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Abstract. We study the asymptotic distribution of the displacements
in hashing with coalesced chains, for both late-insertion and early-inser-
tion. Asymptotic formulas for means and variances follow. The method
uses Poissonization and some stochastic calculus.

1. Introduction

The standard version of hashing with coalesced chains, due to Williams
[10] can be described as follows, where n and m are integers with 0 ≤ n ≤ m.
(See further Knuth [6, Section 6.4, in particular Algorithm 6.4.C] and the
monograph by Vitter and Chen [9].)

A table with m cells 1, . . . ,m is filled with n ≤ m items
x1, . . . , xn, by placing them sequentially using n integers hi ∈
{1, . . . ,m}. Each cell contains two fields, initially empty, one
of which can hold an item and the other can link to another
cell. Item xi is inserted into cell hi if it is empty; otherwise
we follow the links from cell hi until we reach the end of the
chain (signalled by a null link), we add a link to an empty
cell (which is chosen as the empty cell with largest index)
and store the item there.

For our probabilistic treatment, we assume that each of the mn possible
hash sequences (hi)n

1 is equally likely; in other words, the hash addresses hi

are independent random numbers, uniformly distributed on {1, . . . ,m}.
The displacement di of an item xi is the number of links we have to

follow from hi until we find xi. Large displacements make both insertion
and searching less efficient, so it is desirable to keep the displacements small.
(Two different but related quantities are used in other papers to measure
the efficiency: The number of probes to find the item xi in the table is di +1.
The number of key comparisons to find the item is also di + 1. This should
be noted when comparing the results below with other papers.)

The items are thus arranged in linked chains in the hash table. If a new
item hashes to an empty cell, a new chain with that single item is created.
If a new item hashes to a cell in an existing chain, then that chain grows by
addition of a formerly empty cell. It was shown by Chen and Vitter [3] and
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Knott [5] that the average performance could be improved by modifying the
algorithm above, inserting the new item at a different place in an existing
chain. We will therefore study two versions of hashing with coalesced chains:

L Late-insertion (LISCH). The standard version described above where
the new item is inserted last in its chain.

E Early-insertion (EISCH) [3], [5], [9]. If cell hi is occupied, item xi is
inserted into an empty cell as above, but this cell is linked into the
chain immediately after hi. (I.e., if the first free cell is j and the link
from hi points to k (null or not), then this link is reset to j, and the
link field in j is set to k.) This method gives the smallest average
displacement among all possible insertion schemes [9, Theorem 5.2].

Note that the insertion of a sequence of items results in the same set of
occupied cells in both versions, and that this set is partitioned into chains
in the same way, but that the order in the chains, and thus the individual
displacements, may differ.

Our main result is Theorem 2.1 below (together with its refinement The-
orem 2.5), which gives the asymptotic distribution of the displacements in
a random hash table under both insertion methods; we consider also the
case of unsuccessful searches. As corollaries we easily find earlier known
asymptotic formulas for the average displacements and for the variances of
them (some of the latter may be new). These asymptotic distributions are
studied further in Section 3; some numerical values are given in Table 1. The
proofs are given in Section 4. They are based on Poissonization, regarding
the items as arriving at random times.

Remark 1.1. An interesting variation of the algorithm above [6, Exercise
6.4-43], discussed in detail by Vitter and Chen [9], is to choose a number
m1 < m and reserve the last m − m1 cells as a “cellar” for the undis-
turbed growth of the chains. We then assume that the hash addresses
hi ∈ {1, . . . ,m1}, and use exactly the same algorithms as above. (These
versions are called LICH and EICH in [9].) It is shown in [9] that for given
n and m, a suitable choice of m1 will improve the average performance.

In this setting, it is also interesting to consider a third version varied-
insertion (VICH) [9], which behaves like E except that when the chain from
the hash address contains a cellar cell, the new item is inserted after the last
cellar cell. It is shown in [9, Chapter 5] that this method gives the minimum
average among all insertion methods satisfying a weak assumption.

We have not yet investigated the versions with cellar in detail, but it
seems that our methods could be used with some additional work to find
the asymptotic distributions of the displacements in these cases too. (The
means are given in [9].)

Remark 1.2. Corresponding results for hashing with linear probing are
given by Janson [4] and Viola [8]. Note that, as remarked in [6], the average
displacement for linear probing tends to infinity if n, m →∞ with n/m → 1,
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while for the chained hashing studied here, it stays bounded also in the
extreme case n = m of a full table.

Acknowledgements. This research was begun on the transatlantic flight
to the Knuthfest at Stanford in honour of Donald Knuth’s 64th birthday in
January 2002, where some of the results were presented, and continued on
another flight to the Analysis of Algorithms workshop at MSRI, Berkeley,
June 2004; I thank KLM for providing long and quiet periods of work. I
further thank Donald Knuth for helpful remarks.

2. Notation and results

By a hash table T we mean not only the final table, but also its con-
struction history; moreover, we consider the two version above together.
Formally, a hash table can be regarded as encoded by the numbers m and
n and the sequence (h1, . . . , hn) of hash addresses.

Our prime object of study is the random hash table Tm,n with m cells
and n items (0 ≤ n ≤ m) and the hash addresses h1, . . . , hn i.i.d. random
variables, uniformly distributed on {1, . . . ,m}.

We denote the two insertion policies defined in the introduction by L and
E, and use Ξ to denote any of these.

Given a hash table T (with m cells and n items), random or not, and a
policy Ξ ∈ {L,E}, we let dΞ

i (T ) be the (final) displacement of the i:th item,
1 ≤ i ≤ n, and

nΞ
k (T ) := #{i : dΞ

i (T ) = k}, k = 0, 1, . . . ,

the number of items with displacement k. Note that∑
k

nΞ
k (T ) = n. (2.1)

If n > 0, we let dΞ(T ) denote a randomly chosen displacement in a given
hash table T using policy Ξ, i.e. the random variable dΞ

I (T ) where I ∈
{1, . . . , n} is a random index with a uniform distribution. Thus, given T ,
dΞ(T ) has the distribution

P
(
dΞ(T ) = k | T

)
=

1
n

nΞ
k (T ). (2.2)

Similarly, we let dU
j (T ) denote the number of occupied cells encountered in

an unsuccessful search starting at hash address j, 1 ≤ j ≤ m, and let dU(T )
denote the number of occupied cells encountered in a random unsuccessful
search, i.e. dU(T ) := dU

J (T ), where J ∈ {1, . . . ,m} is a uniformly distributed
random index. (Note that in an unsuccessful search starting at j, the number
of key comparisons equals dU

j , while the number of probes, d̃U
j say, is dU

j if
dU

j ≥ 1 and 1 if dU
j = 0; i.e., d̃U

j := max(dU
j , 1)).) We further let

nU
k (T ) := #{j : dU

j (T ) = k}, k = 0, 1, . . . ,
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and note that now, in contrast to (2.1),∑
k

nU
k (T ) = m. (2.3)

Thus, cf. (2.2), given T , dU(T ) has the distribution

P
(
dU(T ) = k | T

)
=

1
m

nU
k (T ).

Our main result is the following theorem, giving the asymptotic distri-
bution of the displacement of a random item in a random hash table Tm,n,
together with the corresponding quantity for an unsuccessful search.

Theorem 2.1. Suppose that m,n → ∞ with 0 < n ≤ m and n/m → α ∈
[0, 1]. Then, for every k = 0, 1, . . . ,
(i)

P
(
dU(Tm,n) = k

)
=

1
m

E
(
nU

k (Tm,n)
)

→ pU
α(k) :=

{
1− α, k = 0,∫ α
0 (1− α + t)

(
1− e−t

)k−1
dt, k ≥ 1;

(ii)

P
(
dL(Tm,n) = k

)
=

1
n

E
(
nL

k(Tm,n)
)

→ pL
α(k) :=

{
1− α/2, k = 0,
1
α

∫ α
0

(
α− t− (α− t)2/2

)(
1− e−t

)k−1
dt, k ≥ 1;

(iii)

P
(
dE(Tm,n) = k

)
=

1
n

E
(
nE

k(Tm,n)
)

→ pE
α(k) :=

{
1− α/2, k = 0,
1
α

∫ α
0 (α− t)e−t

(
1− e−t

)k−1
dt, k ≥ 1.

(For α = 0, pL
0(k) = pE

0 (k) = 0 when k ≥ 1.) For every Ξ ∈ {L,E,U} and
α ∈ [0, 1], {pΞ

α(k)}∞k=0 is a probability distribution on N. If DΞ
α is a random

variable with this distribution, i.e. P(DΞ
α = k) = pΞ

α(k), then these results
can be written

dΞ(Tm,n) d−→ DΞ
α . (2.4)

Moreover, all moments converge in (2.4), i.e., E
(
dΞ(Tm,n)

)r → E
(
DΞ

α

)r for
every r ≥ 0.

It follows immediately that for the number of probes in an unsuccessful
search, we have

d̃U(Tm,n) d−→ D̃U
α := max(DU

α , 1), (2.5)
again with convergence of all moments.
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As a corollary, we find the asymptotics for the expectations; these have
earlier been derived, together with exact formulas for E dΞ(Tm,n), by Knuth
[6] and Vitter and Chen [9] (in equivalent forms for the number of probes
or key comparisons).

Corollary 2.2. Suppose that m,n → ∞ with 0 < n ≤ m and n/m → α ∈
[0, 1]. Then

E(dU(Tm,n)) → E DU
α =

1
4
(
e2α − 1

)
+

α

2
,

E(dL(Tm,n)) → E DL
α =

1
8α

(
e2α − 1

)
+

α

4
− 1

4
,

E(dE(Tm,n)) → E DE
α =

1
α

(
eα − 1− α

)
.

Remark 2.3. Note that the expected number of probes is E(dL(Tm,n)) + 1
or E(dE(Tm,n)) + 1 for a successful search, and, cf. (2.5),

E(d̃U(Tm,n)) = E(dU(Tm,n)) +
m− n

m
→ E(D̃U

α) = E(DU
α) + 1− α

for an unsuccessful search.

Theorem 2.1 similarly yields asymptotic formulas for higher moments too;
in particular we have the following results for the variance.

Corollary 2.4. Suppose that m,n → ∞ with 0 < n ≤ m and n/m → α ∈
[0, 1]. Then

Var(dU(Tm,n)) → VarDU
α

= − 1
16e4α + 4

9e3α −
(

1
4α + 1

8

)
e2α − 1

4α2 + 5
12α− 37

144 ,

Var(dL(Tm,n)) → VarDL
α = − 1

64

(e2a − 1
a

)2
+

64e2a + 37ea + 37
432

· ea − 1
a

− 1
16e2a − 1

16a2 + 5
24a− 7

36 ,

Var(dE(Tm,n)) → VarDE
α =

α− 2
2

(eα − 1
α

)2
+ 2

eα − 1
α

− 1,

and, for the number of probes in an unsuccessful search,

Var(d̃U(Tm,n)) → Var(D̃U
α)

= − 1
16e4α + 4

9e3α +
(

1
4α− 5

8

)
e2α − 1

4α2 − 1
12α + 35

144 .

The asymptotic formula for Var(d̃U(Tm,n)), together with an exact for-
mula, is given in Knuth [6, Answer 6.4-40] and in Vitter and Chen [9]; the
corresponding results for Var(dU(Tm,n)) follow easily. (The numerical result
in [6, Answer 6.4-40] and [9] for the case α = 1, when D̃U

α = DU
α , should be

2.65.) The asymptotics of Var(dL(Tm,n)) are given in [9]. We do not know
whether the asymptotic of Var(dE(Tm,n)) have been published earlier.
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Consider a computer program where a large hash table is constructed
once, and then used many times for finding the items. We assume that each
item in the table is equally likely to be requested, and that each choice is
independent of the previous ones. We therefore have two levels of random-
ness: First we construct a random hash table T with some displacements
(di). Keeping T fixed and choosing a random index I ∈ {1, . . . , n}, we
obtain the random displacement d(T ) = dI . As the program runs with
many searches in the hash table, the search times then are (functions of)
independent observations of this random variable. It is thus interesting to
study the distribution of this random variable and its properties such as its
mean and variance. Note that this distribution depends on the hash table
T , which is itself random; another run of the program yields another T
and another set of displacements. Hence the distribution of the displace-
ment d(T ) is a random distribution and its mean E(d(T )|T ) and variance
Var(d(T )|T ) = E(d(T )2|T ) − E(d(T )|T )2 are random variables. In other
words, we study the conditional distribution of d(T ) given T .

We can refine the results above by conditioning on Tm,n. The following
theorem says that we still have the same limits, now with convergence in
probability. In other words, different realizations of Tm,n have (with large
probability) almost the same distribution of the displacements, so a typical
instance of the random hash table Tm,n has its displacements distributed as
the average studied in Theorem 2.1.

Theorem 2.5. Suppose that m,n → ∞ with 0 < n ≤ m and n/m → α ∈
[0, 1]. Then, for every k = 0, 1, . . . , with pΞ

α(k) defined in Theorem 2.1,

(i) P
(
dU(Tm,n) = k

∣∣ Tm,n

)
= m−1nU

k (Tm,n)
p−→ pU

α(k),
(ii) P

(
dL(Tm,n) = k

∣∣ Tm,n

)
= n−1nL

k(Tm,n)
p−→ pL

α(k),
(iii) P

(
dE(Tm,n) = k

∣∣ Tm,n

)
= n−1nE

k(Tm,n)
p−→ pE

α(k).

Remark 2.6. A more fancy formulation of Theorem 2.5 is that the distribu-
tion of dΞ(Tm,n) converges to pΞ

α in probability, in the space of all probability
measures on N, equipped with the weak topology (which coincides with the
`1 topology on this space); see [2] for definitions.

Moment convergence holds in Theorem 2.5 too, i.e. conditioned on Tm,n.

Theorem 2.7. Suppose that m,n → ∞ with 0 < n ≤ m and n/m → α ∈
[0, 1]. Then, for every r ≥ 0 and Ξ ∈ {L,E,U},

E
(
dΞ(Tm,n)r | Tm,n

) p−→ E
(
DΞ

α

)r
.

In particular, the conditional mean and variance, given the hash table, con-
verge in probability to the limits in Corollaries 2.2 and 2.4.

3. The asymptotic distributions

We give some further results on the probability distributions pΞ
α(k) defined

in Theorem 2.1; we assume α > 0. We omit the proofs. (Several of the
results below were obtained with the help of Maple.)
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It follows directly from the definitions in Theorem 2.1 that

pΞ
α(k) = O

(
1− e−α

)k = O
(
1− e−1

)k;

hence the probabilities decrease geometrically. More refined asymptotics
can easily be derived (we omit the details); we have, as k →∞, for α > 0,

pU
α(k) ∼ eαk−1

(
1− e−α

)k
,

pU
α(k) ∼ α−1eα(eα − 1)k−2

(
1− e−α

)k
,

pU
α(k) ∼ α−1(eα − 1)k−2

(
1− e−α

)k
.

In particular, the probability of an extremely large displacement is about eα

as large for late-insertion as for early-insertion.
The probability generating functions for DΞ

α follow also easily from the
formulas in Theorem 2.1:

E xDU
α =

∞∑
k=0

pU
α(k)xk = 1− α + x

∫ α

0

1− α + t

1− x + xe−t
dt,

E xDL
α =

∞∑
k=0

pL
α(k)xk = 1− α

2
+

x

α

∫ α

0

α− t− (α− t)2/2
1− x + xe−t

dt,

E xDE
α =

∞∑
k=0

pE
α(k)xk = 1− α

2
+

x

α

∫ α

0

α− t

(1− x)et + x
dt.

These integrals can be evaluated in terms of the dilog function (and for L also
polylog), but we do not know any simple form. The generating functions
are analytic for |x| < r(α) :=

(
1− e−α

)−1, with a singularity at r(α).
The integrals defining pΞ

α(k) are easily evaluated for small k. We find, for
example,

pU
α(1) = α− 1

2α2, pU
α(2) = 2e−a − 2 + 2α− 1

2α2,

pL
α(1) = 1

2α− 1
6α2, pL

α(2) = 2
1− e−α

α
− 2 + α− 1

6α2,

pE
α(1) =

e−α − 1 + α

α
, pE

α(2) =
1
2
− 1− e−α

α
+

1− e−2α

4α
.

No simple pattern is seen, and we leave further investigation to the reader.
Numerical values for pΞ

α(0), . . . , pΞ
α(10), the tail

∑∞
11 pΞ

α(k), the mean E DΞ
α

and the variance VarDΞ
α are given for α = 0.5 and 1 (half-full and full tables)

in Table 1.

4. Proofs

To prove the theorems, we randomize the times the items are inserted
in the table by Poissonization: We assume that items with hash address
i arrive according to a Poisson process with intensity 1, the m different
Poisson processes being independent. We let T (t) denote the hash table at
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k pU
0.5(k) pL

0.5(k) pE
0.5(k) pU

1 (k) pL
1(k) pE

1 (k)
0 0.5 0.75 0.75 0.0 0.5 0.5
1 0.375 0.2083 0.2130 0.5 0.3333 0.3679
2 0.0881 0.0322 0.0291 0.2358 0.0976 0.0840
3 0.0252 0.0070 0.0059 0.1200 0.0376 0.0280
4 0.0078 0.0018 0.0014 0.0638 0.0163 0.0110
5 0.0026 0.00049 0.00038 0.0349 0.0076 0.0048
6 0.00086 0.00014 0.00011 0.0194 0.0037 0.0022
7 0.00030 0.000043 0.000032 0.0110 0.0019 0.0011
8 0.00010 0.000014 0.000010 0.0063 0.0010 0.0005
9 0.00004 0.000004 0.000003 0.0036 0.0005 0.0003

10 0.00001 0.000001 0.000001 0.0021 0.0003 0.0001
≥ 11 0.000007 0.0000007 0.0000005 0.0031 0.0003 0.0002

E 0.6796 0.3046 0.2974 2.0973 0.7986 0.7183
Var 0.7394 0.3565 0.3324 2.6533 1.2799 0.9603

Table 1. Some numerical values

time t, when there are Po(t) items with each hash address. For simplicity,
we write nΞ

k (t) := nΞ
k (T (t)).

Combining the m individual Poisson processes, we see that the items
x1, x2, . . . arrive according to a Poisson process with intensity m; we call
the arrival times τ1, τ2, . . . (we may assume that these are distinct). We
really have to stop at τm, since the table then is full, but it is convenient to
think of the hashing as continuing for ever, with the chains growing into a
virtual, infinitely large attic; no new chains are created after τm.

The hash addresses of the items x1, x2, . . . are independent and uniformly
distributed, so except for the random time scale, this is the situation we want
to study. More precisely, T (τn) = Tm,n for 0 ≤ n ≤ m.

Note that τm ≈ 1; more precisely, τm/m
p−→ 1 as m →∞, as shown in

Lemma 4.3 below.
We will consider stochastic processes defined on [0,∞) (although we

mainly are interested in 0 ≤ t ≤ 1). We say that such a process X(t)
is increasing if X(s) ≤ X(t) whenever s ≤ t. We let

ucp−→ denote con-
vergence uniformly on compacts in probability (ucp), i.e. Xn

ucp−→ X if
sup0≤t≤u |Xn(t)−X(t)| p−→ 0 for every u > 0.

Lemma 4.1. Let, for each n, Xn(t), t ≥ 0, be an increasing, stochastic
process, and let f(t) be a continuous function on [0,∞). If Xn(t)

p−→ f(t)
for every t ≥ 0, then Xn(t)

ucp−→ f(t).

Proof. Fix u > 0. Let ε > 0, and let K be so large that if δ := u/K, then
|f(s)− f(t)| < ε if s− t ≤ δ and 0 ≤ s ≤ t ≤ u. Since each Xn is increasing,
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the limit f(t) is too. Hence, if (k − 1)δ ≤ t ≤ kδ,

Xn((k − 1)δ)− f((k − 1)δ)− ε ≤ Xn((k − 1)δ)− f(kδ)

≤ Xn(t)− f(t) ≤ Xn(kδ)− f((k − 1)δ) ≤ Xn(kδ)− f(kδ) + ε,

and, consequently,

sup
0≤t≤u

|Xn(t)− f(t)| ≤ sup
0≤k≤K

|Xn(kδ)− f(kδ)|+ ε.

We know that Xn(t)− f(t)
p−→ 0 for every t ≥ 0. We apply this for t = kδ,

k = 0, . . . ,K, and find that whp (i.e., with probability → 1 as n → ∞)
|Xn(kδ)−f(kδ)| < ε for k = 0, . . . ,K, and thus sup0≤t≤u |Xn(t)−f(t)| < 2ε.
Since ε > 0 is arbitrary, sup0≤t≤u |Xn(t)− f(t)| p−→ 0. �

Let N(t) be the number of items that have arrived at time t. Since each
item is put into some empty cell, the number of empty cells at time t is
(m−N(t))+, i.e. m−N(t) for t ≤ τm and then 0.

Lemma 4.2. As m →∞, N(t)/m
ucp−→ t for t ≥ 0.

Proof. We have N(t) ∼ Po(mt), and thus N(t)/m
p−→ t as m →∞ for every

t ≥ 0. The convergence ucp follows from Lemma 4.1. �

Lemma 4.3. Suppose that m →∞ and n/m → α, with 0 ≤ n ≤ m. Then
τn

p−→ α. Consequently, if Xm
ucp−→ X for some stochastic processes Xm and

X, where X(t) is continuous, then Xm(τn)
p−→ X(α).

Proof. τn is the sum of n i.i.d. waiting times, each Exp(1/m), so E τn =
n/m → α and Var τn = n/m2 → 0, whence τn

p−→ α by Chebyshev’s
inequality. (Alternatively, this is a standard consequence of Lemma 4.2:
For ε > 0, P(τn > α + ε) ≤ P

(
N(α + ε)/m < n/m

)
→ 0. Similarly,

P(τn < α− ε) → 0.)
The final assertion follows because whp τn < α + 1, and then |Xm(τn)−

X(α)| ≤ sups≤α+1 |Xm(s)−X(s)|+ |X(τn)−X(α)| p−→ 0 �

Chains. When an item arrives to an empty cell, a new chain of length 1
is created. The chain then grows one unit each time it is hit. Hence each
chain, once created, grows according to a birth process where the transition
` → `+1 has intensity `, and different chains grow independently. (In order
for this to hold for t > τm too, we may pretend that new items arrive also in
the attic, but are ignored unless they hit an existing chain. Similar ad hoc
modifications have to be made after τm for other quantities too, in order for
the arguments below to be valid; a simple possibility is to redefine nU

k (t) for
t > τm so that (4.8) holds and redefine the processes Z and W in (4.10) and
(4.12) to be constant for t ≥ τm. The details do not matter, since we will
later consider only t = τn ≤ τm, so we will ignore them.)

The growth process of each chain thus is the same as the Yule process, or
binary splitting, a branching process where each individual after a lifetime
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distributed as Exp(1) splits into two. It is well-known, see e.g. [1, Section
III.5], that if we start a Yule process with a single particle at time 0, the
number of particles at time t has the geometric distribution Ge(e−t) with
mean et and

P(k particles) = e−t
(
1− e−t

)k−1
, k ≥ 1. (4.1)

Let C(T ) be the number of chains in the hash table T , and denote their
lengths by L1(T ), . . . , LC(T )(T ). For T (t) we write C(t) and Lj(t).

Lemma 4.4. Let C`(t) be the number of chains of length ` in T (t). Then,
for each k and t ≥ 0, as m →∞,

1
m

∑
l≥k

C`(t)
ucp−→

∫ t∧1

0
(1− s)

(
1− e−(t−s)

)k−1
ds. (4.2)

Proof. Informally, we observe that in a tiny time interval [s, s + ds], about
m ds items arrive, and (m − N(s)) ds ≈ m(1 − s) ds of them create new
chains, for s ≤ 1. Of these chains, by (4.1), a proportion (1 − e−(t−s))k−1

have grown to length at least k at time t, and the result follows by integration
over s.

To be more formal, let, for k ≥ 1, u ≥ 0 and j ≥ 0, f
(k)
u (j) be the

probability that a Yule process that starts with j particles at time 0 has
reached at least k particles at time u; this is thus equal to the probability
that a chain of length j at some instance s grows to length at least k at time
s + u. We have f

(k)
u (j) = 1 for j ≥ k and all u, f

(k)
0 (j) = [[j ≥ k]], and, by

(4.1),
f (k)

u (1) =
(
1− e−u

)k−1
. (4.3)

For fixed k and t, and 0 ≤ s ≤ t, let

X(s) :=
∑
`≥1

C`(s)f
(k)
t−s(`) =

C(s)∑
j=1

f
(k)
t−s

(
Lj(s)

)
.

X(s) is thus the expected number (given T (s)) of the chains present at s
that have grown to length at least k at t. In particular, X(t) =

∑
`≥k C`(t).

Since new chains, all of length 1, are created with the rate (m−N(s))+,
it follows that the process

Y (s) := X(s)−
∫ s

0
f

(k)
t−u(1)

(
m−N(u)

)
+

du, 0 ≤ s ≤ t, (4.4)

is a martingale. Moreover, Y (s) has a jump ∆Y (s) = f
(k)
t−s(1) of size

|∆Y (s)| ≤ 1 each time a new chain is created, and Y (s) is smooth with
a bounded derivate between the jumps, so s 7→ Y (s) is of finite varia-
tion, Hence, see e.g. Protter [7, II.6], the quadratic variation [Y, Y ]t =∑

s≤t ∆Y (s)2 ≤ N(t), and, observing Y (0) = X(0) = 0,

E Y (t)2 = E[Y, Y ]t ≤ E N(t) = mt.
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In particular, as m →∞, Y (t)/m
p−→ 0 by Chebyshev’s inequality, i.e.

X(t)
m

−
∫ t

0
f

(k)
t−s(1)

(
1− N(s)

m

)
+

ds =
Y (t)
m

p−→ 0.

Combined with Lemma 4.2, this shows∑
`≥k C`(t)

m
=

X(t)
m

p−→
∫ t

0
f

(k)
t−s(1)

(
1− s

)
+

ds,

which by (4.3) proves (4.2) for fixed t ≥ 0. Convergence ucp follows by
Lemma 4.1. �

Lemma 4.5. (i) For every t ≥ 0 and r > 0, there exists a constant K(t, r),
not depending on m, such that

E
∞∑

`=1

`rC`(t) = E
C(t)∑
j=1

Lj(t)r ≤ K(t, r)m.

(ii) For every r > 0, there exists a constant K(r), not depending on m
or n, such that

E
C(Tm,n)∑

j=1

Lj(Tm,n)r ≤ K(r)n.

Proof. (i): Since Y (s) in (4.4) is a martingale with Y (0) = 0, we have
E Y (t) = 0 and

E Ck(t) ≤ E X(t) = E
∫ t

0
f

(k)
t−u(1)

(
m−N(u)

)
+

du

≤ tf
(k)
t (1)m = t(1− e−t)k−1m.

Hence, if a < (1− e−t)−1,

E
∞∑

`=1

a`C`(t) ≤ amt

∞∑
`=1

(
a(1− e−t)

)`−1 =
at

1− a(1− e−t)
m. (4.5)

Taking e.g. a = 1 + e−t, the result follows, since sup` `r/a` < ∞.
(ii): Since

∑
j Lj(t)r is increasing and T (τn) = Tm,n is independent of τn,

we have for every t > 0 and a ≥ 1

E
∑

j

aLj(t) ≥ E
(∑

j

aLj(τn)[[τn ≤ t]]
)

= E
(∑

j

aLj(Tm,n)
)

P(τn ≤ t).

Choose t := 2n/m ≤ 2 and a := 1 + e−2. Then, by (4.5),

E
∑

j

aLj(t) ≤ e4atm = 2e2(e2 + 1)n.

Moreover, N(t) ∼ Po(mt) = Po(2n), and thus

P(τn ≤ t) = P
(
N(t) ≥ n

)
= P

(
Po(2n) ≥ n

)
→ 1, as n →∞;
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hence, for some constant c > 0 and all n ≥ 1, P(τn ≤ t) ≥ c. Consequently,

E
(∑

j

aLj(Tm,n)
)
≤ 2e2(e2 + 1)c−1n,

and the result follows. �

Remark 4.6. The collection of chain lengths evolves as a generalized Pólya
urn with balls of infinitely many types 0,1,. . . ; we regard each empty cell as
a ball of type 0 and each cell in a chain of length ` as a ball of type `. The
dynamics of the urn thus is that if a ball of type 0 is drawn, it is removed
and replaced by a ball of type 1; if a ball of type ` ≥ 1 is drawn, ` balls of
type ` are removed together with one ball of type 0, and ` + 1 balls of type
` + 1 are added. We start with n balls of type 0. We will, however, not use
this urn representation.

U. In an unsuccessful search starting at address j in a hash table T , the
number dU

j (T ) of searched occupied cells is 0 if the cell j is empty; otherwise
the cell belongs to a chain, and dU

j equals 1 + the number of cells in the
chain after j.

Hence, nU
0 (T ) is the number of empty cells in T , and for T (t),

nU
0 (t) =

(
m−N(t)

)
+
. (4.6)

By Lemma 4.2 thus

m−1nU
0 (t)

ucp−→ pU
t (0) := (1− t)+. (4.7)

(We see also that nU
0 (Tm,n) = m − n, directly proving the case k = 0 in

Theorems 2.1(i) and 2.5(i).)
For k ≥ 1, there is exactly one cell with dU

j in each chain of length ` ≥ k,
and thus, for T (t),

nU
k (t) =

∑
`≥k

C`(t). (4.8)

Consequently, Lemma 4.4 yields, for k ≥ 1, using u = t− s,

1
m

nU
k (t)

ucp−→ pU
t (k) :=

∫ t∧1

0
(1− s)

(
1− e−(t−s)

)k−1
ds

=
∫ t

(t−1)+

(1− t + u)
(
1− e−u

)k−1
du. (4.9)

Theorem 2.5(i) follows by Lemma 4.3.

L. For the standard (late-insertion) method L, when a new item arrives with
a hash address j, the insertion algorithm begins with an unsuccessful search
for the item (followed by finding an empty cell). The displacement of the new
item is thus the same as the number dU

j for an unsuccessful search starting at
j; note that for L, the displacement never changes after the item is inserted.
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Consequently, for T (t), new items with displacement k are created at the
rate nU

k (t), and

Z(t) := nL
k(t)−

∫ t

0
nU

k (s) ds (4.10)

is a martingale. The jumps are all 1, and we have, as for Y above, [Z,Z]t ≤
N(t), and m−1Z(t)

p−→ 0. Moreover, by Doob’s inequality, see e.g. [7, p.
11],

E
(
sup
s≤t

Z(s)2
)
≤ 4 E Z(t)2 = 4 E[Z,Z]t ≤ 4 E N(t) = 4mt,

and hence m−1Z(t)
ucp−→ 0. Consequently, by (4.10) and (4.9),

m−1nL
k(t)

ucp−→
∫ t

0
pU

s (k) ds.

For α > 0 we multiply by m/n → α−1 and find by Lemma 4.3

n−1nL
k(τn)

p−→ pL
α(k) := α−1

∫ α

0
pU

s (k) ds (4.11)

as asserted in Theorem 2.5(ii). Explicitly we have, for 0 < α ≤ 1,

pL
α(0) = α−1

∫ α

0
(1− s) ds = 1− α/2

and, for k ≥ 1,

pL
α(k) = α−1

∫ α

s=0

∫ s

t=0
(1− s + t)

(
1− e−t

)k−1
dt ds

= α−1

∫ α

t=0

∫ α

s=t
(1− s + t)

(
1− e−t

)k−1
ds dt

= α−1

∫ α

t=0

(
α− t− (α− t)2/2

)(
1− e−t

)k−1
dt.

For α = 0, we observe that P
(
dL

i (Tm,n) 6= 0
)
≤ (i− 1)/m, and thus

E |n− nL
0(Tm,n)| ≤

n∑
i=1

i/m ≤ n2/m;

hence E |1 − nL
0(Tm,n)/n| ≤ n/m → α = 0. This yields Theorem 2.5(ii) for

α = 0 with pL
0(0) = 1 and pL

0(k) = 0, k ≥ 1.

E. For the early-insertion method E, a new item that hashes to an empty
cell gets displacement 0, which remains unchanged for ever. Hence nE

0 (T ) =
nL

0(T ), and
n−1nE

0 (T ) = n−1nL
0(T )

p−→ pL
α(0) = 1− α/2

by the preceding case.
An item x that hashes to an occupied cell gets an initial displacement

1, and this displacement increases each time a new item hashes to one of
the cells in the subchain beginning with the hash address of x and ending
just before x; the number of such cells is the displacement, and thus the
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displacement grows according to the same Yule process as the chains. Fix t

and k, let f
(k)
u (j) be as in the proof of Lemma 4.4, and let, cf. (4.4),

W (s) :=
∑
j≥1

nE
j (s)f (k)

t−s(j)−
∫ s

0
f

(k)
t−u(1)N(u) du. 0 ≤ s ≤ t, (4.12)

Again, this is a martingale. This time, however, the jumps may be larger
than 1, since more than one item can get its displacement increased when a
new item is inserted. Clearly, the jump ∆W when a new item is inserted is
at most the length of the chain where the new item was inserted, since only
the items in this chain can have their displacements changed. Since [W,W ]t
equals the sum of the squares of all jumps up to t, it is at most the sum of
the squares of the lengths of all chains that have existed during the process.
A chain in T (t) of length ` is formed by ` insertions, and their contribution
to the latter sum is

∑`
1 k2 ≤ `3. Hence,

[W,W ]t =
∑
s≤t

|∆W (s)|2 ≤
C(t)∑
j=1

Lj(t)3 =
∞∑

`=1

`3C`(t),

and Lemma 4.5 shows that

E W (t)2 = E[W,W ]t ≤ K(t, 3)m.

Hence, as above, m−1W (t)
p−→ 0, which together with Lemma 4.2 and (4.3)

yields

m−1
∑
j≥k

nE
j (t)−

∫ t

0

(
1− e−(t−u)

)k−1
u du

p−→ 0.

By Lemma 4.1, thus, with s = t− u,

m−1
∑
j≥k

nE
j (t)

ucp−→
∫ t

0

(
1− e−s

)k−1(t− s) ds.

Replacing k by k + 1 and subtracting, we find

m−1nE
k(t)

ucp−→
∫ t

0

(
1− e−s

)k−1
e−s(t− s) ds,

and Theorem 2.5(iii) follows by Lemma 4.3 when α > 0.
If α = 0 we have nE

0 (Tm,n)/n = nL
0(Tm,n)/n

p−→ 1 by the case L, and thus
also nE

k(Tm,n)
p−→ 0 for k ≥ 1.

This completes the proof of Theorem 2.5.

Proof of Theorem 2.1. Theorem 2.1(i)–(iii) follow by taking expectations in
Theorem 2.5 using dominated convergence.

We verify directly that {pΞ
α(k)}∞k=0 is a probability distribution by sum-

ming. For U we have, by (4.7) and (4.9) and summing the geometrical series
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1

(
1− e−s

)k−1 = es,

∞∑
k=0

pU
α(k) = 1− α +

∫ α

0
(1− α + s)es ds = 1− α + [(s− α)es]α0 = 1.

For L and E, the case α = 0 is trivial. If 0 < α ≤ 1 we have by (4.11)
∞∑

k=0

pL
α(k) = α−1

∫ α

0

∞∑
k=0

pU
t (k) dt = α−1

∫ α

0
dt = 1

and, by the definition in Theorem 2.1,
∞∑

k=0

pE
α(k) = 1− α + α−1

∫ α

0
(α− t) dt = 1.

Finally, note that each chain of length ` contributes (for L, E and U) `
displacements which are all at most `. Hence, for r > 0,

E
(
dΞ(Tm,n)r | Tm,n

)
≤

∑
j

Lj

n
Lr

j =
1
n

∑
j

Lr+1
j

(also for U), and thus, using Lemma 4.5

E
(
dΞ(Tm,n)r

)
≤ n−1 E

∑
j

Lr+1
j ≤ K(r + 1).

Replacing r by r+1 we see that the family dΞ(Tm,n)r is uniformly integrable,
and thus (2.4) implies E(dΞ(Tm,n))r → E(DΞ

α)r. �

Proof of Corollary 2.2. It only remains to compute the expectation of DΞ
α .

E DU
α =

∞∑
k=1

kpU
α(k) =

∫ α

0
(1− α + t)

∞∑
k=1

k
(
1− e−t

)k−1
dt

=
∫ α

0
(1− α + t)

(
1− (1− e−t)

)−2
dt =

∫ α

0
(1− α + t)e2t dt

=
[( t

2
− α

2
+

1
4

)
e2t

]α

0
=

1
4
e2α +

α

2
− 1

4
,

and, similarly, (for α > 0)

E DL
α =

1
α

∫ α

0

(
α− t− (α− t)2

2

)
e2t dt

=
1
α

[(
−(α− t)2

4
+

α− t

4
+

1
8

)
e2t

]α

0
=

1
8α

e2α +
α

4
− 1

4
− 1

8α
,

E DE
α =

1
α

∫ α

0
(α− t)et dt = α−1

[(
α− t + 1

)
et

]α

0
= α−1

(
eα − 1− α

)
.

�
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Proof of Corollary 2.4. Similar to Corollary 2.2; we omit the details. (We
used Maple to perform the integrations.) For the final part, note that

Var(D̃U
α) = E((DU

α)2) + 1− α−
(
E(DU

α) + 1− α
)2

= Var(DU
α)− 2(1− α) E(DU

α) + α− α2.
�

Proof of Theorem 2.7. An immediate consequence of Theorems 2.1 and 2.5
and the following general probabilistic lemma (with X = dΞ(Tm,n)r, Y =
Tm,n, Z =

(
DΞ

α

)r). �

Lemma 4.7. Let Xn, Yn and Z be random variables (with Xn and Yn defined
on the same probability space, and where Yn may take values in any measure
space), such that Xn ≥ 0 and Z ≥ 0, and, for every real x, as n →∞,

P(Xn ≤ x | Yn)
p−→ P(Z ≤ x). (4.13)

Suppose further E Xn → E Z. Then E(Xn | Yn)
p−→ E Z.

Proof. Note first that, for every real x, by (4.13) and dominated convergence,

P(Xn ≤ x) = E
(
P(Xn ≤ x | Yn)

)
→ P(Z ≤ x),

and thus X
d−→ Z.

For any fixed K > 0 we thus have Xn ∧ K
d−→ Z ∧ K and thus, by

dominated convergence again, E(Xn ∧K) → E(Z ∧K). Hence also

E(Xn −K)+ = E(Xn −Xn ∧K) = E(Xn)− E(Xn ∧K)

→ E(Z)− E(Z ∧K) = E(Z −K)+. (4.14)

Moreover,∣∣E(Xn ∧K | Yn)− E(Z ∧K | Yn)
∣∣

=
∣∣∣∣∫ K

0
P(Xn > x | Yn) dx−

∫ K

0
P(Z > x) dx

∣∣∣∣
≤

∫ K

0

∣∣P(Xn > x | Yn)− P(Z > x)
∣∣ dx

and thus, by (4.13) and, yet again, dominated convergence (twice),

E |E(Xn ∧K | Yn)− E(Z ∧K | Yn)|

≤
∫ K

0
E

∣∣P(Xn > x | Yn)− P(Z > x)
∣∣ dx → 0. (4.15)

By the triangle inequality and X = X ∧K + (X −K)+,

|E(Xn | Yn)− E(Z)| ≤ E((Xn −K)+ | Yn)

+ |E(Xn ∧K | Yn)− E(Z ∧K)|+ E(Z −K)+.
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Taking expectations, we see by (4.15) and (4.14) that

lim sup
n→∞

E |E(Xn | Yn)− E(Z)| ≤ lim sup
n→∞

E(Xn −K)+ + E(Z −K)+

= 2 E(Z −K)+.

Since K is arbitrary, we see by letting K →∞ that the left hand side is 0,
i.e. E |E(Xn | Yn)− E(Z)| → 0. �
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