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Abstract. We study the space requirements of a sorting algorithm
where only items that at the end will be adjacent are kept together.
This is equivalent to the following combinatorial problem: Consider a
string of fixed length n that starts as a string of 0’s, and then evolves by
changing each 0 to 1, with the n changes done in random order. What
is the maximal number of runs of 1’s?

We give asymptotic results for the distribution and mean. It turns
out that, as in many problems involving a maximum, the maximum is
asymptotically normal, with fluctuations of order n1/2, and to the first
order well approximated by the number of runs at the instance when
the expectation is maximized, in this case when half the elements have
changed to 1; there is also a second order term of order n1/3.

We also treat some variations, including priority queues and sock-
sorting.

1. Introduction

Gunnar af Hällström [1] considered, as indicated at the end of his paper,
the following algorithm for sorting an unordered pile of student exams in
alphabetic order. (It is said that he used this procedure himself.)

The exams are taken one by one from the input. The first exam is put in a
new pile. For each following exam (x, say), if the name on it is immediately
preceding the name on an exam y at the top of one of the piles, the new exam
x is put on top of y. (The professor knows the names of all the students,
and can thus see that there are no names between x and y.) Similarly, if the
name on x is immediately succeeding the name on an exam z at the bottom
of a pile, x is put under z. If both cases apply, with y on top of one pile
and z at the bottom of another, the two piles are merged with x inserted
between z and y. Finally, if there is no pile matching x in one of these ways,
x is put in a new pile.

The algorithm thus maintains a list of sorted piles, each being an interval
without gaps of the set of exams. At the end, there is a single sorted pile.

The problem is the space requirement of this algorithm; more precisely,
the maximum number of sorted piles during the execution. The input is
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assumed to be in random order, so this is a random variable, and we are
interested in its mean and distribution.

af Hällström [1] gave the following mathematical reformulation. Consider
a deck of n cards numbered 1, . . . , n in random order, and a sequence of n
places with the same numbers in order. Take the cards one by one and put
them at their respective places. When we have placed m cards, 0 ≤ m ≤ n,
we see Xn,m “islands”, i.e. uninterrupted blocks of cards. What is X∗

n :=
maxm Xn,m?

Alternatively, in the language of parking cars: n cars park, one by one,
on n available places along a street; each car parks at a random free place.
What is the maximum number of uninterrupted blocks of cars during the
process?

Let, for n ≥ 1, 0 ≤ m ≤ n and 1 ≤ k ≤ n, the indicator In,m(k) be 1 if the
item (exam or card) with number k is one of the m first in the input, and 0
otherwise. Thus, Xn,m is the number of runs of 1’s in the random sequence
In,m(1), . . . , In,m(n) of n−m 0’s and m 1’s. Note that each random sequence
(In,m(k))n

k=1 is uniformly distributed over all
(

n
m

)
possibilities; moreover, for

each m < n we obtain (In,m+1(k))n
k=1 from (In,m(k))n

k=1 by changing a single
randomly chosen 0 to 1, this random choice being uniform among the n−m
0’s, and independent of the previous history.

It is easy to see that E Xn,m = m(n−m + 1)/n, see (3.1); it follows that
the maximum of E Xn,m for a given n is attained for m = dn/2e, and that
E Xn,dn/2e > n/4. Since obviously

E X∗
n = E max

m
Xn,m ≥ max

m
E Xn,m, (1.1)

this yields E X∗
n > n/4 as observed by af Hällström [1]. Moreover, he ob-

served that E X∗
n is subadditive, and thus the limit

γ := lim
n→∞

E X∗
n/n

exists and equals infn E X∗
n/n; he further showed that 1/4 ≤ γ ≤ 1/3, where

the lower bound comes from (1.1). Based on simulations with n = 13 and
n = 52, af Hällström [1] concluded that γ seems to be very close to or
equal to 1/4. We will show that, indeed, γ = 1/4. We also show that the
distribution of X∗

n is asymptotically normal, with a variance of order n.

Theorem 1.1. As n →∞,

n−1/2
(
X∗

n − n/4
) d−→ N(0, 1/16), (1.2)

with convergence of all moments. In particular,

E X∗
n = n/4 + o(n1/2),

VarX∗
n = n/16 + o(n).

This theorem says that to the first order, the maximum number of piles
(runs) X∗

n behaves like the number Xn,m with m = dn/2e. A more refined
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analysis shows that the difference X∗
n −Xn,dn/2e is of order n1/3. Let B(t),

−∞ < t < ∞, be a standard two-sided Brownian motion.

Theorem 1.2. As n →∞,

n−1/3
(
X∗

n −Xn,dn/2e
) d−→ 1

2V, (1.3)

where the random variable V is defined by V := maxt

(
B(t)− t2/2

)
, and

E X∗
n = E Xn,dn/2e + 1

2 E V n1/3 + o(n1/3) = 1
4n + 1

2 E V n1/3 + o(n1/3).

The random variable V is studied by Barbour [2], Daniels and Skyrme
[7] and Groeneboom [10]. Note that 0 < V < ∞ a.s. We have, see [7]
(using Maple to improve the numerical values in [2, 3, 7, 6]), with Ai the
Airy function,

E V = −2−1/3

2π

∫ ∞

−∞

iy dy

Ai(iy)2
≈ 0.996193.

The numerical values X∗
13 ≈ 4.22 and X∗

52 ≈ 14.66 found experimentally
by af Hällström [1] differ from n/4 by about 18% and 10% less than the
correction term 1

2 E V n1/3 in Theorem 1.2, which is a reasonable agreement
for such rather small n.

We prove these theorem by studying asymptotics of the entire (random)
process (Xn,m)n

m=0. The natural time here is m/n, so we take m = bntc
for 0 ≤ t ≤ 1 and consider the process Xn,bntc with a continuous parameter
t ∈ [0, 1]. The following theorem shows that this process asymptotically is
Gaussian. (The space D[0, 1] is the standard space of right-continuous func-
tions with left-hand limits on [0,1], equipped with the Skorohod topology,
see [4].)

Theorem 1.3. As n →∞, in the space D[0, 1] of functions on [0, 1],

n−1/2
(
Xn,bntc − nt(1− t)

) d−→ Z(t), (1.4)

where Z is a continuous Gaussian process on [0, 1] with mean E Z(t) = 0
and covariances

E
(
Z(s)Z(t)

)
= s2(1− t)2, 0 ≤ s ≤ t ≤ 1. (1.5)

The behaviour of X∗
n shown in Theorems 1.1 and 1.2, with an asymp-

totic normal distribution with a mean of order n and random fluctuations
of order n1/2, and with a second order term for the mean of order n1/3,
is common for this type of random variables defined as the maximum of
some randomly evolving process. For various examples, both combinatorial
and others, and general results see for example Daniels [5, 6], Daniels and
Skyrme [7], Barbour [2, 3] and Louchard, Kenyon and Schott [18]. Indeed,
paraphrasing the explanations in these papers, in many such problems, the
first order asymptotic of a random process Xn(t) (after suitable scaling) is
a deterministic function f(t), say, defined on a compact interval I (typically
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scaled to be [0, 1] as here). Hence the first order asymptotic of the maxi-
mum of the process is just the maximum of this function f . Moreover, it is
often natural to expect that the random fluctuations around this function
f(t) asymptotically form a Gaussian process G(t); this is then a second or-
der term of smaller order as in our Theorem 1.3. If we assume that f is
continuous on I and has a unique maximum at a point t0 ∈ I, then the
maximum of the process Xn(t) is attained close to t0, so the first order ap-
proximation of the maximum is the constant f(t0) = maxt f(t), while the
next approximation is just Xn(t0), giving a normal limit law as in our Theo-
rem 1.1. The Gaussian fluctuations in this limit have mean 0, so in order to
find the next term for the mean E X∗

n, we study more closely the difference
maxt Xn(t) −Xn(t0) by studying the difference Xn(t) −Xn(t0) close to t0.
Assuming that t0 is an interior point of I and that f is twice differentiable
at t0 with f ′′(t0) 6= 0, we can locally at t0 approximate f by a parabola
and G(t)−G(t0) by a two-sided Brownian motion (with some scaling), and
thus maxt Xn(t) − Xn(t0) is approximated by a scaling constant times the
variable V above, see Barbour [2] and, in our case, Theorem 4.1 below. In
the typical case where the mean of Xn(t) is of order n and the Gaussian
fluctuations are of order n1/2, it is easily seen that the correct scaling gives,
as in Theorem 1.2 above, a correction to E X∗

n of order n1/3, see [2, 5, 6].
The method used in the present paper is a simple adaption of the method

used in [11] and [12] to study the number of subgraphs of a given isomor-
phism type in a random graph. These papers study the random graphs
G(n, p) and G(n, m) that can be constructed by random deletion of edges
in the complete graph Kn (with the deletions being independent for G(n, p)
and such that a fixed number of edges are deleted for G(n, m)). The method
applies more generally to random graphs constructed by random edge dele-
tions in these ways from any fixed initial graph Fn. The problem treated in
this paper can be regarded as an instance of this when the initial graph is
the path Pn with n edges.

Our method applies also to other problems. One example is given by
priority queues, where Louchard [16] and Louchard, Kenyon and Schott [18]
have proved asymptotic results very similar to the Theorems 1.1–1.3 above,
see Section 5 for details. In particular, they found the same asymptotic co-
variance (1.5) except for a normalizing constant. (See also Flajolet, Françon
and Vuillemin [8] and Flajolet, Puech and Vuillemin [9] for combinatorial
results on generating functions involving Hermite polynomials; these results,
however, do not easily yield asymptotics.)

Priority queues can be defined as follows. Suppose that n items are to
be temporarily stored (or processed); let item i arrive at time Ai and be
deleted at time Di. We assume that the 2n times Ai and Di are distinct;
thus they can be arranged in a sequence of the 2n events Ai and Di, with Ai

coming before Di for each i. We assume further, as our probabilistic model,
that all (2n)!/2n such sequences are equally probable. Ignoring the labels,
we can equivalently consider sequences of n A and n D (or n + and n −),
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where each A is paired with a D coming later; there is a 1–1 correspondence
between such sequences and pairings of 1, . . . , 2n into n pairs, and there are
(2n − 1)!! = (2n)!/(2nn!) such sequences (with pairings), again taken with
equal probability.

Let, for m = 0, . . . , 2n, Yn,m be the number of items stored after m of
these events, i.e. the number of A’s minus the number of D’s among the
m first events, and let Y ∗

n := max0≤m≤2n Yn,m. The sequence (Yn,m)2n
0

is a Dyck path, but note that its distribution is not uniform; for a given
Dyck path (or a given sequence of A and D without labels), the number
of ways to pair a given D with a preceding A, i.e. the number of ways
to choose which item to delete, equals the current number of items stored
before this deletion. Thus, the weight of the Dyck path equals the product
of these numbers

∏
m:Yn,m+1<Yn,m

Yn,m. Alternatively, which better explains
the name priority queue, we can keep the stored items in a list showing the
order in which they eventually will be deleted; then there is only one choice
for each deletion but each new item can be inserted in Y +1 ways if there are
Y items stored before the insertion, and thus Y +1 after it; hence the weight
can also be written as

∏
m:Yn,m>Yn,m−1

Yn,m. (It is easily to see directly that
the two products are equal.)

An equivalent example is sock-sorting, studied by Li and Pritchard [15]
and Steinsaltz [20]. Suppose that we have 2n socks; the socks form n pairs
with the two socks in each pair identical but different from all others. All
socks are mixed and we pick them in random order. If the picked sock is
from a pair that we have not yet seen, it is put put on a bench; on the other
hand, if we already have picked the other sock in the pair, that sock is taken
from the bench, paired with its twin, and put away in permanent storage.
What is the maximum number of socks on the bench? It is easily seen that
this is equivalent to a priority queue.

Our method applies to priority queues and socks too, and we obtain the
same asymptotic results as for Xn,m and X∗

n. (Note that there is no exact
correspondence for finite n, since the natural sample spaces have n! elements
for Xn,m but (2n−1)!! elements for Yn,m.) Again, we can regard the problem
as an instance of subgraph counts for randomly deleting edges from a given
initial graph Fn; in this case taking Fn to be a multigraph consisting of n
double edges.

Another example is a model suggested by Van Wyk and Vitter [22] as
a model for hashing with lazy deletion, and further studied by Louchard
[17] and Louchard, Kenyon and Schott [18]. In this model, n item arrives
and are deleted as above, but now the arrival and deletion times Ai and
Di are random numbers, with the n pairs (Ai, Di) mutually independent
and each pair distributed as

(
min(Ti, T̃i), max(Ti, T̃i)

)
, where Ti and T̃i are

independent random variables uniformly distributed on [0,1]. We let Yn(t) be
the number of items present at time t, and again we are especially interested
in its maximum maxt Yn(t). Again, the asymptotic results for the maximum
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found by Louchard, Kenyon and Schott [18] are the same as in our Theorems
1.1 and 1.2, except for a constant factor, while the asymptotic result for
the process Yn(t) found by Louchard [17] differs somewhat from the one in
Theorem 1.3, it corresponds instead to the one in Theorem 2.1 below; see
Section 5. Indeed, as explained by Kenyon and Vitter [14], this model can be
seen as a priority queue with randomized times for insertions and deletions,
which explains why the results for the maximum are the same as for priority
queues.

Proofs are given in the journal version of this paper [13].

2. Randomizing time

We will use the standard method of randomizing the time. More pre-
cisely, we let T1, . . . , Tn be independent random variables, each uniformly
distributed on (0, 1). We interpret Tk as the time item k arrives, and note
that a.s. there are no ties. We define

I(t; k) = 1[Tk ≤ t],

i.e., I(t; k) = 1 if item k has arrived by time t. We further define Nn(t) as
the number of items that have arrived at time t, and Xn(t) as the number
of runs of 1’s at time t, i.e.,

Nn(t) =
n∑

k=1

I(t; k), (2.1)

Xn(t) = I(t; 1) +
n−1∑
k=1

(
1− I(t; k)

)
I(t; k + 1) (2.2)

= Nn(t)−
n−1∑
k=1

I(t; k)I(t; k + 1). (2.3)

Clearly, the items arrive in random order, so the process remains the
same except that the insertions occur at the random times {T1, . . . , Tn}. In
particular,

X∗
n = max

0≤t≤1
Xn(t). (2.4)

For the process Xn(t), we have the following analogue of Theorem 1.3; note
that the (co)variances differ.

Theorem 2.1. As n →∞, in D[0, 1],

n−1/2
(
Xn(t)− nt(1− t)

) d−→ Z(t), (2.5)

where Z is a continuous Gaussian process on [0, 1] with mean E Z(t) = 0
and covariances, for 0 ≤ s ≤ t ≤ 1,

E
(
Z(s)Z(t)

)
= s(1− 2s)(1− t)(1− 2t) + s2(1− t)2 (2.6)

= s(1− t)(1− s− 2t + 3st). (2.7)
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The importance of this randomization is that the variables I(t; k), k =
1, . . . , n, are independent. Thus, Xn(t) is the number of runs of 1 in a
sequence of independent 0’s and 1’s, each with the distribution Be(t). Fur-
thermore, the number of items sorted at time t is Nn(t) ∼ Bi(n, t).

Define further, for 0 ≤ t ≤ 1, the centralized variables

I ′(t; k) := I(t; k)− E I(t; k) = I(t; k)− t (2.8)

and the sums

Sn,1(t) :=
n∑

k=1

I ′(t; k) = Nn(t)− E Nn(t) = Nn(t)− nt, (2.9)

Sn,2(t) :=
n−1∑
k=1

I ′(t; k)I ′(t; k + 1). (2.10)

Thus E Sn,1(t) = E Sn,2(t) = 0 for all t ∈ [0, 1]. We have

Nn(t) =
n∑

k=1

(
I ′(t; k) + t

)
= Sn,1(t) + nt, (2.11)

n−1∑
k=1

I(t; k)I(t; k + 1) =
n−1∑
k=1

(
I ′(t; k) + t

)(
I ′(t; k + 1) + t

)
= Sn,2(t) + t

(
2Sn,1(t)− I ′(t; 1)− I ′(t;n)

)
+ (n− 1)t2,

and thus from (2.3) the representation

Xn(t) = n(t− t2) + t2 + (1− 2t)Sn,1(t)− Sn,2(t) + tI ′(t; 1) + tI ′(t;n)

= nt(1− t) + (1− 2t)Sn,1(t)− Sn,2(t) + Rn(t), (2.12)

where Rn(t) := t2 + tI ′(t; 1) + tI ′(t;n) and thus |Rn(t)| ≤ 3.
Note that for any fixed t, the variables I ′(t; k) are independent and have

means 0; hence the terms in the sums in (2.9) and (2.10) have means and
all covariances 0. (They are thus orthogonal in L2.) It follows immediately
that

Var (Sn,1(t)) = n E
(
I ′(t; 1)

)2 = n Var
(
I(t; 1)

)
= nt(1− t), (2.13)

Var (Sn,2(t)) = (n− 1)t2(1− t)2, (2.14)

Cov
(
Sn,1(t), Sn,2(t)

)
= 0. (2.15)

3. Exact results

It is easy to find the exact distribution of Xn,m for given n and m, see
for example Stevens [21] or Mood [19]. The mean and variance can easily
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be computed:

E Xn,m =
m(n−m + 1)

n
, (3.1)

VarXn,m =
m(m− 1)(n−m)(n−m + 1)

n2(n− 1)
. (3.2)

If we instead randomize the insertion times as in Section 2 and consider
the process at a fixed time t, we find from (2.2) and the independence of
I(t; k) for k = 1, . . . , n,

E Xn(t) = t +
n−1∑
k=1

(1− t)t = nt(1− t) + t2. (3.3)

VarXn(t) = nt(1− t)(1− 3t + 3t2) + t2(1− t)(3− 5t). (3.4)

To find the exact distribution of X∗
n seems much more complicated. Exact

values of P(X∗
n = h) are easily calculated for small n, see af Hällström [1],

but we do not know any general formula. It would be interesting to find
such a formula by combinatorial methods.

4. The method of proof

The main idea is to first prove joint convergence of the normalized pro-
cesses n−1/2Sn,1(t) and n−1/2Sn,2(t) to two independent continuous Gauss-
ian processes on [0, 1]. This is done, as the corresponding results in [11]
and [12], using martingale theory, in particular a continuous time martin-
gale limit theorem. Then, the representation (2.12) yields the asymptotic
distribution of the process Xn(t) in Theorem 2.1. Furthermore, using the
corresponding (and simpler) limit result for Nn(t), it is possible to “deran-
domize” the time and obtain Theorem 1.3. Finally, a closer study of the
process close to the point t = 1/2 where E Xn(t) has its maximum yield
the results for the maximum X∗

n, shows that Xn(t) there, after rescaling,
converges to a two-sided Brownian motion with parabolic drift.

Theorem 4.1. As n →∞, in D(−∞,∞),

n−1/3
(
Xn(1

2 + xn−1/3)−Xn(1
2)

) d−→ 2−1/2B(x)− x2, (4.1)

where B is a Brownian motion on (−∞,∞).

5. Priority queues, sock-sorting and lazy hashing

As said above, priority queues are equivalent to sock-sorting. Further-
more, randomization of the times, as in Section 2 in these problems thus
gives exactly the model for lazy hashing defined in Section 1, as found by
Kenyon and Vitter [14]. In particular, maxt Yn(t) d= Y ∗

n .
Our method then yields the following results, corresponding to our results

above for Xn,m and Xn(t).
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Theorem 5.1. As n →∞, in D[0, 1],

n−1/2
(
Yn(t)− 2nt(1− t)

) d−→ Z(t) := (1− 2t)Z1(t)− 2Z2(t),

where Z is a continuous Gaussian process on [0, 1] with mean E Z(t) = 0
and covariances, for 0 ≤ s ≤ t ≤ 1,

E
(
Z(s)Z(t)

)
= 2s(1− 2s)(1− t)(1− 2t) + 4s2(1− t)2

= 2s(1− t)− 4s(1− s)t(1− t).

Theorem 5.2. As n →∞, in D[0, 1],

n−1/2
(
Yn,b2ntc − 2nt(1− t)

) d−→ Z(t) := −2Z2(t),

where Z is a continuous Gaussian process on [0, 1] with mean E Z(t) = 0
and covariances

E
(
Z(s)Z(t)

)
= 4s2(1− t)2, 0 ≤ s ≤ t ≤ 1.

Theorem 5.3. As n →∞, in D(−∞,∞),

n−1/3
(
Yn(1

2 + xn−1/3)− Yn(1
2)

) d−→ 21/2B(x)− 2x2,

where B is a Brownian motion on (−∞,∞).

Theorem 5.4. As n →∞,

n−1/2
(
Y ∗

n − n/2
) d−→ N(0, 1/4),

with convergence of all moments. In particular,

E Y ∗
n = n/2 + o(n1/2),

VarY ∗
n = n/4 + o(n).

Theorem 5.5. As n →∞,

n−1/3
(
Y ∗

n − Yn,n

) d−→ V,

where the random variable V is as in Theorem 1.2, and

E Y ∗
n = E Yn,n + E V n1/3 + o(n1/3) = 1

2n + E V n1/3 + o(n1/3).

Theorem 5.1 is given by Louchard [17], Theorem 5.2 by Louchard [16]
(with a deterministic change of time, making the problem equivalent to a
queueing problem), and Theorems 5.4 and 5.5 by Louchard, Kenyon and
Schott [18] (with different proofs).

Note that the limits in Theorem 5.2 and Theorem 1.3 are the same, except
for a normalization factor. (Unlike Theorem 2.1 and Theorem 5.1, where
the variances of the limits are t(1−t)(1−3t+3t2) and 2t(1−t)(1−2t+2t2).)
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[8] P. Flajolet, J. Françon & J. Vuillemin, Sequence of operations analysis for dynamic
data structures. J. Algorithms 1 (1980), no. 2, 111–141.

[9] P. Flajolet, C. Puech & J. Vuillemin, The analysis of simple list structures. Inform.
Sci. 38 (1986), no. 2, 121–146.

[10] P. Groeneboom, Brownian motion with a parabolic drift and Airy functions. Probab.
Theory Related Fields 81 (1989), no. 1, 79–109.

[11] S. Janson, A functional limit theorem for random graphs with applications to sub-
graph count statistics, Random Struct. Alg. 1 (1990), 15–37.

[12] S. Janson, Orthogonal Decompositions and Functional Limit Theorems for Random
Graph Statistics. Mem. Amer. Math. Soc., vol. 111, no. 534, American Mathematical
Society, Providence, R.I., 1994.

[13] S. Janson, Sorting using complete subintervals and the maximum number of runs in
a randomly evolving sequence. http://arXiv.org/math.PR/0701288

[14] C. M. Kenyon & J. S. Vitter, Maximum queue size and hashing with lazy deletion.
Algorithmica 6 (1991), no. 4, 597–619.

[15] W. V. Li & G. Pritchard, A central limit theorem for the sock-sorting problem. High
dimensional probability (Oberwolfach, 1996), Progr. Probab., 43, Birkhäuser, Basel,
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