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Abstract. We study the space requirements of a sorting algorithm
where only items that at the end will be adjacent are kept together.
This is equivalent to the following combinatorial problem: Consider a
string of fixed length n that starts as a string of 0’s, and then evolves by
changing each 0 to 1, with the n changes done in random order. What
is the maximal number of runs of 1’s?

We give asymptotic results for the distribution and mean. It turns
out that, as in many problems involving a maximum, the maximum is
asymptotically normal, with fluctuations of order n1/2, and to the first
order well approximated by the number of runs at the instance when
the expectation is maximized, in this case when half the elements have
changed to 1; there is also a second order term of order n1/3.

We also treat some variations, including priority queues and sock-
sorting.

The proofs use methods originally developed for random graphs.

1. Introduction

Gunnar af Hällström [1] considered, as indicated at the end of his paper,
the following algorithm for sorting an unordered pile of student exams in
alphabetic order. (It is said that he used this procedure himself.)

The exams are taken one by one from the input. The first exam is put in a
new pile. For each following exam (x, say), if the name on it is immediately
preceding the name on an exam y at the top of one of the piles, the new exam
x is put on top of y. (The professor knows the names of all the students,
and can thus see that there are no names between x and y.) Similarly, if the
name on x is immediately succeeding the name on an exam z at the bottom
of a pile, x is put under z. If both cases apply, with y on top of one pile
and z at the bottom of another, the two piles are merged with x inserted
between z and y. Finally, if there is no pile matching x in one of these ways,
x is put in a new pile.

The algorithm thus maintains a list of sorted piles, each being an interval
without gaps of the set of exams. At the end, there is a single sorted pile.
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The problem is the space requirement of this algorithm; more precisely,
the maximum number of sorted piles during the execution. The input is
assumed to be in random order, so this is a random variable, and we are
interested in its mean and distribution.

Remark 1.1. As a sorting method, this algorithm has drawbacks. First, it
requires that all names are known from the beginning; mathematically it can
be seen as sorting the numbers 1, . . . , n. Secondly, the space requirement
turns out to be quite high, see below. This also implies that the number
of comparisons necessary for each insertion is high, of the order of n. The
algorithm might be useful when blocks of sorted items can be manipulated
as easily as individual items, and we do not want to make insertions inside
the blocks, for example when sorting physical objects that are to be glued
together in order.

af Hällström [1] gave the following mathematical reformulation, where we
also introduce some notation. Consider a deck of n cards numbered 1, . . . , n
in random order, and a sequence of n places with the same numbers in order.
Take the cards one by one and put them at their respective places. When we
have placed m cards, 0 ≤ m ≤ n, we see Xn,m “islands”, i.e. uninterrupted
blocks of cards. What is X∗

n := maxmXn,m?
Alternatively, we can use the language of parking cars, which is popular

for some related problems in computer science: n cars park, one by one,
on n available places along a street; each car parks at a random free place.
What is the maximum number of uninterrupted blocks of cars during the
process?

Let, for n ≥ 1, 0 ≤ m ≤ n and 1 ≤ k ≤ n, the indicator In,m(k) be 1 if
the item (exam or card) with number k is one of the m first in the input,
and 0 otherwise. Thus, Xn,m is the number of runs of 1’s in the random
sequence In,m(1), . . . , In,m(n) of n−m 0’s and m 1’s. We can express Xn,m

algebraically as

Xn,m = In,m(1) +
n−1∑
k=1

(1− In,m(k))In,m(k + 1)

= m−
n−1∑
k=1

In,m(k)In,m(k + 1). (1.1)

If the input is given by the permutation σ of {1, . . . , n}, so that item k
has position σ−1(k),

In,m(k) = 1[σ−1(k) ≤ m],
where 1[. . . ] denotes the indicator of the indicated event. We assume that
σ is a (uniformly chosen) random permutation; thus so is σ−1. Hence, each
random sequence (In,m(k))n

k=1 is uniformly distributed over all
(

n
m

)
possibil-

ities; moreover, for each m < n we obtain (In,m+1(k))n
k=1 from (In,m(k))n

k=1
by changing a single randomly chosen 0 to 1, this random choice being uni-
form among the n−m 0’s, and independent of the previous history.
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It is easy to see that EXn,m = m(n−m+ 1)/n, see (3.1); it follows that
the maximum of EXn,m for a given n is attained for m = dn/2e, and that
EXn,dn/2e > n/4. Since obviously

EX∗
n = E max

m
Xn,m ≥ max

m
EXn,m, (1.2)

this yields EX∗
n > n/4 as observed by af Hällström [1]. Moreover, he ob-

served that EX∗
n is subadditive, and thus the limit

γ := lim
n→∞

EX∗
n/n

exists and equals infn EX∗
n/n; he further showed that 1/4 ≤ γ ≤ 1/3, where

the lower bound comes from (1.2). Based on simulations with n = 13 and
n = 52, af Hällström [1] concluded that γ seems to be very close to or
equal to 1/4. We will show that, indeed, γ = 1/4. We also show that the
distribution of X∗

n is asymptotically normal, with a variance of order n.

Theorem 1.2. As n→∞,

n−1/2
(
X∗

n − n/4
) d−→ N(0, 1/16), (1.3)

with convergence of all moments. In particular,

EX∗
n = n/4 + o(n1/2),

VarX∗
n = n/16 + o(n).

This theorem says that to the first order, the maximum number of piles
(runs) X∗

n behaves like the number Xn,m with m = dn/2e. A more refined
analysis shows that the difference X∗

n −Xn,dn/2e is of order n1/3. Let B(t),
−∞ < t < ∞, be a standard two-sided Brownian motion; thus B(0) = 0
and B(t), t ≥ 0, and B(−t), t ≥ 0, are two independent Brownian motions.

Theorem 1.3. As n→∞,

n−1/3
(
X∗

n −Xn,dn/2e
) d−→ 1

2V, (1.4)

where the random variable V is defined by V := maxt

(
B(t)− t2/2

)
, and

EX∗
n = EXn,dn/2e + 1

2 EV n1/3 + o(n1/3) = 1
4n+ 1

2 EV n1/3 + o(n1/3).

The random variable V is studied by Barbour [2], Daniels and Skyrme
[7] and Groeneboom [10]. Note that 0 < V < ∞ a.s. We have, see [7]
(using Maple to improve the numerical values in [2, 3, 7, 6]), with Ai the
Airy function,

EV = −2−1/3

2π

∫ ∞

−∞

iy dy
Ai(iy)2

≈ 0.996193.

The numerical values X∗
13 ≈ 4.22 and X∗

52 ≈ 14.66 found experimentally
by af Hällström [1] differ from n/4 by about 18% and 10% less than the
correction term 1

2 EV n1/3 in Theorem 1.3, which is a reasonable agreement
for such rather small n.
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Remark 1.4. af Hällström [1] considered also the cyclic case, when we
regard {1, . . . , n} as a circle, which sometimes is slightly simpler to study
because of the greater symmetry. In this case we define In,m(k) for all k ∈ Z
by In,m(k + n) := In,m(k), i.e. we interpret k modulo n, and we sum to n
in (1.1). Since the number of runs in the linear and cyclic version differ
by at most 1, all our asymptotic results remain the same, and we will only
consider the linear case. (Moreover, the cyclic case with n items corresponds
exactly to the linear with n− 1 by fixing the last element, see [1].)

We prove these theorem by studying asymptotics of the entire (random)
process (Xn,m)n

m=0. The natural time here is m/n, so we take m = bntc
for 0 ≤ t ≤ 1 and consider the process Xn,bntc with a continuous parameter
t ∈ [0, 1]. The following theorem shows that this process asymptotically is
Gaussian. (The space D[0, 1] is defined in Section 4, see [4] for a detailed
treatment.)

Theorem 1.5. As n→∞, in the space D[0, 1] of functions on [0, 1],

n−1/2
(
Xn,bntc − nt(1− t)

) d−→ Z(t), (1.5)

where Z is a continuous Gaussian process on [0, 1] with mean EZ(t) = 0
and covariances

E
(
Z(s)Z(t)

)
= s2(1− t)2, 0 ≤ s ≤ t ≤ 1. (1.6)

The behaviour of X∗
n shown in Theorems 1.2 and 1.3, with an asymp-

totic normal distribution with a mean of order n and random fluctuations
of order n1/2, and with a second order term for the mean of order n1/3,
is common for this type of random variables defined as the maximum of
some randomly evolving process. For various examples, both combinatorial
and others, and general results see for example Daniels [5, 6], Daniels and
Skyrme [7], Barbour [2, 3] and Louchard, Kenyon and Schott [21]. Indeed,
paraphrasing the explanations in these papers, in many such problems, the
first order asymptotic of a random process Xn(t) (after suitable scaling) is
a deterministic function f(t), say, defined on a compact interval I (typically
scaled to be [0, 1] as here). Hence the first order asymptotic of the maxi-
mum of the process is just the maximum of this function f . Moreover, it is
often natural to expect that the random fluctuations around this function
f(t) asymptotically form a Gaussian process G(t); this is then a second or-
der term of smaller order as in our Theorem 1.5. If we assume that f is
continuous on I and has a unique maximum at a point t0 ∈ I, then the
maximum of the process Xn(t) is attained close to t0, so the first order ap-
proximation of the maximum is the constant f(t0) = maxt f(t), while the
next approximation is just Xn(t0), giving a normal limit law as in our Theo-
rem 1.2. The Gaussian fluctuations in this limit have mean 0, so in order to
find the next term for the mean EX∗

n, we study more closely the difference
maxtXn(t) −Xn(t0) by studying the difference Xn(t) −Xn(t0) close to t0.
Assuming that t0 is an interior point of I and that f is twice differentiable
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at t0 with f ′′(t0) 6= 0, we can locally at t0 approximate f by a parabola
and G(t)−G(t0) by a two-sided Brownian motion (with some scaling), and
thus maxtXn(t) − Xn(t0) is approximated by a scaling constant times the
variable V above, see Barbour [2] and, in our case, Corollary 4.5 below. In
the typical case where the mean of Xn(t) is of order n and the Gaussian
fluctuations are of order n1/2, it is easily seen that the correct scaling gives,
as in Theorem 1.3 above, a correction to EX∗

n of order n1/3, see [2, 5, 6] and
Section 6.

The method used in the present paper is a simple adaption of the method
used in [13] and [14] to study the number of subgraphs of a given isomor-
phism type in a random graph. These papers study the random graphs
G(n, p) and G(n,m) that can be constructed by random deletion of edges
in the complete graph Kn (with the deletions being independent for G(n, p)
and such that a fixed number of edges are deleted for G(n,m)). The method
applies more generally to random graphs constructed by random edge dele-
tions in these ways from any fixed initial graph Fn. The problem treated in
this paper can be regarded as an instance of this when the initial graph is
the path Pn with n edges. In particular, Theorem 1.2 corresponds to [14,
Theorem 24], which gives the asymptotic distribution of the maximum num-
ber of induced subgraphs of a given type during the evolution of G(n, p) or
G(n,m); see also [14, Theorem 33] (isolated edges) and [14, Theorem 17] (a
general result) for related results. Conversely, we expect that these results
for random graphs can be complemented by the analogues of Theorem 1.3
above, using the method of proof in the present paper, but we have not
verified the details.

Our method applies also to other problems. First, let X(1)
n,m be the number

of piles with a single exam (runs with a single 1) in the process studied above.
Then we obtain similar results for the maximum X

(1)∗
n := maxmX

(1)
n,m, see

Section 7. The same applies to the number X(d)
n,m of piles with any other

fixed number d of exams (runs of a fixed length d).
Another example is given by priority queues, where Louchard [19] and

Louchard, Kenyon and Schott [21] have proved asymptotic results very sim-
ilar to the Theorems 1.2–1.5 above, see Section 8 for details. In particular,
they found the same asymptotic covariance (1.6) except for a normaliz-
ing constant. (See also Flajolet, Françon and Vuillemin [8] and Flajolet,
Puech and Vuillemin [9] for combinatorial results on generating functions
involving Hermite polynomials; these results, however, do not easily yield
asymptotics.)

Priority queues can be defined as follows. Suppose that n items are to
be temporarily stored (or processed); let item i arrive at time Ai and be
deleted at time Di. We assume that the 2n times Ai and Di are distinct;
thus they can be arranged in a sequence of the 2n events Ai and Di, with Ai

coming before Di for each i. We assume further, as our probabilistic model,
that all (2n)!/2n such sequences are equally probable. Ignoring the labels,
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we can equivalently consider sequences of n A and n D (or n + and n −),
where each A is paired with a D coming later; there is a 1–1 correspondence
between such sequences and pairings of 1, . . . , 2n into n pairs, and there are
(2n − 1)!! = (2n)!/(2nn!) such sequences (with pairings), again taken with
equal probability.

Let, for m = 0, . . . , 2n, Yn,m be the number of items stored after m of
these events, i.e. the number of A’s minus the number of D’s among the
m first events, and let Y ∗

n := max0≤m≤2n Yn,m. The sequence (Yn,m)2n
0

is a Dyck path, but note that its distribution is not uniform; for a given
Dyck path (or a given sequence of A and D without labels), the number
of ways to pair a given D with a preceding A, i.e. the number of ways
to choose which item to delete, equals the current number of items stored
before this deletion. Thus, the weight of the Dyck path equals the product
of these numbers

∏
m:Yn,m+1<Yn,m

Yn,m. Alternatively, which better explains
the name priority queue, we can keep the stored items in a list showing the
order in which they eventually will be deleted; then there is only one choice
for each deletion but each new item can be inserted in Y +1 ways if there are
Y items stored before the insertion, and thus Y +1 after it; hence the weight
can also be written as

∏
m:Yn,m>Yn,m−1

Yn,m. (It is easily to see directly that
the two products are equal.)

An equivalent example is sock-sorting, studied by Li and Pritchard [18]
and Steinsaltz [23]. Suppose that we have 2n socks; the socks form n pairs
with the two socks in each pair identical but different from all others. All
socks are mixed and we pick them in random order. If the picked sock is
from a pair that we have not yet seen, it is put put on a bench; on the other
hand, if we already have picked the other sock in the pair, that sock is taken
from the bench, paired with its twin, and put away in permanent storage.
What is the maximum number of socks on the bench? It is easily seen that
this is equivalent to a priority queue.

We will in Section 8 show how our method applies to priority queues and
socks, and explain why we obtain the same asymptotic results as for Xn,m

and X∗
n. (Note that there is no exact correspondence for finite n, since the

natural sample spaces have n! elements for Xn,m but (2n− 1)!! elements for
Yn,m.) Again, we can regard the problem as an instance of subgraph counts
for randomly deleting edges from a given initial graph Fn; in this case taking
Fn to be a multigraph consisting of n double edges.

Yet another example is a model suggested by Van Wyk and Vitter [25] as
a model for hashing with lazy deletion, and further studied by Louchard [20]
and Louchard, Kenyon and Schott [21]. In this model, n item arrives and
are deleted as above, but now the arrival and deletion times Ai and Di are
random numbers, with the n pairs (Ai, Di) mutually independent and each
pair distributed as (Ti∧ T̃i, Ti∨ T̃i), where Ti and T̃i are independent random
variables uniformly distributed on [0,1]. (We use ∧ and ∨ as notations for
min and max of two numbers.) We let Yn(t) be the number of items present



SORTING BY SUBINTERVALS AND THE MAXIMUM NUMBER OF RUNS 7

at time t, and again we are especially interested in its maximum maxt Yn(t).
Again, the asymptotic results for the maximum found by Louchard, Kenyon
and Schott [21] are the same as in our Theorems 1.2 and 1.3, except for a
constant factor, while the asymptotic result for the process Yn(t) found by
Louchard [20] differs somewhat from the one in Theorem 1.5, it corresponds
instead to the one in Corollary 4.2 below; see Section 8. Indeed, as explained
by Kenyon and Vitter [17], see also Section 8, this model can be seen as
a priority queue with randomized times for insertions and deletions, which
explains why the results for the maximum are the same as for priority queues.

We assume in the sequel that n ≥ 2, to avoid some trivialities. All
unspecified limits are as n→∞. We use the standard notations

p−→ and
d−→ for convergence in probability and distribution, respectively, of random

variables, and a.s. for almost surely, i.e. with probability 1.

2. Randomizing time

We will use the standard method of randomizing the time. More pre-
cisely, we let T1, . . . , Tn be independent random variables, each uniformly
distributed on (0, 1). We interpret Tk as the time item k arrives, and note
that a.s. there are no ties. We define

I(t; k) = 1[Tk ≤ t],

i.e., I(t; k) = 1 if item k has arrived by time t. We further define Nn(t) as
the number of items that have arrived at time t, and Xn(t) as the number
of runs of 1’s at time t, i.e., cf. (1.1),

Nn(t) =
n∑

k=1

I(t; k), (2.1)

Xn(t) = I(t; 1) +
n−1∑
k=1

(
1− I(t; k)

)
I(t; k + 1) (2.2)

= Nn(t)−
n−1∑
k=1

I(t; k)I(t; k + 1). (2.3)

Clearly, the items arrive in random order, so the process remains the
same except that the insertions occur at the random times T(n;1), . . . , T(n;n),
where T(n;j) is the j:th order statistic of T1, . . . , Tn. We thus have In,m(k) =
I(T(n;m); k) and Xn(t) = Xn,m when T(n;m) ≤ t < T(n;m+1) (with T(n;0) := 0
and T(n;n+1) := 1 for convenience). In particular,

X∗
n = max

0≤t≤1
Xn(t). (2.4)

Note that Xn(0) = Xn,0 = 0 and Xn(1) = Xn,n = 1.
The importance of this randomization is that the variables I(t; k), k =

1, . . . , n, are independent (both for a fixed t and as stochastic processes, i.e.
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as random functions of t). For every n, k and t ∈ [0, 1],

P
(
I(t; k) = 1

)
= P(Tk ≤ t) = t, (2.5)

i.e. I(t; k) has the Bernoulli distribution Be(t). Xn(t) thus is the number of
runs of 1 in a sequence of independent 0’s and 1’s, each with the distribution
Be(t). Furthermore, the number of items sorted at time t is Nn(t) ∼ Bi(n, t).

Define further, for 0 ≤ t ≤ 1, the centralized variables

I ′(t; k) := I(t; k)− E I(t; k) = I(t; k)− t (2.6)

and the sums

Sn,1(t) :=
n∑

k=1

I ′(t; k) = Nn(t)− ENn(t) = Nn(t)− nt, (2.7)

Sn,2(t) :=
n−1∑
k=1

I ′(t; k)I ′(t; k + 1). (2.8)

Thus Sn,1(0) = Sn,2(0) = Sn,1(1) = Sn,2(1) = 0 and ESn,1(t) = ESn,2(t) =
0 for all t ∈ [0, 1]. We have

Nn(t) =
n∑

k=1

(
I ′(t; k) + t

)
= Sn,1(t) + nt, (2.9)

n−1∑
k=1

I(t; k)I(t; k + 1) =
n−1∑
k=1

(
I ′(t; k) + t

)(
I ′(t; k + 1) + t

)
= Sn,2(t) + t

(
2Sn,1(t)− I ′(t; 1)− I ′(t;n)

)
+ (n− 1)t2,

and thus from (2.3) the representation

Xn(t) = n(t− t2) + t2 + (1− 2t)Sn,1(t)− Sn,2(t) + tI ′(t; 1) + tI ′(t;n)

= nt(1− t) + (1− 2t)Sn,1(t)− Sn,2(t) +Rn(t), (2.10)

where Rn(t) := t2 + tI ′(t; 1) + tI ′(t;n) and thus |Rn(t)| ≤ 3.
We will in Section 4 study the asymptotic distribution of the stochastic

processes (i.e., random functions) Sn,1(t) and Sn,2(t); our main results then
follow easily from (2.4) and (2.10).

Note that for any fixed t, the variables I ′(t; k) are independent and have
means 0; hence the terms in the sums in (2.7) and (2.8) have means and
all covariances 0. (They are thus orthogonal in L2.) It follows immediately
that

Var (Sn,1(t)) = nE
(
I ′(t; 1)

)2 = nVar
(
I(t; 1)

)
= nt(1− t), (2.11)

Var (Sn,2(t)) = (n− 1) E
(
I ′(t; 1)I ′(t; 2)

)2 = (n− 1)
(
Var

(
I(t; 1)

))2

= (n− 1)t2(1− t)2, (2.12)

Cov
(
Sn,1(t), Sn,2(t)

)
= 0. (2.13)
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3. Exact results

We first give some exact results for finite n. It is easy to find the exact
distribution of Xn,m for given n and m, see for example Stevens [24] or
Mood [22]. For m ≥ 1 and k ≥ 1 we have Xn,m = k if there are k runs of
1’s separated by k − 1 runs of 0’s and possibly preceded and/or succeeded
by additional runs of 0’s. Considering the bivariate generating function for
such sequences of arbitrary length, we easily find

P(Xn,m = k) = [xmyn−m]
( x

1− x

)k( y

1− y

)k−1( 1
1− y

)2

= [xm−kyn−m−k+1](1− x)−k(1− y)−k−1

=
(
m− 1
k − 1

)(
n−m+ 1

k

)
.

The mean can be computed from this [22], [1], but simpler from (1.1):

EXn,m = m−
n−1∑
k=1

E
(
In,m(k)In,m(k + 1)

)
= m− (n− 1)

m(m− 1)
n(n− 1)

=
m(n−m+ 1)

n
. (3.1)

A similar computation of the variance yields, omitting the details,

VarXn,m =
m(m− 1)(n−m)(n−m+ 1)

n2(n− 1)
.

If we instead randomize the insertion times as in Section 2 and consider
the process at a fixed time t, we have by (2.2), (2.5) and the independence
of I(t; k) for k = 1, . . . , n,

EXn(t) = t+
n−1∑
k=1

(1− t)t = nt(1− t) + t2. (3.2)

Similarly, using (2.2), again omitting details,

VarXn(t) = nt(1− t)(1− 3t+ 3t2) + t2(1− t)(3− 5t). (3.3)

To find the exact distribution of X∗
n seems much more complicated. Exact

values of P(X∗
n = h) are easily calculated for small n, see af Hällström [1],

but we do not know any general formula. It would be interesting to find
such a formula by combinatorial methods.

4. The asymptotic distribution of Sn,1(t) and Sn,2(t)

To state our results on the asymptotic distribution of the stochastic pro-
cesses Sn,1(t) and Sn,2(t), we need a suitable topological space of functions.
We use, for an interval I ⊆ R, the standard space D(I) of right-continuous
functions on I that have left-hand limits, equipped with the Skorohod topol-
ogy. For a precise definition of this (metrizable) topology, see e.g. Billingsley



10 SVANTE JANSON

[4] (I = [0, 1]), Jacod and Shiryaev [12] (I = [0,∞)), Kallenberg [16, Ap-
pendix A.2] (I = [0,∞)), or Janson [14]. For our purposes it is sufficient to
know that if f is continuous on I, then fn → f in D(I) if and only if fn → f
uniformly on every compact subinterval. In particular, if I is compact, for
example I = [0, 1], and f is continuous on I, then fn → f in D(I) if and
only if fn → f uniformly.

Our main result on the asymptotic global behaviour of Sn,1(t) and Sn,2(t)
then can be stated as follows.

Theorem 4.1. As n→∞, in D[0, 1],

n−1/2Sn,1(t)
d−→ Z1(t), (4.1)

n−1/2Sn,2(t)
d−→ Z2(t), (4.2)

jointly, where Z1 and Z2 are two independent continuous Gaussian processes
on [0, 1] with means EZ1(t) = EZ2(t) = 0 and covariances

E
(
Z1(s)Z1(t)

)
= s(1− t), 0 ≤ s ≤ t ≤ 1, (4.3)

E
(
Z2(s)Z2(t)

)
= s2(1− t)2, 0 ≤ s ≤ t ≤ 1. (4.4)

Thus, Z1 is a standard Brownian bridge, and the limit (4.1) is just the
well-known theorem that the empirical distribution function asymptotically
is distributed as a Brownian bridge, see e.g. Billingsley [4, Theorem 16.4].

The proof of Theorem 4.1, and of all other results in this section, are
postponed to Section 6.

Using (2.10), Theorem 4.1 yields the asymptotic distribution of the pro-
cess Xn(t).

Corollary 4.2. As n→∞, in D[0, 1],

n−1/2
(
Xn(t)− nt(1− t)

) d−→ Z(t), (4.5)

where Z is a continuous Gaussian process on [0, 1] with mean EZ(t) = 0
and covariances, for 0 ≤ s ≤ t ≤ 1,

E
(
Z(s)Z(t)

)
= s(1− 2s)(1− t)(1− 2t) + s2(1− t)2 (4.6)

= s(1− t)(1− s− 2t+ 3st). (4.7)

In particular, this implies the limit (4.5) for each fixed t, with Var(Z(t)) =
t(1− t)(1− 3t+ 3t2), which also follows more easily from (2.2), (3.2), (3.3)
and the Central Limit Theorem for 1-dependent sequences.

These results are stated using the randomized insertions described in Sec-
tion 2. We can also return to the original deterministic insertion times and
obtain asymptotics of the discrete process (Xn,m)n

m=0, which yields Theo-
rem 1.5 stated in the introduction. Note that the limit processes in Theo-
rem 1.5 and Corollary 4.2 are different, due to the additional random vari-
ation introduced when randomizing the time. (The variance of the limit in
Theorem 1.5 is strictly smaller than in Corollary 4.2 at every t /∈ {0, 1

2 , 1}.)
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We will also need a moment estimate. It is easy to see that n1/2Sn,i(t) has
moments that are bounded as n→∞, for every fixed t ∈ [0, 1]. We extend
that to the supremum over all t.

Theorem 4.3. Let S∗n,i := sup0≤t≤1 |Sn,i(t)| for i = 1, 2. Then, for each
fixed r > 0, E

(
S∗n,i

)r = O(nr/2).

We are primarily interested in the maximum X∗
n of Xn(t). It is evident

from Corollary 4.2 that the maximum is attained close to the maximum
point of t(1− t), i.e., close to t = 1/2. We use a magnifying glass and study
the processes close to t = 1/2 in greater detail. The correct scaling turns
out to be t = 1

2 + xn−1/3, and we have the following asymptotic behaviour
on that scale.

Theorem 4.4. As n→∞, in D(−∞,∞),

n−1/3
(
Sn,1(1

2 + xn−1/3)− Sn,1(1
2)

) d−→ B1(x), (4.8)

n−1/3
(
Sn,2(1

2 + xn−1/3)− Sn,2(1
2)

) d−→ 2−1/2B2(x), (4.9)

jointly, where B1 and B2 are two independent Brownian motions on (−∞,∞).
Furthermore, for any fixed A <∞ and i = 1, 2,

E max
|x|≤A

(
Sn,i(1

2 + xn−1/3)− Sn,i(1
2)

)2
= O(n2/3). (4.10)

Corollary 4.5. As n→∞, in D(−∞,∞),

n−1/3
(
Xn(1

2 + xn−1/3)−Xn(1
2)

) d−→ 2−1/2B(x)− x2, (4.11)

where B is a Brownian motion on (−∞,∞).

5. time-reversal

In the proofs below, we will introduce factors that blow up at the endpoint
t = 1. To see that there is no real problem at this endpoint, we will use
a time reversal trick which enables us to transfer results from the other
endpoint.

If we replace each Tk by 1−Tk, which of course has the same distribution,
then I(t; k) becomes 1− I(1− t; k), except at the jump point, and thus, see
(2.6)–(2.8), I ′(t; k) becomes −I ′(1−t; k) and Sn,i(t) becomes (−1)iSn,i(1−t),
again excepting the jump points. To be precise, let for a function f on [0, 1],
f(t−) := lims↑t f(s) (when this exists), with f(0−) := f(0). Then Sn,i(t)
becomes (−1)iSn,i((1− t)−) under this time-reversal, and thus

Sn,i(t)
d= (−1)iSn,i((1− t)−), (5.1)

as functions in D[0, 1] and jointly for i = 1, 2.
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6. Proofs

The proofs are based on martingale theory, in particular a continuous
time martingale limit theorem by Jacod and Shiryaev [12]. We will use
the quadratic variation [X,X]t of a martingale X (in continuous time) and
its bilinear extension [X,Y ]t to two martingales X and Y . For a general
definition see e.g. [12]; for us it will suffice to know that, if X and Y are
martingales of pathwise finite variation, then

[X,Y ]t =
∑

0<s≤t

∆X(s)∆Y (s), (6.1)

where ∆X(s) := X(s) − X(s−) is the jump of X at s and, similarly,
∆Y (s) := Y (s) − Y (s−). The sum in (6.1) is formally uncountable, but
in reality countable since there is only a countable number of jumps; in the
applications below, the sum will be finite.

A real-valued martingale X(s) on [0, t] is an L2-martingale if and only if
E[X,X]t <∞ and E |X(0)|2 <∞, and then

E |X(t)|2 = E[X,X]t + E |X(0)|2. (6.2)

We will use the following general result based on [12]; see [15, Proposition
9.1] for a detailed proof (for I = [0,∞); the general case is the same). (See
also [13] and [14] for similar versions).

Proposition 6.1. Let I = [a, b] or I = [a, b), with −∞ < a < b ≤ ∞.
Assume that for each n, Mn(t) = (Mni(t))

q
i=1 is a q-dimensional martingale

on I with Mn(a) = 0, and that Σ(t) = (Σij(t))
q
i,j=1 is a (non-random)

continuous matrix-valued function on I such that for every fixed t ∈ I and
i, j = 1, . . . , q,

[Mni,Mnj ]t
p−→ Σij(t) as n→∞, (6.3)

sup
n

E[Mni,Mni]t <∞. (6.4)

Then Mn
d−→ M∞ as n → ∞, in D(I), where M∞ = (M∞i)

q
i=1 is a

continuous q-dimensional Gaussian martingale with EM∞(t) = 0 and co-
variances

E
(
M∞i(s)M∞j(t)

)
= Σij(s ∧ t), s, t ∈ I.

In other words, the components Mni(t) converge jointly to M∞i(t) in D(I).

Remark 6.2. By (6.2), (6.4) is equivalent to supn E |Mn(t)|2 < ∞, the
form used in e.g. [15].
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Proof of Theorem 4.1. We first construct martingales from Sn,1(t) and Sn,2(t).
We define, for 0 ≤ t < 1,

Î(t; k) :=
I ′(t; k)
1− t

=

{
1, I(t; k) = 1,
−t/(1− t), I(t; k) = 0;

Ŝn,1(t) :=
n∑

k=1

Î(t; k) = (1− t)−1Sn,1(t); (6.5)

Ŝn,2(t) :=
n−1∑
k=1

Î(t; k)Î(t; k + 1) = (1− t)−2Sn,2(t). (6.6)

We have E Î(t; k) = 0 and

E
(
Î(t; k)2

)
= Var

(
Î(t; k)

)
= (1− t)−2 Var

(
I(t; k)

)
=

t

1− t
. (6.7)

It is easily checked that each Î(t; k) is a martingale on [0, 1) [14, Lemma
2.1]; since these martingales for different k are independent, the products
Î(t; k)Î(t; k + 1) are martingales too, and thus Ŝn,1(t) and Ŝn,2(t) are mar-
tingales on [0, 1) with Ŝn,1(0) = Ŝn,2(0) = 0. To calculate their quadratic
variations and covariation, note that ∆Î(t; k) = (1− t)−1 when t = Tk and
0 otherwise. Further, with Î(t; 0) := Î(t;n+ 1) := 0,

∆Ŝn,1(t) =
n∑

k=1

∆Î(t; k),

∆Ŝn,2(t) =
n∑

k=1

∆Î(t; k)
(
Î(t; k − 1) + Î(t; k + 1)

)
,

and thus

[Ŝn,1, Ŝn,1]t =
∑
s≤t

n∑
k=1

∣∣∆Î(s; k)∣∣2 =
n∑

k=1

1
(1− Tk)2

1[Tk ≤ t], (6.8)

[Ŝn,1, Ŝn,2]t =
∑
s≤t

n∑
k=1

∣∣∆Î(s; k)∣∣2(Î(s; k − 1) + Î(s; k + 1)
)

=
n∑

k=1

1
(1− Tk)2

(
Î(Tk; k − 1) + Î(Tk; k + 1)

)
1[Tk ≤ t], (6.9)

[Ŝn,2, Ŝn,2]t =
∑
s≤t

n∑
k=1

∣∣∆Î(s; k)∣∣2(Î(s; k − 1) + Î(s; k + 1)
)2

=
n∑

k=1

1
(1− Tk)2

(
Î(Tk; k − 1) + Î(Tk; k + 1)

)21[Tk ≤ t]. (6.10)
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Hence, since the Tk are independent and uniformly distributed on [0,1],
and using (6.7),

E[Ŝn,1, Ŝn,1]t = n

∫ t

0

ds
(1− s)2

= n

[
1

1− s

]t

0

= n
t

1− t
, (6.11)

E[Ŝn,1, Ŝn,2]t =
n∑

k=1

∫ t

0

ds
(1− s)2

E
(
Î(s; k − 1) + Î(s; k + 1)

)
= 0, (6.12)

E[Ŝn,2, Ŝn,2]t =
n∑

k=1

∫ t

0

ds
(1− s)2

E
(
Î(s; k − 1) + Î(s; k + 1)

)2

= ((n− 2) · 2 + 2 · 1)
∫ t

0

ds
(1− s)2

s

1− s
= (n− 1)

t2

(1− t)2
(6.13)

(Indeed, these formulas also follow directly from (2.11)–(2.13) by (6.5), (6.6)
and (6.2) together with its polarized version for two martingales.)

Moreover, the k:th and l:th terms in the sums in (6.8)–(6.10) are indepen-
dent when |k− l| > 2, and each term is O

(
(1−t)−2

)
. Hence, for i, j ∈ {1, 2},

Var
(
[Ŝn,i, Ŝn,j ]t

)
= O

(
n(1− t)−4

)
. (6.14)

Define now, for i = 1, 2 and 0 ≤ t < 1,

S̃n,i(t) := n−1/2Ŝn,i(t). (6.15)

By (6.11)–(6.14), for every fixed t ∈ [0, 1),

[S̃n,1, S̃n,1]t
p−→ t

1− t
,

[S̃n,1, S̃n,2]t
p−→ 0,

[S̃n,2, S̃n,2]t
p−→ t2

(1− t)2
.

Proposition 6.1 thus applies with I = [0, 1), with (6.4) verified by (6.15),
(6.11) and (6.13), which shows that

n−1/2Ŝn,i(t) = S̃n,i(t)
d−→ Ẑi(t), i = 1, 2, (6.16)

jointly in D[0, 1), where Ẑ1(t) and Ẑ2(t) are continuous Gaussian processes
on [0, 1) with means 0 and covariances, for 0 ≤ s ≤ t < 1,

E
(
Ẑ1(s)Ẑ1(t)

)
=

s

1− s
, (6.17)

E
(
Ẑ1(s)Ẑ2(t)

)
= 0, (6.18)

E
(
Ẑ2(s)Ẑ2(t)

)
=

s2

(1− s)2
. (6.19)

Note that (6.18) implies that Ẑ1 and Ẑ2 are independent.
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We define Zi(t) := (1 − t)iẐi(t) for t ∈ [0, 1), and Zi(1) := 0. Then
(6.16) implies, by (6.5) and (6.6), that (4.1) and (4.2) hold jointly in D[0, 1).
Furthermore, (6.17)–(6.19) imply that Z1 and Z2 have the covariances (4.3)
and (4.4).

It remains to extend this from [0, 1) to [0, 1]. We use the time-reversal
trick in Section 5 and have by (5.1) and the result just shown

n−1/2Sn,i((1− t)−) d= (−1)in−1/2Sn,i(t)
d−→ (−1)iZi(t)

d= Zi(t)

in D[0, 1), and thus n−1/2Sn,i(t)
d−→ Zi(1− t) in D(0, 1]. Clearly Zi(1− t)

d=
Zi(t), as processes on [0, 1]; since Zi is continuous on [0, 1), this implies
continuity at 1 too, and thus Zi is continuous on [0,1]. We have shown that
the limits (4.1) and (4.2) hold (jointly) in both D[0, 1) and D(0, 1], which
easily implies that they hold in D[0, 1] too, see e.g. [14, Lemma 2.3]. �

Proof of Corollary 4.2. Immediate by Theorem 4.1 and (2.10), with the
limit Z(t) := (1 − 2t)Z1(t) − Z2(t), since n−1/2Rn(t) → 0 uniformly. The
covariances (4.6)–(4.7) of Z(t) follow from (4.3), (4.4) and the independence
of Z1 and Z2. �

Proof of Theorem 4.3. By Hölder’s inequality, it suffices to prove the result
when r is an even integer. Since S∗n,i ≤ sup0≤t≤1/2 |Sn,i(t)|+sup1/2≤t≤1 |Sn,i(t)|
and the time-reversal symmetry (5.1) implies

sup
1/2≤t≤1

|Sn,i(t)|
d= sup

0≤t≤1/2
|Sn,i(t)| , (6.20)

it is sufficient to consider sup0≤t≤1/2 |Sn,i(t)|. Moreover, |Sn,i(t)| ≤
∣∣Ŝn,i(t)

∣∣,
and by Doob’s maximal inequality for martingales, see e.g. [16, Proposition
7.16],

E
(

sup
0≤t≤1/2

|Sn,i(t)|
)r
≤ E

(
sup

0≤t≤1/2

∣∣∣Ŝn,i(t)
∣∣∣)r

≤ Cr E
(∣∣∣Ŝn,i(1

2)
∣∣∣)r

, (6.21)

for some constant Cr (= (r/(r − 1))r).
Finally, Ŝn,1(1

2) is the sum of n independent random variables Î(1
2 ; k),

each with values ±1 and mean 0, and it is easily verified that, with r = 2`,

E
(∣∣∣Ŝn,i(1

2)
∣∣∣)r

= O(n`) = O(nr/2). (6.22)

Similarly, Ŝn,2(1
2) is the sum of the n − 1 random variables Î(1

2 ; k)Î(1
2 ; k +

1); these variables too have values ±1 and mean 0; moreover, it is easily
verified that they too are independent. Hence Ŝn,2(1

2) d= Sn−1,1(1
2), and

(6.22) implies the same estimate for Ŝn,2(1
2) too.

The result follows by this, (6.21) and (6.20). �

Proof of Theorem 1.2. We claim that Corollary 4.2 implies that

n−1/2
(

max
0≤t≤1

Xn(t)− 1
4n

)
d−→ Z(1

2) := −Z2(1
2), (6.23)
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which gives (1.3) by (4.4). (We could use Theorem 1.5 instead.) The ar-
gument was sketched in the introduction, and this is an application of [14,
Theorem 16], but for completeness we give the details in our case. We may
for simplicity use the Skorohod coupling theorem [16, Theorem 4.30], which
says that we can assume that (4.5) holds with convergence a.s. and not just
in distribution. Thus, for (almost) every point in our probability space,
n−1/2

(
Xn(t) − nt(1 − t)

)
→ Z(t) in D[0, 1], which since Z(t) is continuous

means uniform convergence on [0,1]. In other words, uniformly in t ∈ [0, 1],

Xn(t) = nt(1− t)+n1/2Z(t)+o(n1/2) = 1
4n−n(1

2 − t)
2 +n1/2Z(t)+o(n1/2).

(6.24)
In particular,

X∗
n ≥ Xn(1

2) = 1
4n+ n1/2Z(1

2) + o(n1/2). (6.25)

Conversely, (6.24) yields for |t− 1
2 | < n−1/8, since Z is continuous,

Xn(t) ≤ 1
4n+ n1/2Z(t) + o(n1/2) = 1

4n+ n1/2Z(1
2) + o(n1/2), (6.26)

and for |t− 1
2 | ≥ n−1/8, since Z is bounded,

Xn(t) ≤ 1
4n− n1−1/4 +O(n1/2) ≤ 1

4n+ n1/2Z(1
2) (6.27)

for large n. It follows from (6.25), (6.26) and (6.27) that

X∗
n = 1

4n+ n1/2Z(1
2) + o(n1/2),

and (6.23) follows.
To prove moment convergence in (1.3), it is, as is well-known, see e.g.

[11, Theorems 5.4.2 and 5.5.9], enough to prove that for each fixed r > 0,
the r:th absolute moment of the left hand side is bounded, as n→∞. By
(2.10),∣∣X∗

n − 1
4n

∣∣ =
∣∣sup

t
Xn(t)− sup

t
nt(1− t)

∣∣ ≤ sup
t

∣∣Xn(t)− nt(1− t)
∣∣

≤ S∗n,1 + S∗n,2 + 3,

and the required estimate follows by Theorem 4.3. �

Proof of Theorem 1.5. Recall the order statistics T(n;m) from Section 2. Since
Xn,m = Xn(T(n;m)), we are studying the process Xn,bntc = Xn(T(n;bntc)).
The idea of the proof is to use the functional limit results just shown and
replace t by the random time T(n;bntc). Note first that Nn(T(n;m)) = m and
thus

Nn(T(n;bntc)) = bntc = nt+O(1). (6.28)

By (2.7),

sup
0≤m≤n

∣∣Nn(T(n;m))/n− T(n;m)

∣∣ ≤ sup
0≤t≤1

∣∣Nn(t)/n− t
∣∣ = sup

0≤t≤1

∣∣n−1Sn,1(t)
∣∣

= n−1S∗n,1, (6.29)
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which by (4.1) (or Theorem 4.3, or the Glivenko–Cantelli theorem [16,
Proposition 4.24]) tends to 0 in probability. Thus, by (6.28),

sup
0≤t≤1

∣∣t− T(n;bntc)
∣∣ ≤ sup

0≤t≤1

∣∣Nn(T(n;bntc))/n− T(n;bntc)
∣∣ + n−1 p−→ 0. (6.30)

The proof of Corollary 4.2 shows that (4.5) holds jointly with (4.1) and
(4.2), with Z(t) = (1− 2t)Z1(t)− Z2(t). Furthermore, by (2.7), Nn(t)/n =
t+ Sn,1(t)/n, and a Taylor expansion of the function t 7→ nt(1− t) yields

Nn(t)
(
1−Nn(t)/n

)
= nt(1− t) + (1− 2t)Sn,1(t)− Sn,1(t)2/n.

Consequently, by (4.1), in D[0, 1], still jointly with (4.5),

n−1/2
(
Nn(t)

(
1−Nn(t)/n

)
− nt(1− t)

)
d−→ (1− 2t)Z1(t),

and subtracting this from (4.5) yields

n−1/2
(
Xn(t)−Nn(t)

(
1−Nn(t)/n

)
)
)

d−→ Z(t)− (1− 2t)Z1(t) = −Z2(t).
(6.31)

Because (6.30) holds and Z2(t) is continuous, we may replace t by T(n;bntc)
on the left hand side; for a formal verification of this we may again use the
Skorohod coupling theorem [16, Theorem 4.30] and thus assume that (6.30)
and (6.31) hold a.s., i.e. that the functions in (6.30) and (6.31) converge
uniformly on [0,1] to their limits. Consequently,

n−1/2
(
Xn,bntc −Nn(T(n;bntc))

(
1−Nn(T(n;bntc))/n

)) d−→ −Z2(t), (6.32)

which by (6.28) yields (1.5) with Z(t) = −Z2(t). �

The fact that the terms with Sn,1 cancel in the proof above is no coinci-
dence. Sn,1 measures by (2.7) the random fluctuations introduced by used
random insertion times Tk, and it is very intuitive that this term will appear
in the limits for Xn(t) but not for Xn,m. A theorem verifying that this can-
cellation happens in general in a situation closely related to the one studied
here is given in [14, Theorem 7].

Proof of Theorem 4.4. Fix A > 0, and define for n > (2A)3 and x ∈ [0, 2A],

Wn,i(x) := Ŝn,i

(
1
2 + (x−A)n−1/3

)
− Ŝn,i

(
1
2 −An−1/3

)
. (6.33)

Then Wn,i is a martingale on [0, 2A] with Wn,i(0) = 0, and its quadratic
variation is by (6.1)

[Wn,i,Wn,i]x = [Ŝn,i, Ŝn,i] 1
2
+(x−A)n−1/3 − [Ŝn,i, Ŝn,i] 1

2
−An−1/3 . (6.34)
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Hence, by (6.11)–(6.13), for 0 ≤ x ≤ 2A,

E[Wn,1,Wn,1]x = n

∫ 1
2
+(x−A)n−1/3

1
2
−An−1/3

ds
(1− s)2

= n2/3x(4 +O(n−1/3)), (6.35)

E[Wn,1,Wn,2]x = 0, (6.36)

E[Wn,2,Wn,2]x = (2n− 2)
∫ 1

2
+(x−A)n−1/3

1
2
−An−1/3

sds
(1− s)3

= 2n2/3x(4 +O(n−1/3)).

(6.37)

Moreover, by (6.34) and (6.14), for n > (4A)3, say,

Var[Wn,i,Wn,j ]x = O(n).

Consequently, Proposition 6.1 applies to n−1/3Wn,i, and shows that inD[0, 2A]
and jointly for i = 1, 2,

n−1/3Wn,i(x)
d−→Wi(x), (6.38)

whereW1 andW2 are independent Gaussian stochastic processes with means
0 and

E
(
W1(x)W1(y)

)
= 4x, E

(
W2(x)W2(y)

)
= 8x, 0 ≤ x ≤ y ≤ 2A.

In other words, W1(x) = 2B1(x) and W2(x) =
√

8B2(x), where B1 and
B2 are independent Brownian motions on [0, 2A]. We may assume that B1

and B2 actually are independent two-sided Brownian motions defined on
the entire real line. Note that Bi(x+ A)− Bi(A) d= Bi(x) (as processes on
R). Hence we can make a translation and obtain from (6.33) and (6.38), in
D[−A,A] and jointly for i = 1, 2,

n−1/3
(
Ŝn,i

(
1
2 + xn−1/3

)
− Ŝn,i

(
1
2

))
= n−1/3

(
Wn,i(x+A)−Wn,i(A)

)
d−→ 2(i+1)/2

(
Bi(x+A)−Bi(A)

) d= 2(i+1)/2Bi(x). (6.39)

By (6.5) and (6.6) we further have, uniformly for n > (4A)3 and x ∈
[−A,A],

Sn,i

(
1
2 + xn−1/3

)
− Sn,i

(
1
2

)
= (1

2 − xn−1/3)iŜn,i

(
1
2 + xn−1/3

)
− (1

2)iŜn,i

(
1
2

)
= 2−i

(
Ŝn,i

(
1
2 + xn−1/3

)
− Ŝn,i

(
1
2

))
+O(n−1/3S∗n,i).

(6.40)

and thus, using (6.39) and Theorem 4.3, in D[−A,A] and jointly for i = 1, 2,

n−1/3
(
Sn,i

(
1
2 + xn−1/3

)
− Sn,i

(
1
2

)) d−→ 2−i2(i+1)/2Bi(x) = 2(1−i)/2Bi(x).

Since convergence in D[−A,A] for every A > 0 implies convergence in
D(−∞,∞), this proves (4.8) and (4.9).
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For the second moment estimate (4.10), we first note that (6.2), (6.35)
and (6.37) show that, for each fixed A,

E |Wn,i(2A)|2 = E[Wn,i,Wn,i]2A = O(n2/3), (6.41)

and thus by Doob’s maximal inequality [16, Proposition 7.16],

E
(

max
0≤x≤2A

|Wn,i(x)|2
)

= O(n2/3).

Hence, by (6.33) and translation again,

E max
|x|≤A

∣∣Ŝn,i

(
1
2 + xn−1/3

)
− Ŝn,i

(
1
2

)∣∣2 = E max
|x|≤A

∣∣Wn,i(x+A)−Wn,i(A)
∣∣2

≤ 4 E max
0≤x≤2A

∣∣Wn,i(x)
∣∣2 = O(n2/3),

and (4.10) follows by (6.40) and Theorem 4.3. �

Remark 6.3. We can extend (4.10) to arbitrary powers r > 0, with the
estimateO(nr/3), by the argument above with the Burkholder–Davis–Gundy
inequalities [16, Theorem 26.12] replacing (6.41); we omit the details.

To study Xn(t) close to t = 1/2, we rewrite (2.10) as, for |x| ≤ 1/2,

Xn

(
1
2 + x

)
= 1

4n− nx
2 − 2xSn,1

(
1
2 + x

)
− Sn,2

(
1
2 + x

)
+Rn

(
1
2 + x

)
. (6.42)

Hence, still for |x| ≤ 1/2,

Xn

(
1
2 + x

)
−Xn

(
1
2

)
= −nx2 − 2xSn,1

(
1
2 + x

)
−

(
Sn,2

(
1
2 + x

)
− Sn,2

(
1
2

))
+Rn

(
1
2 + x

)
−Rn

(
1
2

)
(6.43)

and thus, for |x| ≤ n1/3/2, recalling |Rn(t)| ≤ 3,

n−1/3
(
Xn

(
1
2 + xn−1/3

)
−Xn

(
1
2

))
= −x2 − 2n−2/3xSn,1

(
1
2 + xn−1/3

)
− n−1/3

(
Sn,2

(
1
2 + xn−1/3

)
− Sn,2

(
1
2

))
+O

(
n−1/3

)
. (6.44)

Proof of Corollary 4.5. Fix A > 0. Then (4.11) follows in D[−A,A] by
(6.44), (4.9) and Theorem 4.3 (which implies n−2/3S∗n,i

p−→ 0), with B(x) :=
−B2(x). Since A > 0 is arbitrary, this yields convergence in D(−∞,∞). �

Let x+ := x ∨ 0.

Lemma 6.4. Let x1 > 0 and suppose that M(x) is a martingale on [0, x1]
with M(0) = 0 such that for some constant K and all x ∈ [0, x1]

VarM(x) ≤ Kx.

Then, for every a > 0 and x0 ∈ (0, x1],

E
(

max
x0≤x≤x1

(
M(x)− ax2

)
+

)
≤ 4K
ax0

.
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Proof. We may for convenience extend M to a martingale on [0,∞) by
letting M(x) := M(x1) for x > x1. Let y > 0 and t > 0. Then, by
Kolmogorov-Doob’s inequality [16, Proposition 7.16], [11, Theorem 10.9.1],

P
(

sup
x∈[y,2y]

(
M(x)− ax2

)
> t

)
≤ P

(
sup

x∈[0,2y]
M(x) > t+ ay2

)
≤ EM(2y)2

(t+ ay2)2
≤ 2Ky

(t+ ay2)2
.

Integrating with respect to t from 0 to ∞ yields

E
(

sup
x∈[y,2y]

(
M(x)− ax2

)
+

)
≤

∫ ∞

0

2Ky
(t+ ay2)2

=
2Ky
ay2

=
2K
ay

,

and the result follows by summing over y = 2kx0, k = 0, 1, . . . . �

Proof of Theorem 1.3. We begin by showing that we can replace Xn,dn/2e by
Xn(1

2) in the statement. By (6.29) and Theorem 4.3,

n1/3
∣∣Nn(T(n;dn/2e))/n− T(n;dn/2e)

∣∣ ≤ n−2/3S∗n,1
p−→ 0

and thus by (6.28)
n1/3

∣∣T(n;dn/2e) − 1
2

∣∣ p−→ 0. (6.45)
It now follows from Corollary 4.5, arguing as for (6.32) and using (6.45)
and the fact that the limit in (4.11) is continuous, that we can substitute
x = n1/3

(
T(n;dn/2e) − 1

2

)
in (4.11) and obtain

n−1/3
(
Xn,dn/2e −Xn(1

2)
)

= n−1/3
(
Xn

(
T(n;dn/2e)

)
−Xn(1

2)
) p−→ 0. (6.46)

Furthermore, by (3.1) and (3.2),

EXn,dn/2e = 1
4n+O(1) = EXn(1

2) +O(1). (6.47)

Hence, it is enough to prove Theorem 1.3 with Xn,dn/2e replaced by Xn(1
2);

we thus study

Mn := X∗
n −Xn(1

2) = max
t∈[0,1]

(
Xn(t)−Xn(1

2)
)
. (6.48)

We would like to take the supremum over all real x in (4.11), but that
is not allowed without further arguments since the supremum is not a con-
tinuous functional on D(−∞,∞) (the topology is too weak). We therefore
fix a large A > 0 and study the following five intervals separately (assuming
n > (4A)3):

I−2 := [0, 1
4 ],

I−1 := [14 ,
1
2 −An−1/3],

I0 := [12 −An−1/3, 1
2 +An−1/3],

I1 := [12 +An−1/3, 3
4 ],

I2 := [34 , 1].
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We denote further

Mn,j := max
t∈Ij

(
Xn(t)−Xn(1

2)
)
+

and have thus, since Mn ≥ 0,

Mn = max
−2≤j≤2

Mn,j ≤
2∑

j=−2

Mn,j . (6.49)

On I0 we use (4.11). Since the maximum is a continuous functional on D(I)
for any compact interval I, we obtain from (4.11) on D[−A,A] immediately

n−1/3Mn,0
d−→ VA := max

|x|≤A

(
2−1/2B(x)− x2

)
. (6.50)

Furthermore, it follows from (6.44), Theorem 4.3 and (4.10) that

E
(
n−1/3Mn,0

)2 ≤ C(A),

for some constant C(A) depending on A but not on n. Hence the random
variables n−1/3Mn,0 are uniformly integrable, and (6.50) implies, see e.g.
[11, Theorems 5.4.2 and 5.5.9],

E
(
n−1/3Mn,0

)
→ EVA. (6.51)

On I±2 we have by (6.43), with 1
4 ≤ |x| ≤ 1

2 ,

Xn

(
1
2 + x

)
−Xn

(
1
2

)
≤ −n

(
1
4

)2 + S∗n,1 + 2S∗n,2 + 6.

We use the elementary inequality, for a > 0 and b ∈ R,

−a+ b = −(a− b/2)2

a
+
b2

4a
≤ b2

4a
, (6.52)

and obtain

Mn,±2 ≤
(S∗n,1 + 2S∗n,2)

2

4n/16
+ 6 ≤ 8

(S∗n,1)
2

n
+ 32

(S∗n,2)
2

n
+ 6

and thus by Theorem 4.3

EMn,±2 = O(1). (6.53)

For I1 we define

Un(x) := −1
4

(
Ŝn,2(1

2 + x)− Ŝn,2(1
2)

)
; (6.54)

this is a martingale on [0, 1/2). For 0 ≤ x ≤ 1
4 , we have

1
4 Ŝn,2

(
1
2 + x

)
= (1− 2x)−2Sn,2

(
1
2 + x

)
=

(
1 +O(x)

)
Sn,2

(
1
2 + x

)
,
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and thus, using (6.43) and (6.52), for some constants C1, C2, . . . ,

Xn

(
1
2 + x

)
−Xn

(
1
2

)
= −nx2 − 2xSn,1

(
1
2 + x

)
+ Un(x) +O(x)Sn,2

(
1
2 + x

)
+O(1)

≤ Un(x)− 1
2nx

2 + S∗n,1 + C1S
∗
n,2 − 1

2nx
2 +O(1)

≤ Un(x)− 1
2nx

2 + C2

(S∗n,1)
2

n
+ C3

(S∗n,2)
2

n
+O(1). (6.55)

By (6.1), (6.54) and (6.13) we further have, for 0 ≤ x ≤ 1/4,

Var
(
Un(x)

)
= E[Un, Un]x = 1

16 E
(
[Ŝn,2, Ŝn,2] 1

2
+x − [Ŝn,2, Ŝn,2] 1

2

)
=

2n− 2
16

∫ 1
2
+x

1
2

s

(1− s)3
ds ≤ C4nx.

Hence, Lemma 6.4 yields, for 0 < x0 ≤ 1
4 ,

E
(

max
x0≤x≤1/4

(
Un(x)− 1

2nx
2
)
+

)
≤ C5n

nx0
=
C5

x0
.

Taking x0 = An−1/3 we thus obtain from (6.55), using Theorem 4.3 again,

EMn,1 ≤
C5

An−1/3
+O(1) =

C5

A
n1/3 +O(1). (6.56)

We obtain the same estimate for Mn,−1 by the time-reversal t 7→ 1− t and
(5.1).

By (6.49) and the estimates (6.53) for Mn,±2 and (6.56) for Mn,±1 we find

E |Mn −Mn,0| ≤ EMn,−2 + EMn,−1 + EMn,1 + EMn,2 ≤ C6 + C7n
1/3/A,

and thus
lim sup

n→∞
E

∣∣n−1/3Mn − n−1/3Mn,0

∣∣ ≤ C7/A. (6.57)

Now let A→∞; then

VA → V∞ := max
x∈R

(
2−1/2B(x)− x2

)
. (6.58)

Note that, letting x = y/2, with V as in the statement of the theorem,

V∞ = max
y∈R

(
2−1/2B(y/2)− (y/2)2

) d= max
y∈R

(
2−1B(y)− 1

4y
2
)

= 1
2V. (6.59)

It follows from (6.57) and (6.58) that we may let A → ∞ in (6.50) and
obtain

n−1/3Mn
d−→ V∞, (6.60)

see [4, Theorem 4.2] (we may change the notation and denote Mn,0 by Mn;A

for n > (4A)3; for smaller n we simply let Mn;A = 0).
Similarly, by (6.51) and (6.57),

lim sup
n→∞

E
∣∣n−1/3Mn − EV∞

∣∣ ≤ C7A
−1 +

∣∣EV∞ − EVA

∣∣.
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As A → ∞, EVA → EV∞ by monotone convergence, and thus we obtain
lim supn→∞ E

∣∣n−1/3Mn − EV∞
∣∣ = 0, i.e.,

n−1/3 EMn → EV∞. (6.61)

The theorem follows by (6.60), (6.61), (6.48), (6.46), (6.47) and (6.59). �

7. Further results

Consider X(1)
n,m, the number of piles with a single exam (runs of length

1) mentioned in Section 1. If we for simplicity consider the cyclic case, see
Remark 1.4, to avoid edge effects (these are O(1) only and do not affect the
asymptotics), we have

X(1)
n,m =

n∑
k=1

(1− In,m(k))In,m(k + 1)(1− In,m(k + 2)).

After randomizing the time as in Section 2, we get (with I(t; k+n) = I(t; k))

X(1)
n (t) =

n∑
k=1

(
1− I(t; k)

)
I(t; k + 1)

(
1− I(t; k + 2)

)
(7.1)

=
n∑

k=1

(
1− t− I ′(t; k)

)(
t+ I ′(t; k + 1)

)(
1− t− I ′(t; k + 2)

)
= nt(1− t)2 + (1− 3t)(1− t)Sn,1(t)− 2(1− t)Sn,2(t) + tS′n,2(t) + Sn,3(t),

where we now define Sn,2 by summing to n in (2.8), and we introduce two
new stochastic processes

S′n,2(t) :=
n∑

k=1

I ′(t; k)I ′(t; k + 2), (7.2)

Sn,3(t) :=
n∑

k=1

I ′(t; k)I ′(t; k + 1)I ′(t; k + 2). (7.3)

The proof of Theorem 4.1 extends to these and yields, in D[0, 1] and
jointly with each other and (4.1) and (4.2),

n−1/2Sn,2(t)
d−→ Z ′

2(t), (7.4)

n−1/2Sn,3(t)
d−→ Z3(t), (7.5)

where Z ′
2 and Z3 are two continuous Gaussian processes on [0, 1] with means

0 and covariances

E
(
Z ′

2(s)Z
′
2(t)

)
= s2(1− t)2, 0 ≤ s ≤ t ≤ 1, (7.6)

E
(
Z3(s)Z3(t)

)
= s3(1− t)3, 0 ≤ s ≤ t ≤ 1. (7.7)

Furthermore, all four processes Z1, Z2, Z ′
2 and Z3 are independent. (Note

that Z2 and Z ′
2 have the same distribution but are independent.)
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By the arguments in Section 6, which extend without any new difficulties,
this yields the following results, corresponding to our results for Xn,m and
Xn(t) in Sections 1 and 4. We define X(1)∗

n := maxmX
(1)
n,m = maxtX

(1)
n (t),

and note that EX(1)
n (t) = nt(1 − t)2 has (on [0, 1]) a unique maximum at

t = 1/3.

Theorem 7.1. As n→∞, in D[0, 1],

n−1/2
(
X(1)

n (t)− nt(1− t)2
)

d−→ Z(t) := (1− t)(1− 3t)Z1(t)− 2(1− t)Z2(t) + tZ ′
2(t) + Z3(t);

Z is a continuous Gaussian process on [0, 1] with mean EZ(t) = 0.

Theorem 7.2. As n→∞, in D[0, 1],

n−1/2
(
X

(1)
n,bntc − nt(1− t)2

) d−→ Z(t) := −2(1− t)Z2(t) + tZ ′
2(t) + Z3(t);

where Z is a continuous Gaussian process on [0, 1] with mean EZ(t) = 0.

We leave the explicit formulas for (co)variances in these theorems to the
reader.

Theorem 7.3. As n→∞,

n−1/2
(
X(1)∗

n − 4
27n

) d−→ N(0, 76
729),

with convergence of all moments. In particular,

EX(1)∗
n =

4
27
n+ o(n1/2),

VarX(1)∗
n =

76
729

n+ o(n).

Theorem 7.4. As n→∞, in D(−∞,∞),

n−1/3
(
X(1)

n (1
3 + xn−1/3)−X(1)

n (1
3)

) d−→
√

80
81
B(x)− x2,

where B is a Brownian motion on (−∞,∞).

Theorem 7.5. As n→∞,

n−1/3
(
X(1)∗

n −X
(1)
n,bn/3c

) d−→ βV,

where the random variable V is as in Theorem 1.3 and β := 27/33−8/352/3 =
4
27(150)1/3. Furthermore,

EX(1)∗
n = EX(1)

n,bn/3c + β EV n1/3 + o(n1/3) = 4
27n+ β EV n1/3 + o(n1/3).

These results are easily extended to the number X(d)
n,m of piles with ex-

actly d items (runs with exactly d 1’s) for any fixed d. We may also count
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occurrences of any other fixed pattern, and more generally any functional of
the type

X̄n,m :=
n∑

k=1

ψ
(
In,m(k), . . . , In,m(k + `− 1)

)
(7.8)

for some fixed ` ≥ 1 and function ψ : {0, 1}` → R. We will pursue this in
some detail, leave some other details to the reader, because the more general
version illuminates the arguments above and the structure of our method.
First, randomizing the time yields

X̄n(t) :=
n∑

k=1

Ψk(t), (7.9)

where we define Ψk(t) = ψ
(
I(t; k), . . . , I(t; k + ` − 1)

)
. We note that we

will need more processes of the type Sn,j . It turns out that it is natural to
use finite sequences of 0’s and 1’s to index these processes; we thus change
the notation and define a stochastic process Sn;α(t) for each such sequence
α = α1 · · ·α` by

Sn;α(t) :=
n∑

k=1

∏
j∈{1,...,`},

αj=1

I ′(t; k + j). (7.10)

We thus now denote Sn,1(t), Sn,2(t), S′n,2(t), Sn,3(t) by Sn;1(t), Sn;11(t),
Sn;101(t), Sn;111(t). Initial and final 0’s in α do not affect Sn;α, so it is
enough to consider α that begin and end with 1; let A be the set of all such
strings α.

Let `(α) denote the length of α and ν(α) the number of 1’s in α, and
consider only n ≥ 2`(α). Then the terms in the sum in (7.10) are orthogonal
and we obtain E

(
Sn;α(t)

)2 = n
(
t(1 − t)

)ν(α). Moreover, Ŝn;α(t) := (1 −
t)−ν(α)Sn;α(t) is a martingale on [0, 1), and the proof of Theorem 4.1 extends
immediately and shows that, in D[0, 1] and jointly for all α ∈ A,

n−1/2Sn;α(t) d−→ Zα(t), (7.11)

where Zα, α ∈ A, are independent continuous Gaussian processes with
means 0 and covariances

E
(
Zα(s)Zα(t)

)
= sν(α)(1− t)ν(α), 0 ≤ s ≤ t ≤ 1. (7.12)

Furthermore, the estimate Theorem 4.3 extends to every Sn;α (with the
implicit constant possibly depending on α).

A functional X̄n,m of the type (7.8) yields after randomizing the time the
functional X̄n(t) in (7.9), which always can be expanded as a finite sum
(with orthogonal terms)

X̄n(t) = g0(t)n+
∑

α∈A, `(α)≤`

gα(t)Sn;α(t), (7.13)
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for some polynomials g0(t) and gα(t), α ∈ A; this is seen by the same
argument as in [14, Proposition 4.1]. Note that, for any n ≥ 2` and any k,

g0(t) =
E X̄n(t)

n
= E Ψk(t). (7.14)

It follows from (7.11) and (7.13) that, cf. Corollary 4.2, in D[0, 1],

n−1/2
(
X̄n(t)− ng0(t)

) d−→ Z(t) :=
∑
α

gα(t)Zα(t), (7.15)

which is a continuous Gaussian process with mean 0 and covariance function

E
(
Z(s)Z(t)

)
= σ(s, t) :=

∑
α

gα(s)gα(t)(s ∧ t)ν(α)(1− s ∨ t)ν(α). (7.16)

We have moment convergence in (7.15); moreover, the variance of n−1/2X̄n(t)
is independent of n ≥ 2` and we have, for any k and n ≥ 2`,

σ(s, t) = n−1 Cov
(
X̄n(s), X̄n(t)

)
=

`−1∑
j=−(`−1)

Cov
(
Ψk(s),Ψk+j(t)

)
. (7.17)

Similarly, arguing as in the proof of Theorem 1.5 and observing that the
Sn;1 terms cancel because g1(t) = g′0(t), we see that, in D[0, 1],

n−1/2
(
X̄n,bntc − ng0(t)

) d−→ Z ′(t) :=
∑
α 6=1

gα(t)Zα(t), (7.18)

another continuous Gaussian process with mean 0.
Now suppose that g0(t) has a unique maximum on [0, 1] at an interior

point t0, with g′′0(t0) < 0. Then all remaining proofs in Section 6 extend too
without difficulties. In particular, if we define X̄∗

n := maxm X̄n,m, we have
the following generalization of Theorem 1.2.

Theorem 7.6. As n→∞,

n−1/2
(
X̄∗

n − g(t0)n
) d−→ N(0, σ2),

with convergence of all moments, with, see (7.16),

σ2 := σ(t0, t0) =
∑
α

gα(t0)2
(
t0(1− t0)

)ν(α)
.

Furthermore, cf. Theorem 4.4, in D(−∞,∞) and jointly for all α,

n−1/3
(
Sn;α(t0 + xn−1/3)− Sn;α(t0)

) d−→ σαBα(x), (7.19)

where σ2
α := ν(α)

(
t0(1− t0)

)ν(α)−1 and Bα, α ∈ A, are independent Brown-
ian motions on (−∞,∞). As a consequence, cf. Corollary 4.5, inD(−∞,∞),

n−1/3
(
X̄n(t0 + xn−1/3)− X̄n(t0)

) d−→ σ∗B(x)− 1
2 |g

′′
0(t0)|x2, (7.20)

where B is a Brownian motion on (−∞,∞) and

σ2
∗ :=

∑
α

gα(t0)2σ2
α =

∑
α

gα(t0)2ν(α)
(
t0(1− t0)

)ν(α)−1
. (7.21)
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Finally, substituting x = (σ∗/|g′′0(t0)|)2/3y, we see that supx∈R
(
σ∗B(x) −

1
2 |g

′′
0(t0)|x2

) d= βV , with

β := (σ4
∗/|g′′0(t0)|)1/3 = (σ2

∗)
2/3|g′′0(t0)|−1/3, (7.22)

and we obtain the following, where X̄n(t0) may be replaced by X̄n,m0 , where
either m0 := bt0nc or m0 is chosen in {0, . . . , n} to maximize E X̄n,m0 .

Theorem 7.7. As n→∞,

n−1/3
(
X̄∗

n − X̄n(t0)
) d−→ βV, (7.23)

where the random variable V is as in Theorem 1.3, and β is given by (7.22)
and (7.21). Furthermore,

E X̄∗
n = E X̄(t0) + β EV n1/3 + o(n1/3) = g0(t0)n+ β EV n1/3 + o(n1/3).

For calculation of the asymptotic variances σ2 and σ2
∗ above, the given

formulas using the coefficients gα(t0) in the decomposition (7.13) are often
not very convenient. For σ2, it is usually simpler to use (7.17) with s = t =
t0.

For σ2
∗ we first observe that if we take the difference of the left derivative

of σ(s, t) with respect to s and the right derivative with respect to t at (t0, t0)
(thus considering s ≤ t only), we obtain from (7.16) and (7.21) easily

σ2
∗ =

∂

∂s
σ(s, t0)

∣∣∣
s=t0−

− ∂

∂t
σ(t0, t)

∣∣∣
t=t0+

, (7.24)

a formula given by Daniels [6] (in a slightly different setting). It follows by
the mean value theorem and (7.17) that, for any fixed n ≥ 2`,

σ2
∗ = lim

h↓0

1
h

(
σ(t0 + h, t0 + h)− 2σ(t0, t0 + h) + σ(t0, t0)

)
(7.25)

= lim
h↓0

1
hn

Var
(
X̄n(t0 + h)− X̄n(t0)

)
. (7.26)

For fixed n, the probability that exactly one I(t; k) changes from 0 to 1 in
the interval [t0, t0 +h] is nh+O(h2) and the probability that more than one
will change is O(h2). Hence, if ∆kX̄n(t) is the function of {I(t; k+j)}1≤|j|<`

that gives the jump in X̄n(t) (for n ≥ 2`) if I(t; k) is changed from 0 to 1,
keeping all other indicators fixed, then (7.26) implies that, for any k and
n ≥ 2`,

σ2
∗ = Var

(
∆kX̄n(t0)

)
. (7.27)

For example, for the number of runs,

∆kXn(t) =
(
1− I(t; k − 1)

)
− I(t; k + 1)

and σ2
∗ = Var

(
I(t0; k − 1) + I(t0; k + 1)

)
= 2t0(1 − t0) = 1

2 , in accordance
with Corollary 4.5. For runs of length 1 we similarly get, from (7.1),

∆kX
(1)
n (t) = −

(
1− I(t; k − 2)

)
I(t; k − 1)

+
(
1− I(t; k − 1)

)(
1− I(t; k)

)
− I(t; k + 1)

(
1− I(t; k + 2)

)
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and (7.27) yields, in accordance with Theorem 7.4,

σ2
∗ = Var

(
∆kX

(1)
n (t0)

)
=

80
81
.

More generally, for X(d)
n,m (runs of length exactly d), we find from (7.14),

(7.17) and (7.27), after straightforward calculations, g0(t) = td(1− t)2, t0 =
d/(d+ 2), g′′0(t0) = −2dd−1/(d+ 2)d−1, and

σ2 =
4dd

(d+ 2)d+2

(
1− (d+ 1)

4dd

(d+ 2)d+2

)
,

σ2
∗ = 8

dd

(d+ 2)d+1

(
1 +

dd

(d+ 2)d+1

)
,

β =
(
32

dd+1

(d+ 2)d+3

(
1 +

dd

(d+ 2)d+1

)2)1/3
.

8. Priority queues, sock-sorting and lazy hashing

As said above, priority queues are equivalent to sock-sorting. For priority
queues, the 2n events Ai and Di come in random order, with the restriction
that Ai comes before Di for each i. Since only the order of the events
matters, we may randomize the times as in Section 2 and assume that the
times Ai and Di, i = 1, . . . , n, are independent random variables uniformly
distributed on (0, 1), conditioned on Ai < Di for all i. For two independent
random variables T, T̃ ∼ U(0, 1), the distribution of (T, T̃ ) conditioned on
T < T̃ equals the distribution of (T ∧ T̃ , T ∨ T̃ ), and this randomization of
the times in a priority queue thus gives exactly the model for lazy hashing
defined in Section 1, as found by Kenyon and Vitter [17]. In particular,
maxt Yn(t) d= Y ∗

n .
In analogy with the definitions in Section 2, we now let

I(t; k) := 1[Tk ≤ t], Ĩ(t; k) := 1[T̃k ≤ t],

I ′(t; k) := I(t; k)− t, Ĩ ′(t; k) := Ĩ(t; k)− t,

Sn,1(t) :=
n∑

k=1

I ′(t; k) +
n∑

k=1

Ĩ ′(t; k),

Sn,2(t) :=
n∑

k=1

I ′(t; k)Ĩ ′(t; k).
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We further let Nn(t) be the number of events (Ak or Dk) up to t. Then, cf.
(2.10),

Nn(t) =
n∑

k=1

I(t; k) +
n∑

k=1

Ĩ(t; k) = Sn,1(t) + 2nt, (8.1)

Yn(t) =
n∑

k=1

1[Ak ≤ t < Dk] =
n∑

k=1

(
1[Tk ≤ t < T̃k] + 1[T̃k ≤ t < Tk]

)
=

n∑
k=1

(
I(t; k)

(
1− Ĩ(t; k)

)
+ Ĩ(t; k)

(
1− I(t; k)

))
= 2nt(1− t) + (1− 2t)Sn,1(t)− 2Sn,2(t). (8.2)

We introduce martingales Ŝn,1 and Ŝn,2 as above by (6.5) and (6.6).
All proofs in Section 6 now go through with no or minor changes; the main

differences are that (8.1) and (8.2) contain some factors 2 not appearing in
(2.9) and (2.10) and that there will be a factor 2 on the right hand side of
(6.11); thus Theorem 4.1 holds with the difference that (4.3) is replaced by

E
(
Z1(s)Z1(t)

)
= 2s(1− t), 0 ≤ s ≤ t ≤ 1;

similarly, (4.4) holds with B1(x) replaced by 21/2B1(x) in (4.8). This yields
the following results, corresponding to our results for Xn,m and Xn(t) in
Sections 1 and 4.

Theorem 8.1. As n→∞, in D[0, 1],

n−1/2
(
Yn(t)− 2nt(1− t)

) d−→ Z(t) := (1− 2t)Z1(t)− 2Z2(t),

where Z is a continuous Gaussian process on [0, 1] with mean EZ(t) = 0
and covariances, for 0 ≤ s ≤ t ≤ 1,

E
(
Z(s)Z(t)

)
= 2s(1− 2s)(1− t)(1− 2t) + 4s2(1− t)2

= 2s(1− t)− 4s(1− s)t(1− t).

Theorem 8.2. As n→∞, in D[0, 1],

n−1/2
(
Yn,b2ntc − 2nt(1− t)

) d−→ Z(t) := −2Z2(t),

where Z is a continuous Gaussian process on [0, 1] with mean EZ(t) = 0
and covariances

E
(
Z(s)Z(t)

)
= 4s2(1− t)2, 0 ≤ s ≤ t ≤ 1.

Theorem 8.3. As n→∞, in D(−∞,∞),

n−1/3
(
Yn(1

2 + xn−1/3)− Yn(1
2)

) d−→ 21/2B(x)− 2x2,

where B is a Brownian motion on (−∞,∞).
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Theorem 8.4. As n→∞,

n−1/2
(
Y ∗

n − n/2
) d−→ N(0, 1/4),

with convergence of all moments. In particular,

EY ∗
n = n/2 + o(n1/2),

VarY ∗
n = n/4 + o(n).

Theorem 8.5. As n→∞,

n−1/3
(
Y ∗

n − Yn,n

) d−→ V,

where the random variable V is as in Theorem 1.3, and

EY ∗
n = EYn,n + EV n1/3 + o(n1/3) = 1

2n+ EV n1/3 + o(n1/3).

Theorem 8.1 is given by Louchard [20], Theorem 8.2 by Louchard [19]
(with a deterministic change of time, making the problem equivalent to a
queueing problem), and Theorems 8.4 and 8.5 by Louchard, Kenyon and
Schott [21] (with different proofs).

Note that in the proof of Theorem 8.2 the terms with Sn,1 cancel, as
discussed for Theorem 1.5 above. In both theorems the limit is thus given
by Z2, which explains why we obtain exactly the same covariances in the
two theorems, except for a normalization factor. (Unlike Corollary 4.2 and
Theorem 8.1, where the variances of the limits are t(1− t)(1− 3t+ 3t2) and
2t(1− t)(1− 2t+ 2t2).)
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