RANDOM RECORDS AND CUTTINGS IN COMPLETE
BINARY TREES

SVANTE JANSON

ABSTRACT. We study the number of records in a complete binary tree
with randomly labeled vertices or edges. Equivalently, we may study
the number of random cuttings required to eliminate a complete binary
tree.

The distribution is, after normalization, asymptotically a periodic
function of lgn — lglgn; thus there is no true asymptotic distribution
but a family of limits of different subsequences; these limits are similar
to a 1l-stable distribution but have some periodic fluctuations.

1. INTRODUCTION

Let each vertex v in a rooted tree T have a random value A, attached to
it, and assume that these values are i.i.d. with a continuous distribution (so
that a.s. there are no ties). Say that a value ), is a record if it is the smallest
value in the path from the root to v. Let X, (T") denote the (random) number
of records. Note that this generalizes the classical record problem (which is
the case when T is a path), see for example [9].

Alternatively, we may attach random values to the edges, and let X.(7')
denote the number of edges with record values (along the path from the
root).

It is obvious that the choice of common distribution of the labels does not
affect the result, and that we as well can count the values that are largest.
We can also let the labels be a random permutation of {1,...,n}.

The same random variables appears when we consider random cuttings
of the tree T defined as follows, see [6]. Make a random cut by choosing one
vertex [edge] at random. Delete this vertex [edge] so that the tree separates
into two parts, and keep only the part containing the root. Continue recu-
sively until the root is cut [only the root is left]. Then the (random) number
of cuts made is X, (T) [X¢(T)]. (More precisely, these random variables have
the same distribution.) This equivalence is shown in [5], where the asymp-
totic distributions are found for the random trees that can be constructed
as conditioned Galton—Watson trees, for example random labelled trees and
and random binary trees. See also [6, 1, 7, 8] for earlier results.

We will in this paper study the case of a complete binary tree.
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The complete binary tree with n vertices has height m = |lgn|; it has
2F vertices of height k, 0 < k < m, and n — 2™ + 1 vertices of height m,
moreover, the vertices of height m have the leftmost positions among the
2™ possible ones, see e.g. [4, page 401]. We denote this rooted tree by T,,,
and denote its root by o.

Let {x} := = — || denote the fractional part of a real number . Further,
for a vertex v in a rooted tree, let h(v) be its height (also known as depth),
with the root having height 0.

Theorem 1.1. Suppose that n — oo such that {lgn —1glgn} — v € [0, 1].

Then el
n nlglgn n d
Xo(Tp) — o — )/ —W 1.1
(ot = 5~ ) e W (L)
where W, has an infinitely divisible distribution with characteristic function
R it — exp(if(v)t +/ (€' — 1 —ital[z < 1)) dyq,(a:)), (1.2)
0

where f(v) := 27 —1 — v and the Lévy measure vy is supported on (0, 00)
and has density
dvy
dx
The same result holds for X.(1y,).

— ollgz+7} -2

We prove Theorem 1.1 in Section 2. The strategy of the proof is to
approximate X, (7},) and X¢(7},) by a sum of independent random variables
derived from {\,}, see Lemma 2.4. We will then apply a classical limit
theorem for triangular arrays.

Remark 1.2. Let X,, denote the left hand side of (1.1). Instead of stating
the result for suitable subsequences, we may say that )A(/n has approxima-
tively the same distribution as =Wy, 15155 for large n; more precisely,
the distance between the two distributions (in for example the Lévy metric)
tends to 0 as n — oo.

Remark 1.3. Most records occur at height close to the maximum m ~ Ign,
simply because almost all vertices are there. On the other hand, it follows
from the proof below, see Lemma 2.4 and the proof of Lemma 2.5, that
most of the random fluctuations of X, (7)) or X.(T},) can be explained by
the values at heights close to lglg n. The explanation is that a few values A,
at these heights will be so small that they significantly reduce the number
of records among their descendants. Vertices of smaller height are too few,
and there will usually not be any sufficiently small value among them, while
vertices of larger height affect only a small proportion of the tree each, and
the random effect caused by their values will be wiped out by the law of
large numbers.

Remark 1.4. It is easy to see [5] that EX,(T,,) = >, 1/(h(v) + 1) and
E Xe(Tn) = 32,4, 1/1(v); both sums are easily evaluated as n/m+0(n/m?) =
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n/lgn + O(n/lg’>n). We see thus from Theorem 1.1 that X,(7},) and
Xe(T),,) are concentrated well above their means (at a distance of about
nlglgn/lg®n), so that e.g. P(X,(T) < EX,(T,)) — 0. This is connected
to the fact that the limit W, has infinite mean.

Note also that EXe(T) — EXo(Tn) = 3, (A(0)(A(v) + 1)) " =1 ~
n/lg® n, while there is no similar difference in the limit distribution in The-
orem 1.1.

An explanation of these facts is that the mean is affected by the unlikely
event that a vertex close to the root has an extremely small value A,, which
would reduce the number of records by a large amount.

We see that this behaviour makes it impossible to use the method of
moments to find the asymptotic distribution in Theorem 1.1, as we did for
other trees in [5].

Remark 1.5. Recall that the Lévy measure cz2dx gives a (weakly) 1-
stable distribution, see e.g. [2, XVIL3]; the measure v, is a version of this
with periodic fluctuations, so the distribution of W, is roughly similar to
a 1-stable distribution. More precisely, we have that if W, and Wf/ are

independent with the same distribution, then W, + W§ 4 2W, + 2, as is
easily checked from (1.2), but the corresponding statement for a sum of three
copies of W, is false.

If we write (1.2) as EeltWr = ¢¥v(®) it is possible to compute the Fourier
coefficients of 1 (t) as a function of v by integrations, using Fubini and some
Gamma integrals, and obtain

Uy (t) = =5l = (v = Pt

r2rin/In2—-1) __ 2 o —omi ;
it mnsignt/In2 ¢ 27win/In2 2mwniy
' Z 2 2rin  © 4 ¢ ’

n#0

where v* is Euler’s constant. We omit the details. This, again, shows the
affinity with stable distributions.

The complete binary tree 7, has minimal height among all binary trees
with n vertices, but among binary trees with this height, it is maximally
unbalanced. The other extreme is the balanced binary tree T, where at
each vertex, the two subtrees emanating from it differ in size by at most 1.
This tree too has height m = |lgn|, and the same number of vertices at
each level as T,,. As a companion to Theorem 1.1, we give a similar theorem
for T)y; note that the results are similar but not identical, which shows that
the details of the structure of the tree are important. (If we consider only
n of the form 2% — 1, T}, = T is a full binary tree. Indeed, Theorems 1.1
and 1.6 yield the same result in this case.) In contrast, note that the means
of X, and X, are the same for 7,, and T}, see Remark 1.4.
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Theorem 1.6. Suppose that n — oo such that {lglgn} — 3 € [0,1]. Then

n nlglgn n dq
Xo(T) — —— — )/ 4wy
( o(Tn) lgn lg?n g2 n =7

where Wi_g is as in Theorem 1.1. The same result holds for X (T}).

The method used below applies also to other binary trees with minimal
height, but we leave the details to the reader. Presumably, the method can
be used also for a larger class of binary trees, but we have not explored this.
In particular, we do not know whether our methods can be used to solve the
following problem.

Problem 1.7. What is the asymptotic distribution of X, and X. for a
(random) binary search tree?

2. PROOFS

We first treat the case X, of Theorem 1.1 in detail, and then indicate the
small modifications needed for X, and for 7.

Let X,, := X,(T},), and let, for y > 0, X,, , be X,,(T},) — 1 conditioned on
the root label A\, = y, i.e. the number of records in the rest of the tree if we
fix the root label (which always is a record).

We will use the notations m := [lgn| (as above) and [ := [Ilglgn|; we also
let L :=|31glgn]| ~ 31/2. We assume that n is so large that 0 < I < L < m.

If a,, are positive numbers and Z,, random variables such that Z,/a,, 250
as n — 00, we write Z, = op(ay).
In the sequel, we will write T instead of T},. For a vertex v € T, we let T,
be the subtree of T rooted at v, and let n, be the number of vertices in T,.
For later use we note that if we fix j < m and consider the 2/ vertices
of height j, labelling them wv1,...,vy; from left to right, then, with ¢; :=
[(n—2m 4+ 1)/2m1 ],

2m+1*j_1, 1SZSQJ7
My, = 4 2MF — 14 2m=3{(n — 2™ 4+ 1)/2m T}, i=q;+1, (2.1)
gm—j _ 1, g +1<i<2,

We will further assume that the labels A\, have an exponential distribution
Exp(1) with mean 1; as remarked above, this does not affect the distribution
of X,,.

Lemma 2.1. We have

—om 41 T gmk
EX,, = %(1 —e™) 4+ ) —— (- e~ (m=kv)  (2.2)
k=1

and, uniformly in n and y > 0,

Var X,,, = O(m™>n?).
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Proof. Fix y > 0, and let, for each vertex v € T, I, be the indicator that
Av is a minimum, given that A\, = y. Thus, X,,, = ngo I,. If h(v) = j,
let 0,v1,...,v; = v be the vertices on the path from the root o to v. Then
I, = 1 if and only if /\vj <y and A\, > )\vj fori=1,...,5 — 1. Hence, since
Av; ~ Exp(1) are independent,

yi—l y 1—e Iy
EIl, = / H]P’(Am > z)e Tdr = / eIty == (2.3)
0 =1 0 J
Consequently,

m—1 i
iy 1 —emy
EXny = Z 2jf +(n—2"+ UT’

Jj=1

proving (2.2) by letting j = m — k.

To estimate the variance, assume that v and w are two vertices in T of
heights j = h(v) and k = h(w), and with their last common ancestor u at
height .

Suppose first i < j and i < k. Let ug = o,uq,...,u; = u be the vertices
on the path from o to u, and let Z := min{\,, : 1 < s < i}. Conditioned
on Z, I, and I, are independent. Further, since v has height 7 — ¢ above u,
(2.3) yields

1 — e—=D(Zny)
E(l, | Z) = i )

and similarly for I,,. Consequently, since Z ~ Exp(i~!), being the minimum
of i independent Exp(1) variables,

1 — e~ U=D(ZNY) 1 _ = (k=i)(ZAy)
MHQJ:E( j—i ‘ k—i )

Y L . .
1 1 </ (1 _ 6_(3_1)2) (1 . e—(kz—z)z)ie—zz dz
0

T —ik—i
+€—w(1_e—o—oQ(1_e—w—ag)

11
ik —i
4,+;;,(1e—O+h4w)4e”ye—we—@+e—0+””w).

] —1
(2.4)

i { i ? _
(1_e V(L) - (e k)
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Say that the pair (v,w) is good if i < m/3 and j,k > 2m/3, and bad
otherwise. For a good pair (v, w) we have, by (2.4) and (2.3),
Cov(l,,I,) =EI,I, ~EL,EI,
_ 14+0(i/m)

o (1 —e Y _ kY 4 o= (tk—iy | O(z’/m))

1 eIy —ky
_ﬁ:(l —e ) (1—e)
1

= ?6—(j+k—i)y(1 _ e—iy) + 0(i/m?)
J

= O0(m™2e " ™iy) + O(i/m?) = O(i/m?). (2.5)

For given i, j, k, there are at most 2¢ choices of u and then at most 2777
choices of v and 2k=% of w; thus the total number of such pairs is at most
27+k=i Hence (2.5) yields

m m m
> Covih, L) = 0D Y Y 2 im ) = 022 m ). (26)
good (v,w) i=1 j=1 k=1
The total number of bad pairs is at most
i>m/3, j,k<m >0, j<2m/3, k<m

For the bad pairs we simply use Cov ([, I,) < EI,I, <1, and obtain from
(2.6) and (2.7)

Var X, , = Z Cov(ly, I,) = O(QQmm_?’) = O(m_3n2). 0

Let ¢(n,y) :=E X, , given by (2.2). In the next lemma, we find it useful
to be slightly more general than simply requiring m = m.

Lemma 2.2. [f2™ —1<n < 2™tL _ 1, then

2m+1

o(n,y) = %(1 —e ™) + +0(m~ e~/ 4n 4 mon).

Proof. Let

2m—k

(1—6*(’”*’“)9) — 2m <1—£>_1(l—efmy—e(k*m)y(l—e’ky)).

ap =
m—k m m

For m/2 < k < m we use a, = O(2"™/?), and for k < m/2

)) (1 —e " 4 O(k‘ye(k_m)y)>.

2mk(1+:1+0(k2

ajp =

m m?2
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Summing over k, we see that (2.2) yields, using mye~"%/* = O(1),

o) =" ey 1 2 (14 2 4 omn)) (1 )

+ O<m2m/2 + %ye*myﬁ)

m+1

= %(1 —e ™) + 2 +O0(m™3n) + O(m_Zne_my/4).

This proves the result when m = m. The only remaining case is n = 2™ — 1
and m = m — 1; the result follows easily in this case too, for example by
adding a vertex v at height m, using the case just considered, and subtracting
El,=(1—e™)/m from (2.3). O

Recall that L = L%lglgnj ~ %l ~ %lgm. Let v;, 1 <14 < 2%, be the 2F
vertices of height L, and let n; := n,,. Note that n; = ©(n/2%). Further,

let Y; be the minimum of A, along the path P(v;) = o...v; from the root
to v;.

Lemma 2.3. With notations as above,

X, = Zcp (ni, Y;) + op(m™2n). (2.8)

Proof. We write the number of records X,, as V*+V; +---+ V,1, where V*
is the number of records with height < L and V; are the number of records

in T, \ {vi}.
If we condition on {\, : h(v) < L}, then V* and all ¥; become fixed, while

Vi, 1 < i < 2L become independent random variables with V; 4 XY,

Let Fr, be the o-field generated by {\, : h(v) < L}. Then, by the
comments just made, E(V; | Fr) = E(X,,y; | Yi) = ¢(n;,Y;) and, with
m; = |lgn;] = lgn — L+ 0(1) ~m,

<(X _V*r— Z‘p ni, z) ‘.7—1>: <<§(Vz o(n;, Y; > ’}'L>
_ZE( o(n, ) | FL) = ZVar

_ ZO —3 2 O(2L 73272[/”2) — O(m7327Ln2)

Yi)

= O(m_9/2n2).
Taking the expectation, we find

oL 9
E(Xn —V* - Zcp(ni, YZ)> = O( —9/2 2) o(m_4n2)
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and thus

2L
- Z o(n;,Y;) = op(m_Qn).
i=1
The result follows because also
0<V* <2l = O(m3/?) = o(m_zn). O

Next, let m := m — L ~ m. By (2.1) (with j = L), we can apply
Lemma 2.2 to each n; and m; this yields

g —mY; 2m ! —2_—mY;/4 -3
(ni,Y;) = %(1 —e ™) — (m™2e ™ n; + m™n;).  (2.9)

Since Y; ~ Exp(1/(L + 1)), for every a > 0,

oo
]Ee—(lyi — / (L + 1)6_ay_(L+1)y dy = i = O(E) (210)
0

L+1+a a
Hence
7 7 L+1 L+1
E‘efmyi_e g :Eemei_Eemei: + _ +
L+14+4m L+1+m
m—m L?
- O(L — ) - O(m)- (2.11)
It follows easily from (2.9), (2.10) and (2.11) that
i —mY, _ om+l 5 3 L

Summing over i we find, using Lemma 2.3, since Y ,n; = n — (2L — 1) =
n-— O(m3/2)7

2L 7
. 2m+1
X = Z(% - Z e~ ™ 4 ) + op(m~?n)
i=1
—mY I 2m—L+1 L
= 2 m + OP(T)’L n)
_ v = —mY ot —2
= " L an + 0,(m™2n). (2.12)
We transform this once more.
Lemma 2.4.
om +1
Xn = E L— - — Z nye ™ 4 + op(m™?n). (2.13)
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Proof. We recall that each Y; is the minimum of the L + 1 independent
variables \,, v € P(v;); thus e™™Y is the maximum of the corresponding
e~ Let a = 2Inm/m. The probability that at least two \,, v € P(v;),
are less than a is O(L?a?) = O(In m/m?); hence the probability that this
happens for some i is O(2F In* m/m?) = o(1). With probability tending to
1, there is thus at most one A, less than a in each P(v;), and in this case,

0< Z e T Y < [emma — L/m2,
vEP(v;)
and thus,

an Z*an Z e 4 O(nL/m?)

i=1 vEP(v;)

= > ™ > n+0(nL/m?)

h(v)<L :vEP(v;)
= Z e ™ n, + O(nL/m?),
h(v)<L

L
because n, — 2~ < EZ weP(vy) T < n,. Hence,

2L
I S ]
i=1

h(v)<L
and the result follows from (2.12). O

The sum in (2.13) is a sum of independent random variables. The proof
will be completed by a classical result on convergence of such sums for
triangular arrays to infinitely divisible distributions, see e.g. [3, Theorem
15.28].

We write, for convenience, &, := ™2:e~"*_ We further write a,, := {lgn}
and 3, = {lglgn}; Thuslgn = m+a, and lgm = lglgn+o(1) = [+3+o0(1).
We then have, by Lemma 2.4,

m (X n nlglgn)

n lgn 1g?n
1 1 n om+l
— 2 v —mXy
h(v)<L
=an+L—1-B,+2"7" = > & +op(1). (2.14)

Since m/lgn — 1, it is thus enough to show that this converges in distribu-
tion to —W,, as n — oo with {lgn —lglgn} — ~.

By considering subsequences, we may assume that the limits « := lim «,
and (= lim 3, exist. Thus lgn =m+ a+o(1) and lgm = lglgn + o(1) =
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I+ B+ o0(1). Note that Ilgn —1lglgn=m —1l+a—F+0(1); thusy=a—(
(mod 1) and more precisely,
a—p if a > f;
y=<a—-0+1 ifa<p; (2.15)
Oorl if a =p.
Lemma 2.5. Suppose that n — oo such that o, — « and B, — B for some
o and B in [0,1], and let h :=25~%. Then
(i) sup, P(fv > x) — 0 for every x > 0. (Le., {&} form a null array.)
(i) X py<p P& > z) — vy(x, 00) for every x > 0.
(iii) Zh LE(GL[E <h) = (L—1+2""4a— ) = 8-
(iv) Zh ()<L Var(fv &y < h]) — 3h/2.
Before proving this lemma, we show how it implies Theorem 1.1. Let C :=

L—1+2'"%+a— 3. We apply [3, Theorem 15.28] with a = 0 and b = f(7) to
o)<t & T 2iz &, with § = —C/n deterministic. (Note that C/n — 0;

thus {&,} U {€/} is a null array.) We have dv,/dx = 2{8z+a=flp=2 —
2-*a=B2=1 when 2°h < 2 < 2°+1h, and thus
—1

T“h 3h
—ita—0 — 39ty — 2
/0 T dl/,y Z / T dr Z 52'h 5"

1=—00

Similarly, if 8 < a so 1/2 < h <1, then

1 1
/ zdvy(z) = / 20 B dyy = 2070 1,
h h

while if 3> aso 1< h <2, then

1 h
/ xdvy(r) = —/ xdvy(z) = 277 (1 — h) = 2(227F —1).
h 1
It follows, using (2.15) and f(0) = f(1), that in both cases

1 1
f(’y)—/h xduy(x):27—l—'y—/h rdv,(z) = — a.

It is now easy to see from Lemma 2.5 that the conditions of [3, Theorem
15.28] are satisfied, and consequently

Yoo b-L-i+2"ra-pf)= Y &+> &-Lw,.
h(v)<L h(v)<L i=1

Theorem 1.1 now follows by (2.14).
Proof of Lemma 2.5. For any = > 0,

P& > ) = P<67mv - ) = P<m)\v <In n:;)

MN,

mn”). (2.16)

1
=1- exp(—alm_ "
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This shows first that for every = > 0,

MMy

1 1
P(¢, > z) < — Iny <~ 2o, (2.17)
m X

nx m

which proves (i).

On a given level j < m there are, by (2.1), ¢; = n2/~™ — 2/ + O(1) =
(20 —1)27 4+ O(1) vertices with n, = 2™~ — 1 and 2/ —¢; — 1 = (2 —
20n)27 4+ O(1) vertices with n, = 2™~/ — 1. There is one additional vertex
with an intermediate n, (which could coincide with one of the two main
values); for convenience we call such a vertex bad. We also call a vertex v
with n, > 2m—1/2 (which requires j < 1/2) bad. All other vertices v with
h(v) < L are good. The good vertices thus have n, = 2% — 1 for some
k with /2 < k < L. For 1/2 < k < L, there are (2 —2°7)2F 4- O(1) such
vertices with h(v) = k and (2%% — 1)2¥+1 4 O(1) with h(v) = k + 1; thus
together 2F+9n 1+ O(1). For k = L, there are only (2 —2%")2% + O(1) such
vertices, since we require h(v) < L. In other words,

Qktamn 1 1/2<k<L
+0(1), [2< k< ' (2.18)

#{v good : ny = 2" — 1} = {(2 —20)2F + O(1), k=L.

The number of bad vertices is O (L +2/?) = O(m!/?). By (2.17), P(&, >
x) = O(Inm/m) for every fixed x > 0. Hence the sum over bad vertices in
(ii) is O(m~Y2Inm) = o(1).

Similarly, using (2.17) again,

E(&1[& < b)) < %jt h]P’(gv > i) < % + h21;;m - o(%") (2.19)
and
Var(¢,1[€, < h)) < B(€21[¢, < h]) < hE(&,1[¢, < h]) = 0(1’%"). (2.20)

Consequently, the sum over bad v is o(1) in (ii), (iii) and (iv), so we may
in the sequel ignore them and consider only good vertices.
Fix > 0. Then, by (2.16) and (2.17),

P(&y > x) = %1n+<m””) (1 + O(m—m)) (2.21)

nx
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If k > L, then m2mF < 21+m=L < na provided n is large enough. Thus,
for large n, by (2.18) and (2.21), with all o(1) uniform in & for fixed z,

= 1 (2mF — 1)m
P& >z) = (1+0(1) > (2 +0(1) = Iny (———
v good k=l/2 m ( ne )
= (1+o0(1)) > 2Fteni=0n ]y (27kmontifntoll)z=1) 4 o(1)
k>1/2
= (1+o0(1) Y 27t Fin (2i-etfrelg=l) 4 o(1)
i<l/2
— F(z) = ZQ_HO‘_B Iny (2i_o‘+ﬁ:p_1).

Let j := |lgz + a — (3]; thus 9J+B—« <zr< ok+B—a+l ond

[ee]
F(x) = Z 9-ita—p ln(2i_o‘+5:ﬂ_1)
i=j+1

o0

=> 27 F el (k2 + In(277 )
k=1

— 9—jta=p (2 + lg(zj—a+ﬁx—1)) In2

=20 f-llerte=b8l(o _flgz 4 o — B})In2
=2r-lert(2 flgz 4+ 4}) In2.

Note that F(x) is continuous and decreasing with F'(x) — 0 as x — oco. The
derivative is
dF (x) — _lgv—tlgwﬂj — _p29{lgz+7}
dz x
Thus F(x) = vy(z, 00), which proves (ii).
For (iii) and (iv) we calculate, for s > 0,

[e.e]
E(efm)‘vl[efm)‘” <s) :/ e e dx

m~1lnt s
— 1 ef(erl)%ln_;_s — 1 27(1+1/m) gy s (222)
m+1 m+1
and, similarly,
1
E —2m)\v1 —mAy o~ —17) — 2—(2+1/m) lg, s
(e e <7 = g ’

which gives
1 24+1/m)lg, s -1
72 @+1/mllers(1 4 O(m™1)).  (2.23)

If v is a good vertex with n, = 2m~% — 1 = 2m—k+o(l) then

MMy o(148)+(m—k)—(m+a)—(B—a)+o(1) _ 9l—k+o(1)
nh )

Var(e_m)‘vl[e_m’\v < 3_1]) =



RANDOM RECORDS AND CUTTINGS IN BINARY TREES 13

and thus, by (2.22),

E(¢1[¢, < h]) = o E<efm>w1[efm)\v o nh D

n mny
_ ( mnv) 9—(1+1/m)(I=k)1++o(1) _ g—k—a—(I—k)++o(1)
m+1)n

Note in particular that if k& > [ + 1, then =%+ < 1 for large n, and thus
& < h and

E(&1[6 < h]) =E&, = % — g—h—an (1 + 0(%)) (2.24)

It follows from (2.18), (2.22) and (2.24) that, with o and O uniform in £,

> E(&1[& < h))

v good
l L-1
— Z 2k+a+o(1)2—k—a—(l—k)++o(l)+ Z (2k‘+an +O(1))2—k—an(1+0(m—l))
k=l/2 k=141

+ ((2 = 20m)2% + O(1)) 2~ Lratelt)

l L—-1
— Z 2_(l—k)++0(1) + Z (1 —{—O(m_l)) +21—a -1 _|_0(1)
k=l/2 k=141

=24+ L—-1-14+2""—1+401)=L—-1+2"""+0(1).
Similarly, using (2.23),

m?n? nh
106, < _ v —mAy —mAy <
Var(&,1[& < h]) 3 Var (e 1 [e < mnv])
_ ang 9—(2+1/m)(I—k)1+o(1) _ ol+B—1-2k—2a—2(1—k)++o(1)
2mn?
and
L
Z Var(év]-[gv S h]) — Z 2k+a+o(1)2l+ﬁ—1—2k—2a—2(l—k)++o(1) +0(1)
v good k=l/2
— Z 2l—k—2(l—k)++ﬁ—a—1+0(1) + 0(1)
k=—00
=3.207271 4L (1) = 3h/2 + o(1).
This completes the proof of Lemma 2.5. (]

We have proved Theorem 1.1 for X,. For X,, the only difference is that
Ao is ignored, and thus Y; ~ Exp(1/L). The estimates in (2.10) and (2.11)
remain valid, and thus (2.13) and (2.14) still hold, summing over v # o only.

Since & = me ™ £ 0 by Lemma 2.5(i), this makes no difference for
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the asymptotics of the distribution. (But note that E&y — 1, and that the
means differ correspondingly, see Remark 1.4.)

For the completely balanced tree (Theorem 1.6), every vertex v with
h(v) = k has 27%¥n—2 < n,, < 27Fn. We call all vertices with 1/2 < h(v) < L
good, and replace (2.18) by

#{v e TF good : n, = 27%n + O(1)} = 2, I<k<L. (2.25)

The remaining calculations hold as above, provided we replace «;,, and a by
0 and thus v by 1 — .
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