
Some remarks on the combinatorics of ISn

Svante Janson and Volodymyr Mazorchuk

Abstract

We describe the asymptotic behavior of the cardinalities of the finite symmetric
inverse semigroup ISn and its endomorphism semigroup. This is applied to show
that |ISn|/|End(ISn)| is asymptotically 0, solving a problem of Schein and Teclezghi.
We also apply our results to compute the distributions of elements from ISn with
respect to certain combinatorial properties, and to compute the generating functions
for |ISn| and for the number of nilpotent elements in ISn.

1 Introduction

For n ∈ N let ISn denote the symmetric inverse semigroup of all partial injections on
Nn = {1, . . . , n}. We refer the reader to [GM1, GM2, Li] for the details and standard
notation. For α ∈ ISn we denote by dom(α) the domain of α, by im(α) the range of α, by
rank(α) = | dom(α)| = | im(α)| the rank of α, and by def(α) = n − rank(α) the defect of
α. For k = 0, 1, . . . , n let Rn,k denote the cardinality of the set {α ∈ ISn : rank(α) = k}.
We immediately have

Rn,k =

(
n

k

)2

· k!, |ISn| =
k∑

i=0

Rn,k =
k∑

i=0

(
n

k

)2

· k!.

For elements from ISn one can use their regular tableaux presentation

α =

(
i1 i2 . . . ik
j1 j2 . . . jk

)
,

where dom(α) = {i1, . . . , ik} and im(α) = {j1, . . . , jk}. However, sometimes it is more
convenient to use the so-called chain (or chart) decomposition of α, which is analogous to
the cyclic decomposition for usual permutations. We refer the reader to [Li] for rigorous
definitions, however, this decomposition is very easy to explain on the following example.
The element

α =

(
1 2 3 4 5 7 9
7 4 5 1 10 2 6

)
∈ IS10

1



has the following graph of the action on {1, 2, . . . , 10}:

1 → 7
↑ ↓
4 ← 2

3→ 5→ 10 9→ 6 8,

and hence it is convenient to write it as α = (1, 7, 2, 4)[3, 5, 10][9, 6][8]. We call (1, 7, 2, 4) a
cycle and [3, 5, 10] (as well as [9, 6] and [8]) a chain of the element α.

We denote by Ln the total number of chains in the chain decompositions of all elements
in |ISn|. Each element of rank k has defect n− k and thus contains n− k chains implying
Ln =

∑n
k=0(n − k)Rn,k. The semigroup ISn contains the zero element 0, uniquely char-

acterized by the property dom(0) = ∅. We denote by Tn the set of all nilpotent elements
in ISn, that is the set of all α ∈ ISn satisfying αn = 0. We also denote by L(n) the total
number of chains in the chain decompositions of all elements in Tn.

In [GM2] various combinatorial relations between |ISn|, |Tn|, Ln and L(n) were ob-
tained in a purely combinatorial way. The paper [GM2] contains also various estimates
of distributions of elements from ISn with respect to certain algebraic properties. These
distributions are obtained using several technical lemmas. The most of the technical diffi-
culties in [GM2] arise from the fact that the authors did not have any reasonable asymptotic
formula for |ISn| available. The aim of the present paper is to fill this gap. In Section 2 we
derive an asymptotic formula for |ISn|. In Section 4 we even show that analogous methods
can be applied to derive an asymptotic formula for |End(ISn)|. These formulae happen
to be enough to show that |ISn|/|End(ISn)| → 0, n → ∞, which solves a problem from
[ST]. Our results can be used to recover (in hopefully an easier way) several asymptotic
statements from [GM2]. This is done in Section 3. Our results can be also used to obtain
several new statements about the distributions of elements of ISn with respect to such
combinatorial properties as the defect, the stable rank, the order etc. This is done in Sec-
tion 5. Finally, in Section 6 we compute exponential generating functions for |ISn|, |Tn|,
Ln and L(n) and use them to recover various combinatorial results from [GM2].

2 An asymptotic for |ISn|
This section is devoted to the proof of the following

Theorem 1.

|ISn| ∼
1

2
√

πe
n−1/4e2

√
nn! ∼ 1√

2e
· e2

√
n−nnn+1/4.

Proof. For Rn,k =
(

n
k

)2 ·k! = n!2

(n−k)!2k!
we have the ratio

Rn,k+1

Rn,k
= (n−k)2

k+1
. Moreover, for large

n we obtain that
Rn,k+1

Rn,k
≈ 1 when k ≈ n −

√
n, hence maxk Rn,k is achieved for such a k.

Note that
Rn,k+1

Rn,k
is decreasing with respect to k. Write

k = n− x
√

n, 0 ≤ x ≤
√

n. (1)
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Using the Stirling formula we have

ln

(
Rn,k

n!

)
= n ln n− n +

1

2
ln(2πn)− k ln k + k − 1

2
ln(2πk)−

− 2(n− k) ln(n− k) + 2(n− k)− ln(2π(n− k)) + O

(
1

n
+

1

k
+

1

n− k

)
. (2)

Using the arguments above we have
Rn,k+1

Rn,k
<

( 1
2

√
n)

2

n− 1
2

√
n

< 1
2

for k > n − 1
2

√
n and large n.

Thus, for k ≥ k1 = dn− 1
2

√
ne we have Rn,k ≤ 2−(k−k1)Rn,k1 . In particular,∑

k≥n− 1
4

√
n

Rn,k ≤ 22− 1
4

√
nRn,k1 = O

(
2−

√
n/4Rn,k1

)
.

Similarly, for k ≤ n− 2
√

n we have
Rn,k

Rn,k+1
< n

(2
√

n)
2 = 1

4
, and

∑
k≤n−3

√
n

Rn,k = O
(
4−

√
nRn,k2

)
,

where k2 = dn− 2
√

ne.
Hence, to estimate |ISn| =

∑n
k=0 Rn,k we can ignore k ≥ n − 1

4

√
n and k ≤ n − 3

√
n.

We may thus assume that 1
4
≤ x ≤ 3. For such x we have:

ln

(
Rn,k

n!

)
= n ln n− n− (n− x

√
n) ln(n− x

√
n) + n− x

√
n− 1

2
ln

n− x
√

n

n
−

− 2x
√

n ln x− 2x
√

n ln(
√

n) + 2x
√

n− ln(2πx
√

n) + O(n−1/2) =

= −
(
n− x

√
n
)
ln

(
1− x√

n

)
− 2
√

nx ln x + x
√

n− ln(2πx
√

n) + O(n−1/2) =

= x
√

n− x2 +
x2

2
+ x
√

n− 2
√

nx ln x− ln(2πx
√

n) + O(n−1/2) =

= 2
√

n(x− x ln x)− x2

2
− ln x− ln(2π

√
n) + O(n−1/2),

where all O are uniform in x and n.
Denote f(x) = x − x ln x and we have f ′(x) = − ln x, f ′′(x) = − 1

x
. Thus f(x) is

concave on [0, +∞) with a maximum at x0 = 1. As f(x0) = 1, we have the following
Taylor expansion:

f(x) = 1− 1

2
(x− x0)

2 + O(|x− x0|3), 0 ≤ x <∞. (3)

For 1
4
≤ x ≤ 3 we have f ′′(x) < −1

3
and thus f(x) ≤ 1− 1

6
(x− x0)

2.
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Further, let g(x) = −x2

2
− ln x. Then for all 1

4
≤ x ≤ 3 such that x

√
n ∈ Z we have

1

n!
Rn,n−x

√
n = e2

√
nf(x)+g(x) · 1 + O(n−1/2)

2π
√

n
. (4)

Now we have:

1

n!

n∑
k=0

Rn,k =

∫ n+1

0

1

n!
Rn,n−btcdt ∼

∫ 3
√

n

√
n/4

1

n!
Rn,n−btcdt =

[
t =
√

ny
]

=

=
√

n

∫ 3

1/4

1

n!
Rn,n−by

√
ncdy =

[
ỹ =
by
√

nc√
n

]
=
√

n

∫ 3

1/4

1 + O(n−1/2)

2π
√

n
e2

√
nf(ỹ)+g(ỹ)dy ∼

∼ e2
√

n

2π

∫ 3

1/4

e2
√

n(f(ỹ)−1)+g(ỹ)dy.

Write ∫ 3

1/4

e2
√

n(f(ỹ)−1)+g(ỹ)dy =

∫
I1

e2
√

n(f(ỹ)−1)+g(ỹ)dy +

∫
I2

e2
√

n(f(ỹ)−1)+g(ỹ)dy,

where I1 = {y ∈ [1/4, 3] : |y − 1| ≥ n−1/5} and I2 = {y ∈ [1/4, 3] : |y − 1| ≤ n−1/5} and
denote these integrals by X1 and X2 respectively.

Since |ỹ − y| < n−1/2, for 1/4 ≤ y ≤ 3 we have

2
√

n(f(ỹ)− 1) + g(ỹ) ≤ −2
√

n
(ỹ − 1)2

6
+ O(1) = −

√
n

3
(y − 1)2 + O(1).

Hence X1 = O(e−n1/10/3).
From (3) we also have, uniformly for y ∈ I2, that

2
√

n(f(ỹ)− 1) = 2
√

n

(
−1

2
(ỹ − 1)2 + O(n−3/5)

)
= −
√

n(ỹ − 1)2 + O(n−1/10) =

= −
√

n(y − 1)2 + O(n1/2−1/5|ỹ − y|+ n−1/10) = −
√

n(y − 1)2 + o(1),

and, similarly, g(ỹ) = g(1) + O(n−1/5) = −1/2 + o(1).
Now we calculate again:

1

n!

n∑
k=0

Rn,k ∼
e2

√
n

2π
(X1 + X2) ∼

e2
√

n

2π
X2 ∼

e2
√

n

2π

∫ 1+n−1/5

1−n−1/5

e−
√

n(y−1)2−1/2dy ∼

∼ e2
√

n−1/2

2π

∫ +∞

−∞
e−

√
n(y−1)2dy =

e2
√

n−1/2

2π

√
π√
n

=
1

2
π−1/2e−1/2n−1/4e2

√
n.

Finally, using the Stirling formula again, we obtain

|ISn| =
n∑

k=0

Rn,k ∼
1

2
√

πe
n−1/4e2

√
nn! ∼ 1√

2e
nn+1/4e2

√
n−n,

completing the proof.
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3 Some applications of Theorem 1

An immediate corollary of Theorem 1 is the following statement, proved in [GM2, Theo-
rem 8]:

Corollary 1.
|ISn+1|
|ISn|

∼ n, n→∞.

Another corollary is the following reinforcement of [GM2, Theorem 9]:

Corollary 2. |Tn| ∼ 1√
n
|ISn|, in particular,

|Tn|
|ISn|

→ 0, n→∞.

Proof. From [GM2, Theorem 6] we know that |Tn| = 1
n
Ln (see a different proof in Sec-

tion 6). By the definition, Ln =
∑n

k=0(n − k)Rn,k. An argument, analogous to that of
Theorem 1, yields

1

n!
Ln ∼

∫ 3
√

n

√
n/4

btc 1

n!
Rn,n−btcdt.

The same estimates as in Theorem 1 show that most of the integral comes from y = t/
√

n =
1 + O(n−1/5). Hence

1

n!
Ln ∼

√
n

∫ 3
√

n

√
n/4

1

n!
Rn,n−btcdt ∼

√
n

1

n!
|ISn|.

This implies that Ln ∼
√

n|ISn| and completes the proof.

4 An asymptotic for |End(ISn)|
In [ST] it is shown that for n > 6 the cardinality of the semigroup End(ISn) of all
endomorphisms of the semigroup ISn equals

|End(ISn)| = 3n + 3 · n! + n!
n∑

m=0

bm/2c∑
k=1

2m−3k

(n−m)! · (m− 2k)! · k!
.

On [ST, Page 303] the following problem is formulated:
Find an asymptotic estimate for |End(ISn)| when n → ∞. Is |End(ISn)|/|ISn|

approaching 0?
In this section we answer both parts of this problem.

Theorem 2. |End(ISn)| ∼ 3n!.
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Proof. Set

Xn = n!
n∑

m=0

bm/2c∑
k=1

2m−3k

(n−m)! · (m− 2k)! · k!
.

It would be enough to show that Xn/n! → 0, n → ∞. To do this we remark that Xn

equals the number of ways to perform the following procedure:

(i) choose X ⊂ Nn;

(ii) choose Y ⊂ X such that |Y | = 2k > 0;

(iii) decompose Y = ∪Yi, |Yi| = 2, Yi ∩ Yj = ∅ for i 6= j, the order of Yi is not important;

(iv) Choose Z ⊂ X \ Y .

Now let |X| = m, 0 ≤ m ≤ n, and note that (i) can be done in
(

n
m

)
different ways, each of

(ii) and (iv) can be done in at most 2m different ways, and, finally, (iii) can be done in at
most m!! different ways. Hence

Xn ≤
n∑

m=0

(
n

m

)
· 2m · 2m ·m!! ≤

(
n∑

m=0

(
n

m

)
· 4m

)
(2dn/2e)!! = 5n2dn/2edn/2e!.

To complete the proof it is enough to show that 5n2dn/2edn/2e!/n!→ 0, n→∞. Using the
Stirling formula we have

5n2dn/2edn/2e! ≤ 5n2(n+1)/2dn/2e! ∼ 1√
π

en ln 5
√

2− 1
2

lndn/2e+dn/2e lndn/2e−dn/2e,

and thus

5n2dn/2edn/2e!
n!

∼ 1√
2
en ln 5

√
2− 1

2
lndn/2e+dn/2e lndn/2e−dn/2e− 1

2
ln n−n ln n+n.

Since the exponent is −1
2
n ln n+O(n), we obtain that the expression approaches 0 for large

n. This completes the proof.

Corollary 3.
|End(ISn)|
|ISn|

→ 0, n→∞.

Proof. Follows immediately from the formulae of Theorem 1 and Theorem 2.

Using the methods, analogous to those of Theorem 1, one can even estimate the asymp-
totic for the “problematic” term Xn above.

Theorem 3.

Xn ∼
1√
2
· e

1
2
n ln n− 1

2
n+3

√
n− 9

4 .
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Proof. We can write

n!
n∑

m=0

bm/2c∑
k=1

2m−3k

(n−m)! · (m− 2k)! · k!
= n!

n∑
m=0

2m

(n−m)!

bm/2c∑
k=1

2−3k

(m− 2k)! · k!
,

and we denote ak = 2−3k

(m−2k)!·k!
, bm =

∑bm/2c
k=1 ak, cm = 2m

(n−m)!
bk. Remark that ak+1

ak
=

2−3

k+1
(m− 2k)(m− 2k− 1) decreases on [0, m/2) and ak has on [0, m/2) a unique maximum

at ≈ m
2
−
√

m. Let k = m
2
− x
√

m, that is m − 2k = 2x
√

m, where ε ≤ x ≤ C. Then we
have

ak+1

ak

=
1

8
· 1

m/2
· 4x2m(1 + o(1)) = x2 + o(1).

This implies that
∑

x<1/2 ak and
∑

x>2 ak belong to O
(
e−c

√
mam/2−

√
m

)
, that is relatively

very small and can be neglected. Assume now that 1/2 ≤ x ≤ 2. Taking into account that

ln k = ln
m

2
+ ln

(
1− 2x√

m

)
= ln

m

2
− 2x√

m
− 2x2

m
+ O(m−3/2)

and using the Stirling formula we obtain the following:

ln ak = −3k ln 2− ln(2x
√

m)!− ln k! = −3 ln 2

2
m + 3 ln 2

√
mx− 2x

√
m ln 2−

− 2x
√

m ln x− x
√

m ln m + 2x
√

m− ln(2π)− 1

2
ln(2x

√
m)− k ln k + k − 1

2
ln k + o(1) =

= −3 ln 2

2
m + (ln 2 + 2)x

√
m− 2x

√
m ln x− x

√
m ln m− ln(2π)− 1

2
ln(2x

√
m)−

− k ln
m

2
+

2kx√
m

+
mx2

m
+

m

2
− x
√

m− 1

2
ln

m

2
+ o(1) =

= −m ln 2 + 2x
√

m− 2x
√

m ln x− 1

2
ln(4π2xm3/2)− 1

2
m ln m− x2 +

m

2
+ o(1).

Further, assuming x = 1 + m−1/4y yields x ln x− x = −1 + 1
2
(x− 1)2 + O ((x− 1)3) =

−1 + y2

2
√

m
+ O

(
y3

m3/4

)
and thus

ln ak = −1

2
m ln m+m

(
1

2
− ln 2

)
−1+O(ym−1/4)+2

√
m−y2+O(y3m−1/4)−3

4
ln m−ln(2π).

Therefore k = m
2
−
√

m−m1/4y yields

ak =
1

2π
e(

1
2
−ln 2)m− 1

2
m ln m− 3

4
ln m+2

√
m−1e−y2

(
1 + O

(
y + y3

m1/4

))
.
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We can assume that, say, y = O(m1/12) and ignore larger y. In this way we obtain

bm =

bm/2c∑
k=1

ak =
1

2π
e(

1
2
−ln 2)m− 1

2
m ln m− 3

4
ln m+2

√
m−1m1/4

∫ ∞

−∞
e−y2

dy (1 + o(1)) ∼

∼ 1

2
√

π
e(

1
2
−ln 2)m− 1

2
m ln m− 1

2
ln m+2

√
m−1.

The latter implies

ln bm =

(
1

2
− ln 2

)
m− 1

2
m ln m− 1

2
ln m + 2

√
m− 1− ln(2

√
π) + o(1) (5)

and also
ln cm = ln bm + m ln 2− ln((n−m)!). (6)

Further, for m → ∞ we compute ln bm+1

bm
= 1

2
− ln 2 − 1

2
ln m − 1

2
+ o(1) = − ln 2 −

1
2
ln m + o(1) and also ln cm+1

cm
= −1

2
ln m + ln(n −m) + o(1). This gives us that for large

n the value of cm is largest when 1
2
ln m ≈ ln(n −m) that is m ≈ n −

√
n. In particular,

it follows easily that m ≤ n/2 can be ignored and thus we obtain that o(1), m → ∞, is
small even if n→∞.

Let us now show that even m < n−3
√

n can be ignored. If m < n−2
√

n then we have
−1

2
ln m+ln(n−m) > −1

2
ln n+ln(2

√
n) = ln 2 and thus for large n we derive ln cm+1

cm
> 1/2

and hence cm+1

cm
> e1/2. Set M = dn− 2

√
ne. Then cm

cM
< e−(M−m)/2 and thus

∑
m<n−3

√
n

cm < e−
√

n/2 1

1− e−1/2
cM .

The latter implies that all terms with m < n − 3
√

n can be ignored. Similarly, all terms
with m > n−

√
n/2 can be ignored.

Thus we can assume m = n − x
√

n, where 1/2 ≤ x ≤ 3. Under such assumption we
have ln cm+1

cm
= −1

2
ln n + ln(x

√
n) + o(1) = ln x + o(1).

For 1/2 ≤ x ≤ 3 we have, using the Stirling formula, that

ln m = ln n + ln

(
1− x√

n

)
= ln n− x√

n
− x2

2n
+ O(n−3/2),

m ln m = n ln n− x
√

n ln n− x
√

n + x2 − x2

2
+ O(n−1/2),

ln(n−m)! = ln(x
√

n)! = x
√

n ln x +
1

2
x
√

n ln n− x
√

n +
1

2
ln x +

1

4
ln n + ln

√
2π + o(1),

√
m =

√
n(1− x/

√
n)1/2 =

√
n− x/2 + o(1).
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Hence, using (5) and (6), we obtain

ln cm =
1

2
n− 1

2
x
√

n− 1

2
n ln n+

1

2
x
√

n ln n+
1

2
x
√

n− x2

4
− 1

2
ln n+2

√
n−x−1−ln(2

√
π)−

− x
√

n ln x− 1

2
x
√

n ln n + x
√

n− 1

2
ln x− 1

4
ln n− ln

√
2π + o(1) =

=
1

2
n− 1

2
n ln n− 3

4
ln n + 2

√
n− 1− ln(23/2π) +

√
n(x− x ln x)− x2

4
− x− 1

2
ln x + o(1).

Setting x = 1 + yn−1/4 yields

ln cm =
1

2
n− 1

2
n ln n− 3

4
ln n + 3

√
n− 1− ln(23/2π)− 5

4
− y2

2
+ O

(
y3

n1/4

)
+ o(1)

and thus

n∑
m=0

cm = exp

(
1

2
n− 1

2
n ln n− 3

4
ln n + 3

√
n− 9

4
− ln(23/2π)

)
n1/4×

×
∫ +∞

−∞
e−y2/2dy (1 + o(1)) =

1

2
√

π
e

1
2
n− 1

2
n ln n− 1

2
ln n+3

√
n− 9

4
+o(1).

This implies that

Xn ∼
n!

2
√

πn
e

1
2
n− 1

2
n ln n+3

√
n− 9

4 ∼ 1√
2
e

1
2
n ln n− 1

2
n+3

√
n− 9

4 ,

and completes the proof.

5 Some distributions

Denote by Dn the defect of a random element of ISn, by Xn the stable rank of a random
element of ISn, by Cn the number of cycles of a random element of ISn, and by Kn =
Cn + Dn the total number of components (i.e. cycles and chains) of a random element of
ISn.

Proposition 1. If n→∞ and k−
√

n

n1/4 → z with −∞ < z <∞, then

P (Dn = k) ∼ 1√
πn1/4

e−z2

.

In particular,
Dn −

√
n

n1/4

d−→ N(0, 1/2).

Proof. We have P (Dn = k) =
Rn,n−k

|ISn| by definition and
Rn,n−k

|ISn| ∼
1√

πn1/4 e
−z2

, follows from

(3) and (4).
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Proposition 2.

P (Xn = k) ∼ 1√
n

e−k/
√

n if k = o(n3/4),

in particular,
Xn√

n

d−→ exp(1).

Proof. We have

P (Xn = k) =

(
n

k

)
· k! · |Tn−k|

|ISn|
=
|Tn−k|/(n− k)!

|ISn|/n!
.

Hence, if k = o(n) we have, using Section 2 and Section 3, that

P (Xn = k) ∼ (n− k)−3/4e2
√

n−k

n−1/4e2
√

n
∼ 1√

n
e2(

√
n−k−

√
n) =

=
1√
n

e2
√

n((1−k/n)1/2−1) =
1√
n

e−2
√

n· k
2n

+O(k2/n3/2)

and the statement follows.

Proposition 3.
Cn − 1

2
ln n√

1
2
ln n

d−→ N(0, 1).

Proof. Given Xn, the number of cycles for the permutational part of size Xn is approxi-
mately ln Xn. More precisely, by [Go], we have

Cn − ln Xn√
ln Xn

d−→ N(0, 1).

Further, we have ln Xn = 1
2
ln n + ln Xn√

n
and ln Xn√

n

d−→ ln exp(1) by Proposition 2. Hence,
in

Cn − 1
2
ln n√

1
2
ln n

=

√
ln Xn√
1
2
ln n
· Cn − ln Xn√

ln Xn

+
ln Xn − 1

2
ln n√

1
2
ln n

we have
√

ln Xn√
1
2

ln n

p−→ 1 and
ln Xn− 1

2
ln n√

1
2

ln n

p−→ 0, completing the proof.

More precisely, we can show that Cn is almost Poisson distributed. Let dTV denote the
total variation distance between two distributions, see e.g. [BHJ].

Proposition 4.

dTV

(
Cn, Po

(
1

2
ln n

))
→ 0, n→∞.
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Proof. Let hk =
∑k

i=1 1/i = ln k+O(1). Given Xn = k, the number of cycles is distributed
as the number of cycles in a random permutation of length k. Using [BH], we obtain

dTV (L(Cn|Xn = k), Po(hk)) ≤
c

hk

≤ c

ln k

for some constant c ≤ π2/6. Further, by [BHJ, Remark 1.1.4], we have

dTV

(
Po(hk), Po(ln

√
n)
)
≤ |hk − ln

√
n|√

ln
√

n
≤ | ln k − ln

√
n|+ 1√

ln
√

n
.

Consequently,

dTV

(
L(Cn|Xn = k), Po(ln

√
n)
)
≤ f(k) :=

π2

6 ln k
+
| ln k − ln

√
n|+ 1√

ln
√

n
.

Since also dTV ≤ 1, we obtain dTV (Cn, Po(ln
√

n)) ≤ E(f(Xn) ∧ 1). From the proof of

Proposition 3 it follows that f(Xn)
p−→ 0 and thus E(f(Xn) ∧ 1)

p−→ 0, completing the
proof.

Corollary 4.
Kn −

√
n

n1/4

d−→ N(0, 1/2).

Proof. Follows from Propositions 1 and 3.

Recall that for σ ∈ ISn the order O(σ) of σ is defined as the cardinality of the monoid,
generated by σ, and the inverse order IO(σ) of σ is defined as the cardinality of the inverse
monoid, generated by σ, that is

O(σ) = |{σl : l ∈ {0, 1, 2, . . . }}|, IO(σ) = |{σl : l ∈ Z}|.

Let On and In denote the order and the inverse order of a random element of ISn respec-
tively.

Proposition 5.

ln On − 1
8
ln2 n√

1
24

ln3 n

d−→ N(0, 1),
ln In − 1

8
ln2 n√

1
24

ln3 n

d−→ N(0, 1).

Proof. For σ ∈ ISn denote X(σ) = {i ∈ {1, . . . , n} : σl(i) = i for some l > 0}. Then
|X(σ)| is the stable rank of σ. Moreover, any σ ∈ ISn can be written as a product
σ = σ1 · σ2, where dom(σ1) = {1, . . . , n} and σ1(i) = σ(i), i ∈ X(σ), σ1(i) = i, i 6∈ X(σ);
dom(σ2) = dom(σ) and σ2(i) = i, i ∈ X(σ), σ2(i) = σ(i), i ∈ dom(σ) \ X(σ). It follows
immediately from the definition that σ1 · σ2 = σ2 · σ1. It is further easy to see (see e.g.
[GK]) that

O(σ1) ≤ O(σ) ≤ O(σ1) + n− |X(σ)|, O(σ1) ≤ IO(σ) ≤ O(σ1) + 2(n− |X(σ)|). (7)
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For a random element σ ∈ ISn, let O′
n(σ) = O(σ1). Given Xn = X(σ) = k, this has the

same distribution as the order Õk of a random permutation of length k. In [ET] it was
shown that, as k →∞,

ln Õk − 1
2
ln2 k√

1
3
ln3 k

d−→ N(0, 1).

Hence, as n→∞,
ln O′

n − 1
2
ln2 Xn√

1
3
ln3 Xn

d−→ N(0, 1),

and it follows as in the proof of Proposition 3 that

ln O′
n − 1

8
ln2 n√

1
24

ln3 n

d−→ N(0, 1). (8)

In particular, for almost all σ ∈ ISn we have that O(σ1) ≈ n(ln n)/8. Since the difference
between the left and the right sides of the inequalities in (7) is less than 2n, in particular
is o(n(ln n)/9), we obtain that, asymptotically, the left and the right sides of inequalities in
(7) are the same. Now the necessary statement follows from (8).

6 Some generating functions

Consider some “objects” consisting of “components”, whose order in the objects is not
important. Assume that there are am possible components containing exactly m elements.
Let fn denote the total number of objects, which consist of exactly n elements. The
following well-known statement can be easily derived for example from [Wi, Theorem 3.4.1]

Proposition 6. The exponential generating function for {fn, n ≥ 0} is F (z) = eA(z), where
A(z) =

∑∞
m=1

am

m!
zm.

Proposition 6 now can be used to compute the exponential generating functions for
|Tn|, |ISn|.

Theorem 4. 1. The exponential generating function for an = |Tn| is ETn(z) = ez/(1−z).

2. The exponential generating function for bn = |ISn| is EISn(z) = 1
1−z

ez/(1−z).

Proof. For Tn we have that components are chains and am = m!. Hence A(z) =
∑

m≥1 zm =

z/(1− z) and we get F (z) = ez/(1−z).
For ISn we have two types of components: cycles and chains, and thus am = m! +

(m− 1)!. This gives A(z) = 1
1−z
− ln(1− z) and therefore F (z) = 1

1−z
ez/(1−z).

Analogous arguments can be used to compute the exponential generating function for
L(n) and Ln:

12



Theorem 5. 1. The exponential generating function for the sequence cn = |L(n)| is
EL(n)(z) = z

1−z
ez/(1−z).

2. The exponential generating function for dn = |Ln| is ELn(z) = z
(1−z)2

ez/(1−z).

Proof. A fixed chain of length m is contained in exactly |Tn−m| elements of Tn, and in
exactly |ISn−m| elements of ISn. This implies that EL(n)(z) = z

1−z
ETn(z) = z

1−z
ez/(1−z)

and ELn(z) = z
1−z

EISn(z) = z
(1−z)2

ez/(1−z).

Theorem 4 and the first part of Theorem 5 can now be used to derive the following
corollaries:

Corollary 5. ([GM2, Theorem 7(2)]) |ISn| = |Tn|+ L(n).

Proof. Follows from EISn(z) = ETn(z) + EL(n)(z).

Corollary 6. ([GM2, Theorem 6(1)]) |Tn| = 1
n
Ln.

Proof. For the sequence n|Tn| we have

En|Tn|(z) = zE ′
|Tn|(z) =

z

(1− z)2
ez/(1−z) = ELn(z)

and the statement follows.

Corollary 7. ([GM2, Theorem 6(2)]) |ISn| = 1
n+1

L(n+1).

Proof. The statement is equivalent to zEISn(z) = EL(n)(z), which is straightforward.

We also obtain one relation, which seems to be missing in [GM2].

Corollary 8. The total number Pn of fixed points for all elements from ISn satisfies
Pn = L(n).

Proof. For x ∈ {1, . . . , n}, the point x is fixed in exactly |ISn−1| elements of ISn, which
implies that EPn(z) = zEISn(z). Further zEISn(z) = EL(n)(z) by Corollary 7 and the
statement follows.
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