
RANDOM CUTTING AND RECORDS IN DETERMINISTIC
AND RANDOM TREES

SVANTE JANSON

Abstract. We study random cutting down of a rooted tree and show
that the number of cuts is equal (in distribution) to the number of
records in the tree when edges (or vertices) are assigned random labels.

Limit theorems are given for this number, in particular when the tree
is a random conditioned Galton–Watson tree. We consider both the
distribution when both the tree and the cutting (or labels) are random,
and the case when we condition on the tree.

The proofs are based on Aldous’ theory of the continuum random
tree.

1. Introduction

We consider random cutting down of rooted trees, defined as follows [31].
If T is a rooted tree with number of vertices |T | ≥ 2, we make a random
cut by choosing one edge uniformly at random. Delete this edge so that
the tree separates into two parts, and keep only the part containing the
root. Continue recusively until only the root is left. We let X(T ) denote
the (random) number of cuts that are performed until the tree is gone.

The same random variable appears when we consider records in a tree.
Let each edge e have a random value λe attached to it, and assume that
these values are i.i.d. with a continuous distribution. Say that a value λe is
a record if it is the largest value in the path from the root to e. Then the
number of records is again given by X(T ).

To see this, generate first the values λe and then cut the tree, each time
choosing the edge with the largest λe among the remaining ones. By sym-
metry, this gives the cutting procedure above, and an edge is cut at some
time if and only if its value is a record. Hence the number of records equals
the number of cuts.

Remark 1.1. When we say that cutting and records give the same random
variable, we really mean that they give random variables with the same
distribution. (The proof just given gives a natural coupling where the two
variables really coincide.)
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Remark 1.2. As is well-known, and seen by the argument above, the distri-
bution of λe does not matter, because only the order relations are important.
(We assume the distribution to be continuous to avoid ties.) For the same
reason, we could alternatively let the values λe be a random permutation of
1, . . . , |T | − 1.

Remark 1.3. An alternative way to see the equivalence between the number
of cuts and the number of records is to chop up the tree completely by cutting
all edges in random order. Label the edges by 1, . . . , |T |−1 in the order they
are cut. If we count only the cuts where the cut edge still is connected to
the root, we recover X(T ). These edges are the edges with minimal labels
on the path to the root, i.e. the records for the reversed order.

There are also vertex versions of cuttings and records. For cuttings, choose
a vertex at random and destroy it together with all its descendants. Continue
until the root is chosen and thus the whole tree is destroyed. We let Xv(T )
denote the random number of vertex deletions that are needed.

For records, we assign i.i.d. values λv (or a random permutation) to the
vertices, and define a record as above. The equivalence between cuttings
and records is seen as above.

The edge and vertex versions are closely related. Indeed, let T̃ be the
tree obtained by adding a new root to T , with the old root as its only child.
Then there is a natural correspondence between edges of T̃ and vertices of
T (each edge corresponds to the endpoint of it most distant from the root),
and this correspondence preserves the cutting and record operations defined
above. Consequently, Xv(T ) = X(T̃ ).

Conversely, if T ′ is the rooted forest obtained from T by deleting the
root, letting its neighbours be the new roots, then X(T ) = Xv(T ′), with the
obvious extension of the definition above to rooted forests. This extension
is trivial, since if F is a rooted forest with tree components T1, . . . , Tk, then
Xv(F ) =

∑
j Xv(Tj) (and similarly X(F ) =

∑
j X(Tj)) with the summands

independent, because cuttings and records in the different components are
independent. (This is easiest seen with records, since the cuttings appear in
a jumbled order.)

We will mainly study the edge version, which is traditional for cuttings
(although the vertex version seems more natural for records). In Section 6
we show that the results transfer to the vertex version.

Our main results concern the asymptotical behaviour of X(T ) for a class
of random trees T (i.e. for a class of distributions of T ). Let us, however,
first remark that it also is of interest to study X(T ) for deterministic trees
T . We give one example here, and two others in Section 8.

Example 1.4. Take T = Pn, a path with n edges, with the root at an end.
X(Pn) (or, equivalently, Xv(Pn−1)) is the number of records in a sequence
of n i.i.d. values λ1, . . . , λn, or in a random permutation of 1, . . . , n. This is
the classical record problem, which has been much studied, see for example
[36]. Let Ij = 1 if λj is a record, and Ij = 0 otherwise, j = 1, . . . , n. It is
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easily seen that P(Ij = 1) = 1/j, so Ij ∼ Be(1/j). Moreover, the random
variables Ij are independent [36]. Since X(Pn) =

∑n
j=1 Ij , we have

EX(Pn) =
n∑

j=1

E Ij =
n∑

j=1

1
j
∼ lnn. (1.1)

The representation X(Pn) =
∑n

j=1 Ij further yields easily, by the central
limit theorem with Liapounov’s condition [23, Exercise 5.20] or via an ap-
proximation by a Poisson distribution Po(EX) or Po(lnn) [4, Theorem 2.M],
asymptotic normality:

(lnn)−1/2
(
X(Pn)− lnn

) d−→ N(0, 1) as n→∞.

We can write X(T ) as a sum of indicators as in Example 1.4 for any
tree T , see the proof of Lemma 4.3 below, but paths are very special; it
is essentially only for paths that these indicators are independent. (More
precisely, for T such that T ′ is a collection of paths rooted at one end; for
Xv(T ) the condition is that T is a path rooted at one end.) For general
trees we therefore need other methods.

Example 1.5. The simplest example where the indicators are dependent
is Xv(T ) where T is a tree with three vertices: one root 0 attached to two
leaves 1 and 2. We have Xv(T ) = I0 + I1 + I2 with P(I0 = 1) = 1 and
P(I1 = 1) = P(I2 = 1) = 1/2, but P(I1 = I2 = 1) = 1/3. In fact, Xv(T ) has
in this case a uniform distribution on {1, 2, 3}.

The classes of random trees that we consider are the conditioned Galton–
Watson trees, obtained as the family tree of a Galton–Watson process condi-
tioned on a given total size. (Other classes of random trees will presumably
yield other interesting results with different normalizations. Random re-
cursive trees and binary search trees would be interesting examples.) More
precisely, let ξ be a non-negative integer valued random variable, and con-
sider the Galton–Watson process with offspring distribution ξ. Let Tn be the
family tree, conditioned on its number of edges being n. (We consider only
n such that n edges is possible.) Note that the order of Tn thus is n+ 1; a
more common notation is to let Tn have order n, but our choice will be more
convenient in the proofs because we consider edge cuttings and records. For
the limit results, it does not matter whether n denotes the number of edges
or vertices.

We let ξ (or rather its distribution) be fixed throughout the paper. We
assume always

E ξ = 1 (the Galton–Watson process is critical), (1.2)

0 < σ2 = Var ξ <∞, (1.3)

(In papers on conditioned Galton–Watson trees, it is often assumed that ξ
has an exponential moment, E eαξ < ∞ for some α > 0. This is sometimes
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a technically useful assumption, but we will in this paper only assume finite
variance (1.3), and sometimes finite higher moments.)

It is well known [1] that the families of random trees obtained in this way
are the same as the simply generated families [32]. Many combinatorially
interesting families are of this type; some examples to which our results
apply are the following, for further examples see e.g. [1, 12].

(i) Ordered (=plane) trees. P(ξ = k) = 2−k−1; σ2 = 2.
(ii) Unordered labelled trees (Cayley trees). ξ ∼ Po(1); σ2 = 1.
(iii) Binary trees. ξ ∼ Bi(2, 1/2); σ2 = 1/2.
(iv) Strict binary trees. P(ξ = 0) = P(ξ = 2) = 1/2; σ2 = 1.
(v) d-ary trees. ξ ∼ Bi(d, 1/d); σ2 = 1− 1/d.

We will thus study X(Tn) where Tn is as above. Since both the cutting
(or records) and the tree are random, this can be regarded in (at least) two
ways.

First, we can regard X(Tn) as a random variable, obtained by picking a
random tree Tn and then a random cutting of it. This point of view has
been taken by Meir and Moon [31] (mean and variance for Cayley trees),
Chassaing and Marchand [9] (asymptotic distribution for Cayley trees), Pan-
holzer [33, 34] (asymptotic distribution for some special families of simply
generated trees, and for non-crossing trees). One of the main results of this
paper is to extend these results to all conditioned Galton–Watson trees. All
unspecified limits in this paper are as n→∞.

Theorem 1.6. Let Tn be a conditioned Galton–Watson tree of size n, de-
fined by an offspring distribution ξ satisfying (1.2)–(1.3). Then,

X(Tn)
σn1/2

d−→ Z, (1.4)

where Z has a Rayleigh distribution with density xe−x2/2, x > 0. Moreover,
if E ξm <∞ for every m > 0, then all moments converge in (1.4), and thus,
for every r > 0,

EX(Tn)r ∼ σrnr/2 EZr = 2r/2σrΓ
(

r
2 + 1

)
nr/2. (1.5)

Remark 1.7. The proofs of special cases of Theorem 1.6 by Chassaing and
Marchand [9] (using an equivalence with hash tables) and Panholzer [33, 34]
(using generating functions) are quite different from our proof.

Remark 1.8. The proof shows that (1.5) holds provided E ξbrc+2 < ∞;
this is presumably not sharp. For r = 1, we can show that EX(Tn) ∼
σ
√
πn/2 holds assuming only (1.3), see Appendix A; we do not know if

moment conditions on ξ really are needed for the higher moments. Similarly,
E ξbrkc+2 < ∞ is sufficient for (1.11) below, and E ξ4 < ∞ is sufficient for
Theorem 1.12; we doubt that these conditions are sharp.

The other point of view is to study X(Tn) as a random variable condi-
tioned on Tn. In other words, we consider the random procedure in two
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steps: First we choose a random tree T = Tn. Then we keep this tree fixed
and consider random cuttings of it; this gives a random variable X(T ) with
a distribution that depends on T . Normalizing as in Theorem 1.6, we let µT

denote the distribution of σ−1n−1/2X(T ); thus µTn is a random probability
distribution, viz. the distribution of σ−1n−1/2X(Tn) given Tn.

The reader who is not comfortable with a random probability distribution
can instead consider the moments mk(T ) := EX(T )k, k = 1, 2, . . . . For any
tree T , these are some numbers; taking T to be the random tree Tn, we
obtain the random variables

mk(Tn) = E
(
X(Tn)k | Tn

)
. (1.6)

The moments of µTn are thus σ−kn−k/2mk(Tn).
We define, for a function f defined on an interval J and t1, . . . , tk ∈ J ,

with k ≥ 1 is arbitrary,

Lf (t1, . . . , tk) :=
k∑

i=1

f(t(i))−
k−1∑
i=1

inf
[t(i),t(i+1)]

f, (1.7)

where t(1), . . . , t(k) are t1, . . . , tk arranged in nondecreasing order. (Hence,
t(i) = ti if t1 ≤ t2 ≤ · · · ≤ tk.) Lf (t1, . . . , tk) is thus symmetric in t1, . . . , tk.
Note that Lf (t) = f(t).

We are mainly interested in non-negative functions defined on [0, 1] and
then further define, for k ≥ 1,

mk(f) := k!
∫ 1

0
. . .

∫ 1

0

dt1 · · · dtk
Lf (t1)Lf (t1, t2) · · ·Lf (t1, t2, . . . , tk)

. (1.8)

We also let m0(f) := 1.
We will give background and motivation for these definitions in Sections

3 and 4. Let C[0, 1]+ denote the set of non-negative, continuous functions
on [0, 1].

Theorem 1.9. If f ∈ C[0, 1]+ is such that
∫ 1
0 dt/f(t) <∞, then there exists

a unique probability measure νf on [0,∞) with (finite) moments∫
xk dνf (x) = mk(f)

given by (1.8).

We will see in Section 9 that this theorem extends to discontinuous f too.
Let Bex denote the normalized Brownian excursion. Recall that this is

a random function in C[0, 1]+, see e.g. [8] or [37]. It is well-known, see
Remark 5.2 below, that

∫ 1
0 dt/Bex(t) < ∞ a.s.; hence νcBex exists a.s. for

every constant c > 0. (νcBex is thus a random probability measure.)

Theorem 1.10. If Tn is a conditioned Galton–Watson tree as above, then

µTn

d−→ ν2Bex (1.9)
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in the space of probability measures on R. Moreover, moment convergence
holds in (1.9), that is, for every k ≥ 1, using the notation (1.6),

σ−kn−k/2mk(Tn) d−→
∫
xk dν2Bex(x) = mk(2Bex), (1.10)

with the right hand side given by (1.8). Further, if E ξm < ∞ for every
m > 0, then moment convergence holds in (1.10) too; for k ≥ 1 and r > 0,

Emk(Tn)r ∼ σkrnkr/2 Emk(2Bex)r. (1.11)

Joint convergence holds in (1.9), (1.10) for all k ≥ 1, and (3.4) below.

Remark 1.11. It ought to be possible to define a random variable with
the distribution ν2Bex by some construction that can be interpreted as con-
tinuous cutting on the Brownian continuum random tree defined by Aldous
[1, 2]. We have, however, not had enough imagination to construct such a
variable.

We can use these results to see how much of the variance of X(Tn) that
comes from the random choice of tree and how much that comes from the
cutting. We have, as always in such cases, the decomposition

X(Tn) =
(
X(Tn)− E

(
X(Tn) | Tn

))
+ E

(
X(Tn) | Tn

)
and the corresponding analysis of variance

VarX(Tn) = E
(
X(Tn)− E

(
X(Tn) | Tn

))2
+ Var

(
E
(
X(Tn) | Tn

))
= E

(
Var
(
X(Tn) | Tn

))
+ Var

(
E
(
X(Tn) | Tn

))
. (1.12)

Theorem 1.12. For large n, at least provided E ξr <∞ for all r > 0,

VarX(Tn) = Em2(Tn)−
(
Em1(Tn)

)2 ∼ (2− π
2

)
σ2n,

E
(
Var
(
X(Tn) | Tn

))
= E

(
m2(Tn)−m1(Tn)2

)
∼
(
2− π2

6

)
σ2n,

Var
(
E
(
X(Tn) | Tn

))
= Var

(
m1(Tn)

)
∼
(

π2

6 − π
2

)
σ2n.

Hence, asymptotically, the first term in (1.12) is (2− π2/6)/(2− π/2) ≈
0.827 of the total. Thus, for a conditioned Galton–Watson tree, for large
n, about 83% of the variance of X(Tn) comes from the random choice of
cutting, and 17% from the random choice of tree.

In the proofs we will use an estimate that might be of independent interest.
Let wk(T ) be the number of vertices of depth k in a rooted tree T . As above,
let Tn be a conditioned Galton–Watson tree of size n, defined by an offspring
distribution ξ satisfying (1.2)–(1.3).

Theorem 1.13. Suppose that r ≥ 1 is an integer such that E ξr+1 < ∞.
Then, for all n and k ≥ 1, E

(
wk(Tn)r

)
≤ Ckr for some constant C depending

on r and ξ only.
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For the expectation Ewk(Tn), related asymptotic results are given by Meir
and Moon [32].

Proofs of the theorems above are given in Sections 2–5.
In Section 6 we show that the results above are valid for the vertex versions

too. We also give a generalization to a somewhat larger class of random trees,
including the non-crossing trees studied by Panholzer [34].

In Section 7 we connect our results to known results about the height and
width of random trees.

We end the paper with some comments and further results related to the
main results. Section 8 contains two examples with deterministic trees (a
path, with connections Hoare’s algorithm FIND, and a binary tree); these be-
have quite differently than the conditioned Galton–Watson trees. Section 9
extends Theorem 1.9 to discontinuous f . Although the resulting probability
distributions are not needed for our study of random cuttings and records
for conditioned Galton–Watson trees, they arise as limits for other classes
of trees; moreover, we find them interesting in themselves. We study a few
simple examples.

Finally, we want to draw attention to the following open problems, related
to Theorem 1.13; see further Section 10. As above, let Tn be a conditioned
Galton–Watson tree of size n, defined by an offspring distribution ξ satisfy-
ing (1.2)–(1.3).

Problem 1.14. Is, for every fixed k ≥ 1, Ewk(Tn) an increasing function
of n?

Problem 1.15. Is it possible to define the trees Tn on a common probability
space so that the sequence Tn is increasing? In other words, does there exist
a stochastic process Tn describing a growing tree with the right marginal
distributions?

Problem 1.15 was considered for d-ary (including binary) trees by Luczak
and Winkler [28], who proved that the answer is affirmative in this case.
The proof is non-trivial, and there is no “natural” definition of the growing
process. We do not know any similar results for other conditioned Galton–
Watson trees, nor any counterexample. Intuitively, it is natural to guess
that Tn is (stochastically) increasing in this way, but the definition by con-
ditioning precludes any simple monotonicity argument.

A positive answer to Problem 1.15 obviously implies a positive answer
to Problem 1.14, so this problem too is solved for d-ary trees. The exact
formulas in [32] for labelled (Cayley) trees, plane trees and strict binary
trees give a positive answer to Problem 1.14 in these cases too.

Acknowledgements. I thank several participants in the Ninth Seminar on
Analysis of Algorithms in San Miniato, June 2003, for valuable discussions.

This research was partly done during a visit to Université de Versailles
Saint-Quentin, Versailles, France, September 2003.
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2. Proof of Theorem 1.13

We will in this section prove the estimate Theorem 1.13, which is used
in the proof of the main results. The reader that is eager to see the main
arguments can omit this section at the first reading.

The span of ξ, span(ξ), is the smallest positive integer d such that d
divides ξ a.s. We will for simplicity assume that span(ξ) = 1 and leave
the minor modifications when span(ξ) = d > 1 to the reader. We will in
this section let C and c denote various positive constants depending on the
distribution of ξ and the power r only; their values may change from one
occurence to the next.

Let SN :=
∑N

1 ξi, where ξi are i.i.d. copies of ξ. As is well-known, see
e.g. [26, Lemma 2.1.3], if T (i) are i.i.d. copies of T , then

P
( m∑

1

|T (i)| = n
)

=
m

n
P(Sn = n−m), n ≥ m ≥ 1. (2.1)

In particular, using the local central limit theorem [26, Theorem 1.4.2],

P
(
|T | = n

)
=

1
n

P(Sn = n− 1) ∼ (2π)−1/2σ−1n−3/2. (2.2)

We will use the following general estimate. (It can be regarded as a coarse
but general version of local central limit and large deviation theorems.)

Lemma 2.1. There exists constants C and c > 0 such that for all N and
k ≥ 0

P(SN = N − k) ≤ CN−1/2e−ck2/N .

Proof. We may assume 0 ≤ k ≤ N . Let F (z) := E zξ be the probability
generating function of ξ. Then

P(SN = N − k) =
1

2πi

∮
zk−NF (z)N dz

z
,

where we choose to integrate around the circle |z| = r with radius r :=
e−δk/N , for some small δ to be chosen later. We therefore let G(z) := F (z)/z,
and have

P(SN = N − k) =
1
2π

∫ π

−π
e−δk2/N+iktG(reit)N dt. (2.3)

Since E ξ = 1 and E ξ(ξ − 1) = σ2, we have the Taylor expansion

F (z) = 1 + (z − 1) + σ2

2 (z − 1)2 + o(|z − 1|2), |z| ≤ 1,

and thus

G(z) = 1 + σ2

2 (z − 1)2 + o(|z − 1|2), |z| ≤ 1,

G(ew) = 1 + σ2

2 w
2 + o(|w|2), Rew ≤ 0,

lnG(ew) = σ2

2 w
2 + o(|w|2), Rew ≤ 0.
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Hence, if 0 < δ ≤ δ0 and |t| ≤ t0 for sufficiently small positive δ0 and t0,

ln |G(reit)| = Re lnG(e−δk/N+it) = σ2

2 (δ2k2/N2 − t2) + o(δ2k2/N2 + t2)

≤ σ2δ2k2/N2 − σ2t2/4. (2.4)

Since |F (z)| < 1 for |z| ≤ 1 with z 6= 1 (when span(ξ) = 1), continuity
and compactness shows that |F (reit)| ≤ 1 − ε < e−ε for some ε > 0 when
e−δ0 ≤ r ≤ 1 and t0 ≤ |t| ≤ π. Hence, for t0 ≤ |t| ≤ π and 0 ≤ δ ≤ δ1 :=
min(δ0, ε/2),

|G(reit)| = eδk/N |F (reit)| ≤ eδe−ε ≤ e−ε/2. (2.5)

Combining (2.4) and (2.5), we see that if δ ≤ δ1 and |t| ≤ π, then

|G(reit)| ≤ eσ
2δ2k2/N2−c1t2 ,

with c1 := min(σ2/4, ε/2π2) > 0. Using this in (2.3) we obtain

P(SN = N − k) ≤ eσ
2δ2k2/N−δk2/N

∫ ∞

−∞
e−c1Nt2 dt, 0 ≤ δ ≤ δ1,

and the result follows by choosing δ ≤ 1/2σ2. �

If T is a tree, let T k denote T pruned at height k, i.e. the subtree consisting
of all vertices of depth ≤ k. As n→∞, the conditioned Galton–Watson tree
Tn converges in distribution to a random infinite tree T∞, in the sense that
T k

n
d−→ T k

∞ for every fixed k, see [1]. (This follows easily from the argument
in (9.11) below. Actually, we will not use this fact, except as a motivation.)
The tree T∞ can be described in several ways, see e.g. [1] and [27]; we
will use the fact that it is a size-biased version of the (a.s. finite) random
Galton–Watson tree T ; more precisely, for every tree T (with height k),

P(T k
∞ = T ) = wk(T ) P(T k = T ). (2.6)

(Note that the sum over T of the right hand side equals Ewk(T k) = Ewk(T ) =
(E ξ)k = 1.)

Let T be a tree of height k, with wk(T ) = m. If the Galton–Watson tree
T has T k = T , then the part above Tk consists of m independent copies of
T . The total order of these subtrees is |T | − |T |+m, and thus (2.1), (2.2),
Lemma 2.1 and (2.6) yield, if N = n+ 1− |T |+m,

P(T k
n = T ) =

P(T k = T, |T | = n+ 1)
P(|T | = n+ 1)

=
P(T k = T )m

N P(SN = N −m)
P(|T | = n+ 1)

≤ Cn3/2 m

N3/2
e−cm2/N P(T k = T )

= C
( n
N

)3/2
e−cm2/N P(T k

∞ = T ).

(2.7)

Lemma 2.2. If r ≥ 1 is an integer and E ξr < ∞, then E
(
wk(T )r

)
is a

polynomial in k of degree r − 1.
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Proof. Recall that wk(T ) is the size of the k:th generation in a critical
Galton–Watson process. Thus, conditioned on wk(T ) = M , wk+1(T ) is
distributed as SM .

First, for r = 1, we have Ewk(T ) = (E ξ)k = 1.
Next, wk(T )2 is the number of pairs (v1, v2) in the k:th level (generation).

Distinguishing between the cases when their fathers are different or the same,
we see that

E
(
wk+1(T )2 | wk(T ) = M

)
= M(M − 1)(E ξ)2 +M E ξ2 = M2 +Mσ2

and thus

Ewk+1(T )2 = Ewk(T )2 + σ2 Ewk(T ) = Ewk(T )2 + σ2.

By induction,
Ewk(T )2 = 1 + kσ2. (2.8)

For r > 2 we argue in the same way. We consider all sequences of r
vertices v1, . . . , vr at level k, and separate them according to the partition
of {1, . . . , r} formed by the sets of siblings. This yields

E
(
wk+1(T )r | wk(T ) = M

)
= M r + qr(M),

where qr is a polynomial of degree r − 1, and thus

Ewk+1(T )r = Ewk(T )r + E qr(wk(T )). (2.9)

By induction on r, E qr(wk(T )) is a polynomial in k of degree r − 2, and
(2.9) implies the result. �

Lemma 2.3. If r ≥ 1 is an integer with E ξr+1 < ∞, then E
(
wk(T∞)r

)
is

a polynomial in k of degree r.

Proof. By (2.6), E
(
wk(T∞)r

)
=
∑

T wk(T )r P(T k
∞ = T ) = E

(
wk(T )r+1

)
and

the result follows by Lemma 2.2. �

Let Ek be the event {
∑k−1

j=0 wj(Tn) ≤ n/2} and define w̃k(Tn) := wk(Tn)1[Ek],
where 1[E ] denotes the indicator of E . (w̃k(Tn) is a truncated version of wk,
roughly speaking we ignore vertices with depth larger than the median.)

Fix r ≥ 1 with E ξr+1 < ∞. If T k
n = T and w̃k(Tn) > 0, then Ek

occurs and thus n + 1 − (|T | − wk(T )) = n −
∑

j<k wj(T ) ≥ n/2; hence
P(T k

n = T ) ≤ C P(T k
∞ = T ) by (2.7). Summing over all T with wk(T ) = j,

we see that, for every j ≥ 1, P(w̃k(Tn) = j) ≤ C P(wk(T∞) = j). Hence,

E
(
w̃k(Tn)r

)
=
∑

j

jr P(w̃k(Tn) = j) ≤ C E
(
wk(T∞)r

)
,

which by Lemma 2.3 yields

E
(
w̃k(Tn)r

)
≤ Ckr, k ≥ 1. (2.10)
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We use the notation ‖X‖r = (E |X|r)1/r and rewrite (2.10) as ‖w̃k(Tn)‖r ≤
Ck. By Minkowski’s inequality, thus∥∥∥ k∑

j=0

w̃j(Tn)
∥∥∥

r
≤

k∑
j=0

‖w̃j(Tn)‖r ≤ Ck2, k ≥ 1. (2.11)

If Ek does not occur, let l be the smallest integer such that
∑

j<l wj(Tn) >
n/2. Then l ≤ k and w̃j(Tn) = wj(Tn) for j < l, and thus

∑
j<k w̃j(Tn) =∑

j<l wj(Tn) > n/2. Hence, by Markov’s inequality and (2.11),

P(Ec
k) ≤

( 2
n

)r
E
( k∑

j=0

w̃j(Tn)
)r
≤ Cn−rk2r. (2.12)

In particular, P(Ec
k) ≤ P(Ec

k)
1/2 ≤ Ckrn−r/2 and

E
(
wk(Tn)r1[Ec

k]1[wk(Tn) ≤ n1/2]
)
≤ nr/2 P(Ec

k) ≤ Ckr. (2.13)

Finally, if m = wk(T ) ≥ n1/2, then e−cm2/N ≤ e−cn/N ≤ C(N/n)3/2

and (2.7) shows that P(T k
n = T ) ≤ C P(T k

∞ = T ). Consequently, using
Lemma 2.3,

E
(
wk(Tn)r1[wk(Tn) > n1/2]

)
≤ C E

(
wk(T∞)r

)
≤ Ckr. (2.14)

Summing (2.10), (2.13) and (2.14), we obtain Theorem 1.13.

3. Depth-first search and walk

We will use the idea of coding trees by walks [1, 2, 35]. We will denote
the root of a tree by o. The depth d(v) of a vertex v in a rooted tree is the
distance from o to v.

Let T be an ordered tree with root o and n = |T | − 1 edges. The depth-
first search of T is the function ψ from {0, 1, . . . , 2n} to the set of vertices
of T such that ψ(0) = o and, for 0 ≤ i < 2n, if ψ(i) = v, then ψ(i+1) is the
first child of v that has not already been visited, if such a child exists, and
the parent of v otherwise. Note that ψ(i) and ψ(i+1) always are neigbours;
we extend ψ to [0, 2n] by letting, for 0 ≤ i < t < i+ 1 ≤ 2n, ψ(t) to be the
one of ψ(i) and ψ(i+ 1) that has largest depth. Then each non-root vertex
in T is ψ(t) for t in exactly two (possibly adjacent) intervals of unit lengths,
which proves the following, cf. [2, Lemma 12].

Lemma 3.1. If we choose t in (0, 2n) uniformly at random, then ψ(t) will
have a uniform distribution over all non-root vertices in T . �

We further define

V (i) = VT (i) := d(ψ(i)), i = 0, . . . , 2n,

and extend, as is customary, V to [0, 2n] by linear interpolation; thus V ∈
C[0, 2n]. Note that

d(ψ(t)) = dV (t)e, t ∈ [0, 2n]. (3.1)
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We rescale V (by constants adapted to the families of trees we are interested
in) and define

Ṽ (t) := n−1/2V (2nt), (3.2)

V̂ (t) := n−1/2dV (2nt)e. (3.3)

Hence Ṽ ∈ C[0, 1], and Ṽ ≤ V̂ ≤ Ṽ + n−1/2. We use the name depth-first
walk for V , and call Ṽ and V̂ rescaled depth-first walks. Since |Ṽ − V̂ | ≤
n−1/2, it often does not matter whether we use Ṽ or V̂ in our asymptotic re-
sults, and we then usually prefer Ṽ which is traditional. However,

∫ 1
0 dt/Ṽ (t)

always diverges, which forces us to use V̂ in e.g. (4.9) below.
The definitions so far apply to any tree, deterministic or not. If T is a

random conditioned Galton–Watson tree as in Section 1, then Ṽ becomes a
random function in C[0, 1], and Aldous [2, Theorem 23 with Remark 2] has
shown the deep result that, in C[0, 1] with its usual topology, as n→∞,

Ṽ
d−→ 2σ−1Bex. (3.4)

(See also [29].) This will be the basis of our proofs.

4. Proof of Theorems 1.9 and 1.10

We begin by showing uniqueness in Theorem 1.9.

Lemma 4.1. If f is defined on an interval J and t1, . . . , tk ∈ J , then
Lf (t1, . . . , tk) ≥ max1≤i≤k f(ti). Consequently,

1
Lf (t1) · · ·Lf (t1, . . . , tk)

≤ 1
f(t1) · · · f(tk)

. (4.1)

Proof. Since Lf is a symmetric function, we may for the first part assume
that 0 ≤ t1 ≤ · · · ≤ tk ≤ 1, so t(i) = ti. If 1 ≤ j ≤ k, we use inf [ti,ti+1] f ≤
f(ti) for i < j and inf [ti,ti+1] f ≤ f(ti+1) for i ≥ j; hence, by (1.7),

Lf (t1, . . . , tk) =
k∑

i=1

f(ti)−
k−1∑
i=1

inf
[ti,ti+1]

f ≥ f(tj).

This yields the first inequality; (4.1) follows immediately. �

Lemma 4.2. If f ≥ 0 on [0, 1], and A =
∫ 1
0 dt/f(t) <∞, then

0 ≤ mk(f) ≤ k!Ak, k ≥ 1. (4.2)

Hence, for 0 ≤ x < 1/A,
∞∑

k=0

mk(f)
xk

k!
<∞. (4.3)

In particular, each mk(f) is finite and there exists at most one probability
measure on R with moments mk(f).
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Proof. By (1.8) and Lemma 4.1,

0 ≤ mk(f) ≤ k!
∫ 1

0
. . .

∫ 1

0

dt1 · · · dtk
f(t1) · · · f(tk)

= k!
(∫ 1

0

dt

f(t)

)k

.

This proves (4.2), and thus (4.3). A probability measure with moments
mk(f) thus has finite moment generating function in a neighborhood of 0;
it is well known that this implies that the measure is unique, see e.g. [19,
Section 4.10]. �

We continue by computing the moments of X(T ) for a fixed tree T . We
denote falling factorials by xk := x(x − 1) · · · (x − k + 1). If v1, . . . , vk are
vertices in a rooted tree T , let LT (v1, . . . , vk) be the number of edges in the
subtree of T spanned by v1, . . . , vk and the root, i.e. in the union of the
paths from v1, . . . , vk to the root. In particular, for k = 1, LT (v) = d(v).

Lemma 4.3. For any tree T with root o, the factorial moments of X(T )
are given by, for k ≥ 1,

EX(T )k = k!
∑**

v1,...,vk

1
LT (v1) · LT (v1, v2) · · ·LT (v1, . . . , vk)

, (4.4)

with
∑** denoting summation over v1, . . . , vk that are distinct, 6= o, and

such that vi is not a descendant of vj when i < j. In particular,

m1(T ) = EX(T ) =
∑
v 6=o

1
d(v)

. (4.5)

Proof. Using the equivalence X(T ) = Xv(T ′) and the record formulation we
have, as in Example 1.4, X(T ) =

∑
v 6=o Iv, where Iv is the indicator that

there is a record in T ′ at the vertex v. Hence, letting
∑* denote the sum

over distinct vertices 6= o,

X(T )k =
∑*

v1,...,vk

Iv1 · · · Ivk
. (4.6)

In this sum, each product Iv1 · · · Ivk
occurs k! times, with the indices per-

muted. For exactly one of these permutations we have λv1 < · · · < λvk
.

Consequently,

X(T )k = k!
∑*

v1,...,vk

1[E(v1, . . . , vk)], (4.7)

where E(v1, . . . , vk) is the event

{λv1 < · · · < λvk
and all are records in T ′}

= {λvj is the largest value in T (v1, . . . , vj)′ for every j = 1, . . . , k}.
The event E(v1, . . . , vk) is impossible if vi is a descendant of vj for some i and
j with i < j. For any other sequence v1, . . . , vk, the probability that λvk

is
the largest value in T (v1, . . . , vk)′ is, by symmetry, 1 divided by the number
of vertices in T (v1, . . . , vk)′, i.e. 1/LT (v1, . . . , vk). Moreover, conditioned on
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this happening, the values in T (v1, . . . , vk−1)′ are exchangeable, again by
symmetry, and thus it follows by induction that, for such v1, . . . , vk,

P[E(v1, . . . , vk)] =
k∏

j=1

1
LT (v1, . . . , vj)

.

Taking expectations in (4.7) we thus obtain (4.4), and (4.5) follows because
LT (v) = d(v). �

We next connect the subtree size LT to Lf in (1.7) using the depth-first
walks in Section 3, cf. [1, 2].

Lemma 4.4. Let T be a tree with depth-first search and walk ψ and V . If
t1, . . . , tk ∈ [0, 1], then

LT

(
ψ(t1), . . . , ψ(tk)

)
= LdV e(t1, . . . , tk).

Proof. Since, by definition, both LT and LdV e are symmetric, we may assume
that 0 ≤ t1 ≤ · · · ≤ tk ≤ 1. Let vi = ψ(ti), i = 1, . . . , k.

First, if k = 1, we have by (3.1)

LT (v1) = d(v1) = dV (t1)e = LdV e(t1).

Next, if k = 2, let w be the last common ancestor of v1 and v2. It is easily
seen that d(w) = inf [t1,t2]dV (t)e, cf. [2], and thus

LT (v1, v2) = d(v1) + d(v2)− d(w) = LdV e(t1, t2).

The general case follows similarly, using induction on k. �

Lemma 4.5. Suppose that Tn, n = 1, 2, . . . , is a sequence of ordered trees
with |Tn| = n + 1, and denote the corresponding depth-first walks by Vn,
rescaled to Ṽn and V̂n. Suppose further that f ∈ C[0, 1] is a function such
that

Ṽn(t) → f(t) in C[0, 1] (4.8)

and ∫ 1

0

dt

V̂n(t)
→
∫ 1

0

dt

f(t)
<∞. (4.9)

Then, for each k ≥ 1,

n−k/2mk(Tn) = n−k/2 EX(Tn)k → mk(f)

given by (1.8), and n−1/2X(Tn) d−→ νf given by Theorem 1.9.

Proof. Consider first the mean. Let ψn be the depth-first search for Tn. By
(4.5), Lemma 3.1, and (3.1),

m1(Tn) = EX(Tn) =
∑
v∈T ′n

1
d(v)

= 1
2

∫ 2n

0

dt

d(ψn(t))
= 1

2

∫ 2n

0

dt

dVn(t)e
.
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A change of variables yields, see (3.3),

m1(Tn) = n

∫ 1

0

dt

dVn(2nt)e
= n1/2

∫ 1

0

dt

V̂n(t)
. (4.10)

By (4.9), the latter integral converges to
∫ 1
0 dt/f(t) = m1(f).

Recall now that a sequence (gn) of functions on a measure space (Ω, µ)
with total mass 1 is uniformly integrable if supn

∫
Ω |gn| dµ <∞ and

sup
µ(A)≤δ

sup
n

∫
A
|gn| dµ→ 0 as δ → 0.

If all gn ≥ 0 and gn → g a.e., we have the useful equivalence, see e.g. [23,
Proposition 4.12],

{gn}∞1 is uniformly integrable ⇐⇒
∫
gn →

∫
g <∞. (4.11)

Since (4.8) implies Ṽn(t) → f(t) for every t ∈ [0, 1], and thus V̂n(t) → f(t)
and 1/V̂n(t) → 1/f(t), (4.9) implies that {1/V̂n(t)} is uniformly integrable.
More generally, for every fixed k ≥ 1,∫ 1

0
. . .

∫ 1

0

dt1 · · · dtk
V̂n(t1) · · · V̂n(tk)

=
(∫ 1

0

dt

V̂n(t)

)k

→
(∫ 1

0

dt

f(t)

)k

=
∫ 1

0
. . .

∫ 1

0

dt1 · · · dtk
f(t1) · · · f(tk)

,

and thus, by (4.11),
{
1/
(
V̂n(t1) · · · V̂n(tk)

)}
is uniformly integrable on [0, 1]k.

By (4.1), this implies that{
1

LbVn
(t1) · · ·LbVn

(t1, . . . , tk)

}∞
n=1

is uniformly integrable on [0, 1]k.

(4.12)
Let D be the set of pairs (v, w) of non-root vertices in Tn such that v = w

or v is a descendant of w. Then the sum in (4.4) is over all non-roots
(v1, . . . , vk) such that (vi, vj) /∈ D for 1 ≤ i < j ≤ k. Fix k ≥ 1 and let

E =
⋃

1≤i<j≤k

{
(x1, . . . , xk) ∈ [0, 2n]k : (ψ(xi), ψ(xj)) ∈ D

}
Ê =

⋃
1≤i<j≤k

{
(t1, . . . , tk) ∈ [0, 1]k : (ψ(2nti), ψ(2ntj)) ∈ D

}
.

For each w, D contains d(w) pairs (v, w). Hence,

|D| =
∑
w

d(w) ≤ nmax
w

d(w) = nmaxVn

and, using Lemma 3.1,

|Ê | ≤
(
k

2

)
n−2|D| ≤ k2n−1 maxVn = k2n−1/2 max Ṽn. (4.13)
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We now take vi = ψn(xi) in (4.4), and obtain by Lemmas 3.1 and 4.4,

EX(Tn)k = k! 2−k

∫
· · ·
∫

[0,2n]k\E

dx1 · · · dxk

LdVne(x1) · · ·LdVne(x1, . . . , xk)

= k!nk/2

∫
· · ·
∫

[0,1]k\bE
dt1 · · · dtk

LbVn
(t1) · · ·LbVn

(t1, . . . , tk)
.

Since max Ṽn → max f < ∞ by (4.8), we have by (4.13) |Ê | → 0 as
n→∞. The uniform integrability (4.12) thus implies that the integral over
Ê tends to 0. Hence,

n−k/2 EX(Tn)k = k!
∫
· · ·
∫

[0,1]k

dt1 · · · dtk
LbVn

(t1) · · ·LbVn
(t1, . . . , tk)

+ o(1). (4.14)

Moreover, (4.8) implies that also V̂n → f uniformly on [0, 1]. Hence, when-
ever 0 ≤ t1 ≤ t2 ≤ 1, inf [t1,t2] V̂n → inf [t1,t2] f . Thus, by (1.7),

LbVn
(t1, . . . , tk) → Lf (t1, . . . , tk), t1, . . . , tk ∈ [0, 1].

It now follows from (4.14), (4.12) and (4.11) that

n−k/2 EX(Tn)k → k!
∫
· · ·
∫

[0,1]k

dt1 · · · dtk
Lf (t1) · · ·Lf (t1, . . . , tk)

= mk(f).

In particular, EX(Tn)k = O(nk/2) for every fixed k. The relation between
ordinary and factorial moments now shows that

n−k/2 EX(Tn)k → mk(f), k ≥ 1,

as asserted. Lemma 4.2 shows that the method of moment applies, so
n−1/2X(Tn) converges in distribution to a limit with moments mk(f). Thus
νf in Theorem 1.9 exists, and n−1/2X(Tn) d−→ νf . �

Remark 4.6. The assumption (4.8) may be relaxed. For example, it is
enough (by the same proof) to assume that supn supt Ṽn(t) < ∞ and that
Ṽn → f uniformly on each subinterval [a, b] with 0 < a < b < 1. See also
Section 9.

Lemma 4.7. Let Tn be a conditioned Galton–Watson tree as in Section 1,
and let F = 2σ−1Bex. Then(

Ṽn,

∫ 1

0

dt

V̂n(t)

)
d−→
(
F,

∫ 1

0

dt

F (t)

)
in C[0, 1]× R.

Proof. Of course, this is based on (3.4). The only problem is that f 7→∫ 1
0 dt/f(t) is not a continuous functional on C[0, 1]. We therefore use a

truncated version.
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Let φε be the function with φε = 0 on [0, ε], φε = 1 on [2ε,∞), and φε

linear on [ε, 2ε]. Define

Yn :=
∫ 1

0

1

V̂n(t)
dt, Y :=

∫ 1

0

1
F (t)

dt,

Y ε
n :=

∫ 1

0

φε

(
V̂n(t)

)
V̂n(t)

dt, Y ε :=
∫ 1

0

φε

(
F (t)

)
F (t)

dt.

(4.15)

By (3.4), Ṽn
d−→ F in C[0, 1]. Using the Skorohod coupling theorem, see

e.g. [23, Theorem 4.30], we may pretend that Ṽn
a.s.−→ F , i.e. a.s. Ṽn → F

uniformly. Then V̂n → F uniformly too, and since x 7→ φε(x)/x is uniformly
continuous, it follows that Y ε

n → Y ε. Consequently (or by [7, Theorem 5.5]),
for every fixed ε > 0, (3.4) implies(

Ṽn, Y
ε
n

) d−→
(
F, Y ε

)
as n→∞. (4.16)

Further it is clear, by monotone convergence, that Y ε → Y as ε → 0, for
every fixed n.

Arguing as for (4.10) (backwards),

0 ≤ Yn − Y ε
n ≤ n−1/2

∑
d(v)≤2εn1/2

1
d(v)

= n−1/2
2εn1/2∑
k=1

wk(Tn)
k

and thus, by Theorem 1.13,

E |Yn − Y ε
n | ≤ n−1/2

2εn1/2∑
k=1

Ewk(Tn)
k

≤ 2Cε. (4.17)

Consequently,

lim
ε→0

lim sup
n→∞

E |(Ṽn, Y
ε
n )− (Ṽn, Yn)| = lim

ε→0
lim sup

n→∞
E |Y ε

n − Yn| = 0. (4.18)

By [7, Theorem 4.2], we thus can let ε → 0 in (4.16) (interchanging the
order of the limits) and obtain (Ṽn, Yn) d−→ (F, Y ). �

Lemma 4.8. Let Tn be a conditioned Galton–Watson tree. If r is an integer
such that E ξr+1 <∞, then Em1(Tn)r = O(nr/2).

Proof. By (4.5),

m1(Tn) =
∞∑

k=1

wk(Tn)
k

≤
n1/2∑
k=1

wk(Tn)
k

+
n

n1/2
.

Hence, by Minkowski’s inequality and Theorem 1.13,

‖m1(Tn)‖r ≤
n1/2∑
k=1

‖wk(Tn)‖r

k
+ n1/2 ≤ Cn1/2. �
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Lemma 4.9. Let Tn be a conditioned Galton–Watson tree. For every fixed
integer k ≥ 1 such that E ξk+1 <∞, EX(Tn)k = O(nk/2).

Proof. For any tree T , LT (v1, . . . , vj) ≥ LT (vj) = d(vj). Lemma 4.3 thus
implies

EX(T )k ≤ k!
∑

v1,...,vk 6=o

1
d(v1) · · · d(vk)

= k!
(
EX(T )

)k = k!m1(T )k. (4.19)

Consequently, EX(Tn)k = O(nk/2) by Lemma 4.8, and the result follows by
expressing Xk in falling factorials. �

Proof of Theorem 1.10. By Lemma 4.7 and the Skorohod coupling theorem,
see e.g. [23, Theorem 4.30], we may assume that the trees Tn are defined on
a common probability space and that(

Ṽn,

∫ 1

0

dt

V̂n(t)

)
a.s.−→

(
F,

∫ 1

0

dt

F (t)

)
,

with F = 2σ−1Bex. Lemma 4.5 now shows that a.s., for every k ≥ 1,

σ−kn−k/2mk(Tn) → σ−kmk(F ) = mk(2Bex),

and thus µTn → ν2Bex . This proves (1.9) and (1.10), jointly with (3.4).
Finally, assume E ξm < ∞ for all m. By Jensen’s inequality, for integers

k, r ≥ 1,

mk(Tn)r = E
(
X(Tn)k | Tn

)r ≤ E
(
X(Tn)rk | Tn

)
= mrk(Tn)

and thus Emk(Tn)r ≤ EX(Tn)rk = O
(
nrk/2

)
by Lemma 4.9. Hence, every

moment of the left hand side of (1.10) stays bounded as n→∞. This implies
moment convergence in (1.10), which clearly is equivalent to (1.11). �

Finally, we prove existence in Theorem 1.9. We do this in three steps.
Step 1: min f > 0 and f is Lipschitz: |f(x)− f(y)| ≤ C|x− y| for some C
and all x, y ∈ [0, 1]. Define

gn(2k) := 2d1
2

√
nf(k/n)e

for even integers 2k = 0, 2, . . . , 2n. Assume that n > C2; then the Lipschitz
assumption yields |f((k+1)/n)− f(k/n)| ≤ C/n < 1/

√
n and thus gn(2k+

2) − gn(2k) ∈ {−2, 0, 2} for every k = 0, . . . , n − 1. Define gn(2k + 1) :=
1 + min

(
g(2k), g(2k + 2)

)
; then gn(j) − gn(j − 1) = ±1 for every integer

j = 1, . . . , 2n. Hence, gn is a simple walk on {0, 1, . . . , 2n}, but it is not 0 at
the endpoints. We thus define Vn(j) := min

(
gn(j), j, 2n − j

)
, and observe

that Vn is a simple walk that is the depth-first walk of some tree Tn with n
edges.

Extend gn to [0, 2n] by linear interpolation and let, cf. (3.2) and (3.3),
g̃n(t) := n−1/2gn(2nt) and ĝn(t) := n−1/2dgn(2nt)e. Then |g̃n(k/n)−f(k/n)| <
2n−1/2 for each k = 0, . . . , n, and it follows easily that g̃n → f and ĝn → f
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uniformly on [0, 1]. Further, ĝn ≥ min f > 0, so by dominated convergence,∫
dt/ĝn(t) →

∫
dt/f(t).

If A := max f , then gn ≤ An1/2 + 3, and thus Vn(j) = gn(j) whenever
An1/2 + 3 ≤ j ≤ 2n − An1/2 − 3; hence Ṽn(t) = g̃n(t) and V̂n(t) = ĝn(t) on
[(A+ 4)n−1/2, 2n− (A+ 4)n−1/2]. Consequently, Ṽn(t) → f(t) uniformly on
every interval [a, b] with 0 < a < b < 1. Moreover, Vn(t) = min(gn(t), t, 2n−
t) for non-integer t ∈ [0, 2n] too, and thus

1

V̂n(t)
= max

( 1
ĝn(t)

,
n1/2

d2nte
,

n1/2

d2n(1− t)e

)
≤ 1
ĝn(t)

+
n1/2

d2nte
+

n1/2

d2n(1− t)e
.

Consequently,

0 ≤
∫ 1

0

dt

V̂n(t)
−
∫ 1

0

dt

ĝn(t)
≤ 2n1/2

∫ 1

0

dt

d2nte
= n−1/2

2n∑
j=1

1
j

= o(1).

The trees Tn thus satisfy the assumptions of Lemma 4.5 as modified in
Remark 4.6. Consequently, n−1/2X(Tn) d−→ νf , which shows that νf exists.
Step 2: f ∈ C[0, 1]+ with min f > 0. There exist strictly positive Lipschitz
functions fN such that fN → f uniformly on [0, 1] as N →∞. νfN

exists
for every N by Step 1. It follows easily that mk(fN ) → mk(f) for every
k ≥ 1, and thus νfN

converges by the method of moments to a distribution
νf . (See also Lemma 9.2 below.)

Step 3: f ∈ C[0, 1]+ with
∫ 1
0 dt/f(t) < ∞. Define fN (t) := f(t) + 1/N .

The method of moment applies again, and shows the existence of νf .

5. Proofs of Theorems 1.6 and 1.12

Proof of Theorem 1.6. By the definition of µTn and Theorem 1.10, for any
bounded continuous function f : R → R,

E
(
f(σ−1n−1/2X(Tn)) | Tn

)
=
∫
f dµTn

d−→
∫
f ν2Bex .

Taking expectations we find, by dominated convergence,

E
(
f(σ−1n−1/2X(Tn)

)
→ E

∫
f dν2Bex =

∫
f dν,

where ν = E ν2Bex . This shows convergence of σ−1n−1/2X(Tn) in distribu-
tion to some limit ν, i.e. (1.4) holds for some Z.

By Lemma 4.9, every moment on n−1/2X(Tn) stays bounded as n→∞,
which together with (1.4) implies moment convergence in (1.4).

It remains to identify the limit ν as the Rayleigh distribution. Note that ν
does not depend on the distribution of ξ. We have thus proved an invariance
principle, so in order to identify the limit we can appeal to the special cases
proved by Chassaing and Marchand [9] and Panholzer [33].
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We can also identify ν directly as follows. We have∫
xk dν(x) = E

∫
xk dν2Bex(x) = Emk(2Bex).

The following lemma computes these moments. A simple integration shows
that Z has the same moments, and the proof is complete. �

Lemma 5.1. Emk(2Bex) = 2k/2Γ(k/2 + 1), for every k ≥ 1.

Proof. In this proof, the edges of trees may have arbitrary positive real
lengths.

The continuum random tree is a metric space constructed by Aldous
[2, §4.3] in several different ways. One construction represents the con-
tinuum random tree by the random function 2Bex, such that each t ∈
[0, 1] corresponds to a vertex (point) ψ(t) in the continuum tree and the
subtree spanned by the root and ψ(t1), . . . , ψ(tk) has total edge length
L2Bex(t1, . . . , tk), cf. [2, Theorem 13]. Another construction says that if
U1, . . . , Uk are random numbers in [0, 1], uniformly distributed and indepen-
dent, then the random subtree of the continuum random tree spanned by
the corresponding vertices and the root has the same distribution as the
following tree: Let Y1, . . . , Yk be the first k points in a Poisson process on
(0,∞) with intensity x dx. Let T1 be a single edge of length Y1 from the root
to v1. Ti for i ≥ 2 is defined inductively by choosing a new branch-point
uniformly on the edges of Ti−1, and attaching vi to this point by an edge
of length Yi − Yi−1. It follows that L2Bex(U1, . . . , Ui)

d= Yi for i = 1, . . . , k
(jointly). Since Y1, . . . , Yk have the joint density function y1 · · · yke

−y2
k/2 on

0 < y1 < · · · < yk by standard properties of Poisson processes [2], (1.8)
yields

Emk(2Bex) = E
k!

L2Bex(U1) · · ·L2Bex(U1, . . . , Uk)
= E

k!
Y1 · · ·Yk

=
∫
· · ·
∫

0<y1<···<yk

k!
y1 · · · yk

y1 · · · yke
−y2

k/2 dy1 · · · dyk

= k!
∫
· · ·
∫

0<y1<···<yk

e−y2
k/2 dy1 · · · dyk = k!

∫ ∞

0

yk−1
k

(k − 1)!
e−y2

k/2 dyk

= k

∫ ∞

0
(2x)k/2−1e−x dx = k2k/2−1Γ(k/2) = 2k/2Γ(k/2 + 1). �

Proof of Theorem 1.12. By (1.6) and (1.11), it remains only to show

Em2(2Bex) = 2,
(
Em1(2Bex)

)2 = π/2, E
(
m1(2Bex)

)2 = π2/6.

The two first follow by taking k = 2 and 1 in Lemma 5.1. The third follows
from the identity in law m1(Bex)

d= maxBex, see (7.4) below, and known
expressions for its moments (following from (7.5)), see e.g. [5].
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Figure 1. The tree T2 with two leaves.

We can also use the same method as in the proof of Lemma 5.1. Using
the notations there,

E
(
m1(2Bex)

)2 = E
∫ 1

0

∫ 1

0

dt1 dt2
2Bex(t1) · 2Bex(t2)

= E
1

2Bex(U1) · 2Bex(U2)
= E

1
d(v1) · d(v2)

,

where vi is the vertex in the continuum random tree corresponding to Ui.
The tree T2 spanned by v1, v2 and the root o contains also a branchpoint and
three edges of lengths L0, L1 and L2, say, see Figure 1. By the construction
above, d(v1) = L0 + L1 = Y1, L2 = Y2 − Y1, and L0 is chosen uniformly in
(0, Y1). Hence, E

(
m1(2Bex)

)2 equals

E
1

(L0 + L1)(L0 + L2)
= E

1
Y1(Y2 − L1)

= E
1
Y1

∫ Y1

0

dl

Y1(Y2 − l)

= EY −2
1

(
lnY2 − ln(Y2 − Y1)

)
=
∫∫

0<y1<y2

y−2
1

(
− ln(1− y1/y2)

)
y1y2e

−y2
2/2 dy1 dy2

=
∫∫

0<y1<y2

∞∑
k=1

1
k
yk−1
1 y1−k

2 e−y2
2/2 dy1 dy2

=
∞∑

k=1

1
k2

∫ ∞

0
y2e

−y2
2/2 dy2 =

π2

6
.

�

Remark 5.2. The case k = 1 of Lemma 5.1, Em1(2Bex) =
√
π/2, can by

(1.8) be written E
∫ 1
0 dt/Bex(t) =

√
2π. This well-known fact [37, Exercise

XI.(3.9)] can be proved in several other ways too. One, straightforward, way
is to compute E(1/Bex(t)) for each t from the density function of Bex(t) [8,
II.(1.4)], and then integrate. Another way is to use the identity in distribu-
tion (7.4) below together with (7.5).

6. Vertex cuttings and records

Now consider the vertex version Xv(T ). We couple Xv(T ) and X(T ) by
using the vertex record formulation and X(T ) = Xv(T ′), where, as in the
introduction, T ′ is T with the root deleted.
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The root is always a record, and Xv(T ) − 1 counts the number of other
vertices that are records, while Xv(T ′) counts the number of other vertices
that are records if we ignore the root. Hence Xv(T )− 1 ≤ Xv(T ′) = X(T ).
Moreover, the probability that a vertex v with depth d(v) = k ≥ 1 is a
record in T is 1/(k + 1), while it is 1/k if we ignore the root (i.e. in T ′).
Hence

E
(
Xv(T ′)− (Xv(T )− 1)

)
=

∞∑
k=1

wk(T )
(1
k
− 1
k + 1

)
=

∞∑
k=1

wk(T )
k(k + 1)

.

We have shown the following.

Lemma 6.1. For any rooted tree T , it is possible to couple X(T ) and Xv(T )
such that Xv(T ) ≤ X(T ) + 1 and

E |X(T )−Xv(T )| ≤ 1 +
∞∑

k=1

wk(T )
k(k + 1)

. �

Theorem 6.2. Theorems 1.6, 1.10 and 1.12 hold for the vertex version
Xv(Tn) too.

Proof. Let Tn be a conditioned Galton–Watson tree as in Section 1, and
use the coupling in Lemma 6.1. Since wk(Tn) = 0 for k > n, we have by
Theorem 1.13

n−1/2 E |X(Tn)−Xv(Tn)| ≤ n−1/2 + n−1/2
n∑

k=1

Ewk(Tn)
k(k + 1)

≤ n−1/2 + n−1/2C

n∑
k=1

1
k
→ 0.

It follows that (1.4) holds with Xv too.
Further, conditioning on Tn, we see that n−1/2 E

(
|Xv(Tn)−X(Tn)|

∣∣ Tn

) p−→
0. By the Skorohod coupling theorem [23, Theorem 4.30], we may assume
that this and (1.9) hold together a.s., which implies that (1.9) holds for Xv

too. Using Xv(Tn) ≤ X(Tn) + 1, it can similarly be shown that (1.10) and
(1.11) (when E ξm < ∞, m ≥ 1) hold for Xv too. Theorem 1.12 for Xv

then follows as before. We omit the details, since the result also follows by
Theorem 6.5 below, see Example 6.3. �

Let us generalize the Galton–Watson tree by assuming that the root may
have a different offspring distribution than the other vertices; say that the
number of children of the root is η. Each of the η children then grows (inde-
pendently) into a tree as before, with offspring distribution ξ in all following
generations. Let T η be the resulting tree, and let T η

n be T η conditioned to
have order n+ 1.

Example 6.3. If η = 1, then T η
n is just T̃n−1, i.e. Tn−1 with a new root

attached. Thus X(T η
n ) = X(T̃n−1) = Xv(Tn−1), so this is another way of

looking at Xv and the results just proved for it.
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Example 6.4. The non-crossing trees were shown by Marckert and Pan-
holzer [30] to be of this type, with η ∼ Ge(2/3) and ξ ∼ NegBin(2, 2/3).
(Thus ξ is distributed as the sum of two independent copies of η; this cor-
responds to the fact that at all vertices except the root, we have two sides
and may distinguish between children to the left and to the right [30].) As
a consequence, it is shown in [30] that (3.4) holds for random non-crossing
trees too, with σ2 = Var ξ = 3/2.

Random cutting of random non-crossing trees was studied by Panholzer
[34]; his result is a version of our Theorem 1.6 for non-crossing trees. We
generalize this result.

Theorem 6.5. Let T η
n be as above, with 0 < E η < ∞, E ξ = 1 and 0 <

σ2 = Var ξ <∞. Then Theorems 1.6, 1.10, 1.12 and 1.13 hold for T η
n too,

provided the assumptions on existence of higher moments of ξ now include
η too. (C in Theorem 1.13 may depend on η too.)

Proof. We begin with a lemma. We write Yn = Op(1) for a family {Yn} of
random variables if supn P(|Yn| > M) → 0 as M → ∞; this is also known
as stochastically bounded or tight.

Let d0(T ) denote the degree of the root of T . Deleting the root of T η
n , we

obtain d0(T η
n ) branches; we order them B1, . . . , Bd0 such that |B1| ≥ |B2| ≥

. . . . We show first that all but a few vertices belong to the largest branch.

Lemma 6.6. |B1| = n−Op(1).

Proof. First, note that by (2.1), for any n ≥ 1,

P(|T η| = n+ 1) =
∞∑

m=1

P(η = m)
m

n
P(Sn = n−m). (6.1)

Assume now, for simplicity, that span(ξ) = 1; we leave the minor differ-
ences in the general case to the reader. We will in this section let C and
c denote various positive constants that depend on ξ and η. Fixing some
m > 0 with P(η = m) > 0, we see from (6.1) and the local central limit
theorem, cf. (2.2), that (for large n)

P(|T η| = n+ 1) ≥ P(η = m)
m

n
P(Sn = n−m) ≥ cn−3/2.

Conversely, by (6.1) and Lemma 2.1,

P(|T η| = n+ 1) ≤
∞∑

m=1

P(η = m)
m

n
Cn−1/2 = Cn−3/2.

Consequently, for n large,

cn−3/2 ≤ P(|T η| = n+ 1) ≤ Cn−3/2. (6.2)
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We see in the same way by (6.1) and Lemma 2.1, that for any M ≥ 0,

P(|T η| = n+ 1, d0(T η) ≥M) ≤
∞∑

m=M

P(η = m)
m

n
Cn−1/2

= Cn−3/2
∞∑
M

mP(η = m)

and thus,

P(d0(T η
n ) ≥M) =

P(|T η| = n+ 1, d0(T η) ≥M)
P(|T η| = n+ 1)

≤ C
∞∑
M

mP(η = m),

which tends to 0 as M →∞. Hence d0(T η
n ) = Op(1).

To prove the lemma, it is therefore sufficient to prove it conditioned on
d0(T η

n ) ≤ M , for every fixed M . By further conditioning, it is sufficient to
prove it conditioned on d0(T η

n ) = m for every m ≥ 1, i.e. to prove the lemma
in the case when η = m is constant.

Hence assume η = m, so there are m branches. Then T η consists of
a root and branches T (i), i = 1 . . . ,m, which are independent copies of
T . Given T (2), . . . , T (m), let N = n −

∑m
2 |T (i)|; then the (conditional)

probability that
∑m

1 |T (i)| = n and |T (1)| ≥ |T (2)| ≥ . . . is either 0 or
P(|T (1)| = N) ≤ CN−3/2 ≤ Cmn

−3/2, since the event is possible only if
N ≥ n/m. (Cm denotes constants that depend on m.) It follows by (6.2)
that, returning to T η

n , P(|B2| = k) ≤ Cm P(|T | = k). Hence |B2| = Op(1)
and n− |B1| ≤ (m− 1)|B2| = Op(1). �

It follows easily that the difference between the rescaled depth-first walks
Ṽ for T η

n and for B1 tends to 0 uniformly, in probability. Given |B1| = n−k,
B1 is a conditioned Galton–Watson tree of order n − k, so (3.4) holds for
B1. It follows that (3.4) holds for T η

n too.
It is now easy to check that the proofs in Sections 2, 4, 5 hold for T η

n too
(with a few trivial modifications). �

7. Height and width

The sequence {wk(T )}∞k=0 is called the profile of T , andW (T ) := maxk wk(T )
is called the width of T . Further, the height of T is

H(T ) := max
v∈T

d(v) = max{k : wk(T ) > 0}.

The asymptotics of these for conditioned Galton–Watson trees are well-
known, see e.g. [1], [10] and the further references there. First [1], using the
depth-first walks in Section 3, since H(T ) = maxt VT (t) = n1/2 maxt Ṽ (t),
(3.4) implies that

n−1/2H(Tn) d−→ 2σ−1 max
t
Bex(t). (7.1)
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By Theorem 1.10, this extends to joint convergence with m1(Tn), the ex-
pected number of cuts or records in the tree which is given by (4.5), in the
form

n−1/2
(
H(Tn), m1(Tn)

) d−→
(
2σ−1 max

t
Bex(t), σm1(2Bex)

)
=
( 2
σ

max
t
Bex(t),

σ

2

∫ 1

0

dt

Bex(t)

)
. (7.2)

The profile and the width can be treated similarly [1, 3, 15], but the
limits will be described by the local time of the Brownian excursion; this
was extended by [10] to include joint distribution with the height. Chassaing,
Marckert and Yor [10] further gave a second proof using instead the breadth-
first walk (see below), which proves

n−1/2
(
H(Tn),W (Tn)

) d−→
( 1
σ

∫ 1

0

dt

Bex(t)
, σmax

t
Bex(t)

)
. (7.3)

(For simplicity, they considered only binary trees, but the argument extends,
see below.) Note that we have the same random variables on the right hand
sides of (7.2) and (7.3) (apart from constant factors), but in different order.
(For this joint distribution, see [14].) In particular, we see that we have two
different descriptions of the limit of H(Tn), and thus [6]

max
t
Bex(t)

d=
1
2

∫ 1

0

dt

Bex(t)
. (7.4)

(Of course, this is an equality in distribution, and not for individual excur-
sions. Informally, we have two different Brownian excursions in (7.2) and
(7.3); the second is a time change of the local time of the first [10], [21].) We
remark that the distributions of these random variables are known [11, 24];
see [5] for much more information:

P(max
t
Bex(t) ≤ x) = 1 + 2

∞∑
k=1

(1− 4k2x2) exp(−2k2x2), x > 0. (7.5)

We employ the second method used by Chassaing, Marckert and Yor [10]
to prove (7.3), and extend it to include m1(Tn) too:

Theorem 7.1. Let Tn be a conditioned Galton–Watson tree of order n,
defined by an offspring distribution ξ satisfying (1.2)–(1.3). Then, jointly,

n−1/2H(Tn) d−→ σ−1

∫ 1

0

dt

Bex(t)
,

n−1/2W (Tn) d−→ σmax
t
Bex(t),

n−1/2m1(Tn) d−→ σ

∫ 1

0

dt∫ t
0 ds/Bex(s)

.

Remark 7.2. By (7.2) and (7.4), the second and third limits have the same
distribution, which only differs by a scale factor from the first.
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Proof. We follow [10] (extending the argument to arbitrary conditioned
Galton–Watson trees).

Define the breadth-first search of an ordered tree T with |T | = n+1 to be
the vertices ordered in a sequence v0, v1, . . . , vn with non-decreasing depths,
such that vertices of equal depth are ordered by the ordering in T . (In
particular, v0 is the root o.) With wk = wk(T ) as above, let zk :=

∑k
j=1wj .

(Thus z0 = 0.) Then zk is the index of the last vertex of depth k, and thus
(with z−1 = −1)

d(vj) = k ⇐⇒ zk−1 < j ≤ zk. (7.6)
Further, let S(j) = ST (j) (0 ≤ j ≤ n) be the number of vertices vk with
k > j and parents in {v0, . . . , vj}. Thus S(0) is the degree of the root,
S(n − 1) = 1 and S(n) = 0. The sequence {(S(j)}n

0 is called the breadth-
first walk. We define S(t) for all real t ∈ [0, n] by linear interpolation. Note
that

S(zk) = wk+1, k ≥ 0. (7.7)
We further define S∗(j) = S∗T (j) := wd(vj). Thus S∗(j) := wk = S(zk−1) if
zk−1 < j ≤ zk, i.e.

S∗(j) = S(j∗), where j∗ := zd(vj)−1. (7.8)

Clearly (for n ≥ 1),

W (T ) = max
k

wk = max
k

S(zk) = max
j
S∗(j), (7.9)

and it is easily seen that H(T ) = d(vn) =
∑n

i=1
1

S∗(i) and, more generally,

d(vj) =

⌈
j∑

i=1

1
S∗(i)

⌉
, 0 ≤ j ≤ n. (7.10)

Consider now the conditioned Galton–Watson tree Tn. Then the breadth-
first walk is a random walk with independent increments distributed as ξ−1
(started at S(−1) = 1), conditioned on S(j) > 0 for j = 0, . . . , n − 1 but
S(n) = 0. We normalize by

S̃n(t) := n−1/2STn(nt), 0 ≤ t ≤ 1,

and have as is well-known, see [22],

S̃n
d−→ σBex in C[0, 1]. (7.11)

We further define

Ŝn(t) := n−1/2S∗Tn
(dnte), 0 ≤ t ≤ 1. (7.12)

Thus

H(Tn) =
∫ n

0
S∗Tn

(dxe)−1dx = n1/2

∫ 1

0

dt

Ŝn(t)
. (7.13)

By (7.11) and the Skorohod coupling theorem [23, Theorem 4.30], we may
assume that all random variables are defined on the same probability space
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Ω, and that for a.e. ω ∈ Ω, S̃n → σBex in C[0, 1]. We fix such an ω; thus
S̃n → σBex uniformly. Since, by (7.9),

W (Tn) = max
k

S(zk) ≤ maxS = n1/2 max S̃n,

we have W (Tn)/n = O(n−1/2) → 0. By (7.8) and (7.6), for 0 ≤ j ≤ n,
|j − j∗| = |j − zd(vj)−1| ≤ supk wk = W and thus maxj |j/n − j∗/n| → 0.
Hence,

max
j
n−1/2|S∗Tn

(j)− STn(j)| = max
j
|S̃n(j∗/n)− S̃n(j/n)|

≤ 2 sup |S̃n − σBex|+ σmax
j
|Bex(j∗/n)−Bex(j/n)| → 0. (7.14)

Consequently, by (7.9) again,

n−1/2W (Tn)−max
t
S̃n(t) = n−1/2 max

j
S∗Tn

(j)− n−1/2 max
j
STn(j) → 0,

and hence
n−1/2W (Tn) → σmax

t
Bex(t). (7.15)

For the height, we note first that similarly to (7.14), supt |Ŝn(t)−S̃n(t)| →
0 and thus supt |Ŝn(t) − σBex(t)| → 0. We truncate as in the proof of
Lemma 4.7, using (4.15) with V̂n replaced by Ŝn and F by σBex. We then
have Y ε

n → Y ε as n→∞ for every ε > 0. Now, by (7.13), Yn = n−1/2H(Tn).
Flajolet and Odlyzko [16] proved, assuming that ξ has a finite exponen-

tial moment, that EYn = En−1/2H(Tn) → σ−1
√

2π, which equals EY =
σ−1 E

∫ 1
0 dt/Bex(t) by Remark 5.2. Hence,

lim
n→∞

E |Y ε
n − Yn| = lim

n→∞

(
EYn − EY ε

n

)
= EY − EY ε,

which by monotone convergence tends to 0 as ε → 0. As in Lemma 4.7, it
then follows from [7, Theorem 4.2] that

n−1/2H(Tn) = Yn
d−→ Y = σ−1

∫ 1

0

dt

Bex(t)
, (7.16)

jointly with (7.11) and (7.15).
Unfortunately, as far as we know, the convergence of n−1/2 EH(Tn) to

σ−1
√

2π [16] is not yet proved assuming only a finite second moment. Hence
we give another argument for the general case. (For the case of binary
trees, [10] used a similar truncation with another argument based on explicit
estimates.)

We know by (7.1) and (7.11) that both Yn = n−1/2H(Tn) and S̃n converge
in distribution. Hence the sequence of pairs (Yn, S̃n) is tight (in R×C[0, 1])
and thus relatively compact by Prohorov’s theorem [7, §6], so every subse-
quence has a subsequence that converges in distribution. Now consider only
n in such a subsequence; we thus have (Yn, S̃n) d−→ (Z,Z ′) for some random
variable Z and random function Z ′. By (7.1) and (7.11), Z d= 2σ−1 maxBex
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and Z ′ d= σBex. We may thus assume that Z ′ = σBex [23, Theorem 6.10].
We can now redo the Skorohod coupling theorem argument above and as-
sume that not only S̃n → σBex but also Yn → Z. We have shown that then
Y ε

n → Y ε as n→∞ for every ε > 0. Since Yn ≥ Y ε
n , it follows that Z ≥ Y ε

for every ε, and thus Z ≥ Y . However, by (7.4), Z d= Y , and thus Z = Y
a.s.

We have considered a convergent subsequence of (Yn, S̃n), and shown that
the limit in distribution is (Y, σBex) for any such subsequence. Since the
sequence (Yn, S̃n) is tight, it follows that the full sequence converges to this
limit, i.e. (7.16) and (7.11) hold jointly.

Redoing the Skorohod coupling theorem argument again, we may thus
assume that a.s. both S̃n → σBex and

∫ 1
0 dt/Ŝn(t) →

∫ 1
0 dt/σBex(t). We fix

again an ω ∈ Ω such that these hold, and recall that then (7.15) holds too.
By (4.11), {1/Ŝn} is uniformly integrable on [0, 1], and it follows that∫ t

0

du

Ŝn(u)
→
∫ t

0

du

σBex(u)
, 0 ≤ t ≤ 1. (7.17)

We now truncate m1(Tn) too and define M ε
n := n−1/2

∑n
εn 1/d(vi). Then,

using (7.10), with 0 ≤ δ(x) ≤ 1 (with minor modifications if εn is an integer),

M ε
n = n−1/2

n∑
dεne

1
d(vi)

= n−1/2

∫ n

bεnc

dx∫ x
0 du/S

∗(due) + δ(x)
.

By changes of variables, (7.17), (7.12) and bounded convergence, with
δn(t) := n−1/2δ(nt),

M ε
n =

∫ 1

dεne/n

dt∫ t
0 du/Ŝn(u) + δn(t)

→ Zε :=
∫ 1

ε

dt

σ−1
∫ t
0 du/Bex(u)

.

Consequently,
(
n−1/2H(Tn), n−1/2W (Tn), M ε

n

)
→ (Y, σmaxBex, Z

ε) for
every ε > 0. We complete the proof by another application of [7, Theo-
rem 4.2]; to verify the condition there it suffices to show that

lim
ε→0

lim sup
n→∞

E |n−1/2m1(Tn)−M ε
n| = 0. (7.18)

To prove this, note that

0 ≤ n−1/2m1(Tn)−M ε2

n = n−1/2
ε2n∑
i=1

1
d(vi)

≤ n−1/2
n∑

i=1

1[d(vi) ≤ εn1/2]
d(vi)

+ n−1/2 ε2n

εn1/2
= n−1/2

εn1/2∑
k=1

wk(Tn)
k

+ ε.

Hence Theorem 1.13 shows that (7.18) holds, cf. (4.17), and the proof is
completed. �
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8. Examples

We give two further examples with deterministic trees.

Example 8.1. FIND is an algorithm (due to Hoare) to find the element of
a given rank k in a set of n elements, see [25, Exercises 5.2.2-31 and 32]. It
chooses (in one version) an element (called pivot) at random, compares it
to all others to determine its rank and to separate the other elements into
two subsets: the ones larger and the ones smaller than the pivot. If the rank
of the pivot is k, stop. Otherwise, decide on basis of the rank of the pivot
which of the two subsets that contains the element with rank k, and its rank
there, and continue recursively.

It is easy to see that the process of choosing pivots is the same as vertex
cutting in Pn,k, the path with n vertices and the root at number k. This is
the tree consisting of a root and two paths, of lengths k− 1 and n− k, from
it. If k = 1 or n, we recover Example 1.4.

The number of passes used by FIND, i.e. the number of pivots, is thus
Xv(Pn,k) = X(P̃n,k). (Note that the random variable usually studied in
connection with FIND is different; it is the total number of comparisons,
which is the sum for all cuts of the number of edges in the current subtree.)
Equivalently, Xv(Pn,k) − 1 equals the depth of node k in a random binary
search tree.

For asymptotics, we note that Lemma 6.1 implies that E |Xv(Pn,k) −
X(Pn,k)| ≤ 3; hence we may instead consider X(Pn,k), which is a sum of

two independent parts X1
d= X(Pk−1) and X2

d= X(Pn−k) for the two paths
from the root. By Example 1.4, each of X1 and X2 may be written as
the sum of independent indicator variables, and thus the same is true for
X(Pn,k). As in Example 1.4, this leads to Poisson approximation, now by
Po
(
ln k + ln(n− k + 1)

)
, and to asymptotic normality.

If we assume 1 ≤ k ≤ (n+1)/2, as we may by symmetry, then ln(n− k+
1) = lnn+O(1), and we obtain, omitting the details,

(lnn+ ln k)−1/2
(
Xv(Pn,k)− lnn− ln k

) d−→ N(0, 1).

In particular, if n1−o(1) < k < n− n1−o(1), we have

(2 lnn)−1/2
(
Xv(Pn,k)− 2 lnn

) d−→ N(0, 1). (8.1)

It follows that (8.1) holds also if k is chosen at random in {1, . . . , n}.
These results have previously been obtained by Devroye and Neininger

[13] and Grübel and Stefanoski [18].

Example 8.2. Let T be a complete binary tree with n = 2m − 1 vertices.
It is easy to see that most vertices have depth close tom, and that the path

between most pairs of vertices goes down almost to the root. More formally,
if V1, . . . , Vk are independent random vertices in T , then d(V1) = m−Op(1)
and d(V1, V2) = 2m − Op(1), where Op(1) means bounded in probability
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as m → ∞, and thus LT (V1, . . . , Vk) = km − Op(1). It follows easily from
Lemma 4.3 that EX(T )k ∼ nkm−k ∼ (n/ log2 n)k. Consequently,

X(T )
n/ log2 n

p−→ 1 as n→∞.

This example is studied in detail in the companion paper [20], where we
show that another normalization yields a non-degenerate limit.

9. More on νf

Although our results on random cuttings and records only involve νf for
continuous f , we find it interesting for its own sake to extend Theorem 1.9
to more general f . We also consider arbitary (finite or infinite) intervals J
as domains. We then define mk(f) by modifying (1.8), now integrating over
J instead of [0, 1].

Theorem 9.1. If f is a non-negative Lebesgue measurable function on an
interval J such that

∫
J dt/f(t) < ∞, then there exists a unique probability

measure νf on [0,∞) with (finite) moments∫
xk dνf (x) = mk(f)

given by (1.8) (with [0, 1] replaced by J). νf has the following invariance
properties:

(i) (Homogeneity.) If c > 0, then X ∼ νf =⇒ c−1X ∼ νcf .
(ii) (Translation and dilation.) If J̃ = aJ + b, where a > 0 and b ∈ R,

and f̃ is defined on J̃ by f̃(ax+ b) = f(x), x ∈ J , then νf̃ = νf .
(iii) (Endpoints.) The value of f at an endpoint of J does not affect

νf . Indeed, we may remove an endpoint of J , or add one with an
arbitrary value of f , without changing νf .

Proof. First we observe that, with the same proof as in Lemma 4.2 ,

mk(f) ≤ k!
(∫

J

dt

f(t)

)k
, k ≥ 1,

which implies both finiteness of mk(f) and uniqueness of νf , if it exists.
The properties (i), (ii) and (iii) follow from the corresponding invariances of
mk(f), which are obvious.

To show existence, we use the method of monents as before; we state the
central argument as a lemma.

Lemma 9.2. Let f, f1, f2, . . . be non-negative measurable functions on an
interval J such that, as N →∞, fN (t) → f(t) for a.e. t ∈ J ,

∫
J dt/fN (t) →∫

J dt/f(t) < ∞, and inf [s,t] fN → inf [s,t] f for a.e. (s, t) ∈ J2 with s < t. If
νfN

exists for each N , then νf exists and νfN
→ νf .
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Proof. The same argument as in the proof of Lemma 4.5 shows that the
sequence {1/fN}N is uniformly integrable on J , and more generally that
the sequence {

(
LfN

(t1) · · ·LfN
(t1, . . . , tk)

)−1}N is uniformly integrable on
Jk for each k ≥ 1. Moreover, the assumptions imply that LfN

(t1, . . . , tk) →
Lf (t1, . . . , tk) for a.e. (t1, . . . , tk). Thus, by (1.8) and (4.11), mk(fN ) →
mk(f) for each k ≥ 1. The lemma follows by the method of moments, using
the uniqueness already proved. �

To complete the proof of Theorem 9.1, it remains to show that we can
approximate an arbitrary f as in Lemma 9.2 by fN for which we know
that νfN

exists. We do the approximation in several steps, cf. the proof of
existence in Theorem 1.9.
Step 1: J = [0, 1], f is a simple strictly positive function. Thus f takes a
finite number of values only, say a1, . . . , ar with 0 < a1 < · · · < ar.

For each N ≥ 1 and i = 1, . . . , 2N , let INi be the dyadic interval [(i −
1)2−N , i2−N ], and let mNi := infINi

f . Let gNi be a continuous function
on INi such that

∫
INi

|f − gNi| < 4−N ; we may further assume that mNi ≤
gNi ≤ ar = max[0,1] f (otherwise we replace gNi by min(ar,max(mNi, gNi)).
Let ε = εN < 1/4 be a small positive number chosen below, and define fNi

by fNi = gNi on [(i− 1 + ε)2−N , (i− 1/2− ε)2−N ] ∪ [(i− 1/2 + ε)2−N , (i−
ε)2−N ], fNi

(
(i− 1)2−N

)
= fNi(i2−N ) = ar and fNi

(
(i− 1/2)2−N

)
= mNi,

with fNi linear in the four gaps in between. We choose ε so small that∫
INi

|fNi − gNi| < 4−N ((ar − a1)−12−N−2 will do).
We have thus for each i constructed a continuous fNi on INi that is ar

at the endpoints, so together they define a continuous function fN on [0, 1].
By the construction follows

inf
INi

fN = mNi = inf
INi

f, i = 1, . . . , 2N , (9.1)

and ∫ 1

0
|fN − f | ≤

∑
i

∫
INi

(
|fNi − gNi|+ |gNi − f |

)
≤ 21−N . (9.2)

By a standard argument, (9.2) implies∫ 1

0

∞∑
N=1

|fN (t)− f(t)| dt <
∞∑

N=1

21−N <∞;

hence, for a.e. t,
∑∞

N=1 |fN (t) − f(t)| < ∞ and thus fN (t) − f(t) → 0 as
N →∞. Since fN ≥ a1 > 0, this further implies

∫
dt/fN (t) →

∫
dt/f(t) by

dominated convergence.
Next, let Ej := {t ∈ [0, 1] : f(t) = aj} and let Fj := Ej . The open set

Gj := R \Fj consists of a countable set of open intervals. Let Hj be the set
of their endpoints, and H :=

⋃r
1Hj .

Let 0 < s < t < 1 and assume that s, t /∈ H. Since f takes the values
a1, . . . , ar only, inf(s,t) f = al for some l, and there exists y ∈ (s, t) such that
f(y) = al.
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Assume now j < l. Then f(x) ≥ al > aj for all x ∈ (s, t), and thus
(s, t) ∩ Ej = ∅. Hence (s, t) ∩ Fj = ∅, so (s, t) ⊆ Gj . Since we assume
s, t /∈ Hj , (s − δj , t + δj) ⊆ Gj for some δj > 0. In other words, f(x) 6= aj

on (s− δj , t+ δj).
Consequently, with δ := min

(
s, 1− t,minj<l δj

)
), if x ∈ (s− δ, t+ δ), then

f(x) 6= aj for j < l, and thus f(x) ≥ al. Hence

inf
(s−δ,t+δ)

f = inf
[s,t]

f = inf
(s,t)

f = al. (9.3)

Let N be so large that 2−N < min(δ, y− s, t− y). We have y ∈ INi for some
i, and then INi ⊂ (s, t). Consequently, by (9.1) and (9.3),

inf
[s,t]

fN ≤ inf
INi

fN = inf
INi

f = f(y) = al = inf
[s,t]

f.

Conversely, if inf [s,t] fN < al, then fN (z) < al for some z ∈ [s, t]. We have
z ∈ INi for some i, and then INi ⊆ (s− δ, t+ δ). Hence

al > fN (z) ≥ inf
INi

fN = inf
INi

f ≥ inf
(s−δ,t+δ)

fN = al,

a contradiction. Thus, for large N , inf [s,t] fN = inf [s,t] f .
We have shown that for s, t /∈ H, inf [s,t] fN → inf [s,t] f as N →∞, where

H is countable and thus a null set. Since each νfN
exists by Theorem 1.9,

Lemma 9.2 shows that νf exists.
Step 2: J = [0, 1], a ≤ f ≤ b where 0 < a < b. Let fN (t) := dNf(t)e/N .
fN is simple and strictly positive, so νfN

exists by Step 1. fN (t) → f(t)
uniformly for t ∈ J ; hence also inf [s,t] fN → inf [s,t] f when s < t. Since
fN (t) ≥ a, we further have

∫
dt/fN (t) →

∫
dt/f(t) by dominated conver-

gence. Consequently, Lemma 9.2 shows that νf exists.
Step 3: J = [0, 1], f ≥ a > 0. Let fN (t) := min

(
f(t), N

)
. Then νfN

exists
by Step 2, fN (t) → f(t) for every t and inf [s,t] fN → inf [s,t] f when s < t.
Further,

∫
dt/fN (t) →

∫
dt/f(t) by dominated convergence. Consequently,

Lemma 9.2 shows that νf exists.
Step 4: J = [0, 1], f ≥ 0 and

∫
dt/f(t) < ∞. Let fN (t) := f(t) + 1/N .

Then νfN
exists by Step 3, and Lemma 9.2 applies again.

Step 5: J arbitrary finite,
∫
J dt/f(t) <∞. Follows by Step 4, (ii) and (iii).

Step 6: J infinite,
∫
J dt/f(t) <∞. Let JN := J∩[−N,N ] and let fN be the

restriction of f to JN . Then mk(fN ) → mk(f) by monotone convergence,
and thus νf = limN νfN

exists by the method of moments. �

Distributions of the type νf arise as limit distributions of X(Tn) for suit-
able sequences Tn of trees (with appropriate normalization factors, not nec-
essarily n−1/2). This is implicit in the proof above where νf is approximated
in several steps, going back through Theorem 1.9 to Lemma 4.5 and Re-
mark 4.6. We can also relax the assumptions of Lemma 4.5 further to show
such limit result for suitable Tn. We leave the details to the reader. In the
examples below, we will indicate such trees Tn, but we will usually neither
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give precise limit statements nor formal proofs, again leaving the details to
the interested reader.

Example 9.3. If f = c > 0 is constant and J is finite, then mk(f) =
k! |J |kc−k, and thus νf = Exp(c−1|J |). This corresponds to trees with a long
trunk with many leaves or short branches attached at the top. (The time to
cut down the tree is essentially determined by the time until the trunk first
is hit, since the remaining time is at most about lnn by Example 1.4.) For
a precise example, let Tn consist of a trunk of height an with n− an leaves
added to the top of the trunk, where an → ∞ with an = o(n/ lnn). It is
the easy to see that (an/n)X(Tn) d−→ Exp(1).

In contrast to Theorem 9.1(iii), changing f at a single interior point may
change νf ; see the following theorem and Example 9.5 below.

Theorem 9.4. Suppose that f ≥ 0 on (a, b) and that f(c) = 0, where
−∞ ≤ a < c < b ≤ ∞. Let J1 = (a, c), J2 = (c, b), and let f1 and f2 be the
restrictions of f to J1 and J2. If X1 ∼ νf1 and X2 ∼ νf2 are independent,
then X1 +X2 ∼ νf .

This corresponds to the obvious fact that if a tree consists of two subtrees
T1 and T2 with only the root in common, then X(T ) = X(T1)+X(T2), with
X(T1) and X(T2) independent.

Proof. Suppose that t1, . . . , tk ∈ J . Let t′1, . . . , t
′
j be the subsequence of all

ti that belong to J1 (in order), and let t′′1, . . . , t
′′
l be the subsequence of all ti

that belong to J2. Suppose that every ti 6= c; thus j + l = k.
Now keep t′1, . . . , t

′
j and t′′1, . . . , t

′′
l fixed, and let

∑*
t1,...,tk

denote the sum
over the

(
k
j

)
sequences t1, . . . , tk that consist of t′1, . . . , t

′
j and t′′1, . . . , t

′′
l

merged in some order (keeping the order inside t′1, . . . , t
′
j and t′′1, . . . , t

′′
l ). We

use the notation M(t1, . . . , tk) = 1/
(
Lf (t1) · · ·Lf (t1, . . . , tk)

)
, interpreted as

1 if k = 0, and claim that

∑*

t1,...,tk

M(t1, . . . , tk) = M(t′1, . . . , t
′
j)M(t′′1, . . . , t

′′
l ). (9.4)

This holds trivially if j = 0 or l = 0. Thus assume 0 < j < k, and use
induction on k. Note that tk is either t′j or t′′l . The sequences t1, . . . , tk
with tk = t′j are obtained by merging t′1, . . . , t

′
j−1 and t′′1, . . . , t

′′
l as above and

adding tk = t′j . Summing M(t1, . . . , tk) over these sequences we obtain by
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(9.4) and induction

1
Lf (t1, . . . , tk)

∑*

t1,...,tk−1

M(t1, . . . , tk−1)

=
1

Lf (t1, . . . , tk)
M(t′1, . . . , t

′
j−1)M(t′′1, . . . , t

′′
l )

=
Lf (t′1, . . . , t

′
j)

Lf (t1, . . . , tk)
M(t′1, . . . , t

′
j)M(t′′1, . . . , t

′′
l ). (9.5)

The sum with tk = t′′l is similarly

Lf (t′′1, . . . , t
′′
l )

Lf (t1, . . . , tk)
M(t′1, . . . , t

′
j)M(t′′1, . . . , t

′′
l ). (9.6)

Since f(c) = 0, (1.7) implies Lf (t1, . . . , tk) = Lf (t′1, . . . , t
′
j) + Lf (t′′1, . . . , t

′′
l ),

so summing (9.5) and (9.6) we obtain (9.4).
Integrating (9.4) over all t′1, . . . , t

′
j ∈ J1 and t′′1, . . . , t

′′
l ∈ J2, we obtain, if

Ej = {(t1, . . . , tk) ∈ Jk : |{t1, . . . , tk} ∩ J1| = j},∫
Ej

M(t1, . . . , tk) dt1 · · · dtk

=
∫

Jj
1

M(t′1, . . . , t
′
j) dt

′
1 · · · dt′j

∫
J l
2

M(t′′1, . . . , t
′′
l ) dt

′′
1 · · · dt′′l

= 1
j!mj(f1) 1

l!ml(f2).

Summing over j, we finally obtain

mk(f) =
k∑

j=0

(
k

j

)
mj(f1)mk−j(f2) =

k∑
j=0

(
k

j

)
E(X1)j E(X2)k−j

= E(X1 +X2)k.
�

Example 9.5. If f = 1 on J = (a, b), then νf is an exponential distribution
by Example 9.3. If c ∈ (a, b) and g(x) = f(x) for x 6= c but g(c) = 0,
then νg is by Theorem 9.4 and Example 9.3 the distribution of a sum of two
independent exponential variables. Hence νg 6= νf .

If f has several zeroes, we may use Theorem 9.4 repeatedly. Going to
extremes, we have the following result. (This vaguely corresponds to trees
consisting of many branches joined at the root, or close to the root as in
Example 8.2, so that the law of large numbers applies.)

Theorem 9.6. If f(x) = 0 for x ∈ D, where D is dense in J , then νf is a
point mass at

∫
J dt/f(t).
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Proof. By (1.7) and our assumption, Lf (t1, t2) = f(t1) + f(t2) whenever
t1 < t2. Hence,

m2(f) = 2
∫∫

t1<t2

(
1

Lf (t1)Lf (t1, t2)
+

1
Lf (t2)Lf (t1, t2)

)
dt1 dt2

= 2
∫∫

t1<t2

(
f(t1) + f(t2)

f(t1)f(t2)Lf (t1, t2)

)
dt1 dt2 = m1(f)2.

Hence, if X ∼ νf , then VarX = m2(f)−m1(f)2 = 0, so X = EX = m1(f)
a.s. �

Example 9.7. If J = [0, 1] and f(x) = 1 for irrational x and f(x) = 0 for
rational x, then νf is a point mass at 1.

Finally we study another class of examples. These arise for trees consist-
ing of a long trunk with leaves or short branches attached along the trunk
so that vertex i has relative height f(i/n).

Theorem 9.8. Suppose that f is non-decreasing on J = (0, b) with 0 < b ≤
∞, and that

∫
J dx/f(x) < ∞. Let ρ := infJ f(x)/x and suppose X ∼ νf .

Then ρ > 0 and the moment generating function of νf is

E etX = exp
(∫

J

t dx

f(x)− tx

)
, Re t < ρ (9.7)

(where the integral converges absolutely), while E etX = ∞ for real t > ρ;
in particular, the characteristic function is exp

(
it
∫
J dx/(f(x)− itx)

)
. The

cumulants are given by

κk(νf ) = k!
∫

J

xk−1

f(x)k
dx, k ≥ 1. (9.8)

Further, νf is an infinitely divisible distribution with Lévy measure µ given
by the density

dµ

dx
=
∫

J

f(y)
y2

e−xf(y)/ydy, x > 0, (9.9)

Proof. Let A =
∫
J dx/f(x) < ∞, and note that, for every x ∈ J , A ≥∫ x

0 dy/f(y) ≥ x/f(x), so f(x)/x ≥ A−1 and thus ρ ≥ A−1 > 0. Note further
that if 0 < t < ρ, then f(x)− tx ≥ (1− tρ−1)f(x) and thus∫

J

dx

f(x)− tx
≤ (1− tρ−1)−1A <∞. (9.10)

It follows that the integral in (9.7) converges for all complex t with Re t < ρ,
and that the right hand side of (9.7) is analytic in this half-plane.

Since f is non-decreasing, (1.7) implies that

Lf (x1, . . . , xk) = f(x(k)) = f(x1 ∨ · · · ∨ xk),

where x ∨ y denotes the maximum of x and y. Hence, (1.8) gives

mk(f) = k!
∫

Jk

f−1(x1)f−1(x1∨x2) · · · f−1(x1∨· · ·∨xk) dx1 · · · dxk. (9.11)
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Let B be the Banach space of all bounded measurable functions on [0, b),
with ‖g‖B := sup[0,b) |g|, and define, for non-increasing φ ≥ 0 with

∫
J φ <∞,

Tφg(x) :=
∫

J
φ(x ∨ y)g(x ∨ y) dy.

Clearly, Tφ is a bounded linear operator in B, with norm ‖Tφ‖ =
∫
J φ.

By induction, for g ∈ B,

T k
φ g(x0) =

∫
Jk

φ(x0 ∨ x1) · · ·φ(x0 ∨ · · · ∨ xk)g(x0 ∨ · · · ∨ xk) dxk · · · dx1

and thus (9.11) yields

EXk = mk(f) = k!T k
1/f1(0), (9.12)

where 1 is the function identically 1. Now suppose that 0 ≤ t < A−1. Then
‖tT1/f‖ = tA < 1 and thus the operator I − tT1/f is invertible and, with
convergent sums,

E etX =
∞∑

k=0

tk
EXk

k!
=

∞∑
k=0

tkT k
1/f1(0) = (I − tT1/f )−11(0).

In other words, E etX = g(0), where g ∈ B satisfies (I − tT1/f )g = 1, i.e.

g(x)−
∫ b

0
tf−1(x ∨ y)g(x ∨ y) dy = 1, 0 ≤ x < b

or

1 = g(x)− txf−1(x)g(x)−
∫ b

x
tf−1(y)g(y) dy, 0 ≤ x < b. (9.13)

To solve this, define H(x) := t
∫ b
x f

−1(y)g(y)dy. Then (at least if f and g
are continuous) (9.13) yields

1 = −
(
t−1f(x)− x

)
H ′(x)−H(x)

with the solution, since H(b) = 0,

H(x) = exp
(∫ b

x

dy

t−1f(y)− y

)
− 1

and thus, by (9.13) again,

g(x) =
H(x) + 1

1− txf−1(x)
=
(
1− txf−1(x)

)−1 exp
(∫ b

x

t dy

f(y)− ty

)
. (9.14)

Indeed, knowing the answer (9.14), it is easy to verify it by substitution back
in (9.13), also if f (and thus g) is discontinuous. (Recall that txf−1(x) ≤
tA < 1 and that (9.10) holds, whichs shows g ∈ B.) For x = 0, f(x) is not
defined, but (9.13) and thus (9.14) holds with xf−1(x) = 0, i.e.

g(0) = 1 +H(0) = exp
(∫ b

0

t dy

f(y)− ty

)
.
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This verifies (9.7) for 0 ≤ t < A−1. Both sides of (9.7) are analytic
functions in the halfplane Re t < A−1, and thus (9.7) holds there by analytic
continuation.

For |t| < A−1 we have |tx/f(x)| < 1, x ∈ J , and∫
J

t dx

f(x)− tx
= t

∫
J

dx/f(x)
1− tx/f(x)

=
∞∑

k=0

tk+1

∫
J

xk dx

f(x)k+1
,

which by (9.7) yields the formula (9.8) for the cumulants. It follows that∣∣∣∣κk(νf )
k!

∣∣∣∣ = ∫
J

xk−1

f(x)k
dx ≤ ρ1−k

∫
J

dx

f(x)
= Aρ1−k.

Hence the Taylor series of ln E etX =
∑

k κk(νf )tk/k! has radius of conver-
gence at least ρ; hence E etx is finite for all real t with 0 < t < ρ, and thus
for all complex t with Re t < ρ. By analytic continuation, (9.7) holds in this
halfplane too.

Conversely, if t > ρ, then f(x0)/x0 < t for some x0 ∈ J . Hence, if δ > 0
is small enough, f(x) ≤ f(x0) ≤ tx for x ∈ (x0 − δ, x0), and thus∫

J

xk−1

f(x)k
dx ≥ δ

x0
t−k.

Hence,
∑

k κk(νf )tk/k! diverges for t > ρ, so ln E etX has radius of con-
vergence exactly ρ. The Taylor coefficients are positive, and thus there is a
singularity at ρ. Hence E etX too has a singularity there, which is impossible
if E etX <∞ for some t > ρ.

To see that νf is infinitely divisible and to verify the formula (9.9) for the
Lévy measure, note first that, by the Fubini–Tonelli theorem,

∫∞
0 x dµ(x) =∫

J dy/f(y) <∞. Similarly, for t > 0, say,∫ ∞

0
(e−tx − 1) dµ(x) =

∫
J

f(y)
y2

∫ ∞

0

(
e−x(f(y)/y+t) − e−xf(y)/y

)
dx dy

=
∫

J

f(y)
y2

( 1
f(y)/y + t

− 1
f(y)/y

)
dy =

∫
J

−t
f(y) + ty

dy.

Thus, see e.g. [23, Theorem 15.12 and (15.8)], νf and the infinitely divisible
distribution with Lévy measure µ have the same Laplace transform, so they
are equal. �

Example 9.9. Let J = [0, 1] and f(x) = xα, with 0 ≤ α < 1. By (9.8), the
cumulants are

κk(νf ) = k!
∫ 1

0
xk−1−kα dx =

k!
k(1− α)

,

and thus the moment generating function is

exp
( ∞∑

k=1

tk

k(1− α)

)
= exp

(− ln(1− t)
1− α

)
= (1− t)−1/(1−α).
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Hence νf is the Gamma distribution Γ(1/(1− α)).

10. On Problems 1.14 and 1.15

As said in Section 2, the conditioned Galton–Watson tree Tn converges in
distribution to the infinite random tree T∞ as n→∞. Hence, if it possible
to define a growing process Tn as in Problem 1.15, then Tn has to grow to
T∞, so Tn could be constructed by a certain pruning of T∞.

Further, by the proof of Lemma 2.3 and (2.8), Ewk(T∞) = Ewk(T )2 =
1 + kσ2. Moreover, it can be shown from (2.7) and (2.12) that for fixed k,
the sequence wk(Tn) is uniformly integrable. Hence,

Ewk(Tn) → Ewk(T∞) = 1 + kσ2.

(This was shown, at least assuming an exponential moment, by Meir and
Moon [32] using different arguments.) We now see that Problem 1.14 would
imply the estimate Ewk(Tn) ≤ 1 + kσ2, sharpening the estimate in Theo-
rem 1.13.

Appendix A

The purpose of the appendix is to give a proof of the following result,
stated in Remark 1.8. (A special case is given by Meir and Moon [31].) This
proof was originally intended to be included in the paper, but was replaced
by the more general Theorem 1.6 with only slightly stronger assumptions,
proved by somewhat different methods. Nevertheless, since the result and
the methods still may have some interest, it is added as an appendix.

Theorem A.1. With assumptions and notations as above, as n→∞,

EX(Tn) ∼ σ

√
πn

2
.

Proof. We use generating functions. Let T be the (unconditioned) Galton–
Watson tree with offspring distribution ξ, and define

Φ(z) := E zξ,

F (z) := E z|T |,

G(z, w) := E
(
z|T |

∑
v∈T

wd(v)
)

= E
(
z|T |

∑
k≥0

wk(T )wk
)
,

H(z) := E
(
z|T |m1(T )

)
= E

(
z|T |

∑
k≥1

wk(T )
k

)
.

These are defined and analytic at least for |z| < 1 and |w| < 1. In studies of
conditioned Galton–Watson trees (or, equivalently, simply generated trees),
it is, as said in the introduction, often assumed that ξ has an exponential
moment, E eαξ < ∞ for some α > 0; this says that Φ is analytic in a disc
with radius greater than 1, which is a technical advantage. We will see,
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however, that with some care, we can use the standard methods also in our
case where we assume only a second moment of ξ.

Note that we allow k = 0 in the formula for G; if we sum over k ≥ 1 only,
we get G(z, w)− F (z). It follows by termwise integration that

H(z) =
∫ 1

0

(
G(z, w)− F (z)

) dw
w
, |z| < 1. (A.1)

Conditioning on the degree of the root of T , we find the standard formula
(for |z| ≤ 1, at least)

F (z) =
∞∑

j=0

P(ξ = j)zF (z)j = zΦ(F (z)) (A.2)

and, similarly, (for |z|, |w| < 1, at least)

G(z, w)− F (z) =
∞∑

j=0

P(ξ = j)jzwG(z, w)F (z)j−1 = zwΦ′(F (z))G(z, w),

which gives

G(z, w) =
F (z)

1− zwΦ′(F (z))
. (A.3)

By (A.1), we then find

H(z) = F (z)
∫ 1

0

zwΦ′(F (z))
1− zwΦ′(F (z))

dw

w
= F (z)

[
− ln

(
1− zwΦ′(F (z))

)]1
w=0

= −F (z) ln
(
1− zΦ′(F (z))

)
. (A.4)

We will for simplicity assume that span(ξ) = 1 and leave the usual mod-
ifications when span(ξ) = d > 1 to the reader. (There will be two factors d
that cancel in (A.10), so the result remains the same.)

Let D := {z : |z| < 1} be the open unit disc; thus D is the closed unit
disc. Further, for 0 < β < π, let Sβ := {z : | arg(z − 1)| > β} (a sector
with tip at 1) and let Ωη := {z : |z| < 1 + η} ∩ Sπ/4, η > 0. Thus, Ωη is a
disc larger than D with an indentation at z = 1. (The angle π/4 could be
replaced by any value in (0, π/2).)

Lemma A.2. If span(ξ) = 1, then, for some η > 0, F extends to an
analytic function in Ωη with |F (z)| < 1 for z ∈ Ωη and

F (z) = 1−
√

2σ−1
√

1− z+ o
(
|z− 1|1/2

)
, as z → 1 with z ∈ Ωη. (A.5)

Proof. This is well-known if ξ has an exponential moment. In general, we
may argue as follows. Since E ξ2 < ∞, Φ and its first two derivatives have
continuous extensions to D, with Φ(1) = 1, Φ′(1) = E ξ = 1, and Φ′′(1) =
E ξ(ξ − 1) = σ2. A Taylor expansion shows that, as z → 1 in D,

Φ(z) = 1 + (z − 1) +
σ2

2
(z − 1)2 + o(|z − 1|2). (A.6)
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Let Ψ(z) := z/Φ(z), and note that (A.2) may be written Ψ(F (z)) = z. Let
Bε := {z : |z − 1| < ε} be a small disc around 1. If ε > 0 is small, then
Ψ is analytic in D ∩ Bε, and Ψ, Ψ′ and Ψ′′ have continuous extensions to
D ∩Bε. It follows from (A.6) that, for z → 1 in D,

Ψ(z) =
z

Φ(z)
= 1− σ2

2
(z − 1)2 + o(|z − 1|2). (A.7)

Hence (or by differentiation), Ψ(1) = 1, Ψ′(1) = 0 and Ψ′′(1) = −σ2.
Another Taylor expansion yields, for z → 1 in D,

Ψ′(z) = −σ2(z − 1) + o(|z − 1|). (A.8)

Let Uε := Bε ∩ S0.6 π. If ε is small enough, then Uε ⊂ D and, by (A.8),
Re Ψ′(z) > 0 in Uε. Hence Ψ(z2) − Ψ(z1) =

∫ z2

z1
Ψ′(w) dw 6= 0 if z1, z2 ∈ Uε

with z1 6= z2; thus Ψ is a bijection of Uε onto Vε := Ψ(Uε), with an analytic
inverse Ψ−1 : Vε → Uε. Close to 1, the boundary of Uε consists of the two
rays arg(z − 1) = ±0.6π; by (A.7), Ψ maps them to two curves emanating
from 1 in the directions ±0.2π, and it follows that if δ > 0 is small enough,
then Bδ∩Sπ/4 ⊂ Vε. We can thus define F = Ψ−1 in Bδ∩Sπ/4, with |F | < 1.
This extends F close to 1, and (A.5) follows from (A.7).

Now let z0 ∈ ∂D with z0 6= 1, and let w0 := F (z0). Since span(ξ) = 1,
|w0| = |F (z0)| < F (1) = 1 and thus |Φ′(w0)| < 1. Hence, (∂/∂w)

(
w −

zΦ(w)
)

= 1 − zΦ′(w) 6= 0 at (z0, w0), and the implicit function theorem
shows that F can be extended to a small disc about z0 by a function satis-
fying (A.2) and with |F | < 1. A simple compactness argument shows that
a finite number of these extensions together with the extension to Bδ ∩Sπ/4

combine to the desired extension in Ωη, if η is small enough. �

Since Φ′′(1) = σ2, (A.5) implies that, as z → 1 in Ωη and thus F (z) → 1
in D,

zΦ′(F (z)) = z
(
1 + σ2(F (z)− 1) + o(|F (z)− 1|)

)
= 1− γ

√
1− z + o

(
|z − 1|1/2

)
, (A.9)

with γ :=
√

2σ. It follows that |zΦ′(F (z))| < 1 for z ∈ Ωη close to 1; since
|F (z)| < 1 for z ∈ D \ {1}, a simple compactness argument shows that
|zΦ′(F (z))| < 1 for all z ∈ Ωη if η is small enough. We then can use (A.4)
to define H in Ωη. Moreover, when z ∈ Ωη with |z − 1| small, by (A.9),

H(z) = − ln
(
1− zΦ′(F (z))

)
= −1

2 ln(1− z)− ln γ + o(1).

Consequently, see Flajolet and Odlyzko [17, Corollary 1],

[zn]H(z) = −1
2 [zn] ln(1− z) + o(1/n) =

1 + o(1)
2n

.

As is well known [26, Theorem 2.1.2], see also [2, Proposition 24] or [32,
Theorem 3.1], or use Lemma A.2 and [17],

[zn]F (z) = P(|T | = n) ∼ (2π)−1/2σ−1n−3/2.
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Consequently (recalling our convention that Tn has n+ 1 vertices),

EX(Tn−1) = Em1(Tn−1) =
[zn]H(z)
[zn]F (z)

∼ (π/2)1/2σn1/2, (A.10)

which completes the proof. �
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[18] R. Grübel & N. Stefanoski, Mixed Poisson approximation of node depth distributions
in random binary search trees. Ann. Appl. Probab. 15 (2005), no. 1A, 279–297.

[19] A. Gut, Probability: A Graduate Course. Springer, New York, 2005.
[20] S. Janson, Random records and cuttings in complete binary trees. Mathematics and

Computer Science III, Algorithms, Trees, Combinatorics and Probabilities (Vienna
2004), Eds. M. Drmota, P. Flajolet, D. Gardy, B. Gittenberger, Birkhäuser, Basel,
2004, pp. 241–253.

[21] T. Jeulin, Semi-martingales et grossissement d’une filtration. Lecture Notes in Math-
ematics 833, Springer-Verlag, Berlin, 1980.

[22] W.D. Kaigh, An invariance principle for random walk conditioned by a late return
to zero. Ann. Probab. 4 (1976), no. 1, 115–121.



42 SVANTE JANSON

[23] O. Kallenberg, Foundations of Modern Probability. 2nd ed., Springer-Verlag, New
York, 2002.

[24] D.P. Kennedy, The distribution of the maximum Brownian excursion. J. Appl. Probab.
13 (1976), no. 2, 371–376.

[25] D.E. Knuth, The Art of Computer Programming. Vol. 3: Sorting and Searching. 2nd
ed., Addison-Wesley, Reading, Mass., 1998.

[26] V.F. Kolchin, Random Mappings. Optimization Software, New York 1986.
[27] R. Lyons, R. Pemantle & Y. Peres, A conceptual proof of the Kesten–Stigum theorem.

Ann. Probab. 23 (1995), 1125–1138.
[28] M. Luczak & P. Winkler, Building uniform subtrees of a Cayley tree. Preprint, 2003.
[29] J.-F. Marckert & A. Mokkadem, The depth first processes of Galton–Watson trees

converge to the same Brownian excursion. Ann. Probab. 31 (2003), no. 3, 1655–1678.
[30] J.-F. Marckert & A. Panholzer, Noncrossing trees are almost conditioned Galton–

Watson trees. Random Struct. Alg. 20 (2002), no. 1, 115–125.
[31] A. Meir & J.W. Moon, Cutting down random trees. J. Australian Math. Soc. 11

(1970), 313–324.
[32] A. Meir & J.W. Moon, On the altitude of nodes in random trees. Canad. J. Math.

30 (1978), 997–1015.
[33] A. Panholzer, Cutting down very simple trees. Preprint, 2003.
[34] A. Panholzer, Non-crossing trees revisited: cutting down and spanning subtrees. Pro-

ceedings, Discrete Random Walks 2003, Cyril Banderier and Christian Krattenthaler,
Eds., Discr. Math. Theor. Comput. Sci. AC (2003), 265–276.

[35] J. Pitman, Combinatorial Stochastic Processes, Lecture Notes for St. Flour Summer
School, July 2002. Preprint, available from
http://stat-www.berkeley.edu/users/pitman/bibliog.html
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