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Abstract. We study the number of records in a complete binary tree
with randomly labeled vertices or edges. Equivalently, we may study
the number of random cuttings required to eliminate a complete binary
tree.

The distribution is, after normalization, asymptotically a periodic
function of lg n − lg lg n; thus there is no true asymptotic distribution
but a family of limits of different subsequences; these limits are similar
to a 1-stable distribution but have some periodic fluctuations.

1. Introduction

Let each vertex v in a rooted tree T have a random value λv attached to
it, and assume that these values are i.i.d. with a continuous distribution (so
that a.s. there are no ties). Say that a value λv is a record if it is the smallest
value in the path from the root to v. LetXv(T ) denote the (random) number
of records. Note that this generalizes the classical record problem (which is
the case when T is a path), see for example [9].

Alternatively, we may attach random values to the edges, and let Xe(T )
denote the number of edges with record values (along the path from the
root).

It is obvious that the choice of common distribution of the labels does not
affect the result, and that we as well can count the values that are largest.
We can also let the labels be a random permutation of {1, . . . , n}.

The same random variables appears when we consider random cuttings
of the tree T defined as follows, see [6]. Make a random cut by choosing one
vertex [edge] at random. Delete this vertex [edge] so that the tree separates
into two parts, and keep only the part containing the root. Continue recu-
sively until the root is cut [only the root is left]. Then the (random) number
of cuts made is Xv(T ) [Xe(T )]. (More precisely, these random variables have
the same distribution.) This equivalence is shown in [5], where the asymp-
totic distributions are found for the random trees that can be constructed
as conditioned Galton–Watson trees, for example random labelled trees and
and random binary trees. See also [6, 1, 7, 8] for earlier results.

We will in this paper study the case of a complete binary tree.

Date: April 7, 2004.

1



2 SVANTE JANSON

The complete binary tree with n vertices has height m = blg nc; it has
2k vertices of height k, 0 ≤ k < m, and n − 2m + 1 vertices of height m,
moreover, the vertices of height m have the leftmost positions among the
2m possible ones, see e.g. [4, page 401]. We denote this rooted tree by Tn,
and denote its root by o.

Let {x} := x−bxc denote the fractional part of a real number x. Further,
for a vertex v in a rooted tree, let h(v) be its height (also known as depth),
with the root having height 0.

Theorem 1.1. Suppose that n→∞ such that {lg n− lg lg n} → γ ∈ [0, 1].
Then (

Xv(Tn)−
n

lg n
− n lg lg n

lg2 n

) / n

lg2 n

d−→ −Wγ (1.1)

where Wγ has an infinitely divisible distribution with characteristic function

E eitWγ = exp
(
if(γ)t+

∫ ∞

0

(
eitx − 1− itx1[x < 1]

)
dνγ(x)

)
, (1.2)

where f(γ) := 2γ − 1 − γ and the Lévy measure νγ is supported on (0,∞)
and has density

dνγ
dx

= 2{lg x+γ}x−2.

The same result holds for Xe(Tn).

We prove Theorem 1.1 in Section 2. The strategy of the proof is to
approximate Xv(Tn) and Xe(Tn) by a sum of independent random variables
derived from {λv}, see Lemma 2.4. We will then apply a classical limit
theorem for triangular arrays.

Remark 1.2. Let X̃n denote the left hand side of (1.1). Instead of stating
the result for suitable subsequences, we may say that X̃n has approxima-
tively the same distribution as −W{lgn−lg lgn} for large n; more precisely,
the distance between the two distributions (in for example the Lévy metric)
tends to 0 as n→∞.

Remark 1.3. Most records occur at height close to the maximum m ≈ lg n,
simply because almost all vertices are there. On the other hand, it follows
from the proof below, see Lemma 2.4 and the proof of Lemma 2.5, that
most of the random fluctuations of Xv(Tn) or Xe(Tn) can be explained by
the values at heights close to lg lg n. The explanation is that a few values λv
at these heights will be so small that they significantly reduce the number
of records among their descendants. Vertices of smaller height are too few,
and there will usually not be any sufficiently small value among them, while
vertices of larger height affect only a small proportion of the tree each, and
the random effect caused by their values will be wiped out by the law of
large numbers.

Remark 1.4. It is easy to see [5] that EXv(Tn) =
∑

v 1/(h(v) + 1) and
EXe(Tn) =

∑
v 6=o 1/h(v); both sums are easily evaluated as n/m+O(n/m2) =
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n/ lg n + O(n/ lg2 n). We see thus from Theorem 1.1 that Xv(Tn) and
Xe(Tn) are concentrated well above their means (at a distance of about
n lg lg n/ lg2 n), so that e.g. P

(
Xv(Tn) ≤ EXv(Tn)

)
→ 0. This is connected

to the fact that the limit Wγ has infinite mean.
Note also that EXe(Tn) − EXv(Tn) =

∑
v 6=o

(
h(v)(h(v) + 1)

)−1 − 1 ∼
n/ lg2 n, while there is no similar difference in the limit distribution in The-
orem 1.1.

An explanation of these facts is that the mean is affected by the unlikely
event that a vertex close to the root has an extremely small value λv, which
would reduce the number of records by a large amount.

We see that this behaviour makes it impossible to use the method of
moments to find the asymptotic distribution in Theorem 1.1, as we did for
other trees in [5].

Remark 1.5. Recall that the Lévy measure cx−2 dx gives a (weakly) 1-
stable distribution, see e.g. [2, XVII.3]; the measure νγ is a version of this
with periodic fluctuations, so the distribution of Wγ is roughly similar to
a 1-stable distribution. More precisely, we have that if Wγ and W ′

γ are

independent with the same distribution, then Wγ + W ′
γ

d= 2Wγ + 2, as is
easily checked from (1.2), but the corresponding statement for a sum of three
copies of Wγ is false.

If we write (1.2) as E eitWγ = eψγ(t), it is possible to compute the Fourier
coefficients of ψγ(t) as a function of γ by integrations, using Fubini and some
Gamma integrals, and obtain

ψγ(t) = −π
2
|t| − (γ∗ − 1

2)it

− it
∑
n6=0

Γ(2πin/ ln 2− 1)
ln 2− 2πin

e−π
2n sign t/ ln 2|t|−2πin/ ln 2e2πniγ ,

where γ∗ is Euler’s constant. We omit the details. This, again, shows the
affinity with stable distributions.

The complete binary tree Tn has minimal height among all binary trees
with n vertices, but among binary trees with this height, it is maximally
unbalanced. The other extreme is the balanced binary tree T ∗n , where at
each vertex, the two subtrees emanating from it differ in size by at most 1.
This tree too has height m = blg nc, and the same number of vertices at
each level as Tn. As a companion to Theorem 1.1, we give a similar theorem
for T ∗n ; note that the results are similar but not identical, which shows that
the details of the structure of the tree are important. (If we consider only
n of the form 2k − 1, Tn = T is a full binary tree. Indeed, Theorems 1.1
and 1.6 yield the same result in this case.) In contrast, note that the means
of Xv and Xe are the same for Tn and T ∗n , see Remark 1.4.
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Theorem 1.6. Suppose that n→∞ such that {lg lg n} → β ∈ [0, 1]. Then(
Xv(T ∗n)− n

lg n
− n lg lg n

lg2 n

) / n

lg2 n

d−→ −W1−β

where W1−β is as in Theorem 1.1. The same result holds for Xe(T ∗n).

The method used below applies also to other binary trees with minimal
height, but we leave the details to the reader. Presumably, the method can
be used also for a larger class of binary trees, but we have not explored this.
In particular, we do not know whether our methods can be used to solve the
following problem.

Problem 1.7. What is the asymptotic distribution of Xv and Xe for a
(random) binary search tree?

2. Proofs

We first treat the case Xv of Theorem 1.1 in detail, and then indicate the
small modifications needed for Xe and for T ∗n .

Let Xn := Xv(Tn), and let, for y > 0, Xn,y be Xv(Tn)− 1 conditioned on
the root label λo = y, i.e. the number of records in the rest of the tree if we
fix the root label (which always is a record).

We will use the notations m := blg nc (as above) and l := blg lg nc; we also
let L := b3

2 lg lg nc ≈ 3l/2. We assume that n is so large that 0 < l < L < m.
If an are positive numbers and Zn random variables such that Zn/an

p−→ 0
as n→∞, we write Zn = op(an).

In the sequel, we will write T instead of Tn. For a vertex v ∈ T , we let Tv
be the subtree of T rooted at v, and let nv be the number of vertices in Tv.

For later use we note that if we fix j < m and consider the 2j vertices
of height j, labelling them v1, . . . , v2j from left to right, then, with qj :=
b(n− 2m + 1)/2m−jc,

nvi =


2m+1−j − 1, 1 ≤ i ≤ qj ,

2m−j − 1 + 2m−j{(n− 2m + 1)/2m−j}, i = qj + 1,
2m−j − 1, qj + 1 < i ≤ 2j .

(2.1)

We will further assume that the labels λv have an exponential distribution
Exp(1) with mean 1; as remarked above, this does not affect the distribution
of Xn.

Lemma 2.1. We have

EXn,y =
n− 2m + 1

m

(
1− e−my

)
+
m−1∑
k=1

2m−k

m− k

(
1− e−(m−k)y) (2.2)

and, uniformly in n and y > 0,

VarXn,y = O(m−3n2).
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Proof. Fix y > 0, and let, for each vertex v ∈ T , Iv be the indicator that
λv is a minimum, given that λo = y. Thus, Xn,y =

∑
v 6=o Iv. If h(v) = j,

let o, v1, . . . , vj = v be the vertices on the path from the root o to v. Then
Iv = 1 if and only if λvj < y and λvi > λvj for i = 1, . . . , j − 1. Hence, since
λvi ∼ Exp(1) are independent,

E Iv =
∫ y

0

j−1∏
i=1

P(λvi > x)e−x dx =
∫ y

0
e−jx dx =

1− e−jy

j
. (2.3)

Consequently,

EXn,y =
m−1∑
j=1

2j
1− e−jy

j
+ (n− 2m + 1)

1− e−my

m
,

proving (2.2) by letting j = m− k.
To estimate the variance, assume that v and w are two vertices in T of

heights j = h(v) and k = h(w), and with their last common ancestor u at
height i.

Suppose first i < j and i < k. Let u0 = o, u1, . . . , ui = u be the vertices
on the path from o to u, and let Z := min{λus : 1 ≤ s ≤ i}. Conditioned
on Z, Iv and Iw are independent. Further, since v has height j − i above u,
(2.3) yields

E(Iv | Z) =
1− e−(j−i)(Z∧y)

j − i
,

and similarly for Iw. Consequently, since Z ∼ Exp(i−1), being the minimum
of i independent Exp(1) variables,

E(IvIw) = E
(1− e−(j−i)(Z∧y)

j − i
· 1− e−(k−i)(Z∧y)

k − i

)
=

1
j − i

1
k − i

(∫ y

0

(
1− e−(j−i)z)(1− e−(k−i)z)ie−iz dz

+ e−iy
(
1− e−(j−i)y)(1− e−(k−i)y))

=
1

j − i

1
k − i

(
1− e−iy − i

j

(
1− e−jy

)
− i

k

(
1− e−ky

)
+

i

j + k − i

(
1− e−(j+k−i)y) + e−iy − e−jy − e−ky + e−(j+k−i)y

)
.

(2.4)
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Say that the pair (v, w) is good if i ≤ m/3 and j, k ≥ 2m/3, and bad
otherwise. For a good pair (v, w) we have, by (2.4) and (2.3),

Cov(Iv, Iw) = E IvIw − E Iv E Iw

=
1 +O(i/m)

jk

(
1− e−jy − e−ky + e−(j+k−i)y +O(i/m)

)
− 1
jk

(
1− e−jy

)(
1− e−ky

)
=

1
jk
e−(j+k−i)y(1− e−iy

)
+O(i/m3)

= O(m−2e−myiy) +O(i/m3) = O(i/m3). (2.5)

For given i, j, k, there are at most 2i choices of u and then at most 2j−i

choices of v and 2k−i of w; thus the total number of such pairs is at most
2j+k−i. Hence (2.5) yields

∑
good (v,w)

Cov(Iv, Iw) = O
( m∑
i=1

m∑
j=1

m∑
k=1

2j+k−iim−3
)

= O
(
22mm−3

)
. (2.6)

The total number of bad pairs is at most∑
i>m/3, j,k≤m

2j+k−i + 2
∑

i≥0, j<2m/3, k≤m

2j+k−i = O
(
22m−m/3). (2.7)

For the bad pairs we simply use Cov(Iv, Iw) ≤ E IvIw ≤ 1, and obtain from
(2.6) and (2.7)

VarXn,y =
∑
v,w

Cov(Iv, Iw) = O
(
22mm−3

)
= O

(
m−3n2

)
.

�

Let ϕ(n, y) := EXn,y, given by (2.2). In the next lemma, we find it useful
to be slightly more general than simply requiring m̄ = m.

Lemma 2.2. If 2m̄ − 1 ≤ n ≤ 2m̄+1 − 1, then

ϕ(n, y) =
n

m̄

(
1− e−m̄y

)
+

2m̄+1

m̄2
+O

(
m̄−2e−m̄y/4n+ m̄−3n

)
.

Proof. Let

ak =
2m−k

m− k

(
1−e−(m−k)y) =

2m−k

m

(
1− k

m

)−1(
1−e−my−e(k−m)y

(
1−e−ky

))
.

For m/2 < k < m we use ak = O(2m/2), and for k ≤ m/2

ak =
2m−k

m

(
1 +

k

m
+O

( k2

m2

))(
1− e−my +O

(
kye(k−m)y

))
.
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Summing over k, we see that (2.2) yields, using mye−my/4 = O(1),

ϕ(n, y) =
n− 2m

m

(
1− e−my

)
+

2m

m

(
1 +

2
m

+O(m−2)
)(

1− e−my
)

+O
(
m2m/2 +

2m

m
ye−my/2

)
=

n

m

(
1− e−my

)
+

2m+1

m2
+O(m−3n) +O

(
m−2ne−my/4

)
.

This proves the result when m̄ = m. The only remaining case is n = 2m̄− 1
and m = m̄ − 1; the result follows easily in this case too, for example by
adding a vertex v at height m̄, using the case just considered, and subtracting
E Iv = (1− e−m̄y)/m̄ from (2.3). �

Recall that L = b3
2 lg lg nc ≈ 3

2 l ≈
3
2 lgm. Let vi, 1 ≤ i ≤ 2L, be the 2L

vertices of height L, and let ni := nvi . Note that ni = Θ(n/2L). Further,
let Yi be the minimum of λv along the path P (vi) = o . . . vi from the root
to vi.

Lemma 2.3. With notations as above,

Xn =
2L∑
i=1

ϕ(ni, Yi) + op(m−2n). (2.8)

Proof. We write the number of records Xn as V ∗ +V1 + · · ·+V2L , where V ∗

is the number of records with height ≤ L and Vi are the number of records
in Tvi \ {vi}.

If we condition on {λv : h(v) ≤ L}, then V ∗ and all Yi become fixed, while
Vi, 1 ≤ i ≤ 2L, become independent random variables with Vi

d= Xni,Yi .
Let FL be the σ-field generated by {λv : h(v) ≤ L}. Then, by the

comments just made, E(Vi | FL) = E(Xni,Yi | Yi) = ϕ(ni, Yi) and, with
mi := blg nic = lg n− L+O(1) ∼ m,

E
((

Xn − V ∗ −
2L∑
i=1

ϕ(ni, Yi)
)2 ∣∣∣ FL)

= E
(( 2L∑

i=1

(
Vi − ϕ(ni, Yi)

))2 ∣∣∣ FL)

=
2L∑
i=1

E
((
Vi − ϕ(ni, Yi)

)2 ∣∣ FL)
=

2L∑
i=1

Var
(
Xni,Yi

∣∣ Yi)
=

2L∑
i=1

O(m−3
i n2

i ) = O
(
2Lm−32−2Ln2

)
= O

(
m−32−Ln2

)
= O

(
m−9/2n2

)
.

Taking the expectation, we find

E
(
Xn − V ∗ −

2L∑
i=1

ϕ(ni, Yi)
)2

= O
(
m−9/2n2

)
= o

(
m−4n2

)
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and thus

Xn − V ∗ −
2L∑
i=1

ϕ(ni, Yi) = op
(
m−2n

)
.

The result follows because also

0 ≤ V ∗ < 2L+1 = O(m3/2) = o
(
m−2n

)
. �

Next, let m̄ := m − L ∼ m. By (2.1) (with j = L), we can apply
Lemma 2.2 to each ni and m̄; this yields

ϕ(ni, Yi) =
ni
m̄

(
1− e−m̄Yi

)
+

2m̄+1

m̄2
+O

(
m−2e−m̄Yi/4ni +m−3ni

)
. (2.9)

Since Yi ∼ Exp(1/(L+ 1)), for every a > 0,

E e−aYi =
∫ ∞

0
(L+ 1)e−ay−(L+1)y dy =

L+ 1
L+ 1 + a

= O
(L
a

)
. (2.10)

Hence

E
∣∣e−m̄Yi − e−mYi

∣∣ = E e−m̄Yi − E e−mYi =
L+ 1

L+ 1 + m̄
− L+ 1
L+ 1 +m

= O
(
L
m− m̄

m2

)
= O

( L2

m2

)
. (2.11)

It follows easily from (2.9), (2.10) and (2.11) that

E
∣∣∣ϕ(ni, Yi)−

ni
m̄

+
ni
m
e−mYi − 2m̄+1

m̄2

∣∣∣ = O
(
L2m−3ni

)
= o(m−2ni).

Summing over i we find, using Lemma 2.3, since
∑

i ni = n − (2L − 1) =
n−O(m3/2),

Xn =
2L∑
i=1

(ni
m̄
− ni
m
e−mYi +

2m̄+1

m̄2

)
+ op(m−2n)

=
n

m− L
− 1
m

2L∑
i=1

nie
−mYi + 2L

2m−L+1

(m− L)2
+ op(m−2n)

=
n

m
+ L

n

m2
− 1
m

2L∑
i=1

nie
−mYi +

2m+1

m2
+ op(m−2n). (2.12)

We transform this once more.

Lemma 2.4.

Xn =
n

m
+ L

n

m2
− 1
m

∑
h(v)≤L

nve
−mλv +

2m+1

m2
+ op(m−2n). (2.13)
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Proof. We recall that each Yi is the minimum of the L + 1 independent
variables λv, v ∈ P (vi); thus e−mYi is the maximum of the corresponding
e−mλv . Let a = 2 lnm/m. The probability that at least two λv, v ∈ P (vi),
are less than a is O(L2a2) = O(ln4m/m2); hence the probability that this
happens for some i is O(2L ln4m/m2) = o(1). With probability tending to
1, there is thus at most one λv less than a in each P (vi), and in this case,

0 ≤
∑

v∈P (vi)

e−mλv − e−mYi ≤ Le−ma = L/m2,

and thus,

2L∑
i=1

nie
−mYi =

2L∑
i=1

ni
∑

v∈P (vi)

e−mλv +O(nL/m2)

=
∑

h(v)≤L

e−mλv
∑

i:v∈P (vi)

ni +O(nL/m2)

=
∑

h(v)≤L

e−mλvnv +O(nL/m2),

because nv − 2L ≤
∑

i:v∈P (vi)
ni ≤ nv. Hence,

2L∑
i=1

nie
−mYi =

∑
h(v)≤L

e−mλvnv + op(n/m),

and the result follows from (2.12). �

The sum in (2.13) is a sum of independent random variables. The proof
will be completed by a classical result on convergence of such sums for
triangular arrays to infinitely divisible distributions, see e.g. [3, Theorem
15.28].

We write, for convenience, ξv := mnv
n e−mλv . We further write αn := {lg n}

and βn = {lg lg n}; Thus lg n = m+αn and lgm = lg lg n+o(1) = l+β+o(1).
We then have, by Lemma 2.4,

m2

n

(
Xn −

n

lg n
− n lg lg n

lg2 n

)
= m2

( 1
m
− 1

lg n

)
+ L−m

∑
h(v)≤L

nv
n
e−mλv +

2m+1

n
− lg lg n+ op(1)

= αn + L− l − βn + 21−αn −
∑

h(v)≤L

ξv + op(1). (2.14)

Since m/ lg n→ 1, it is thus enough to show that this converges in distribu-
tion to −Wγ as n→∞ with {lg n− lg lg n} → γ.

By considering subsequences, we may assume that the limits α := limαn
and β := limβn exist. Thus lg n = m+ α+ o(1) and lgm = lg lg n+ o(1) =
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l+ β + o(1). Note that lg n− lg lg n = m− l+ α− β + o(1); thus γ ≡ α− β
(mod 1) and more precisely,

γ =


α− β if α > β;
α− β + 1 if α < β;
0 or 1 if α = β.

(2.15)

Lemma 2.5. Suppose that n→∞ such that αn → α and βn → β for some
α and β in [0, 1], and let h := 2β−α. Then

(i) supv P(ξv > x) → 0 for every x > 0. (I.e., {ξv} form a null array.)
(ii)

∑
h(v)≤L P(ξv > x) → νγ(x,∞) for every x > 0.

(iii)
∑

h(v)≤L E
(
ξv1[ξv ≤ h]

)
− (L− l + 21−α + α− β) → β − α.

(iv)
∑

h(v)≤L Var
(
ξv1[ξv ≤ h]

)
→ 3h/2.

Before proving this lemma, we show how it implies Theorem 1.1. Let C :=
L−l+21−α+α−β. We apply [3, Theorem 15.28] with a = 0 and b = f(γ) to∑

h(v)≤L ξv +
∑n

i=1 ξ
′
i, with ξ′i = −C/n deterministic. (Note that C/n→ 0;

thus {ξv} ∪ {ξ′i} is a null array.) We have dνγ/dx = 2{lg x+α−β}x−2 =
2−i+α−βx−1 when 2ih < x < 2i+1h, and thus∫ h

0
x2 dνγ(x) =

−1∑
i=−∞

∫ 2i+1h

2ih
2−i+α−βx dx =

−1∑
i=−∞

3
22ih =

3h
2
.

Similarly, if β ≤ α so 1/2 ≤ h ≤ 1, then∫ 1

h
x dνγ(x) =

∫ 1

h
2α−β dx = 2α−β − 1,

while if β ≥ α so 1 ≤ h ≤ 2, then∫ 1

h
x dνγ(x) = −

∫ h

1
x dνγ(x) = 21+α−β(1− h) = 2(2α−β − 1).

It follows, using (2.15) and f(0) = f(1), that in both cases

f(γ)−
∫ 1

h
x dνγ(x) = 2γ − 1− γ −

∫ 1

h
x dνγ(x) = β − α.

It is now easy to see from Lemma 2.5 that the conditions of [3, Theorem
15.28] are satisfied, and consequently∑

h(v)≤L

ξv − (L− l + 21−α + α− β) =
∑

h(v)≤L

ξv +
n∑
i=1

ξ′i
d−→Wγ .

Theorem 1.1 now follows by (2.14).

Proof of Lemma 2.5. For any x > 0,

P(ξv > x) = P
(
e−mλv >

nx

mnv

)
= P

(
mλv < ln

mnv
nx

)
= 1− exp

(
− 1
m

ln+
mnv
nx

)
. (2.16)
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This shows first that for every x > 0,

P(ξv > x) <
1
m

ln+
mnv
nx

≤ 1
m

ln+
m

x
→ 0, (2.17)

which proves (i).
On a given level j < m there are, by (2.1), qj = n2j−m − 2j + O(1) =

(2αn − 1)2j + O(1) vertices with nv = 2m+1−j − 1, and 2j − qj − 1 = (2 −
2αn)2j + O(1) vertices with nv = 2m−j − 1. There is one additional vertex
with an intermediate nv (which could coincide with one of the two main
values); for convenience we call such a vertex bad. We also call a vertex v

with nv ≥ 2m−l/2 (which requires j ≤ l/2) bad. All other vertices v with
h(v) ≤ L are good. The good vertices thus have nv = 2m−k − 1 for some
k with l/2 ≤ k ≤ L. For l/2 ≤ k < L, there are (2 − 2αn)2k + O(1) such
vertices with h(v) = k and (2αn − 1)2k+1 + O(1) with h(v) = k + 1; thus
together 2k+αn + O(1). For k = L, there are only (2 − 2αn)2k + O(1) such
vertices, since we require h(v) ≤ L. In other words,

#{v good : nv = 2m−k − 1} =

{
2k+αn +O(1), l/2 ≤ k < L,

(2− 2αn)2L +O(1), k = L.
(2.18)

The number of bad vertices is O
(
L+2l/2

)
= O

(
m1/2

)
. By (2.17), P(ξv >

x) = O(lnm/m) for every fixed x > 0. Hence the sum over bad vertices in
(ii) is O(m−1/2 lnm) = o(1).

Similarly, using (2.17) again,

E
(
ξv1[ξv ≤ h]

)
≤ 1
m

+ hP
(
ξv >

1
m

)
≤ 1
m

+ h
2 lnm
m

= O
( lnm
m

)
. (2.19)

and

Var
(
ξv1[ξv ≤ h]

)
≤ E

(
ξ2v1[ξv ≤ h]

)
≤ hE

(
ξv1[ξv ≤ h]

)
= O

( lnm
m

)
. (2.20)

Consequently, the sum over bad v is o(1) in (ii), (iii) and (iv), so we may
in the sequel ignore them and consider only good vertices.

Fix x > 0. Then, by (2.16) and (2.17),

P(ξv > x) =
1
m

ln+

(mnv
nx

)(
1 +O

( lnm
m

))
(2.21)
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If k ≥ L, then m2m−k ≤ 2l+1+m−L < nx, provided n is large enough. Thus,
for large n, by (2.18) and (2.21), with all o(1) uniform in k for fixed x,∑
v good

P(ξv > x) =
(
1 + o(1)

) ∞∑
k=l/2

(
2k+αn +O(1)

) 1
m

ln+

((2m−k − 1)m
nx

)
=

(
1 + o(1)

) ∑
k≥l/2

2k+αn−l−βn ln+

(
2−k−αn+l+βn+o(1)x−1

)
+ o(1)

=
(
1 + o(1)

) ∑
i≤l/2

2−i+α−β ln+

(
2i−α+β+o(1)x−1

)
+ o(1)

→ F (x) :=
∞∑
−∞

2−i+α−β ln+

(
2i−α+βx−1

)
.

Let j := blg x+ α− βc; thus 2j+β−α ≤ x < 2k+β−α+1 and

F (x) =
∞∑

i=j+1

2−i+α−β ln
(
2i−α+βx−1

)
=

∞∑
k=1

2−k−j+α−β
(
k ln 2 + ln

(
2j−α+βx−1

))
= 2−j+α−β

(
2 + lg

(
2j−α+βx−1

))
ln 2

= 2α−β−blg x+α−βc
(
2− {lg x+ α− β}

)
ln 2

= 2γ−blg x+γc
(
2− {lg x+ γ}

)
ln 2.

Note that F (x) is continuous and decreasing with F (x) → 0 as x→∞. The
derivative is

dF (x)
dx

= −1
x

2γ−blg x+γc = −x−22{lg x+γ}.

Thus F (x) = νγ(x,∞), which proves (ii).
For (iii) and (iv) we calculate, for s > 0,

E
(
e−mλv1[e−mλv ≤ s−1]

)
=

∫ ∞

m−1 ln+ s
e−mxe−x dx

=
1

m+ 1
e−(m+1) 1

m
ln+ s =

1
m+ 1

2−(1+1/m) lg+ s (2.22)

and, similarly,

E
(
e−2mλv1[e−mλv ≤ s−1]

)
=

1
2m+ 1

2−(2+1/m) lg+ s,

which gives

Var
(
e−mλv1[e−mλv ≤ s−1]

)
=

1
2m

2−(2+1/m) lg+ s
(
1 +O(m−1)

)
. (2.23)

If v is a good vertex with nv = 2m−k − 1 = 2m−k+o(1), then
mnv
nh

= 2(l+β)+(m−k)−(m+α)−(β−α)+o(1) = 2l−k+o(1),
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and thus, by (2.22),

E
(
ξv1[ξv ≤ h]

)
=
mnv
n

E
(
e−mλv1

[
e−mλv ≤ nh

mnv

])
=

mnv
(m+ 1)n

2−(1+1/m)(l−k)++o(1) = 2−k−α−(l−k)++o(1).

Note in particular that if k ≥ l + 1, then mnv
nh < 1 for large n, and thus

ξv ≤ h and

E
(
ξv1[ξv ≤ h]

)
= E ξv =

mnv
(m+ 1)n

= 2−k−αn

(
1 +O

( 1
m

))
. (2.24)

It follows from (2.18), (2.22) and (2.24) that, with o and O uniform in k,∑
v good

E
(
ξv1[ξv ≤ h]

)
=

l∑
k=l/2

2k+α+o(1)2−k−α−(l−k)++o(1) +
L−1∑
k=l+1

(
2k+αn +O(1)

)
2−k−αn

(
1 +O(m−1)

)
+

(
(2− 2αn)2L +O(1)

)
2−L−α+o(1)

=
l∑

k=l/2

2−(l−k)++o(1) +
L−1∑
k=l+1

(
1 +O(m−1)

)
+ 21−α − 1 + o(1)

= 2 + L− 1− l + 21−α − 1 + o(1) = L− l + 21−α + o(1).

Similarly, using (2.23),

Var
(
ξv1[ξv ≤ h]

)
=
m2n2

v

n2
Var

(
e−mλv1

[
e−mλv ≤ nh

mnv

])
=
m2n2

v

2mn2
2−(2+1/m)(l−k)++o(1) = 2l+β−1−2k−2α−2(l−k)++o(1)

and∑
v good

Var
(
ξv1[ξv ≤ h]

)
=

L∑
k=l/2

2k+α+o(1)2l+β−1−2k−2α−2(l−k)++o(1) + o(1)

=
∞∑

k=−∞
2l−k−2(l−k)++β−α−1+o(1) + o(1)

= 3 · 2β−α−1 + o(1) = 3h/2 + o(1).

This completes the proof of Lemma 2.5. �

We have proved Theorem 1.1 for Xv. For Xe, the only difference is that
λo is ignored, and thus Yi ∼ Exp(1/L). The estimates in (2.10) and (2.11)
remain valid, and thus (2.13) and (2.14) still hold, summing over v 6= o only.
Since ξ0 = me−mλo

p−→ 0 by Lemma 2.5(i), this makes no difference for
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the asymptotics of the distribution. (But note that E ξ0 → 1, and that the
means differ correspondingly, see Remark 1.4.)

For the completely balanced tree (Theorem 1.6), every vertex v with
h(v) = k has 2−kn−2 < nv ≤ 2−kn. We call all vertices with l/2 ≤ h(v) ≤ L
good, and replace (2.18) by

#{v ∈ T ∗n good : nv = 2−kn+O(1)} = 2k, l ≤ k ≤ L. (2.25)

The remaining calculations hold as above, provided we replace αn and α by
0 and thus γ by 1− β.
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