[N T

Upper bounds for the connectivity constant
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Abstract. A new method to calculate rigorous upper bounds for the
connectivity constant is described. For the square lattice, a computer
calculation yields the bound 2.7272. Slight improvements of the bounds
of the connectivity constant for other lattices and the time constant

for first—passage percolation are also obtained.
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1. Introduction

We are studying self-avoiding paths on a lattice. We will only
consider lattices such that all verticgs are equivalent (every vertex can
be mapped on any other vertex by some symmetry operation) and that all
edges from a vertex to its neighbours are equivalent. Later on we will
specialize to the square lattice where the vertices are the points with
integer coordinates in the plane and the neighbours of a vertex are the
four vertices at unit distance.

A self-avoiding path of length wu is a sequence of n+l mutually
distinct vertices such that any two successive vertices in the sequence
are neighbours. The number of such paths having a prescribed first vertex

is denoted by fn. Thus fl

is the number of neighbours of a vertex.

1/n

Hammersley [1] proved that, for large n, fn converges to a limit, the
connectivity constant. This was strengthened by Kesten [2] who proved that
fn+2/fn converges. Other aspects of self~avoiding path theory and many
references are given by Domb [3].

Section 2 presents a new method to obtain a rigourous upper bound of
the commectivity constant, given a count of all self-avoiding paths of a
certain length, partitioned according to the firstlfew steps.

Section 3 describes briefly such a counting on a computer.

"Section 4 gives the numerical results.




2. A bound for the connectivity constant

The following notations will be used: A 1is the connectivity constant.
Fn is the set of self-avoiding paths of length n having a prescribed
first vertex. Thus fn is the cardinality of Fn. If v ¢ Fk » where
k<n, fg is the number of self-avoiding paths of length n that begin

with v . Thus

Let m,n > k., Any path of length m+n-k may be decomposed in a
head consisting of the n first steps and a tail consisting of the last
m steps, with k steps overlapping. We sort all paths in Fm+n—k accor-—

ding to the overlapping part and obtain the inequality

ne * L
fu&n—k'i Elfnfm (where Yy is v reversed).
'y
For k=0 this reduces to the submultiplicativity £ < £ £ , which
mtn — mn

implies that X = lim fi/n exists and A f_fi/n {1]. For k=1, Fl con-—
sists of fl paths and, by symmetry, fl = fn/fl . Hence the ine%uality

is £ 1 2f fm/fl which yields the known bound A < (£ /£;) [4].

We will derive still better bounds using higher k. We assume that the
values of fl are known for one choice of k and n. We do not know the

values of fg (for large m) but, if & 1is the last step of Y,

Y ¢ 8 -
fn < fpper = Foowrn/fr
% %
Choose a positive number A . If fl <A, fzfl <A f;g , and if

* * * *
Y YeY a7V Y _aveY Y 3 o¢ef -
£ >4A, £F =Af * (fn A)fm <Af ¢ (£, A)fm—k+l/f1 . Hence,

if (fl - 4), denotes max(fl -4,0) ,

*
Y Y _

fm+n~k-i z (Afm + (fn A)+fm~k+l

Fk lk

Replacing m by m+k-1, this may be written as




.1 Y
fm+n-1 -<-Afm+k—1 +Bfm » m > 1, where B = E; I‘z-: (fn_A)+ ]
k

This difference inequality implies that X 1is less than the unique

. - k— . . .
positive root of X 1 =AX 1 + B . To obtain a slightly more convenient

form of this, let f i==1,2,...,fk/f be the numbers fI for all

n,k’ 1°
Y € Fk starting in a particular direction, arranged in decreasing order.

By symmetry, each of these numbers is repeated f times in the full

1
sequence -&Y} Furthermore, choose A as fj for some j
. s J.
ETk n,k
1_<_j_<_fk/f . Then
f /E .
B=Z]£f o = 3 -e ).
R 18 ke . n,k N
i=] 1=1

We have proved the following theorem:

then the

Theorem. Let £- be as above. If k <n and j ﬁ.fk/f

mECmEDE . e o, k 1 >

connective constant is less than or equal to the unique positive root of

i

. J
= £ _ el
X 7 . x + E (fn,k f

).
i=1 -k

Remarks. 1. It is mot difficult to show that, given n and k, the best
choice of j 1is approximately Ak—l . {(Thus j is close to its upper

bound £ /f1 o)

2. A reascnable guess is that the best choice of k slowly increases with

increasing n . This is suppeorted by the results in Section 4.

If only the total number £ of self-avoiding paths is known, but

-l ? crude estimates yield the following bound. If
1

-2, it is better than (fn/fl)n—I.

we also know £

/> 5y

Corollary. If =n > 2, then the conpective constant is less than the

positive root of

flxn‘l = (fn"(fi"z)fn_l)x'f(fl'"z)((fl'-l)fn-l'-fn)'




Proof. Choose k=2 and j = f./f, = £, ~1 . Thus ?\n_l < 3 (A-3) +
—_— \ 2°71 1 — "n,2
1. 1 i Y
-i'-=lfn,2 . Now j_Elfn’z = fn/fl s and every J‘:'n,2 equals some fn s Y E 1"2 .
L APT L
Let ¢ € I‘l be the second step of Y. Then fn,2 fn < fn—l fn__l/f1 .
Thus
. i-1 . f -(G-1)f
| 1 . n-1
f =f ff. - ¥ >
n,2 n/ 1 1 n,2 — f1
Hence, since A < j,
-1 fn - (J_l)fn-l . fn fn ” (J_l)fn—l J (J.—l)fn—l i (J_l)fn
Yo f (A=3) + g = F A ; ‘
1 1 1 1




3. Computational algorithms for the square lattice

We will describe how an electronic computer can be used to count the
number of self-avoiding paths which belong to Fn.

Each path may be represented by a Boolean lattice. If a vertex is on
a path it contains 1 and otherwise O . Thus all possible paths may be
represented by a three-dimensional matrix P(I,X,Y), where I 1is an index
of the path and (X,Y) is a vertex. The memory of a computer is a Boolean
lattice. Most economically each vertex corresponds to a bit (instead of a
word or a byte)., A path of the length m is constructed from one of the
length m~1 by addition of one vertex at the head. All possible paths of
length m-1 and directions must be tried in each iteration. Obviously,
one has to remember which vertex of a path is the head. The heads are re-
presented by a matrix H(I, J(X,Y)} where J a one to one integer valued

function of (X,Y) . Also the form
P(IsXsY) = P(I, J(X:Y))

is used in our programme. This reduces the number of index operaticns and
the storage. The index I 1is orders of magnitudes too large to permit P
and H to be contained in the primary storage. Therefore secondary storage
(discs) are used to buffer in and out sub-matrices.

Symmetry may be used to reduce the number of paths te be counted.
Only paths which start along the x—axis and first turn off into the posi-
tive Y direction are needed., This subset we denote by Té and the number
of paths by g, - Ve have fn = 8g —4.

1t

One choice for the function J 1is
2
JH(XSY) =pnX+ (a~-VY +a " -4n+2.

The maximum of the J function, 2(n-—1)2 , is the number of bits reguired

2
to represent any path and Ziﬂ;all—- words have to be reserved for the

sacond index of P and H.




For n > 17 storage and computing times required are too large
within our present resources. The calculations can be extended thanks.to
the fact that continuations can be performed at the start instead of at
the end. We may connect paths of length k to paths of lemgth n-~k at
the origin and thus avoid intermediate iterations and any storage beyond
the length n-k . The number of paths is obtained from

-3 -
Fo = 7 foacfie T4 Gk

where Cn—k x is the number of pairs of intersecting paths, one belonging
L

to Fnuk and starting along the positive =x—axis and the other belonging

to Tk and starting in one of the three other directions. The latter set

of paths is denoted by Tﬁ'. When only the set P;_k is stored, one may use

C L e .+ I £_

a-k,k . %ve - %8
SET”_, SETT
Y€ I‘k Y Ezk
§#6

where EYG is 1 if v and & have at least onecrossing and otherwise
it is 0. Y 1is the path v reflected in the =x~axis. The terms fz are
obtained by means of the partial sums for <Y isomorphic to a given one.

We programmed the cases k=2,3,4. A developed version which permits
k close to n/2 would be better especially for fn . To perform this in
an efficient way we need to store 2lsc the paths of Fﬁ' and to have an
AND-operation which turné on only bits which are in both of the matched
paths. Also one needs a fast test if not all words representing this inter-
section are zero. Vector processors may turn out to be efficient [5]. Very
large integers need to be represented in our calculations. 60-bit computers

would avoid the early difficulties we have had.




4, Numerical results

Table 1 contains the number of self-avoiding paths on the square
lattice for n < 21 . This is only a part of the table of [6] which covers
n < 24 . Table 2 contains (for 12 <n < 21) the best upper bounds of the
connectivity constant given by Section 2 with k < 4. (Only these k were
tried. It is conceivable that higher k gives even better bounds.) The
optimal choices of k and j are 3 and 8 (or 9), respectively, for
12 <n <16 and 4 and 20 (or 21) respectively, for 1{.5 n < 2%L.
For comparison, Table 2 also contains the estimates (fn/4)ﬁ=r.

The best upper bound of the connectivity constant is thus 2.7272,

»

obtained for n=21, k=4 . Table 3 lists the numbers f;,k for this case.
However, the better bound 2.7248 is reported by Wall and White [7]. A
lower bound is 2.581 obtained by Beyes and Wells [8). There are suggestive
indications that the txrue value is 2.639 [9].

For other lattices, our theorem seems to yield a similar improvement.

i .
However, we have only computed fn for small n and we have not obtained

Jk
any new bounds. The corollary and published values of fn {61, [10] yieid
the upper bounds: triangular 4.354 (n=17), honeycomb 1.895 (n=34),
simple cubic 4.781 (n=19), body-centered cubic 6.695 {(n~=15), face-
centered cubic 10.361 (n=12).

Another result of our calculations is that the lower bound of the time

constant for first-passage percolation with exponential passage time distri-

bution is increased to 0.29853 (by the method of [11], with n=17).




Table 1: The number of selfavoiding paths for a square lattice

n £
n

1 4
2 12
3 36
4 100
5 284
6 780
7 2172
8 5916
9 16268
10 44100
11 120292
12 324932
13 881500
14 2374444
15 6416596
16 17245332
17 46466676
18 124658732
19 335116620
20 897697164
21 2408806028

Table 2: Upper bounds to the conmnectivity constant for the square lattice

1
n the theorem (fnfh)n_l

12
13
14
15
16
17
18
19
20
21

.7635
.7586
-7529
L7487
L7442
. 7405
. 7364
.7333
.7299
L7272

L7947
.7878
.7805
L7748
.7689
L7642
.7593
. 7553
L7512
L7478

MR NDNNN

TR N N R RN N RN R

Table 3: f;l 4 for the square lattice. (By symmetry, all but one occur
* in pairs.)

27541881 25911043 24697573
27158763 25911043 23992012
27158763 25911043 23992012
26795760 25693180 21553753
26795760 25693180 21553753
25924031 25302172 18509645
25924031 25302172 18509645
25911043 24697573 15880838

15880838
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