thus, for any c ≤ 1/4, αk and βk are bounded
above by the values for c = 1/4. In particular, the assumption αk + βk < 1/2
does indeed hold for every k. Furthermore, αk → 0, and the limit βk exists and
is at most 1/2.

For each k, let θk = (1− 2(αk + βk))2 − 4α2
k. For k ≥ 0 we have

θk+1 = (1− 2βk+1 − 2αk+1)2 − 4α2
k+1

= (1− 2βk+1)2 − 4(1− 2βk+1)αk+1

= (1− 2(αk + βk))2 − 4α2
k = θk.

Thus for every k we have θk = θ0 = (1 − 2c)2 − 4c2 = 1 − 4c. Since αk → 0 it
follows that βk → 1/2−

√
1/4− c. In other words, for any c ≤ 1/4 we have

β(c) = 1/2−
√

1/4− c.

4 Paths between 1 and 2

This is a warm-up for the next section, but we shall essentially re-use the proof,
so there isn’t much harm in writing it out separately.

Theorem 6. For c ≤ 1/4 the expected number of paths in G∞(c) between
vertices 1 and 2 is at most

∑
k≥0 αk(c)2−βk(c) ≤ β(c).
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Hence, at c = 1/4, the probability that 1 and 2 lie in the same component
is at most β(1/4) = 1/2.

Note that Shepp [19] used a very different method to bound the expected
number of 1-2 paths in G∞(c), obtaining∑

k≥0

ck+1

(
2k

k

)
1

k + 1

as an upper bound. This sum is essentially the generating function for the
Catalan numbers, and is 1/2−

√
1/4− c = β(c) exactly!

Proof of Theorem 6. Monotone paths (of the form x0x1 · · ·xt with x0 < x1 <
· · · < xt) are easy to deal with, so we think of a general path as a zigzag of
monotone paths. In fact, we’ll sum over the tops of the zigzags, and deal with
hooks. By an x-y hook we shall mean an x-y path which consists of a monotone
increasing x-z path followed by a monotone decreasing z-y path, where z is
strictly greater than max{x, y}.

Now any 1-2 path in K∞ is either a single edge, or a series of hooks stuck
together. More precisely, let P be a 1-2 path with more than 1 edge, and let
x0, x1, . . . , xr be the local minima of P in the order they appear along P . Since
1 and 2 are the two minimum vertices, the endpoints of P are local minima,
so x0 = 1 and xr = 2. Hence, as any path zigzags between local minima and
local maxima, P consists of an x0-x1 hook followed by an x1-x2 hook, and so
on. Note that x0x1 · · ·xr is a 1-2 path strictly shorter than P .

Given any path P ′, to expand P ′ will mean to replace every edge of P ′ by a
hook. Thus, the 1-2 path P is obtained by expanding a shorter 1-2 path, and any
1-2 path is obtained by expanding the single edge 1-2 path some non-negative
number of times.

By a k-fold expansion of a path P we mean any path obtained by expanding
P k times. Note that an l-fold expansion of a k-fold expansion of P is a (k + l)-
fold expansion of P . Let us call a k-fold expansion of a single edge ab a level-k
path, so any 1-2 path is a level-k path for some k. Note that any level-k a-b
path is a (k − 1)-fold expansion of an expansion of P = ab, i.e., a (k − 1)-fold
expansion of an a-b hook. Since expansion operates separately on the edges in a
path, it follows that any level-k path can be obtained from a hook by replacing
each edge by a level-(k − 1) path; this is how we calculate.

Claim. Let αk = αk(c) and βk = βk(c) be the quantities defined in Section 3.
Then for k ≥ 0 and a < b the expected number Nk(a, b) of level-k a-b paths is
at most

αka−βkb−1+βk .

We prove the claim by induction on k; for k = 0 there is nothing to prove,
as α0 = c and β0 = 0. To prove the induction step, fix a < b and recall that
any level-(k + 1) a-b path can be obtained from a hook a = x0 < x1 < · · · <
xr = z = ys > · · · > y1 > y0 = b by replacing the edges by edge-disjoint level-k
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paths. (In fact the paths are internally vertex disjoint, but we shall not use this.)
Since edge-disjoint paths are present independently in G∞(c), the expectation
Nk+1(a, b) is at most

∑
r,s≥1

∑
a=x0<x1<···<xr=z=ys>···>y1>y0=b

r−1∏
i=0

Nk(xi, xi+1)
s−1∏
i=0

Nk(yi, yi+1), (2)

where the sums simply run over all a-b hooks, and, as usual, an empty product
has value 1.

[It is not important, but to make the derivation of (2) absolutely clear, let us
note that we are not using the (non-trivial) van den Berg-Kesten inequality, but
rather the following trivial special case: Suppose that Aj , 1 ≤ j ≤ J , are families
of sets of edges of K∞, G∞ is a random subgraph of K∞ obtained by selecting
edges independently with certain probabilities, Xj = |{A ∈ Aj : A ⊂ E(G∞)}|,
A is the set of disjoint J-tuples (A1, . . . , AJ) with Aj ∈ Aj , and X is the number
of (A1, . . . , AJ) ∈ A with

⋃
Aj ⊂ E(G∞). Then E(X) ≤

∏J
j=1 E(Xj). Indeed,

E(X) =
∑

(A1,...,AJ )∈A

∏
j

Pr(Aj ⊂ E(G∞)) ≤
∏

E(Xj),

where the equality follows from the disjointness of the Aj , and the inequality
from the fact that the final product is equal to the sum of the same summand
over the larger set of all tuples (A1, . . . , AJ) with Aj ∈ Aj .]

Using the induction hypothesis, the first product in (2) can be bounded as
follows:

r−1∏
i=0

Nk(xi, xi+1) ≤ αr
k

r−1∏
i=0

x−βk

i x−1+βk

i+1 = αr
ka−βkz−1+βk

r−1∏
i=1

x−1
i , (3)

as x0 = a, xr = z. Fixing z and summing over the internal vertices in the a-z
path, we obtain

∑
r≥1

∑
a=x0<x1<···<xr=z

r−1∏
i=0

Nk(xi, xi+1)

≤ αka−βkz−1+βk

∑
r≥1

∑
a<x1<···<xr−1<z

r−1∏
i=1

αk

xi

= αka−βkz−1+βk

z−1∏
j=a+1

(1 + αk/j),

where the first step follows from applying (3) to each summand, and the last
step simply by expanding the product in the final line. Let us write S(a, z) for∏z−1

j=a+1(1 + αk/j). Then, bounding the sum over y1 < · · · < ys−1 of the second
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product in (2) in the same way, we see that Nk+1(a, b) is at most

Nk+1(a, b) ≤
∞∑

z=b+1

(
αka−βkz−1+βkS(a, z)

) (
αkb−βkz−1+βkS(b, z)

)
= α2

ka−βkb−βk

∑
z>b

z−2+2βkS(a, z)S(b, z).

Now log(1 + x) ≤ x, so

log S(a, z) ≤
z−1∑

j=a+1

αk

j
<

∫ z−1

x=a

αk

x
dx = αk log((z − 1)/a) < αk log(z/a). (4)

Hence S(a, z) < (z/a)αk , and

Nk+1(a, b) ≤ α2
ka−βkb−βk

∑
z>b

z−2+2βkz2αka−αkb−αk

= α2
ka−βk+1b−βk+1

∑
z>b

z−2+2βk+1

< α2
ka−βk+1b−βk+1

∫ ∞

z=b

z−2+2βk+1dz

=
α2

k

1− 2βk+1
a−βk+1b−1+βk+1 ,

completing the proof of the induction step, and hence of the claim. Note that
we used βk+1 < β(c) ≤ 1/2 here to ensure convergence of the final integral.

To complete the proof of the theorem, note that the expected number of 1-2
paths is at most

∑∞
k=0 Nk(1, 2) ≤

∑
k αk2−1+βk ≤

∑
k αk = β(c), as claimed.

5 Below the critical probability

In this section we give an upper bound on the expected number of paths between
two given vertices in the subcritical graph Gn(c), c < 1/4. We shall use this
bound in the next section to establish slow emergence of the giant component
above c = 1/4.

The counting is a little more complicated than in the previous section, as
the endpoints of a general path need not be minima. We fix s < t and aim
to bound the expected number of s-t paths. As before, we write β = β(c) =
1/2 −

√
1/4− c for the function defined in Section 3, and used repeatedly in

Section 4.

Theorem 7. For s < t and c < 1/4 the expected number of s-t paths in G∞(c)
is at most (

β + β2/(1− 2β)
)
s−βt−1+β . (5)
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For s < t the expected number of s-t paths in G∞(1/4) is at most

3 + log s

4
√

st
. (6)

We shall not in fact use the second statement, which is essentially the same
as the result of Zhang [24], who obtained a bound c1 log s/

√
st (the upper bound

in his equation (2)) by a very different method. We state (6) because we obtain
it from our proof of the result we shall need, namely (5).

In [10] Durrett sketches a proof of exactly the same bound (5), with the
constant written in the simpler form 2δ/

√
1− 8δ, where 2δ corresponds to c.

His proof uses very different methods from ours. He also sketches a proof of a
stronger form of Zhang’s bound applicable to Gn(1/4) rather than G∞(1/4).

Before turning to the proof of Theorem 7 let us note the following corollary,
concerning the total number of paths in G. Here, and throughout, we do not
count a single vertex as a path.

Corollary 8. For c < 1/4 the expected number of paths in Gn(c) is at most
f(c)n, where f(1/4 − ε) = Θ(1/

√
ε). For n ≥ e3 the expected number of paths

in Gn(1/4) is at most n log n.

Durrett’s stronger bound [10] removes the log factor when c = 1/4.

Proof. Suppose first that c < 1/4. Fix n ≥ 2 and 1 ≤ s < t ≤ n. By Theorem 7
the expected number of paths from s to t in G∞(c) is at most(

β + β2/(1− 2β)
)
s−βt−1+β .

Since we may consider Gn(c) as a subgraph of G∞(c), this is also an upper
bound for the expected number of s-t paths in Gn(c). Summing over s < t we
see that the total expected number of paths in Gn(c) is at most∑

1≤s<t≤n

(
β + β2/(1− 2β)

)
s−βt−1+β .

With t fixed we have∑
s<t

s−β <

∫ t

0

s−βds = t1−β/(1− β),

so the expected number of paths is at most f(c)n, where

f(c) = (β + β2/(1− 2β))/(1− β),

which is Θ(1/
√

1/4− c) as c → 1/4.
Suppose now that c = 1/4. This time we use the bound (6) from Theorem 7.

Crudely, we have 3 + log s ≤ 3 + log n ≤ 2 log n, for n ≥ e3. Thus the expected
number of paths in Gn(1/4) is at most∑

1≤s<t≤n

log n

2
√

st
≤ log n

2

∫
0≤x≤y≤n

1
√

xy
dxdy = n log n.

11



As an immediate consequence we have the following result concerning the
largest component C1(G) of G, which is just Theorem 1 of Section 2, and is
implicit in the work of Zhang [24]. A stronger result, removing the log n factor,
has been given by Durrett [10].

Corollary 9. Let ω(n) →∞. Then the probability that C1(Gn(1/4)) ≥ ω
√

n log n
tends to zero as n →∞.

Proof. The number of paths in any graph G is at least
(
C1(G)

2

)
, so the result

follows from Corollary 8 by Markov’s inequality.

Thus, although this is not how we shall use it, Theorem 7 incidentally gives
the known lower bound on the critical probability for Gn(c).

Proof of Theorem 7. Let c ≤ 1/4 and 1 ≤ s < t be fixed throughout. We shall
work in G∞(c).

Given an s-t path P , let the simplification S(P ) of P be the s-t path whose
internal vertices are those internal vertices of P that are local minima in P .
Note that S(P ) is strictly shorter than P unless all internal vertices are local
minima, i.e., P = st or P = sat for some a < s. Let us call paths of these two
types basic. Thus, for any s-t path P , repeatedly applying the simplification
operation S(.) we eventually reach a basic path, which is unchanged by further
applications of S(.).

Given an s-t path P ′, which paths P have S(P ) = P ′? Internal edges in P ′

correspond to paths in P between consecutive minima, i.e., hooks, but external
edges may correspond either to hooks or to monotone paths in P .

Let us call the edge ab, a < b, of K∞ (or of an s-t path) special if b = s or
b = t, and normal otherwise. Note that the classification of an edge depends
on its upper endpoint (i.e., max{i, j} if the edge is ij), so we shall often write
a particular edge that we are considering as ij, i < j. For an s-t path P , every
normal edge in S(P ) comes from a hook, while special edges may come from a
hook or from a monotone path. We classify edges of K∞ of the form sb, s < b,
b 6= t, as normal since, if such an edge arises in the simplification P ′ = S(P ) of
an s-t path, then b is a local minimum in P ; more precisely, b is the first internal
local minimum in P . Since b > s it follows that the part of P from s to b must
be a hook. The same argument applies to edges tb, b > t.

For a normal edge ab, a < b, let us define the expansions of ab to be the a-b
hooks not meeting {s, t} except, possibly, at a. Note that the expansion of a
normal edge is a path consisting of normal edges. For a special edge ab, a < b,
the expansions of ab are a-b hooks together with monotone a-b paths, in both
cases subject to the restriction of not meeting {s, t} except at b and, possibly, at
a. An expansion of a path is a path obtained by expanding each edge. We have
chosen the definitions so that any s-t path P is an expansion of S(P ). Hence,
any s-t path P is, for all sufficiently large k, obtainable from some basic path
by k-fold expansion.

As before, for a < b we inductively bound Ek(a, b), the expected number k-
fold expansions of the path P = ab which are present in G∞(c), again in terms

12



of the quantities αk, βk defined in Section 3. We use different notation here and
in Section 4 (Ek rather than Nk) as the notions of expansion are different. Note
that from the remarks above the expected number of s-t paths is at most

sup
k

Ek(s, t) +
∑
a<s

sup
k

Ek(a, s)Ek(a, t), (7)

recalling that for a special edge the expectation Ek(a, b) is non-decreasing in k,
as we may expand the edge to itself if we wish, and that any s-t path is a k-fold
expansion of a basic path for some k, and hence for all sufficiently large k.

Now for a normal edge ab, a < b, expansion replaces ab by a hook of normal
edges, so, using results from Section 4, we have

Ek(a, b) ≤ Nk(a, b) ≤ αka−βkb−1+βk . (8)

(The first inequality would be equality were it not for the technicality that we
have excluded s and t.)

For a special edge ab, a < b, b ∈ {s, t}, we claim that

Ek(a, b) ≤ βk+1a
−βkb−1+βk . (9)

Again the proof is by induction on k, and as β1 = α0 = c the base case k = 0
is trivial. To prove the induction step, fix a < b, and consider any (k + 1)-fold
expansion of the special edge ab. As in Section 4, this expansion can be viewed
as a k-fold expansion of an expansion P of ab. If the first expansion from ab
to P replaces ab by a hook, this is a hook of normal edges, so, as before, the
expected number of paths obtained in this way present in G∞(c) is at most

X1 = αk+1a
−βk+1b−1+βk+1 . (10)

On the other hand, if the first step is to expand to a monotone path a = x0 <
x1 < · · · < xr = b, then the edge xr−1b is special while the other edges are
normal. Using (8) and the induction hypothesis (9), the expected number of
paths obtained this way is at most

X2 =
∑
r≥1

∑
a=x0<x1<···<xr=b

βk+1α
r−1
k a−βkb−1+βk

r−1∏
i=1

x−1
i .

(The product collapses exactly as the second product in (3); the only difference
for the special edge is a factor of βk+1 instead of αk.) Arguing as before we may
bound X2 by βk+1a

−βkb−1+βkS(a, b), where, as before, S(a, b) =
∏b−1

j=a+1(1 +
αk/j). Using our bound (4) on log S(a, b), we obtain

X2 ≤ βk+1a
−βkb−1+βk(b/a)αk = βk+1a

−βk+1b−1+βk+1 .

Putting the bounds above together, we have

Ek+1(a, b) ≤ X1 + X2 ≤ (αk+1 + βk+1)a−βk+1b−1+βk+1 .

13



Since αk+1 + βk+1 = βk+2, this proves the induction step, and so completes the
proof of (9).

Writing, as before, β for β∞ = limk→∞ βk, we see that as k increases, for a
special edge ab our upper bound (9) on Ek(a, b) increases to βa−βb−1+β . Hence,
from (7), the expected number EP (s, t) of s-t paths is bounded by

βs−βt−1+β +
s−1∑
a=1

β2a−2βs−1+βt−1+β .

Suppose first that c < 1/4. Then β < 1/2, so

s−1∑
a=1

a−2β <

∫ s

x=0

x−2βdx =
s1−2β

1− 2β
,

implying that

EP (s, t) ≤ βs−βt−1+β +
s1−2β

1− 2β
β2s−1+βt−1+β

=
(
β + β2/(1− 2β)

)
s−βt−1+β .

For c = 1/4, when β = 1/2, we have
∑s−1

a=1 a−2β ≤ 1 + log s, so

EP (s, t) ≤ 3 + log s

4
√

st
,

completing the proof.

5.1 The component containing the first vertex

This subsection is a slight diversion from our main course, but again uses path
counting arguments. We aim to prove Theorem 2, giving upper and lower
bounds on the size of the component containing vertex 1 in Gn(c), c < 1/4.

Proof of Theorem 2. Fix c < 1/4. The upper bound follows from Theorem 7 in
a similar way to Corollary 8: from (5), the expected number of paths in Gn(c)
from vertex 1 to vertex t is at most(

β + β2/(1− 2β)
)
t−1+β .

Summing over t, the expected size of the component containing 1 is at most

1 +
(
β + β2/(1− 2β)

) n∑
t=2

t−1+β = Θ(nβ),

where we once again use comparison with an integral to bound the sum.
For the lower bound we argue directly, and rather crudely, considering only

monotone paths. Given 0 < c′ < c, choose any c′′ strictly between c′ and c, and
let ε be a very small constant (depending on c′, c′′ and c) to be chosen later.
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For 0 ≤ r ≤ T , set tr = nε(1 + ε)r, where T is chosen so that (1 − ε)n ≤
tT ≤ n. We ignore rounding and treat tr as an integer; this makes no difference
to the argument. For 0 ≤ r ≤ T , set sr = (ε2 log n)(1 + ε)c′′r, again ignoring
rounding. Note that s0 = Θ(log n), while sT = (ε2 log n)(tT /t0)c′′ , which is at
least nc′ if ε is chosen small enough and n is large.

We shall show that with very high probability the subgraph Gtr (c) of Gn(c)
induced by the first tr vertices is such that the component C1(tr) containing
vertex 1 has order at least sr.

For r = 0 this is easy to check: the expected degree of vertex 1 in Gt0(c) is

t0∑
j=2

c

j
∼ c log t0 ∼ εc log n,

which, for ε small, is much larger than s0. Since vertices are joined to 1 inde-
pendently, it is easy to check (for example by computing the variance and using
Chebyshev’s inequality) that with high probability the degree of 1 in Gt0(c) is
at least half its expectation, say, and hence at least s0.

Suppose now that the component C1(tr) of Gtr
(c) containing vertex 1 has

order at least sr, and let us condition on Gtr (c). For each j, tr < j ≤ tr+1, the
conditional probability that j is joined to C1(tr) is at least

(1− ε)
csr

tr+1
.

Indeed the probability that j is joined directly to any given earlier vertex is
c/j ≥ c/tr+1, so the expected number of edges from j to C1(tr) is at least
µ = csr/tr+1. Since each possible edge from j to C1(tr) is present independently,
and µ ≤ cs0/t1 = o(1), the probability that at least one edge from j to C1(tr)
is present is at least (1− ε)µ.

It follows that the number X(r) of vertices j with tr < j ≤ tr+1 joined to
C1(tr) stochastically dominates a binomial distribution with mean

(1− ε)(tr+1 − tr)
csr

tr+1
≥ εc(1− ε)2sr.

Now as sr is reasonably large, namely at least s0 = Θ(log n), it follows from the
Chernoff bounds that there is a γ > 0 such that with probability at least 1−n−γ

we have X(r) ≥ εc(1 − ε)3sr. But choosing ε small enough, c(1 − ε)4 > c′′,
so with high probability we have X(r) ≥ ε

1−εc′′sr > sr+1 − sr, and hence
|C1(tr+1)| ≥ sr+1.

In summary, given that |C1(tr)| ≥ sr, with probability at least 1 − n−γ we
have |C1(tr+1)| ≥ sr+1. As |C1(t0)| ≥ s0 whp and T = O(log n) = o(nγ), it
follows that whp we have |C1(tT )| ≥ sT ≥ nc′ , completing the proof.

The argument for the lower bound is very simple, relying only on monotone
paths, and the bound obtained is likely to be far from the truth. In fact, we
believe that there isn’t much overcounting in the upper bound, and that there
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is a great deal of independence. Hence, we believe that whp the component
containing vertex 1 has order nβ(c)−o(1) as n →∞ with c < 1/4 fixed. It might
be possible to show this using second moment or Janson inequality methods, but
this would involve dealing with arbitrary paths: we cannot restrict to monotone
paths, or level-k paths for any fixed k, and hope to obtain the correct exponent.
Thus the calculations are likely to be rather involved, as are the lower bounds
given by Zhang [24] and Durrett [10] on the probability that two given vertices
lie in the same component.

The upper bound in Theorem 2 has been obtained independently by Dur-
rett [10], who also raises the question as to whether the size of the component
containing 1 is close to its expectation. He also says ‘it seems likely that the
component containing 1 will with high probability be the largest component’.
This is easily seen to be false; as shown in Section 4, or from Shepp [19], the
expected number of paths between vertices 1 and 2 in Gn(c), c ≤ 1/4, is at
most 1/2. Thus with probability at least 1/2 the vertices 1 and 2 lie in different
components. Now the first two vertices are not in fact distinguished by the
model, so with probability at least 1/4 the component containing vertex 2 is
different from, and at least as large as, the component containing 1. Actually,
it is easy to see that for c ≤ 1/4 fixed and for any fixed k, there is a positive
probability that the first k + 1 vertices of Gn(c) lie in different components,
and hence a positive probability that the component containing vertex 1 is not
one of the k largest. If one writes Ck = Ck(Gn(c)) for the order of the kth
largest component, for c < 1/4 we expect the vector (C1n

−β(c), . . . , Ckn−β(c))
to converge in distribution as n →∞, to some non-trivial random vector, each
of whose marginals will have positive density on all of (0,∞).

6 An upper bound on the giant component

Although Theorem 7 only applies when c ≤ 1/4, we can nonetheless use it to
obtain results about Gn(c) for c = 1/4+ε, by considering the graph as the union
of two graphs Gn(c1), Gn(c2) with c1, c2 < 1/4. We end up with a comparison to
a graph in which each edge ij is present independently with probability p/

√
ij.

This graph is much easier to handle than Gn(c), and has a giant component
for any p > 0, but it is easy to see that the giant component is very small: a
corresponding result for a much more complicated model is given in [6].

Proof of Theorem 4. Let us recall the statement of the theorem: η > 0 is given,
and we must show that there is an ε(η) > 0 such that if 0 < ε < ε(η) then we
have

C1(Gn(1/4 + ε)) ≤ exp
(
−1− η

2
√

ε

)
n

holding whp as n →∞.
We shall view Gn(1/4 + ε) as the union of Gn(1/4− ε) and Gn(2ε), and use

Theorem 7. Recall that β(c) = 1/2 −
√

1/4− c. Thus β(1/4 − ε) = 1/2 −
√

ε,
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and β(ε) = ε+O(ε2). To avoid square roots, it will be natural to work in terms
of δ =

√
ε, considering Gn(1/4− δ2) and Gn(2δ2).

To be precise, let δ > 0 be fixed throughout. We shall assume, as we
may, that δ is smaller than some very small constant. In various places this
assumption will be needed for our estimates to hold; we shall use it without
comment. Set c1 = 1/4 − δ2, c2 = 2δ2 and c = 1/4 + δ2 = c1 + c2. We
construct simultaneously three graphs G = Gn(c), G1 and G2 on the vertex set
{1, 2, . . . , n}, so that Gr has the distribution of Gn(cr), and G = G1 ∪ G2. To
do this, first construct G = Gn(c) in the usual way, selecting each edge ij, i < j
independently with probability c/j. Then for each edge e present in G, toss a
biased coin, putting the edge into G1 with probability c1/c and into G2 with
probability c2/c = 1− c1/c. We do this independently for each edge. Note the
following key facts. Firstly, G is exactly the edge-disjoint union of the graphs
G1 and G2. Secondly, Gr does indeed have the distribution of Gn(cr). Finally,
while G1 and G2 are not independent, from the independence in the definition
of G and in the partitioning of G, for {i, j} 6= {i′, j′}, the presence of the edge
ij in either of G1, G2 is independent of the presence of i′j′ in either graph.

As c1 = 1/4 − δ2 we have β(c1) = 1/2 − δ. Thus, from Theorem 7, for
1 ≤ s < t ≤ n the expected number N1(s, t) of s-t paths in G1 satisfies

N1(s, t) ≤ (1/8 + o(1))δ−1s−
1
2+δt−

1
2−δ. (11)

Similarly, the expected number N2(s, t) of s-t paths in G2 satisfies

N2(s, t) ≤ (2 + o(1))δ2s−ε′t−1+ε′ , (12)

where ε′ = β(2δ2) = 1/2 −
√

1/4− 2δ2 = (2 + o(1))δ2. The implicit functions
in the o(.) terms depend on δ only, not n, s or t.

For s < t let us bound N12(s, t), the expected number of s-t paths in Gn(c) =
G1 ∪ G2 consisting of an s-u path in G1 followed by a u-t path in G2, where
u /∈ {s, t}. From (11), (12) and independence, we have

N12(s, t) ≤ (1/4 + o(1))δ

( ∑
0<u<s

u−
1
2+δs−

1
2−δu−ε′t−1+ε′

+
∑

s<u<t

s−
1
2+δu−

1
2−δu−ε′t−1+ε′ +

∑
u>t

s−
1
2+δu−

1
2−δt−ε′u−1+ε′

)
.

Now each sum over u can be bounded by an integral with the same limits,
because of the strict inequalities in the limits of the sums. Thus

N12(s, t) ≤ (1/4 + o(1))δ
(

s−
1
2−δt−1+ε′

∫ s

u=0

u−
1
2+δ−ε′du

+s−
1
2+δt−1+ε′

∫ t

u=s

u−
1
2−δ−ε′du + s−

1
2+δt−ε′

∫ ∞

u=t

u−
3
2−δ+ε′du

)
.
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The integrals are convergent, so

N12(s, t) ≤ (1/4 + o(1))δ

(
s−ε′t−1+ε′

1
2 + δ − ε′

+
−s−ε′t−1+ε′ + s−

1
2+δt−

1
2−δ

1
2 − δ − ε′

+
s−

1
2+δt−

1
2−δ

1
2 + δ − ε′

)
= (1 + o(1))δs−

1
2+δt−

1
2−δ − (2 + o(1))δ2s−ε′t−1+ε′

≤ (1 + o(1))δs−
1
2+δt−

1
2−δ ≤ (1 + o(1))δ√

st
,

where the last step is rather crude, and just uses s < t. We also need to
bound N21(s, t), the expected number of s-t paths in G consisting of an s-u
path in G2 followed by a u-t path in G1, where u /∈ {s, t}. (There is no obvious
symmetry, as we used s < t, and the formulae for individual edge probabilities
are not symmetric in the endpoints.) As before, for s < t, from (11), (12) and
independence, we have

N21(s, t) ≤ (1/4 + o(1))δ

( ∑
0<u<s

u−ε′s−1+ε′u−
1
2+δt−

1
2−δ

+
∑

s<u<t

s−ε′u−1+ε′u−
1
2+δt−

1
2−δ +

∑
u>t

s−ε′u−1+ε′t−
1
2+δu−

1
2−δ

)
.

Bounding the sums by integrals with the same limits, as before, after straight-
forward calculation one obtains N21(s, t) ≤ (1 + o(1))δ/

√
st. In fact, the upper

bound on N21(s, t) obtained is exactly the same as our upper bound on N12(s, t):
a different set of integrals sum to the same bound.

Let us remark that our final bounds are symmetric in s and t; this will again
be crucial, allowing us to define Nij(s, t) = Nij(t, s) for s > t and still to use
the same bound,

Nij(s, t) ≤ (1 + o(1))δ√
st

, (13)

for {i, j} = {1, 2}. Similarly, defining Ni(s, t) = Ni(t, s) for s > t, it will be
useful to note the crude bound

N1(s, t) + N2(s, t) ≤ 1
4δ
√

st

which follows very crudely from (11) and (12), using ε′ < 1/2, and assuming δ
sufficiently small to bound the o(1) terms.

The key idea is to use (13) to make an appropriate comparison with a graph
in which each edge ij is present independently with probability p/

√
ij, where

p = (1 + o(1))δ. The crucial fact is that while this graph contains a giant
component, vertices with large indices (‘late’ vertices) are very unlikely to lie
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in this component, as it is only the ‘early’ vertices that have large degrees, and
each late vertex is highly unlikely to be joined to an early vertex.

Recall that η > 0 is given. Let us set ρ = exp(−(1 − η/2)/δ). Thus when
δ =

√
ε is fixed, ρ is a positive constant, but, as ε → 0, ρ tends to zero very

quickly. We shall consider vertices with indices at most ρn to be early vertices,
and all other vertices to be late vertices. Let f(ε) > 0 be arbitrarily small, but
independent of n. Then it is easy to see that G is unlikely to contain a component
of order at least f(ε)n that does not contain any early vertices: otherwise, there
is already a component C of order at least f(ε)n in the subgraph of G induced
by the late vertices. Putting the early vertices back in, each has probability at
least cf(ε)/2 of being joined directly to a vertex of C. As there are many early
vertices, whp at least one is joined to C. Hence, the probability that G has a
giant component containing no early vertex is small, and to show that whp any
giant component of G is small, it suffices to show that whp very few vertices of
G are joined to early vertices.

Let us fix a late vertex a, and estimate the probability that a is joined to
some early vertex in G. If it is, then there is a path P = x0x1 · · ·xr−1xr in G,
where x0 = a, b = xr is an early vertex, and all of x0, . . . , xr−1 are late vertices.
Now any path in G consists of an alternating sequence of paths in G1 and G2.
Thus there is some sub-sequence a = y0y1 · · · ys = b of x0x1 · · ·xr such that G1

contains a y2i-y2i+1 path for each i, and G2 a y2i+1-y2i+2 path, or vice versa.
Let us write σ(i) for the parity of i, namely 1 if i is odd and 2 if i is even. Given
y0 · · · ys, the expected number of corresponding paths P present in G is at most

s−1∏
i=0

Nσ(i+1)(yi, yi+1) +
s−1∏
i=0

Nσ(i)(yi, yi+1). (14)

Here we are using the fact that distinct edges are present in G1 and G2 inde-
pendently, and the fact that, in Gi, disjoint paths are present independently.
(The bound then follows using the same reasoning used for (2).) We must
now sum the expression (14) over s ≥ 1 and over all intermediate late vertices
y1, . . . , ys−1.

Given a, b and s, let us write S(s) for the sum of the quantity (14) over all
late intermediate vertices y1, . . . , ys−1, taking y0 = a, ys = b. Suppose first that
s is even. Summing over all possibilities for the yi, i odd, we can bound S(s) as
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follows:

S(s) ≤
∑

ρn<y2,y4,...,ys−2≤n

s/2−1∏
i=0

N12(y2i, y2i+2) +
s/2−1∏
i=0

N21(y2i, y2i+2)


≤ 2

∑
ρn<y2,y4,...,ys−2≤n

s/2−1∏
i=0

(1 + o(1))δ
√

y2iy2i+2

=
2√
ab
{(1 + o(1))δ}s/2

∑
ρn<y2,y4,...,ys−2≤n

s/2−1∏
i=1

y−1
2i

=
2√
ab
{(1 + o(1))δ}s/2

 ∑
ρn<y≤n

y−1

s/2−1

≤ (2 + o(1))δ√
ab

{(1 + o(1))δ log(1/ρ)}s/2−1
.

Similarly, for s odd we obtain

S(s) ≤
∑

ρn<y2,y4,...,ys−1≤n

(s−3)/2∏
i=0

N12(y2i, y2i+2)N1(ys−1, ys)

+
(s−3)/2∏

i=0

N21(y2i, y2i+2)N2(ys−1, ys)


≤ 1

4δ
√

ab
{(1 + o(1))δ}(s−1)/2

 ∑
ρn<y≤n

y−1

(s−1)/2

≤ 1
4δ
√

ab
{(1 + o(1))δ log(1/ρ)}(s−1)/2

.

Now we have chosen ρ so that (1+o(1))δ log(1/ρ) = (1+o(1))(1−η/2) < 1−η/3.
Hence, when we sum S(s) over s, we obtain∑

s

S(s) ≤ (2 + o(1))δ√
ab

3η−1 +
1

4δ
√

ab
3η−1 ≤ 1

δη
√

ab
.

We have argued above that this quantity is an upper bound on the probability
that a given late vertex a is connected to a given early vertex b by a path
involving no intermediate early vertices. Summing over b, the probability that
a given late vertex a is connected by a path to some early vertex is at most

ρn∑
b=1

1
δη
√

ab
≤ 1

δη
√

a

∫ ρn

b=0

b−1/2db =
2
δη

√
ρn

a
.
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Finally, summing over a, the expected number of late vertices joined to early
vertices is at most

4ρ1/2

δη
n. (15)

Using the observation that any giant component whp contains some early ver-
tex, we obtain an upper bound on the expected size of the largest component:

E(C1(G)) ≤ 4ρ1/2

δη
n + ρn + o(n) ≤ 5

δη
ρ1/2n =

5
δη

exp
(
−1− η/2

2δ

)
n,

if δ is small enough and n is large. For η fixed we may absorb the prefactor into
the exponential, obtaining that for δ small enough,

E(C1(G)) ≤ exp
(
−1− η

2δ

)
n = exp

(
−1− η

2
√

ε

)
n,

recalling that δ =
√

ε.
So far, we have obtained a bound on the expected size of the giant compo-

nent. Our aim is to show that

C1(G) ≤ 4
δη

ρ1/2n + o(n) + ρn ≤ exp
(
−1− η

2
√

ε

)
n (16)

holds whp; to deduce this we shall have to work a little.
Let us define a late-early path to be a path x0x1 · · ·xi in G where x0, . . . , xi−1

are late vertices and xi is an early vertex. Let Xi be the number of late-early
paths in G having length i. Note that since, whp, any giant component of G
contains some early vertex,

C1(G) ≤ ρn +
∑
i≥1

Xi (17)

holds whp. For each fixed i, the expectation of Xi is given by a multiple sum:

E(Xi) ≤
∑

ρn<x0≤n

· · ·
∑

ρn<xi−1≤n

∑
1≤xi≤ρn

i−1∏
j=0

c

max{xj , xj+1}
.

In fact, the inequality above is an equality if the sum is restricted to distinct
x0, . . . , xi. It is easy to see that this sum is very well approximated by an
integral, and hence that

E(Xi) = (θi + o(1))n, (18)

where

θi =
∫ 1

x0=ρ

· · ·
∫ 1

xi−1=ρ

∫ ρ

xi=0

i−1∏
j=0

c

max{xi, xi+1}
dxidxi−1 · · ·dx0.
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Also, if ρn is an integer, then the multiple sum is strictly bounded by n times
the integral, so

E(Xi) ≤ θin. (19)

Note that unlike relation (18), the bound (19) contains no o(1) error term. In
the argument that follows we shall need the exact bound (19). Thus we cannot
simply replace ρn by bρnc; instead we must ensure that ρn is an integer. We
do this as follows: modifying the definition of ρ by o(1), we shall take ρ to be
rational, with denominator d, say. We shall prove (16) for all sufficiently large
values of n that are multiples of d. For intermediate values n = (k − 1)d +
1, . . . , kd − 1, let us define early vertices to be those with index at most ρkd,
noting that there are (ρ + o(1))n such vertices. As n increases from (k− 1)d + 1
to kd, new late vertices are added, and the number of late-early paths increases.
Thus the bound (16) for general n follows from the bound for multiples of d.

In the argument that follows the form of θi will be irrelevant; all that matters
is that θi is a constant, independent of n.

Let us write θ for 4ρ1/2

δη . From (15), the total expected number of late-
early paths is at most θn. It follows using (18) that for any fixed L, we have∑L

i=1 θi ≤ θ. Hence
∑∞

i=1 θi ≤ θ, and, for any L = L(n) →∞,
∑

i>L θi = o(1).
Thus, from (19), E(

∑
i>L Xi) = o(n). Hence, whp there are o(n) late-early

paths of length longer than L(n).
To complete our proof of (16), it suffices to show that for any fixed i, Xi ≤

(θi +o(1))n holds whp. This implies that there is some function L = L(n) →∞
such that

∑
i≤L Xi ≤ (

∑
i≤L θi)n + o(n) holds whp. Since

∑
i>L θi = o(1) and

whp we have
∑

i>L Xi = o(n), it follows that
∑

i Xi ≤ (θ + o(1))n holds whp.
Using (17), (16) follows.

From now on, we consider a fixed i ≥ 1. To establish the required concen-
tration of Xi we use a simple trick. Note that the expected degree of any late
vertex in G is O(1), and that, rather crudely, whp every late vertex has degree
at most (log n)2. Let us write Yi = Yi(G) for the maximum number y such
that there are y late-early paths P1, . . . , Py of length i in G whose union forms
a graph in which every late vertex has degree at most (log n)2. Then whp we
have Xi = Yi, so it suffices to establish concentration of Yi. But this follows by
standard martingale methods. Starting with the subgraph of G induced by the
early vertices (which is irrelevant for calculating Yi), we uncover G in n − ρn
stages, at each stage deciding to which set of earlier vertices a certain late vertex
j is joined.

More formally, let G[t] be the subgraph of G induced by the first t vertices,
and let

Zt = Zt,i = E(Yi | G[t]).

Then the random variable Zρn is constant (as Yi does not depend on edges
between early vertices), and hence equal to E(Yi). We claim that the martingale
differences Zt+1 − Zt, ρn ≤ t ≤ n − 1, are bounded by ∆ = i(log n)2i. Indeed
with G[t] fixed, for any two possible values G1[t + 1], G2[t + 1] of G[t + 1], the
values of Zt+1 conditioned on G[t + 1] = Gj [t + 1] differ by at most ∆: we can
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construct coupled random graphs G1, G2 on [n] extending Gj [t + 1] so that G1,
G2 differ only in the edges from vertex t + 1 to earlier vertices. In the collection
P1, . . . , Py of paths defining Yi(Gj), at most ∆ paths can pass through any given
late vertex, so the reduction in Yi(Gj) associated with deleting all edges in Gj

from vertex t + 1 is at most ∆, and |Yi(G1)− Yi(G2)| ≤ ∆. Hence the values of
the conditional expectation Zt+1 on {G : G[t + 1] = Gj [t + 1]} differ by at most
∆. Since Zt = E(Zt+1 | G[t]), the claim follows.

Now i is fixed, so
n−1∑
j=ρn

(
i(log n)2i

)2
= o(n2),

and it follows from the Hoeffding-Azuma inequality that Zn = Zρn + o(n) holds
whp, i.e., that Yi = E(Yi)+o(n) whp. As Xi and Yi are bounded by n, Xi = Yi

whp, and E(Xi) ∼ θin, it follows that Xi = (θi + o(1))n holds whp. As noted
above, this completes the proof of (16), and hence of Theorem 4.

We have proved that an upper bound of the form exp(−Θ(1/
√

ε))n on the
size of the largest component of Gn(1/4 + ε) holds whp. Although the form of
the bound is correct, the constant very likely is not. In fact it seems likely, from
the work of Dorogovtsev, Mendes and Samukhin [9], that the constant π/2 in
Theorem 3 is best possible.

7 A continuous problem

In the next two sections we prove Theorem 3, giving a lower bound on the rate
of emergence of the giant component above c = 1/4.

The idea here (as in [6]) is to consider the neighbourhood expansion process
in Gn(c). At the critical probability, we expect this to be a critical branching
process. If there were only finitely many types of vertices, with the same number
of each, and vertices were joined independently with probability depending on
their types, we could keep track of the number of neighbours of each type,
obtaining a finite type branching process. This would be critical when the
corresponding probability matrix had maximum eigenvalue one. Here we use a
continuous version of this, but there is an annoying singularity at zero. To deal
with this we truncate, ignoring early vertices. All rigorous comparisons with
Gn(c) come in the next section - this paragraph merely motivates studying the
following operator.

For u < v let C[u, v] be the Banach space of continuous functions on [u, v]
with the supremum norm. Let 0 < ρ < 1 be fixed, and consider the operator
Tρ : C[ρ, 1] → C[ρ, 1] given by

T (f)(x) =
∫ x

y=ρ

f(y)
x

dy +
∫ 1

y=x

f(y)
y

dy.

We aim to show that T has an eigenvalue that approaches 4 from below as
ρ → 0. Kalikow and Weiss [15] showed that the corresponding n× n matrix A,
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with entries aij = 1/ max{i, j}, has maximum eigenvalue at most 4. Here we
shall need the lower bound. This was given for a more general form of the matrix
A by Durrett and Kesten [11], but without truncation; the matrix corresponds
to our operator for ρ = 0. Actually, Durrett and Kesten do consider truncation,
showing continuity as ρ → 0, but giving no result about the rate of convergence.
Here, the rate of convergence is crucial. As we shall need to truncate anyway, it
turns out to be best to analyze exactly the ρ > 0 case. If one follows through the
methods of [11] to obtain a lower bound on the giant component in Gn(1/4+ε),
the wrong power of ε is obtained in the exponent.

Throughout we work with the reciprocal c of the eigenvalue, which will
correspond to the critical c in a truncated form of Gn(c). Thus we consider the
equation

f = cT (f). (20)

Writing g(x) = xf(x), equation (20) becomes

g(x) = c

∫ x

y=ρ

g(y)
y

dy + cx

∫ 1

y=x

g(y)
y2

dy.

Differentiating, we obtain

g′(x) = c
g(x)
x

+ c

∫ 1

y=x

g(y)
y2

dy − cx
g(x)
x2

= c

∫ 1

y=x

g(y)
y2

dy. (21)

Differentiating again:

g′′(x) = −c
g(x)
x2

.

Setting c = 1/4 + δ2, the general solution to this equation is

g(x) = x1/2 (A cos(δ log x) + B sin(δ log x)) .

From (21) we have g′(1) = 0, so, normalizing, we may take A = 2δ, B = −1,
obtaining

f(x) = x−1/2 (2δ cos(δ log x)− sin(δ log x)) (22)

as a potential eigenfunction; there is still an unchecked boundary condition. To
enforce this condition, and as we shall need the integral anyway, let us evaluate∫ 1

x=ρ
f(x)dx. Substituting x = e−t, so that dx = −e−tdt, this becomes

∫ log(1/ρ)

t=0

f(e−t)e−tdt =
∫ log(1/ρ)

t=0

e−t/2 (2δ cos(δt) + sin(δt)) dt

=
[

e−t/2

1/4 + δ2

(
−2δ cos(δt) + (2δ2 − 1/2) sin(δt)

)]t=log(1/ρ)

t=0

. (23)

From (20) we have f(x) = cT (f)(x) for every x ∈ [ρ, 1]. Taking x = 1 we obtain

2δ = (1/4 + δ2)
∫ 1

y=ρ

f(y)dy (24)
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as our second boundary condition. To solve this, let us write R = log(1/ρ), and
note that the t = 0 term from the final bracket in (23) gives exactly 2δ/(1/4+δ2).
Thus we must solve

−2δ cos(δR) + (2δ2 − 1/2) sin(δR) = 0,

giving R as the (minimal) positive solution to

tan(δR) =
2δ

2δ2 − 1/2
,

or, using tan(2θ) = 2 tan(θ)/(1− tan(θ)2),

R = 2δ−1 tan−1

(
1
2δ

)
. (25)

We started with ρ = exp(−R) fixed, in which case one can view this equation
as defining δ. Actually, it will be more convenient to think of δ as given, and R
and ρ as functions of δ. Note that R = 2δ−1(π/2− tan−1(2δ)) = π/δ + O(1) as
δ → 0, and ρ = exp(−(π + o(1))/δ).

It turns out that for our purposes we can ignore any questions of uniqueness
of solutions, or maximality of eigenvalues. All we shall use is that, taking R
as above and ρ = exp(−R), the function f(x) given by (22) is strictly positive,
and solves (20) with c = 1/4 + δ2. We have in fact shown that f(x) satisfies
(20) for this value of c; in any case, this is easy to verify by integration using
the substitution y = e−s. For positivity, note that

f(x) = x−1/2 (2δ cos(δ log(1/x)) + sin(δ log(1/x))) ,

and δ log(1/x) ranges from 0 to π − 2 tan−1(2δ), whereas the expression above
first crosses zero when δ log(1/x) reaches π − tan−1(2δ).

To collect the results we need, let φ = ((1/4 + δ2)/(2δ))f be the normalized
version of f . Then φ is strictly positive on [ρ, 1] and satisfies

φ = (1/4 + δ2)T (φ).

Also, from (24) we have ∫ 1

x=ρ

φ(x)dx = 1.

Finally, from the form of T we see that φ is decreasing, so

sup
x

φ(x) = φ(ρ) =
1/4 + δ2

2δ
ρ−1/2 (2δ cos(δR) + sin(δR)) .

A little calculation shows that the bracket above is exactly 2δ, so

sup
x

φ(x) = (1/4 + δ2)ρ−1/2 = exp (−(π/2 + o(1))/δ) ,

where the o(1) term refers to δ → 0.
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8 A general lower bound for giant components

For this section we consider the giant component in a random graph model that
generalizes (a truncated form of) Gn(c).

Let κ(x, y) be a positive continuous function on [0, 1]2, with κ(x, y) = κ(y, x).
Let Gκ

n be the random graph on {1, 2, . . . , n} in which each pair i, j of vertices
is joined independently, with probability κ(i/n, j/n)/n. Note that the scaling
is such that the vertex degrees are of order 1 as n →∞, and the total number
of edges is of order n. Indeed, from continuity, the expected degree of vertex i
is ∫ 1

y=0

κ(x, y)dy + o(1),

as i, n →∞ with i/n → x. Similarly, the expected number of edges in the whole
graph is

n

2

∫ 1

x=0

∫ 1

y=0

κ(x, y)dydx + o(n).

Given Gκ
n, and c < 1, we form Gκ

n(c) by selecting edges of Gκ
n independently

with probability c. Of course, Gκ
n has the same distribution as Gcκ

n , but sepa-
rating out the factor c will be convenient, as we wish to vary this and study the
change in the size of any giant component.

The related problem where κ is defined on (0, 1]2 and is homogeneous of
degree −1 was introduced by Durrett and Kesten [11], who found the critical
probability for the emergence of a giant component. A result for a discrete
version of this problem giving the size of the giant component was stated by
Söderberg [20] without proof, as ‘it follows by analogy to the corresponding
result for the classical model’. Söderberg also describes but does not analyze a
continuous version.

Note that the graph Gn(c) fits into Durrett and Kesten’s framework, and
almost fits into ours, but not quite: the corresponding kernel κ = 1/ max{x, y}
is not continuous (or defined) when x = 0 or y = 0. However, we shall be able
to obtain results for Gn(c) by truncating to avoid this problem. Note also that
the classical random graph Gn,C/n is just Gκ

n with κ(x, y) = C.
Our aim is to prove the following general result, described in terms of the

integral operator Tκ : C[0, 1] → C[0, 1] with kernel κ, given by

Tκ(f)(x) =
∫ 1

y=0

κ(x, y)f(y)dy.

Here, as before, C[a, b] is the space of continuous functions on the interval [a, b].
Note that as κ is continuous on a compact set, it is uniformly continuous. It
follows that for f ∈ C[0, 1], Tκ(f) is defined and is continuous.

Theorem 10. Let κ(x, y) be any strictly positive symmetric continuous function
on [0, 1]2, and let c > 0 be a constant. Suppose that φ ∈ C[0, 1] is a strictly
positive function such that cTκ(φ)(x) ≥ φ(x) holds for all x ∈ [0, 1]. Suppose
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that 0 < γ < 1 and that c′ = (1 + γ)c ≤ 1. Then, as n → ∞, whp the graph
Gκ

n(c′) contains a component of order at least Cn− o(n), where

C =
γ

1 + γ

∫ 1

0

φ(x)dx
/

sup
0≤x≤1

φ(x).

Remark 1. It is most natural to apply the theorem with φ an eigenfunction of
Tκ, and c the reciprocal of the corresponding eigenvalue.
Remark 2. We have stated our result for the subgraph G(c) obtained from
a certain graph G by keeping edges independently with probability c. In the
proof that follows it will make essentially no difference if vertices are kept inde-
pendently with probability c, giving an induced subgraph of G. The final result
will be exactly the same, bearing in mind that n remains the number of vertices
in the original graph.

Proof. Throughout the proof κ, φ, c and γ will be fixed. Without loss of gener-
ality we may normalize so that

∫ 1

x=0
φ(x)dx = 1.

Our plan is to discretize, run an expanding neighbourhood argument, and
then compare with a suitable finite type branching process.

We shall discretize by dividing [0, 1] into L parts, where L is a constant
chosen large enough, depending on κ, φ, c and γ. We define a discrete version
of T as follows: for 1 ≤ i, j ≤ L let

K
(L)
ij = inf{κ(x, y) : (i− 1)/L ≤ x ≤ i/L, (j − 1)/L ≤ y ≤ j/L}

be the minimum value of κ on a small square, and let T (L) be the n by n

matrix with entries K
(L)
ij . As κ is a continuous function on a compact set, it

is uniformly continuous. Hence, as L → ∞, the step function κ(L) taking the
value K

(L)
ij on the corresponding square converges uniformly to κ. Similarly, we

define a discrete version of φ by φ
(L)
i = φ(i/L), and note that the corresponding

step function φ(L) converges uniformly to φ. Hence, cTκ(L)(φ(L)) converges
uniformly to cTκ(φ). Since φ is bounded below away from zero, it follows that
for any η1 > 0, if L is large enough we have

cTκ(L)(φ(L))(x) ≥ (1− η1)φ(L)(x)

for every x, i.e.,

c
∑

j

K
(L)
ij φ

(L)
j

L
≥ (1− η1)φ(L)

i (26)

for each i = 1, 2, . . . , L.
Let us fix throughout an arbitrary 0 < γ1 < γ. At the end we shall let

γ1 → γ; indeed we shall think of γ1 and γ as equal for most of the proof.
Recalling that c′ = (1 + γ)c, choosing η1 small enough, we have (c′/c)(1− η1) =
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(1 + γ)(1 − η1) > 1 + γ1. For the rest of the proof we fix any L large enough
that (26) holds, and write Kij for K

(L)
ij and φi for φ

(L)
i , noting that

c′
∑

j

Kijφj

L
≥ (1 + γ1)φi. (27)

Instead of Gκ
n(c′) we shall consider the random graph G = Gκ(L)

n (c′). Now
κ(L) ≤ κ holds pointwise by definition of κ(L). Thus we may couple G and
Gκ

n(c′) so that G ⊂ Gκ
n(c′), and any lower bound on the size of the largest

component in G carries over to Gκ
n(c′).

In the graph G a vertex s, 1 ≤ s ≤ n, has type dsL/ne. We write Ci for the
set of vertices of type i. As usual we ignore rounding, so there are |Ci| = n/L
vertices of each type i, i = 1, . . . , L. Edges are present independently, and
vertices of types i, j are joined with probability c′Kij/n. Hence, for a given
vertex s of type i, its expected number of neighbours of type j is c′Kij/L, with
an O(n−1) correction. Thus, the neighbourhood expansion process in G may
be compared to a finite type branching process with kernel c′Kij/L. Actually,
we shall argue by hand, since it is not so convenient to analyse the branching
process directly: we do not have the maximum eigenvalue, for example. We
shall construct a modified branching process tuned to what we do know, i.e., to
(27). Also, we shall give ourselves some elbow room.

Let 0 < γ2 < γ1/(1 + γ1) be arbitrary. In the end, with γ fixed we shall let
γ1 → γ and

γ2 → γ/(1 + γ). (28)

We shall compare with a finite type branching process with kernel (1−γ2)c′Kij/L,
noting that

(1− γ2)c′
∑

j

Kijφj

L
≥ (1 + η)φi, (29)

where η = (1 − γ2)(1 + γ1) − 1 > 0, and η can be made arbitrarily small by
choosing γ2 large enough.

We consider the following constrained neighbourhood expansion process in
G. At each generation t ≥ 0 we have a set St of exposed vertices already visited
during the process, or excluded for some other reason, and a current generation
Xt disjoint from St. The nature of the process will be such that at stage t we
have only ‘looked at’ edges with at least one end in St. More precisely, the
event that the process follows a certain sequence of states (Ss, Xs)t

s=0 will be
independent of edges between vertices outside St. We shall constrain ourselves
to look for at most a certain number Nt,i of vertices in Xt ∩ Ci for each t ≥ 1
and each i, where

Nt,i = d(1 + η2)tφie. (30)

The process starts with some initial set S0: we choose the initial generation
X0 to consist of a single vertex of V (G) \ S0 chosen arbitrarily.
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Going from Xt to Xt+1, we first set St+1 = St ∪Xt. We assume throughout
that

|St+1 ∩ Ci| ≤ γ2n/L (31)

holds for each i = 1, 2, . . . , L. We will also assume a much stronger condition
on S0, that

|S0 ∩ Ci| ≤
√

n (32)

holds for all i. Given disjoint St and Xt such that (31) holds for St+1, we define
Xt+1 as follows, by defining Xt+1 ∩ Ci for each i:

List the vertices of Ci \ St+1 in some order. (These vertices are so far
indistinguishable.) Go through each of these vertices checking whether it has a
neighbour in Xt, and putting it into Xt+1 ∩ Ci if so, stopping when we reach
|Xt+1 ∩ Ci| = Nt+1,i. If we never reach this many vertices in Ci, we say the
process fails, and abort it. If this step succeeds for each i, then we continue
to the next value of t, unless we reach t = t0, a certain stopping point defined
below. If we reach t = t0, we say the process succeeds, and stop.

The key observation is as follows: the probability that the process above
fails at step t decreases rapidly with t, so it is very likely that the process either
fails early, or succeeds. As the process has a positive probability of succeeding,
and early failures do not ‘use up’ too many vertices, we can keep running the
process until it succeeds whp. When the process succeeds we have found a large
component in G.

We now make this precise. Let t0 be maximal subject to

max
i

t0∑
t=0

Nt,i ≤ γ2n/L−
√

n. (33)

Note that our rule for stopping ensures that at every stage condition (31) holds:
from the initial condition (32) we start with at most

√
n exposed vertices in any

Ci, and in the process we expose at most
∑t0

t=0 Nt,i vertices in Ci.
Let us ignore the first step for the moment, and suppose that t > 0. Thus,

by construction, |Xt∩Ci| = Nt,i for each i. Now given Xt and St, everything we
have done so far has only depended on the presence or absence of certain edges
incident with St. As Xt is disjoint from St, conditional on the process so far,
each edge between Xt and V (G) \ St+1 is present in G independently with its
original unconditioned probability. Thus, the expected number of edges from a
fixed vertex v ∈ Ci \ St+1 to Xt is exactly

E(v) =
∑

j

∑
w∈Xt∩Cj

c′Kij/n =
∑

j

Nt,jc
′Kij/n. (34)

Now for t large enough, the Nt,j grow by at most a factor 1 + 2η2 each time t
increases. From (33) it follows that Nt,j ≤ 3η2γ2n/L for each j, so

E(v) ≤ c′
∑

j

Kij3η2γ2/L ≤ 3c′η2γ2 sup
x,y

κ(x, y) ≤ Aη2
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for some constant A. Here we use Kij ≤ sup κ(x, y), and the constant A depends
on κ, φ, c and γ which are all fixed throughout the proof. Since E(v) ≤ Aη2,
which will be much less than one as we take η → 0, and since different potential
edges from v to Xt are present independently, the probability that v has a
neighbour in Xt is (1−O(η2))E(v) ∼ E(v). Hence, using the assumption (31),
and the formula (34) for E(v), the number yi of vertices of Ci \ St+1 adjacent
to a vertex in Xt has expectation at least

(1−O(η2))
(1− γ2)n

L

∑
j

Nt,jc
′Kij/n = (1−O(η2))(1− γ2)c′

∑
j

Kij

L
Nt,j .

Now, for t large, we have Nt,j ∼ φj(1 + η2)t. Thus, from (29), the expectation
of yi above is at least (1 + η/2)Nt+1,i. Now the number of vertices in Ci \ St+1

with a neighbour in Xt has a binomial distribution, so by a Chernoff bound,
for t large enough, the probability of failure in step t of our process is at most
qt =

∑
i exp(−ηNt+1,i/10), say. Since mini Nt+1,i grows rapidly with t (in fact

exponentially), the sum
∑∞

t=1 qt is convergent.
Let pt(n) be the supremum of the probability of failure of our process at

step t, conditioned on Xt and St, over all legal Xt and St. We have argued
that for t larger than some constant independent of n, we have pt(n) ≤ qt. In
particular,

∑
t pt(n) is bounded by a convergent sum independent of n, and for

any t1(n) →∞ the probability p≥t1(n) that our process fails at or after step t1
is o(1) as n →∞.

For the early steps in the process, including the first, note that each Nt+1,i

is by definition Θ(1), as t = Θ(1), while the expectation of yi is also Θ(1).
Thus it is easy to check that the probability of finding the required number of
neighbours at each step is bounded away from zero. It follows that for each
fixed t, for n large enough we have pt(n) ≤ pt, for some pt < 1. Combined with
the remark above, there is a non-zero lower bound psuc for the probability that
the process succeeds, which is independent of n, and holds for all sufficiently
large n.

Let t1 = blog log nc, and let ω →∞ sufficiently slowly, so that ωp≥t1(n) → 0
as n →∞. Then we may run the process ω times, after each failure accumulating
all exposed vertices into the initial set S0 for the next run, until either a run
succeeds, when we stop, or a run fails after step t1. The latter happens with
probability o(1). The set S0 never gets too big, as a run stopping before step t1
exposes no(1) vertices.

It only remains to show that success does guarantee a giant component:
from the definition of the process, if we succeed, then we have |Xt ∩ Ci| = Nt,i

for every 1 ≤ t ≤ t0 and each i. Thus we have found a component in the graph
of size at least

S(t0) =
∑

i

t0∑
t=0

Nt,i. (35)

For large t we have Nt,i ∼ (1 + η2)tφi. Comparing (33) and (35), we see that
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as n →∞ with everything else fixed we have

S(t0) ∼
∑

i φi

maxi φi

γ2n

L
.

Finally, as noted at (28), we may take γ2 arbitrarily close to γ/(1 + γ). Also, as
L →∞ we have maxi φi → supx φ(x) and

∑
i φi/L →

∫ 1

x=0
φ(x)dx, completing

the proof.

Remark. In future work we hope to obtain a stronger result along these lines
using similar methods, obtaining the normalized size of the giant component
in terms of the solution to an appropriate non-linear integral equation, under
weaker assumptions on the kernel than boundedness on the closed set. Such
a result might apply directly to the kernel κ(x, y) = 1/ max{x, y} defined on
(0, 1]2. Of course, it is also likely that the non-linear equation cannot be solved
exactly in any given case.

9 Applying the general result

In this section we apply Theorem 10 to Gn = Gn(c), c = 1/4 + ε, to prove
Theorem 3 by showing that Gn(c) does indeed have a giant component, and
that this has at least the required order.

To avoid problems with singularities in the kernel, we work instead with G′
n,

the subgraph of Gn induced by the vertices i with index ρn < i ≤ n. Fix any
positive η < 1, and let δ =

√
(1− η)ε. We take

ρ = exp
(
−2

δ
tan−1

(
1
2δ

))
.

For ρn < i < j ≤ n, the edge ij is present in G′
n with probability κ(i/n, j/n)/n,

where κ(x, y) = 1/ max{x, y} is defined on [ρ, 1]2, and strictly positive and
continuous on this set.

Now Theorem 10 requires a continuous kernel defined on [0, 1]2. Rather than
go through the straightforward but tedious re-scaling argument, we just apply
the result by extending κ to [0, 1]2, setting κ = 0 outside [ρ, 1]2. (The legality of
this can be checked either by rescaling, or by noting that the proof goes through
for this non-continuous kernel.)

From the results in Section 7 there is a positive function φ ∈ C[ρ, 1] (which
we extend by zero to [0, 1]) such that (1/4+δ2)Tκ(φ) = φ, with φ(x) integrating
to 1, and with

sup
x

φ(x) = exp
(

π + o(1)
2δ

)
.

Define γ by 1 + γ = (1/4 + ε)/(1/4 + δ2). Then γ is positive and tends to zero
as η → 0, with γ = Θ(ηε). We may apply Theorem 10, obtaining that whp the
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graph Gn(1/4 + ε) has a component of order at least

γ

1 + γ
exp

(
−π + o(1)

2δ

)
n− o(n).

Letting η → 0 appropriately as ε → 0, e.g., taking η = ε2, for large n this bound
is exp(−(π/2 + o(1))ε−1/2)n. This completes the proof of Theorem 3.

10 The second largest component

We now prove Theorem 5, giving a rather crude bound on the size of the second
largest component in Gn(c), c > 1/4.

Proof of Theorem 5. Let c > 1/4 be given, let η be a small positive constant,
and set n′ = (1− η)n. As usual we ignore rounding to integers where this does
not affect the argument.

We shall again classify the vertices of Gn(c) into early and late vertices. This
time, a vertex i is early if 1 ≤ i ≤ n′, and late otherwise, so there are many
early vertices, and few late vertices. Applying Theorem 3 with n′ in place of
n, we see that whp the largest component C of Gn′(c), the subgraph of Gn(c)
induced by the early vertices, has size |C| ≥ εn, for some ε > 0 independent of
n.

We shall condition on Gn′(c), and generate Gn(c) from Gn′(c) by adding the
new vertices one by one. Suppose that C ′ is any component of Gn′(c) distinct
from C, with |C ′| ≥ M = 100ε−1η−1 log n. Then when the vertex j is added, it
sends an edge to C with probability at least 1

2cεn/j, and, independently, sends
an edge to C ′ with probability at least 1

2c|C ′|/j. (In each case the factor 1/2 is
to allow for the small difference between the expected number of edges, and the
probability of at least one edge.) Hence, each vertex added has probability at
least 1

4c2ε|C ′|n/j2 ≥ c2ε|C ′|/(4n) of joining C to C ′, and the probability that
C and C ′ are not joined in Gn(c) is at most(

1− c2ε|C ′|/(4n)
)ηn ≤ exp(−c2εη|C ′|/4) = o(n−1).

Since Gn′(c) has at most n components, we see that the event E1 = { every
component of Gn′(c) with order at least M is joined to C in Gn(c) } holds whp.

Thus if there are two large components in Gn(c), one, that not containing
C, must involve late vertices. We shall show that it must involve many late
vertices. It is easy to check that E2 = { every late vertex sends at most 10 log n
edges to early vertices } and E3 = { the subgraph of Gn(c) induced by the late
vertices contains no component of order at least 10 log n } both hold whp. For
E3, a comparison with the standard random graph Gn′′,a/n′′ can be used, where
n′′ = n− n′ = ηn and a = cη/(1− η) < 1.

If E1, E2 and E3 hold and there is a second component C2 in Gn(c) of order
at least (log n)4, then this component must contain at least (εη/2000)(log n)2 =
γ(log n)2 late vertices. We show that the existence of such a component is very
unlikely by uncovering Gn(c) as follows.
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First, we uncover all edges between two early vertices, determining C, and
all edges between late vertices. Next, we uncover all edges between early vertices
not in C and late vertices. Given the graph G′ consisting of the edges uncovered
so far, Gn(c) is obtained by adding certain edges between C and late vertices.
Furthermore, given G′, each late vertex j is joined independently to each vertex
of C with probability c/j. Hence, each late vertex is joined to some vertex of
C with probability at least cε/2 = Θ(1), and these events are independent for
different late vertices.

Now any component C2 as described above sends no edges to C, and is hence
a component in G′. But G′ has at most n such components, and each contains
at least γ(log n)2 late vertices, and hence has probability at most

(1− cε/2)γ(log n)2 = o(n−1)

of not sending an edge to C. Hence, whp there is no component C2 in Gn(c)
with the given properties. Since E1, E2 and E3 hold whp, whp the second
largest component of Gn(c) has order at most (log n)4.

The above argument was rather crude, as we were aiming for brevity rather
than the best bound. Being slightly more careful, this method gives a bound of
order O((log n)3). It seems likely that the real answer is O(log n), as suggested,
for example, by the exponential decay of component sizes described in [9]. In
any case, the second largest component above the critical probability is much
smaller than the largest below, so a ‘duality principle’ does not hold. This is
in contrast to Gn,c/n, where the distribution of small components above the
critical probability is very similar to that below. See [2].

11 Comparison with the CHKNS model

In this section we compare our model Gn(c) with the CHKNS model of Callaway,
Hopcroft, Kleinberg, Newman and Strogatz [8], showing that almost all the
results of Section 2 carry over with appropriate normalization. Before doing
so, let us note that our aims here are different from those of [8] - we aim to
give rigorous proofs. While the analysis in [8] is interesting, and parts of it
can be made rigorous, new ideas and much hard work would be needed to turn
the arguments into mathematical proofs. For example, below the critical point
only components of bounded size are considered in [8], and only their expected
number, not the concentration results needed. It is not excluded that there are
many vertices in intermediate components, of some size between log log n, say,
and order n. Above the critical point, there are not even heuristic results in [8];
rather data points taken from numerical integration of a certain equation are
used to estimate the growth rate of the giant component.

Dorogovtsev, Mendes and Samukhin [9] have given an interesting and diffi-
cult heuristic argument for an infinite order phase transition in various growing
network models. Parts of their work, based on evaluating the generating func-
tion for the limiting proportion of vertices in components of each (finite) size,
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are rigorous, but other parts are not. It may be, however, that their method
can be made rigorous with not too much work; some steps in this direction
have been made by Durrett [10]. However, much remains to be done, including
showing separately that almost all vertices not in ‘finite size’ components are in
a single giant component, proving required concentration results, and analyzing
the differential equation for the generating function obtained with rigorous error
bounds. (As pointed out by Durrett, a factor 1/(1−ξ), which may in the end not
be important, is omitted from their equation (C3) without comment.) As noted
in Section 2, if their results could be made rigorous they would imply much
stronger bounds on the size of giant component than Theorems 3 and 4, and in
particular that the constant in the exponent in Theorem 3 is best possible.

As an aside, let us note that there is some (unimportant) vagueness in the
description of the model considered in [9]; it is stated in Section II that b new
edges (between old vertices) are added at each time step, but b is not an integer.
Clearly a random number of edges must be added, with expectation b. In this
case, it is easy to see that any (sensible) distribution will do, and will not affect
the result. Note, however, that in a similar situation apparently minor details
can be very important. In particular, we shall show in future work [7] that
in the related model where edges are added only from the new vertex to old
vertices, it is not just the average number of edges added from each new vertex
to earlier vertices that determines the critical probability: the second moment
of the distribution is also important.

The CHKNS model is defined as follows: at each time step, a new vertex is
added. Then, with probability δ, two vertices are chosen uniformly at random
and joined by an undirected edge. In [8] loops and multiple edges are allowed;
of course the component structure of a multigraph is the same as that of the
underlying simple graph, so these make no difference.

It will be more convenient to work with the following very slight modification
of the CHKNS model considered by Durrett [10]: we start with no vertices.
At each time step, we add a new vertex, and then join each pair of vertices
with probability δ/

(
t
2

)
, where t is the number of vertices, and the decisions are

independent of each other for different pairs and/or different times. Let us write
Fn(δ) for the graph obtained at time n, a graph on {1, 2, . . . , n}. Note that for
the moment we allow multiple edges.

In the process above, on average δ edges are added at each step. Apart
from the exclusion of loops, the only difference between Fn(δ) and the CHKNS
model is that a binomial number of edges is added, rather than zero or 1. For the
analysis in [8], this change makes no difference. In terms of a model for a growing
graph, Fn(δ) seems if anything more natural. The great advantage is that, for
pairs {i1, j1} 6= {i2, j2}, in Fn(δ) the number of i1j1 edges is independent of the
number of i2j2 edges.

Remark. This simplification was used by Durrett [10] in earlier work published
just after the first draft of the present paper was written. Durrett [10] obtains
rigorously the percolation threshold in this model, and comments on the non-
rigorous work of [9]. He also gives a lower bound on the size of the giant
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component above the threshold, with C/ε in the exponent rather than C/
√

ε.
He does not attempt to prove that the transition has infinite order, stating that
making the arguments of Dorogovtsev, Mendes and Samukhin [9] rigorous would
be a thankless task!

For any 1 ≤ i < j ≤ n, the expected number of edges between i and j in
Fn(δ) is exactly

En(i, j) =
n∑

s=j

2δ

(s− 1)s
= 2δ

(
1

j − 1
− 1

n

)
. (36)

We would like to compare Fn(δ) with Gn(c), where c = 2δ; actually we
will have to take c very slightly larger than 2δ. Note that, since we shall only
consider the sizes of components, we may collapse each multiple edge to a single
edge. For upper bounds on component sizes, the comparison is very simple,
using the following lemma, combining two simple observations.

Lemma 11. Suppose that we have two random graph models, generating random
graphs G

(1)
n and G

(2)
n on the vertex set {1, 2, . . . , n}. Suppose that for k = 1, 2,

within the graph G
(k)
n each possible edge ij, i < j, is present with probability

0 < p
(k)
ij < 1, independently of all other edges, where the p

(k)
ij do not depend

on n. Finally, suppose that p
(1)
ij ≤ p

(2)
ij holds for all but a constant number

of pairs {i, j}. If C1(G(2)
n ) ≤ f(n) holds whp for some function f(n), then

C1(G(1)
n ) ≤ f(n) holds whp for the same function.

Proof. Choose j0 such that p
(1)
ij ≤ p

(2)
ij for j > j0, and let G

(k)
n [j0] denote the

subgraph of G
(k)
n induced by the vertices {1, 2, . . . , j0}. Now there are only

finitely many (in fact 2(j0
2 )) possibilities for G

(2)
n [j0], and, since the p

(2)
ij s are

bounded away from zero and one, each has positive probability. It follows that
for any graph G0 on {1, 2, . . . , j0} we have

Pr
(
C1(G(2)

n ) > f(n) | G(2)
n [j0] = G0

)
→ 0 (37)

as n →∞. However, conditional on the subgraph induced by the first j0 vertices
being equal to G0, in each of the graphs G

(k)
n , edges are present independently,

and each edge is at least as likely in G
(2)
n as in G

(1)
n . It follows from (37) and

an appropriate coupling that

Pr
(
C1(G(1)

n ) > f(n) | G(1)
n [j0] = G0

)
→ 0.

As this holds for every G0, we have Pr(C1(G(1)
n ) > f(n)) → 0, as required.

The edge ij is present in Fn(δ) with probability at most En(i, j), which in
turn is at most 2δ/(j−1), and different edges of Fn(δ) are present independently.
For any η > 0, setting c = 2δ(1 + η), there is a j0 such that for j > j0 we have
2δ/(j− 1) ≤ c/j. Hence, by Lemma 11, any upper bound on C1(Gn(2δ(1 + η)))
that holds whp, also holds whp as an upper bound on C1(Fn(δ)).
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Theorem 12. Let δ < 1/8 be fixed. Then Fn(δ) has no giant component: indeed
for any ω →∞

C1(Fn(δ)) ≤ ω
√

n log n

holds whp as n →∞.

In other words, C1(Fn(δ)) = Op(
√

n log n).

Proof. Given δ, choose η small enough that 2δ(1 + η) < 1/4. Then the bound
C1(.) ≤ ω

√
n log n holds whp for Gn(2δ(1+η)) by Theorem 1. Hence, from the

argument above, this bound holds whp for Fn(δ).

Similarly, corresponding to Theorem 4, for any a < 1/(2
√

2) there is an
ε(a) > 0 such that, for 0 < ε < ε(a),

C1(Fn(1/8 + ε)) ≤ exp
(
−a/

√
ε
)
n (38)

holds whp as n →∞.
We now turn to the lower bound on the giant component in Fn(δ), following

the proof of Theorem 3 in Sections 7, 8 and 9. Throughout we will take δ =
1/8 + ε. We aim to show that for any b > π/(2

√
2), there is an ε(b) > 0 such

that, for 0 < ε < ε(b),

C1(Fn(1/8 + ε)) ≥ exp
(
−b/

√
ε
)
n (39)

holds whp as n →∞.
This time we need a lower bound on edge probabilities in Fn(δ). In fact, we

have an exact formula for the probability of an edge ij, i < j:

pn(i, j) = 1−
n∏

s=j

(
1− 2δ

(s− 1)s

)
.

For j ≥
√

n, say, the probability of more than one ij edge is negligible, and we
have pn(i, j) ∼ En(i, j). Since we wish for a lower bound of the form c/j, we
must deal with the 1/n correction in (36), which now works against us. This
is important compared to 1/j if j is close to n, so we simply ignore vertices
with indices larger than n′ = ε2n. As in the proof of Theorem 3, we shall only
consider vertices with indices larger than ρn′, where ρ is defined as in Section 9,
so (for n large enough) the condition j ≥

√
n is satisfied. In summary, for

ρn′ ≤ i < j ≤ n′ it is easy to check that 2δ(1−2ε2)/j is a strict lower bound on
the probability of the edge ij in Fn(δ), and we can follow the proof of Theorem 3
with n′ in place of n, taking c = 2δ(1 − 2ε2) = 1/4 + ε + O(ε2). In the end,
the giant component we find will be a factor n′/n = ε2 smaller than that found
in Gn(c). However, this does not matter: as we are aiming for a bound of the
form exp(−A/

√
ε) we can absorb a factor ε2 into the exponential, changing A

by o(1).
Putting together the upper and lower bounds (38) and (39), we have proved

the following result.
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Theorem 13. There are functions f1(ε), f2(ε) both satisfying

fi(ε) = exp(−Θ(1/
√

ε))

such that, for any ε > 0,

f1(ε)n ≤ C1(Fn(1/8 + ε)) ≤ f2(ε)n

holds whp as n →∞

In other words, the model Fn(δ) does indeed display an ‘infinite-order phase
transition’ at δ = 1/8, confirming the heuristic and numerical results of [8], and
the heuristic result of [9]. The latter suggests that as far as the constant in
the exponent is concerned, our lower bounds (Theorem 3 and, for the CHKNS
model, (39)) are essentially correct.

Remark. If we insist on working with the exact formulation of the CHKNS
model given in [8], we can obtain results analogous to Theorems 12 and 13,
but more work is needed to deal with the dependence between edges. This
dependence arises because, given that a set S of edges is present in the CHKNS
graph, these edges were added at certain times, and no other edges could have
been added then. Since this dependence is purely negative, the upper bounds
on components go through.

For the lower bound, we can argue as follows. Let ρ and γ be fixed small
positive numbers, and set ρ′ = ργ. Given δ = 1/8 + ε, ε > 0, we shall take
γ = Θ(ε2), and then choose ρ as in Section 9. Let L = 1/(ρ′γ), which we shall
take to be an integer. (As usual, we ignore rounding where this does not affect
the argument.) We divide the growth of the CHKNS graph into L steps; in each
step n/L vertices are added, together with a random number of edges. Let Vk

be the set {1, . . . , (k− 1)n/L} of vertices that are present at the start of step k.
In the CHKNS model, the number of edges added in step k has exactly a

Binomial Bi(n/L, δ) distribution. Hence, by the Chernoff bounds, there is a
constant a > 0 such that with probability 1 − O(exp(−an)) we add at least
(1−γ)δn/L edges during step k. Some of these edges are incident with a vertex
added earlier during step k, and have one or both endvertices outside Vk. Let
us call these edges bad, and edges with both ends in Vk good. During step k
the proportion of vertices that lie outside Vk is at most 1/k (this proportion is
maximal at the end of the step), so the number of bad edges is stochastically
dominated by a Bi(n/L, δ2/k) distribution. Hence, by a Chernoff bound, there
is a constant a′ > 0 such that for each k ≥ ρ′L = 1/γ, with probability 1 −
O(exp(−a′n)) we add at most 3γδn/L bad edges during step k. Hence, whp,
in every step k ≥ 1/γ we add at least (1 − 4γ)δn/L good edges. Note that
given that an edge added is good, its endvertices are chosen uniformly from Vk,
independently of each other. (The edge may be a loop.)

Let G1 be the original CHKNS model, and let G2 ⊆ G1 consist only of the
good edges. Let G3 be the model where in step k, ρ′L ≤ k ≤ L, we add a
Poisson distributed number Nk ∼ Po((1 − 5γ)δn/L) of edges, with endpoints
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chosen independently and uniformly from Vk. (We add no edges before step
ρ′L; we shall not in the end consider vertices before ρ′n.)

By a Chernoff bound, Nk ≤ (1 − 4γ)δn/L holds with probability 1 −
O(exp(−a′′n)) for some constant a′′ > 0. Hence, we can couple the graphs
so that whp G3 ⊆ G2.

In G3 distinct edges are present independently. An edge ij with i < j
appears a Poisson number of times, with expectation

Eij =
L∑

k=max(ρ′L,dLj/ne+1)

(1− 5γ)δn
L

2
|Vk|2

For j ≥ ρ′n we have, recalling that |Vk| = (k − 1)n/L,

Eij =
L∑

k=dLj/ne+1

(1− 5γ)δn
L

2L2

(k − 1)2n2
=

(1− 5γ)2δL

n

L∑
k=dLj/ne+1

1
(k − 1)2

≥ (1− 5γ)2δL

n

L∑
k=dLj/ne+1

1
(k − 1)k

=
(1− 5γ)2δL

n

(
1

dLj/ne
− 1

L

)
≥ (1− 5γ)2δ

(
1

j(1 + 1/(Lρ′))
− 1

n

)
= (1− 5γ)2δ

(
1

j(1 + γ)
− 1

n

)
.

Finally, for i < j and j ≥ ρ′n, the probability that the edge ij is present is
exactly 1− exp(−Eij) ≥ Eij(1− Eij), which is at least

(1− 1/j)(1− 5γ)2δ

(
1

j(1 + γ)
− 1

n

)
≥ (1− 6γ)2δ

(
1

j(1 + γ)
− 1

n

)
,

for n sufficiently large.
For ρ′n = ργn ≤ j ≤ γn, this is at least (1 − 9γ)2δ/j. We compare with

our model Gγn((1 − 9γ)2δ). Since the proof of our lower bound on the giant
component in Gn(c) only involved considering vertices with index at least ρn,
all relevant edges are present with higher probability in the subgraph of G3

induced by the first γn vertices than in Gγn((1 − 9γ)2δ). Hence, we obtain a
lower bound on the giant component of G3 that holds whp for G3, and thus
whp for G1. As before, changing the constant in the exponent slightly, the
bound (39) is unaffected by inserting the extra factor of γ = Θ(ε2), this proves
the equivalent of (39) for the CHKNS model. Hence Theorem 13 holds for the
CHKNS model in place of Fn(δ).
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