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Abstract. There are many references showing that a classical solution
to the Black–Scholes equation is a stochastic solution. However, it is the
converse of this theorem which is most relevant in applications and the
converse is also more mathematically interesting. In the present article
we establish such a converse. We find a Feynman–Kac type theorem
showing that the stochastic representation yields a classical solution to
the corresponding Black–Scholes equation with appropriate boundary
conditions under very general conditions on the coefficients. We also
obtain additional regularity results in the one-dimensional case.

1. Introduction

Stochastic formulas for option prices are often easy to formulate and to
implement in for instance Monte Carlo algorithms. It is natural from the
point of view of applications to let zero be an absorbing barrier for processes
describing the risky assets. In Section 3 we discuss such a representation
in the case of time- and level-dependent volatilities. However, it is often
advantageous to instead solve the corresponding Black–Scholes equation and
thus be able to use results from the theory of partial differential equations.
In the literature one often omits specifying the boundary conditions on the
lateral part of the parabolic boundary. This causes no problem when the
risky assets are modelled with geometric Brownian motion, since assets in
this model reach zero with probability zero. However, for many models,
such as the constant elasticity of variance models, the values of the assets
can vanish with positive probability and boundary conditions need to be
specified. Furthermore, in numerical applications one is often helped by
knowing the boundary behavior of the solution even if these conditions are
mathematically redundant to specify.

In fact, there are many references showing that a classical solution to the
Black–Scholes equation is a stochastic solution, compare Theorem 2.5. How-
ever, it is the converse of this theorem which is most relevant in applications
as described above and the converse is also more mathematically subtle. In
the present article we establish such a converse. We find a a Feynman–Kac
type theorem showing that the stochastic representation yields a classical so-
lution to the corresponding Black–Scholes equation with appropriate bound-
ary conditions, compare Theorem 5.5. We also obtain additional regularity
results in the one-dimensional case.
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One should note that in the standard theory of parabolic equations,
boundary regularity is only obtained for operators that are uniformly par-
abolic near the boundary. In fact, basic results from that theory fail in
this more general setting of operators degenerating at the boundary. For
instance, the standard regularity result saying that if the initial (or terminal
condition in a financial setting) condition is continuous and if the opera-
tor has smooth coefficients the solution is smooth for any positive time (or
any time strictly before expiration), fails. This is seen by considering con-
tract functions of the form xα and the stock price modelled by geometric
Brownian motion. Here the solution will have the form f(t)xα, for some
function f of time, see Example 6.4, and this solution is not smooth if α is
not a non-negative integer. Another example is the Hopf boundary point
lemma, see page 10 of [7]. This lemma says that at a boundary minimum
of a solution to a parabolic equation the inner normal derivative must be
strictly positive. This fails for instance in such a well-known example as the
Black–Scholes formula for the call option: the inner normal derivative at
the origin is zero even though this is a minimum point for the option price.
In this formula the stock price is modelled by geometric Brownian motion,
so the corresponding parabolic operator does degenerate at the boundary.
On the other hand, a standard tool such as the maximum principle, is still
available in our setting. We will indeed use this fact below.

It is somewhat surprising how little attention that has been paid to the
issues desribed above given the importance of the type of equation under
consideration and the general mathematical interest of existence and regu-
larity questions also for this class of operators. However, there are of course
references dealing with this type of problem. A general treatment can be
found in Chapter 15 of Friedman [2] and an example closer to the present ar-
ticle is given by the work of Heath and Schweizer [3]. In the latter reference
the processes are assumed to reach the boundary with zero probability and
in the book by Friedman [2] the coefficients of the equation are assumed
to be continuous up to and including the boundary. In contrast to these
references, we will allow processes that reach the boundary with positive
probability as well as coefficients that are not continuous at the boundary,
compare Section 3.

Our result should be applicable also in biology and chemistry when mod-
eling systems on a meso scale, compare [4], and more generally whenever
one uses systems of stochastic processes of non-negative values. Stock prices
should then be replaced by the number of molecules of various compounds.
What is crucial for the results of this paper to hold is the absorbing property
of the boundary, i.e. once a compound has vanished it does not reappear,
and further that on the boundary the process is governed by the number of
remaining molecules and their stochastic properties.

Finally we remark that the notation we use for stochastic processes is in-
fluenced by the various needs we have in the article but also by the standard
notation in the theory of stochastic processes and financial applications, re-
spectively. Thus, when noting that the process X depends on the time
variable t we write Xt. However, when the point in time is of some special
significance, such as the expiration date T of an option, we write X(T ), as
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is common in finance. Also, when noting that the process X at time t, say,
is at some specified point x, we write Xx,t.

Acknowledgement. We thank a referee for careful reading and insightful
criticism.

2. Classical and stochastic solutions

In this section we collect some general, largely known, facts on classical
and stochastic solutions to linear parabolic partial differential equations.
Let Ω = B × (0, T ) where B is a domain in Rn. Consider the equation

∂F

∂t
+ LF = 0, (1)

where

L =
1
2

n∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n∑
i=1

bi(x, t)
∂

∂xi
+ c(x, t). (2)

Here (aij) is a positive definite symmetric matrix, and bi and c as well as the
entries of (aij) are continuous functions on Ω. Let C2,1(Ω) be the space of
functions with two continuous spatial derivatives and one continuous time-
derivative on the indicated set, and let C(Ω) be the space of continuous
functions on the closure of Ω.

Definition 2.1. A function F ∈ C2,1(Ω) ∩ C(Ω) satisfying equation (1) in
Ω is called a classical solution.

To introduce the corresponding stochastic solution we let Xt be an Rn-
valued stochastic process with each component Xi solving

Xi
t = xi

0 +
n∑

j=1

∫ t

t0

σij(Xs, s)dW j
s +

∫ t

t0

bi(Xs, s)ds, (3)

where W j , j = 1, . . . , n, are independent Wiener processes. For these prob-
lems to correspond we have to choose the matrix (aij) in the operator of
equation (2) to be a = σσ∗ with the superscript ∗ denoting transpose. We
will assume that σ = (σij) and b = (bi) are, apart from the continuity in
mentioned above, locally Lipschitz in the spatial variables in Ω to ensure
existence and uniqueness of the solution, see [10, Chapter IX: (2.4), (2.10)].
In one spatial dimension, the condition on σ can be relaxed to a Hölder(1

2)
condition, see [10, Chapter IX:(3.5)] and [5, Section 5.5]. Further, we will
make the standard assumptions

|σ(x, t)|+ |b(x, t)| ≤ D(1 + |x|) (4)

to avoid exploding solutions, see [10, Chapter IX: (2.10)]; we will also assume
|c| ≤ D and that c is locally Hölder in the spatial coordinates for some
positive exponent.

We should note that by Friedman [2, Lemma 6.1.1], a locally Lipschitz (or
Hölder(1

2)) σ exists if (aij) is locally Lipschitz (or Hölder(1
2), respectively)

and positive definite.
Let τ ≤ T be the first exit time of the process X from the set Ω. Then

we are ready to define the stochastic solution to equation (1).
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Definition 2.2. A stochastic solution to equation (1) is a function F defined
on Ω satisfying, with the notation introduced above,

F (x0, t0) = Ee
R τ

t0
c(Xs,s) ds

F (Xτ , τ), (5)

for every (x0, t0) ∈ Ω.

Note that in general, we may have both τ = T and τ < T with positive
probability; the latter means that Xt hits the boundary ∂B before time T .
The formula (5) thus corresponds to an initial-boundary problem in classical
differential equation theory.

We have the following lemma.

Lemma 2.3. If F is a classical solution then, with the notation introduced
above,

e
R t∧τ

t0
c(Xs,s) ds

F (Xt∧τ , t ∧ τ) (6)
is a local martingale.

Proof. Follows by applying Itô’s formula. �

From this the following theorems follow.

Theorem 2.4. If F is a classical solution and Ω is bounded then F is a
stochastic solution.

Proof. The result follows since a bounded local martingale is a martingale.
�

Theorem 2.5. Let Ω = Rn
+ × (0, T ) and assume that (4) holds. If F

is a classical solution in Ω that is polynomially bounded, i.e. |F (x, t)| ≤
C(1 + |x|)m for some C and m, then F is a stochastic solution.

Proof. Let τM be the stopping time inf{t : |Xt| ≥ M}, with τM = T if no
such t exists. By Lemma 5.1, which holds also in the present generality with
coefficients b by the same proof, E|XτM |m+1 ≤ C1 for some constant C1,
and thus, for M > 0

P (sup
t≤T

|Xt| ≥ M) = P (|XτM | ≥ M) ≤ M−m−1E|XτM |
m+1 ≤ C1M

−m−1.

Consequently, supt |F (Xt, t)| ≤ C supt(1+ |Xt|)m is integrable, and thus the
local martingale in (6) is a martingale. �

Before proceeding we need the following lemma on the existence of classi-
cal solutions which we formulate precisely as it is needed here. This existence
is not immediate from standard Schauder theory since the most common as-
sumption on the coefficients in this theory is Hölder continuity in space and
time whereas we require only continuity in time. However, the necessary
estimates are available also in our setting, see [1] and [6]. Our lemma fol-
lows directly from a related result in [8] and we therefore only sketch the
argument.

Lemma 2.6. Using the notation and assumptions of this section, consider
a cylinder Ω1 = B1× (t1, t2) with Ω1 ⊂ Ω and let φ be a continuous function
on the parabolic boundary ∂pΩ1. Then there is a unique classical solution to
equation (1) in Ω1 with boundary values φ.



FEYNMAN-KAC FORMULAS FOR BLACK-SCHOLES TYPE OPERATORS 5

Proof. According to [8, Theorem 16.1] there is a unique classical solution if φ
is smooth, i.e. the restriction to ∂pΩ1 of a smooth function on a neighborhood
of Ω1. Otherwise we approximate φ uniformly with such smooth functions.
The sequence of solutions to (1) with these approximating smooth functions
as boundary data converge uniformly to a solution of (1) by the maximum
principle and interior Schauder estimates [6, Theorem 1], compare also [8,
Theorem 15.6]. �

We also have the following partial converse of the previous theorems. Note
that we assume the solution to be continuous, so it remains to establish this
assumption to obtain a complete converse. Our main result is Theorem 5.5
which establishes this in the setting described in Section 3.

Theorem 2.7. Assume that F is a continuous stochastic solution. Then F
is a classical solution.

Proof. Consider a cylinder Ω1 = B1 × (t1, t2) with Ω1 ⊂ Ω and assume
(x0, t0) ∈ Ω1. Let τ1 be the hitting time of ∂Ω1. By the strong Markov
property, see [5, Theorem 5.4.20],

E
(
e

R τ
t0

c(Xs,s) ds
F (Xτ , τ)|Fτ1

)
= e

R τ1
t0

c(Xs,s) dsE
(
e

R τ
τ1

c(Xs,s) ds
F (Xτ , τ)|Fτ1

)
= e

R τ1
t0

c(Xs,s) dsF (Xτ1 , τ1) (7)

Refering to the lemma above, we let h ∈ C2,1(Ω1) be the classical solution in
Ω1 with boundary values F on the parabolic boundary ∂pΩ1. By Theorem
2.4, h is also the stochastic solution in Ω1, so by equation (7),

h(x0, t0) = E
(
e

R τ1
t0

c(Xs,s) dsF (Xτ1 , τ1)
)

= E
(
e

R τ
t0

c(Xs,s) ds
F (Xτ , τ)

)
= F (x0, t0). (8)

Thus F = h in Ω1; in particular F ∈ C2,1(Ω1) and LF = Lh = 0 in Ω1 and
thus everywhere in Ω. �

3. Stochastic representation formulas

We consider a market consisting of a bank account with price process

B(t) = B(0) exp
{ ∫ t

0
r(u) du

}
,

where the interest rate r is a deterministic continuous function, and n risky
assets, with the price Xi of the ith asset satisfying the stochastic differential
equation

dX i
t = r(t)Xi

t dt +
n∑

j=1

σij(Xt, t) dW j
t (9)

before some given time horizon T > 0 under some risk neutral measure Q,
where Xi is absorbed at zero. Using the notation of the previous section we
have Ω = Rn

+×(0, T ) and we make the corresponding regularity assumptions
on the coefficients. Here Rn

+ = {(x1, . . . , xn) : xi > 0, 1 ≤ i ≤ n} and thus its
closure Rn

+ is instead described by the inequalities xi ≥ 0, 1 ≤ i ≤ n. In this
case, however, we make some additional assumptions on the coefficients since
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we need them to be defined also on the boundary, compare our discussion
below. More precisely we will assume the following.

Hypothesis 3.1. Each σij is defined and continuous in the time variable
on Rn

+ × [0, T ] and is Lipschitz continuous in the spatial variables on every
compact subset of {(x, t) ∈ Rn

+× [0, T ] : xi > 0}. On the set where {xi = 0},
we have σij = 0 for all 1 ≤ j ≤ n. The rank of the matrix σij(x, t), at each
point (x, t), is equal to the number of non-zero spatial coordinates.

Note that this means that we allow discontinuities of the coefficients at the
boundary. For instance, we include such cases as Brownian motion absorbed
at zero (σ11(x, t) = 1 for x > 0, but σ11(0, t) = 0). Also Lipschitz continuity
need not hold up to the boundary as we allow examples such as σ11 = xα

for 0 < α < 1. The assumption on the rank of the matrix σij is standard
in financial applications and is related to the absence of arbitrage; it is
equivalent to parabolicity of the corresponding partial differential equation,
see Section 4. For an illustration of the generality of models which is allowed
under Hypothesis 3.1, see Example 5.6.

Now, let g : Rn
+ → R be continuous and of at most polynomial growth.

Standard arbitrage theory yields that the price at time t of the option which
at time T pays g(X(T )) is F (X(t), t), where

F (x, t) = exp
{
−

∫ T

t
r(u) du

}
Ex,tg(X(T )). (10)

Here E denotes expected value with respect to the some so called risk neu-
tral measure Q and the indices indicate that Xt = x. The dynamics of the
processes Xi are those of equation (9). Let us elaborate on the interpre-
tation of equation (10) in view of Hypothesis 3.1. If we start the process
X at some interior point x at time t, it may at some time hit an (n − 1)-
dimensional face {xi = 0}. It will then continue in this face, since Xi is
absorbed at 0, by a stochastic differential equation in the remaining vari-
ables. Another coordinate may hit 0 at a later time, and X then continues in
this lower dimensional face and so on until time T . The stochastic solution
(10) obtained in this way can thus evidently also be otained by first finding
the solution for the zero dimensional face {0}, which amounts to solving
an ordinary differential equation, and then inductively solving the equation
for higher-dimensional faces by Definition 2.2, using some of the previously
obtained solutions as boundary values.

4. A partial differential equation formulation

The pricing function F should solve the Black–Scholes parabolic differen-
tial equation

∂F

∂t
+ LF = 0, (11)

where

L =
1
2

n∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n∑
i=1

rxi
∂

∂xi
− r, (12)

with terminal condition
F (x, T ) = g(x).
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In this equation the coefficients aij = aij(x, t) are the entries of the n × n-
matrix σσ∗. Note that the assumption of full rank of σ guarantees parabol-
icity of the equation (11) in Rn

+ (since the direction of the time variable is
opposite to the customary one). We also see, however, that akl vanishes, if k
or l agrees with i, on the set {x : xi = 0}∩∂Rn

+ from the assumptions on the
diffusion matrix. The restriction of the operator to these faces is parabolic,
due to the assumptions on the rank of the diffusion matrix. Moreover, by
Friedman [2], Lemma 6.1.1, the Lipschitz conditions on σij can be trans-
lated to the same conditions on the coefficients aij as mentioned above. We
can also define a classical solution inductively in the same way as described
in our discussion at the end of the previous section. This is the same as
demanding that F ∈ C(Rn

+ × [0, T ]) is a classical solution in the sense of
Definition 2.1.

Theorem 4.1. There is at most one solution to Black–Scholes equation, as
specified above, of polynomial growth.

Proof. We solve the equation on each face of the boundary starting with
the ordinary differential equation on the Cartesian product of the origin
and a time-ray. The maximum principle is valid as long as the equation is
parabolic in the interior of each face. Applying the maximum principle on
each face and finally on Rn

+ gives the desired uniqueness. �

5. Continuity at the boundary

To establish continuity at the boundary of the stochastic solution we
need the following lemmas. The first is well-known and is included for
the sake of convenience of the reader. Lemmas 5.3 and 5.4 imply that if
(y, u) → (x, t), then Xy,u(T ) → Xx,t(T ) in probability. This is known in the
case of processes on Rn, see e.g. [9, Theorem V.37]. However, the presence of
an absorbing boundary does seem to entail additional technical difficulties
under our quite general conditions on the coefficients σij . (Presumably the
convergence holds almost surely too, as for the corresponding equations in
Rn, but we will need only this weaker result.)

We change notation and let Xx,t(u) be the solution Xu to (9), starting at
time t at the point x.

In the proofs below we assume for simplicity that r(t) = 0; thus (9)
simplifies and shows that X is a local martingale (and by Lemma 5.1 below
a martingale). This can be done without loss of generality, since we in
general can transform to the forward prices exp

{∫ T
t r(u) du

}
X(t).

Lemma 5.1. Suppose that the coefficients σij satisfy (4). For every k ≥ 0
and A there exists a constant C, depending only on n, T, k,A and the con-
stant in (4), such that if |x| ≤ A, then E|Xx,0(τ)|k ≤ C for every stopping
time τ ≤ T .

Proof. By stopping at inf{t : |Xx,0(t)| ≥ M}, we may assume that Xx,0(t∧τ)
is bounded; the result then follows by letting M →∞. If m ≥ 0 is an integer,
let

f(t) = E(1 + |Xx,0(t ∧ τ)|2)m.
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Itô’s lemma and equation (3) easily yield

f(t) ≤ f(0) +

C1

∑
i,j,l

E

∫ t∧τ

0
|σij(Xx,0(s), s)σlj(Xx,0(s), s)|(1 + |Xx,0(s)|2)m−1 ds

≤ f(0) + C2E

∫ t∧τ

0
(1 + |Xx,0(s)|2)m ds

≤ (1 + |x|2)m + C2

∫ t

0
f(s) ds,

and the result follows by Gronwall’s lemma, see e.g. [10, Appendix §1]. �

We also need the following.

Lemma 5.2. Suppose that the coefficients σij satisfy (4) and Hypothesis 3.1.
For every ε, η and A > 0, there exists a δ > 0, depending only on n, T, ε, η, A,
the constant in (4) and the Lipschitz constants of σij on compact sets, such
that if k is an integer with 0 ≤ k ≤ n and x, y satisfy 0 ≤ xi, yi ≤ 2δ for
1 ≤ i ≤ k, and |xi − yi| ≤ δ and xi ≤ A for 1 ≤ i ≤ n, and further τ ≤ T is
a stopping time such that Xi

x,0(t), X
i
y,0(t) ≥ ε for 0 ≤ t ≤ τ and k < i ≤ n,

then with probability at least 1− η,

Xi
x,0(τ), X i

y,0(τ) ≤ ε/2, (13)

for 1 ≤ i ≤ k and

|Xi
x,0(τ)−Xi

y,0(τ)| ≤ ε, (14)

for 1 ≤ i ≤ n.

Proof. Since Xx,0 and Xy,0 are martingales, we have for i ≤ k that EXi
x,0(τ) =

xi ≤ 2δ and thus P (Xi
x,0(τ) > ε/2) ≤ 4δ/ε and similarly for Xi

y,0. Hence,
if we choose δ < ηε/16n, inequality (13) will fail with probability less than
η/2. Note that (13) implies (14) for i ≤ k. Now let A′ = 8n(A + δ)/η. By
Doob’s inequality, for each i,

P (sup
t≤τ

Xi
x,0(t) > A′) ≤ xi/A′ ≤ η/8n,

and similarly for Xi
y,0(t), so if we let τ ′ be the first time before τ , if any, such

that Xi
x,0(t) or Xi

y,0(t) ≥ A′ for some i, then P (τ ′ 6= τ) ≤ η/4. We may thus
replace τ by τ ′; for convenience we write τ and assume that Xi

x,0(t), X
i
y,0(t) ≤

A′ for t ≤ τ and every i; further Xi
x,0(t), X

i
y,0(t) ≥ ε for i > k by assumption.

Our local Lipschitz assumption thus yields, for some C1,

|σij(Xx,0(t), t)− σij(Xy,0(t), t)| ≤ C1|Xx,0(t)−Xy,0(t)| (15)

for i > k. Let Z = Xx,0 −Xy,0. Then

Zi(t ∧ τ) = xi − yi +
∑

j

∫ t∧τ

0

(
σij(Xx,0(s), s)− σij(Xy,0(s), s)

)
dWj(s)
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and thus, using inequality (15), for i > k,

E|Zi(t ∧ τ)|2 = (xi − yi)2 +∑
j

∫ t∧τ

0
|σij(Xx,0(s), s)− σij(Xy,0(s), s)|2 ds (16)

≤ δ2 + C2

∫ t∧τ

0
|Z(s)|2 ds.

For i ≤ k we use

E|Zi(t ∧ τ)| ≤ E(Xx,0(t ∧ τ) + Xy,0(t ∧ τ)) = xi + yi ≤ 4δ

which by Hölder’s inequality and Lemma 5.1 yields

E|Zi(t ∧ τ)|2 ≤ (E|Zi(t ∧ τ)|)2/3(E|Zi(t ∧ τ)|4)1/3 ≤ C3δ
2/3. (17)

Hence, if f(t) = E|Zi(t ∧ τ)|2, we find by summing (17) for i ≤ k and (16)
for i > k, assuming δ < 1,

f(t) ≤ C4δ
2/3 + C5

∫ t

0
f(s) ds,

which by Gronwall’s lemma yields

f(t) ≤ C4δ
2/3eC5t.

Choosing δ so small that C4δ
2/3eC5T = ηε2/2 we thus find E|Z(τ)|2 =

f(T ) ≤ ηε2/2 and thus P (|Z(τ)| > ε) < η/2, which proves that (14) fails
with probability less than η/2. �

Lemma 5.3. Suppose that the coefficients σij satisfy (4) and Hypothesis
3.1. For every ε, η and A > 0, there exists a δ > 0, depending on the same
parameters as in Lemma 5.2 only, such that if |x − y| ≤ δ, |x| ≤ A and
0 ≤ t ≤ T , then P (|Xx,t(T )−Xy,t(T )| > ε) < η.

Proof. We may assume that t = 0. Let A′ = 2n(n + 1)A/η, and note that
since each Xi

x,0 is a martingale with mean xi ≤ A, we have∑
i

P (Xi
x,0(τ) > A′) < η/2(n + 1)

for every stopping time τ . We now define a sequence of small numbers
0 < δ0 < δ1 < · · · < δn+1 = ε/2n by backwards recursion: for k = n, . . . , 0
we let δk be the δ given by Lemma 5.2 if (ε, η, A) is replaced by (δk+1, η/2(n+
1), A′). We let δ = δ0. Next, we define a sequence of stopping times 0 = τ0 ≤
τ1 ≤ · · · ≤ τn+1 = T by letting τ0 = 0 and, for k = 1, 2, . . . , n + 1, by letting
τk be the first time t ≥ τk−1 such that infs≤t Xi

x,0(s) ∧ Xi
y,0(s) ≤ δk for at

least k indices i; if no such t exists we put τk = T . We apply Lemma 5.2
inductively to each interval [τk, τk+1], conditioning on Fτk

, i.e. on everything
that has happened up to τk, and making an obvious time shift. We assume
that |Xi

x,0(τk) − Xi
y,0(τk)| ≤ δk and Xi

x,0(τk) ≤ A′ for every i, and that
Xi

x,0(τk), X i
x,0(τk) ≤ 2δk for at least k indices i; we may assume that this

holds for i = 1, . . . , k.
By the definition of τk+1, Xi

x,0(t), X
i
y,0(t) > δk+1 for i > k and τk ≤ t <

τk+1, and thus Lemma 5.2 shows that with probability at least 1− η/2(n +
1) we have |Xi

x,0(τk+1) − Xi
y,0(τk+1)| ≤ δk+1 for every i and Xi

x,0(τk+1),
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Xi
y,0(τk+1) ≤ δk+1/2 for i ≤ k; further if τk+1 < T , then Xi

x,0(τk+1) ∧
Xi

y,0(τk+1) = δk+1 and thus Xi
x,0(τk+1), X i

y,0(τk+1) ≤ 2δk+1 for at least one
other i. Finally, as observed above, Xi

x,0(τk+1) ≤ A′ for all i with probability
at least 1− η/2(n + 1).

Hence, given that the assumptions above hold for k, they hold for k + 1
too, with an error probability of at most η/(n+1). These assumptions hold
for k = 0, and thus, with probability at least 1 − η for k = n + 1, yielding
|Xi

x,0(T )−Xi
y,0(T )| ≤ δk+1 = ε/n for each i and thus |Xx,0(T )−Xy,0(T )| ≤

ε. �

To show continuity in time of the stochastic solution we need the following
result.

Lemma 5.4. Suppose that the coefficients σij satisfy (4) and Hypothesis
3.1. For every ε, η, and A > 0 there exists a δ > 0, with the same parameter
dependence as above, such that if |x| ≤ A and |t−u| ≤ δ, with 0 ≤ t, u ≤ T ,
then

P (|Xx,t(T )−Xx,u(T )| > ε) < η.

Proof. We may assume that 0 ≤ u ≤ t ≤ T . Then, using Lemma 5.1,

E|Xx,u(t)− x|2 =
∑
i,j

E

∫ t

u
|σij(Xx,u(s), s)|2 ds ≤ C1E

∫ t

u
(1 + |Xx,u(s)|2) ds

≤ C2(t− u) ≤ C2δ. (18)

Lemma 5.3 shows, by conditioning on Xx,u(t), that for some δ0 > 0, the
conditional probability P

(
|Xx,t(T ) − Xx,u(T )| > ε

∣∣ |Xx,u(t) − x| ≤ δ0

)
<

η/2. If we choose δ = ηδ2
0/2C2, then (18) yields

P (|Xx,u(t)− x| > δ0) < C2δ/δ2
0 = η/2,

and the result follows. �

Lemmas 5.3 and 5.4 imply that if (y, u) → (x, t) then Xy,u(T ) → Xx,t(T )
in probability.

Theorem 5.5. Suppose that the coefficients σij satisfy (4) and Hypothesis
3.1 and that the function g : Rn

+ → R is continuous and of polynomial
growth. Then the stochastic solution in (10) is continuous and is thus a
classical solution to (11). Moreover, this solution is of polynomial growth.

Proof. Lemmas 5.3 and 5.4 and the continuity of g imply that if (y, u) →
(x, t) in Ω = Rn

+ × [0, T ], then g(Xy,u(T )) → g(Xx,t(T )) in probability.
Further, Eg(Xy,u(T ))2 ≤ C2E(1+ |Xy,u(T )|)2m is bounded (for |y| ≤ |x|+1,
say) by Lemma 5.1, where we use the fact that g satisfies some bound
|g(x)| ≤ C(1+ |x|)m. Hence the family {g(Xy,u(T ))} is uniformly integrable
and Eg(Xy,u(T )) → Eg(Xx,t(T )). This proves that the stochastic solution is
continuous in Ω and thus it is a classical solution by Theorem 2.7. Since the
same argument holds in any face of Rn

+, the results extend to the solutions
defined as in Section 3 by induction over faces. Estimates as in the proof of
Lemma 5.1 show that the solution is of polynomial growth. �
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We end this section with an example, of a type that has not been stud-
ied rigorously previously, illustrating the theorem above. For the sake of
notational simplicity, X and Y will denote R-valued processes below.

Example 5.6. We consider a market, where again for the sake of simplicity
it is assumed that the interest rate r(t) = 0, with two risky assets X and Y
modeled by

dX = c11XdW 1 + C12X
αY dW 2,

where 0 < α < 1 and
dY = c22(ε + Y )dW 2,

where ε is some positive number and cij are arbitrary constants, with c11 and
c22 non-zero. The conditions of Hypothesis 3.1 are satisfied since σ11 = c11X
and σ12 = c12X

αY are locally Lipschitz continuous on the set {(x, y, t) ∈
R2

+ × [0, T ] : x > 0}. The coefficient σ22 = c22(ε + Y ) is obviously Lipschitz
on the set where y > 0. Note, however, that σ22 is assumed to be zero where
y vanishes, corresponding to Y being absorbed, and thus this coefficient is
not continuous up to the part of the boundary where y = 0 which indeed is
allowed by Hypothesis 3.1.

Let F (x, y, t) be the option price given by (10) for some contract func-
tion g(x, y) of polynomial growth. According to the theorem above F is
the unique (unicity by Theorem 4.1) classical solution to the corresponding
Black-Scholes equation (11) with g as terminal condition and with appropri-
ate boundary conditions. Let us discuss these boundary condition in some
detail. Since the interest rate is assumed to be zero, F (0, 0, t) = g(0, 0).
Furthermore, on set {(x, y, t) ∈ R2

+ × [0, T ] : y = 0}, F (x, 0, t) is the unique
classical solution of polynomial growth of

∂F

∂t
+

1
2
c2
11x

2
1

∂2F

∂x2
= 0

with boundary condition F (0, 0, t) = g(0, 0) and of course terminal condition
g(x, 0). In this case the boundary condition F (0, 0, t) = g(0, 0) is redundant
to specify; in fact there exists a solution only with this boundary condition.
Note that second Wiener process, and in particular the value of α, in the dy-
namics of X does not influence the equation on this set. Similarly, F (0, y, t)
is the unique classical solution of polynomial growth of

∂F

∂t
+

1
2
c2
22(ε + y)2

∂2F

∂y2
= 0

with boundary condition F (0, 0, t) = g(0, 0) and terminal condition g(0, y).
Here the boundary condition F (0, 0, t) = g(0, 0) is essential: the equation is
non-singular and thus solvable with any continuous boundary data.

6. Regularity in the one-dimensional case

In this section we assume n = 1, i.e. there is only one underlying asset.
In this case, we can prove sharper results.

First, in one spatial dimension, the Lipschitz condition on σ can be relaxed
to a Hölder(1

2) condition, see [10, §IX.3]. Furthermore, if x ≤ y, then
Xx,t(u) ≤ Xy,t(u) a.s. for all u ∈ [t, T ] since paths with different initial
values may not cross because of pathwise uniqueness.
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We can now relax the assumptions of Theorem 5.5.

Theorem 6.1. Suppose that the coefficient σ satisfies (4) and Hypothesis
3.1 with the local Lipschitz condition relaxed to Hölder(1/2) and that the
function g : R+ → R is continuous and of polynomial growth. Then the
stochastic solution in (10) is continuous and is thus a classical solution to
(11).

Proof. If 0 ≤ x ≤ y, then

E|Xx,t(T )−Xy,t(T )| = E
(
Xy,t(T )−Xx,t(T )

)
= y − x

because Xx,t and Xy,t are martingales (assuming again r = 0) and Xx,t ≤
Xy,t. Hence a (stronger) version of Lemma 5.3 holds by Chebyshev’s in-
equality. Thus Lemma 5.4 holds too, by the same proof, and the proof is
completed as for Theorem 5.5. �

Remark. Keeping the notation of the theorem above, and using Theorem
4.1, we can phrase this result more concretely. The option price F (x, t)
given by the stochastic representation formula (10) is the unique classical
solution, of polynomial growth, of the corresponding Black-Scholes equation
(11), with terminal condition given by the contract function g and boundary
condition given by

F (0, t) = e−
R T

t r(u)dug(0).
This has certainly been used for numerous special cases of contract functions
and stock models, such as put options i.e. g(x) = max(K − x, 0), where K
is the so-called strike price. In this case the boundary condition is evidently
given by the discounted strike price. However, it has, to our knowledge,
not previously been formulated or proved for general continuous contract
functions and Hölder(1/2)-volatilities.

If we make additional assumptions on g we can say more about the bound-
ary behavior of the solution. Let us consider two such results.

We have the following result on Lipschitz continuity of the stochastic
solutions for contract functions g : R+ → R that are uniformly Lipschitz,
i.e. satisfying

|g(x)− g(y)| ≤ K|x− y|
for some constant K and all x, y ≥ 0.

Proposition 6.2. Suppose that the coefficient σ satisfies the assumptions
of the previous theorem. Further, let the contract function g : R+ → R
be uniformly Lipschitz continuous with Lipschitz constant K. Then the op-
tion price F as given by equation (10) is Lipschitz continuous in the spatial
variable with the same Lipschitz constant.

Proof. Fix t < T . Then

|F (x, t)− F (y, t)| = exp
{
−

∫ T

t
r(u) du

}
|Eg(Xx,t(T ))− Eg(Xy,t(T ))|

≤ K exp
{
−

∫ T

t
r(u) du

}
E|Xx,t(T )−Xy,t(T )|

= K|x− y|
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where the equality follows from the martingale property of discounted asset
prices and the fact that if x ≥ y then Xx,t ≥ Xy,t and therefore

E|Xx,t(T )−Xy,t(T )| = E(Xx,t(T )−Xy,t(T )), (19)

and that if instead x ≤ y the equality holds with a right-hand-side of the
opposite sign. �

Remark. In financial terminology this means that the delta of the option is
bounded by the delta of the contract function. The argument above does not
carry over to several underlying assets, since equation (19) is not generally
true in that case.

We have a related result for Hölder(α) continuity for α < 1. We say that
a function g : R+ → R is locally Hölder continuous of polynomial growth if
the following estimate holds in R+ for some constant C, some integer m and
some number 0 < α < 1,

|g(x)− g(y)| ≤ C(1 + xm + ym)|x− y|α. (20)

We have the following continuity result of the price function for contracts of
this type.

Proposition 6.3. Let the coeffient σ satisfy the same assumptions as in
Theorem 6.1. Further, let the contract function g : R+ → R be locally
Hölder continuous of polynomial growth as defined above with exponent α.
Then the option price F given by the stochastic representation formula (10)
(or equivalently the equation (11)) is locally Hölder(α) continuous in R+,
i.e., for every A there is a C ′ such that if x, y ≤ A, then

|F (x, t)− F (y, t)| ≤ C ′|x− y|α.

Proof. We fix t < T , and assume again for convenience that r = 0. Then

|F (x, t)− F (y, t)| = |E
(
g(Xx,t(T ))− g(Xy,t(T ))

)
|.

By (20) and the Hölder inequality, the right-hand-side of this equation is
dominated by

C
(
E(1 + |Xx,t(T )|m + |Xy,t(T )|m)q

)1/q(
E|Xx,t(T )−Xy,t(T )|

)α

where q = 1
1−α . Note that the first expected value is locally bounded as

a function of x and y by Lemma 5.1. Finally, E|Xx,t(T ) − Xy,t(T )| =
|x−y| as in the proof of Proposition 6.2 by monotonicity and the martingale
property. �

Remark. In the proposition above we see that a bound for the modulus of
continuity of the solution at the boundary is given by bound of the modulus
of continuity of the contract function. This estimate is in fact sharp, as
is seen by considering geometric Brownian motion, see the example below.
Of course, in the non-degenerate case, with coefficients regular enough, we
obtain regularity across the boundary, compare Chapter VII of [7], for t < T ,
even if the contract function is not regular at the boundary.

Example 6.4. We consider geometric Brownian motion:

dX = rXdt + σXdW, (21)
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where r and σ are constants. We assume that X(t) = x. By considering
lnX and using Itô’s formula one finds the explicit solution

Xx,t(T ) = x exp
{
(r − 1

2
σ2)(T − t) + σ(W (T )−W (t))

}
.

Thus, if g(x) = xα, the function F given by the stochastic representation
formula (10) is equal to

F (x, t) = xα exp
{
(r(α− 1) +

1
2
σ2(α2 − α))(T − t)

}
,

showing that the estimate of modulus of continuity in the proposition above
is indeed sharp.
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