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Abstract. Several Brownian areas are considered in this paper: the
Brownian excursion area, the Brownian bridge area, the Brownian mo-
tion area, the Brownian meander area, the Brownian double meander
area, the positive part of Brownian bridge area, the positive part of
Brownian motion area. We are interested in the asymptotics of the right
tail of their density function. Inverting a double Laplace transform, we
can derive, in a mechanical way, all terms of an asymptotic expansion.
We illustrate our technique with the computation of the first four terms.
We also obtain asymptotics for the right tail of the distribution function
and for the moments. Our main tool is the two-dimensional saddle point
method.

1. Introduction

Let Bex(t), t ∈ [0, 1], be a (normalized) Brownian excursion, and let
Bex :=

∫ 1
0 Bex(t) dt be its area (integral). This random variable has been

studied by several authors, including Louchard [13; 14], Takács [19], and
Flajolet and Louchard [7]; see also the survey by Janson [9] with many
further references.

It is known that Bex has a density function fex, which was given explicitly
by Takács [19] as a convergent series involving a confluent hypergeometric
function. (The existence and continuity of fex follows also from Theorem 3.1
below.) The series expansion of fex readily yields asymptotics of the left tail
of the distribution, i.e., of fex(x) and P(Bex ≤ x) as x → 0, see Louchard
[14] and Flajolet and Louchard [7] (with typos corrected in [9]).

The main purpose of this paper is to give corresponding asymptotics for
the right tail of the distribution of Bex, i.e., for the density function fex(x)
and the tail probabilities P(Bex > x) for large x. We have the following
result.

Theorem 1.1. For the Brownian excursion area, as x→∞,

fex(x) ∼
72
√

6√
π
x2e−6x2

(1.1)
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and

P(Bex > x) ∼ 6
√

6√
π
xe−6x2

. (1.2)

More precisely, there exist asymptotic expansions in powers of x−2, to arbi-
trary order N , as x→∞,

fex(x) =
72
√

6√
π
x2e−6x2

(
1− 1

9
x−2 − 5

1296
x−4 − 25

46656
x−6 + · · ·+O

(
x−2N

))
,

P(Bex > x) =
6
√

6√
π
xe−6x2

(
1− 1

36
x−2 − 1

648
x−4 − 7

46656
x−6 + · · ·+O

(
x−2N

))
.

Unlike the left tail, it seems difficult to obtain such results from Takács’s
formula for fex, and we will instead use a method by Tolmatz [23; 24; 25] that
he used to obtain corresponding asymptotics for three other Brownian areas,
viz., the integral Bbr :=

∫ 1
0 |Bbr(t)|dt of the absolute value of a Brownian

bridge Bbr(t), the integral Bbm :=
∫ 1
0 |B(t)|dt of the absolute value of a

Brownian motion B(t) over [0, 1], and the integral Bbr+ :=
∫ 1
0 Bbr(t)+ dt of

the positive part of a Brownian bridge.
The (much weaker) fact that − ln P(Bex > x) ∼ −6x2, i.e., that

P(Bex > x) = exp
(
−6x2 + o(x2)

)
, (1.3)

was shown by Csörgő, Shi and Yor [3] as a consequence of the asymptotics
of the moments EBn

ex found by Takács [19], see Section 9. It seems difficult
to obtain more precise tail asymptotics from the moment asymptotics. It is,
however, easy to go in the opposite direction and obtain moment asymptotics
from the tail asymptotics above, as was done by Tolmatz [24; 25] for Bbm,
Bbr and Bbr+; see again Section 9. In particular, this made it possible to
guess the asymptotic formula (1.1) before we could prove it, by matching
the resulting moment asymptotics with the known result by Takács [19].

An alternative way to obtain (1.3) is by large deviation theory, which
easily gives (1.3) and explains the constant 6 as the result of an optimization
problem, see Fill and Janson [6]. This method applies to the other Brownian
areas in this paper too, and explains the different constants in the exponents
below, but, again, it seems difficult to obtain more precise results by this
approach.

Besides the Brownian excursion area and the three areas studied by Tol-
matz, his method applies also to three further Brownian areas: the integrals
Bme :=

∫ 1
0 |Bme(t)|dt, Bdm :=

∫ 1
0 |Bdm(t)|dt and Bbm+ :=

∫ 1
0 B(t)+ dt of

a Brownian meander Bme(t), a Brownian double meander Bdm(t), and the
positive part of a Brownian motion over [0, 1]. We define here the Brow-
nian double meander by Bdm(t) := B(t) − min0≤u≤1B(u); this is a non-
negative continuous stochastic process on [0, 1] that a.s. is 0 at a unique
point τ ∈ [0, 1], and it can be regarded as two Brownian meanders on the
intervals [0, τ ] and [τ, 1] joined back to back (with the first one reversed), see
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Majumdar and Comtet [15] and Janson [9]; the other processes considered
here are well-known, see for example Revuz and Yor [18].

We find it illuminating to study all seven Brownian areas together, and
we will therefore formulate our proof in a general form that applies to all
seven areas. As a result we obtain also the following results, where we for
completeness repeat Tolmatz’s results. (We also extend them, since Tolmatz
[23; 24; 25] gives only the leading terms, but he points out that higher order
terms can be obtained in the same way.) We give the four first terms in
the asymptotic expansions; they can (in principle, at least) be continued to
any desired number of terms by the methods in Section 6; only even powers
x−2k appear in the expansions.

Theorem 1.2 (Tolmatz [23]). For the Brownian bridge area, as x→∞,

fbr(x) =
2
√

6√
π
e−6x2

(
1 +

1
18
x−2 +

1
432

x−4 +
25

46656
x−6 +O

(
x−8

))
,

P(Bbr > x) =
1√
6π

x−1e−6x2

(
1− 1

36
x−2 +

1
108

x−4 − 155
46656

x−6 +O
(
x−8

))
.

Theorem 1.3 (Tolmatz [24]). For the Brownian motion area, as x→∞,

fbm(x) =
√

6√
π
e−3x2/2

(
1 +

1
18
x−2 − 1

162
x−4 +

49
5832

x−6 +O
(
x−8

))
,

P(Bbm > x) =
√

2√
3π

x−1e−3x2/2

(
1− 5

18
x−2 +

22
81
x−4 − 2591

5832
x−6 +O

(
x−8

))
.

Theorem 1.4. For the Brownian meander area, as x→∞,

fme(x) = 3
√

3xe−3x2/2

(
1− 1

18
x−2 − 1

162
x−4 +

5
5832

x−6 +O
(
x−8

))
,

P(Bme > x) =
√

3 e−3x2/2

(
1− 1

18
x−2 +

5
162

x−4 − 235
5832

x−6 +O
(
x−8

))
.

Theorem 1.5. For the Brownian double meander area, as x→∞,

fdm(x) =
2
√

6√
π
e−3x2/2

(
1 +

1
6
x−2 +

1
18
x−4 +

29
648

x−6 +O
(
x−8

))
,

P(Bdm > x) =
2
√

2√
3π

x−1e−3x2/2

(
1− 1

6
x−2 +

2
9
x−4 − 211

648
x−6 +O

(
x−8

))
.

Theorem 1.6 (Tolmatz [25]). For the positive part of Brownian bridge area,
as x→∞,

fbr+(x) =
√

6√
π
e−6x2

(
1 +

1
36
x−2 − 7

5184
x−4 +

17
46656

x−6 +O
(
x−8

))
,

P(Bbr+ > x) =
1

2
√

6π
x−1e−6x2

(
1− 1

18
x−2 +

65
5184

x−4 − 907
186624

x−6 +O
(
x−8

))
.
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Theorem 1.7. For the positive part of Brownian motion area, as x→∞,

fbm+(x) =
√

3√
2π

e−3x2/2

(
1 +

1
36
x−2 − 5

648
x−4 +

109
15552

x−6 +O
(
x−8

))
,

P(Bbm+ > x) =
1√
6π

x−1e−3x2/2

(
1− 11

36
x−2 +

193
648

x−4 − 2537
5184

x−6 +O
(
x−8

))
.

It is not surprising that the tails are roughly Gaussian, with a decay like
e−cx2

for some constants c. Note that the constant in the exponent is 6 for
the Brownian bridge and excursion, which are tied to 0 at both endpoints,
and only 3/2 for the Brownian motion, meander and double meander, which
are tied to 0 only at one point. It is intuitively clear that the probability of
a very large value is smaller in the former cases. There are also differences
in factors of x between Bbr and Bex, and between Bbm and Bme, where the
process conditioned to be positive has somewhat higher probabilities of large
areas. These differences are in the expected direction, but we see no intuitive
reason for the powers in the theorems. We have even less explanations for
the constant factors in the estimates.

Remark 1.8. If we define Bbr− :=
∫ 1
0 Bbr(t)− dt, we have Bbr = Bbr++Bbr−;

further, Bbr−
d= Bbr+ by symmetry. Hence, for any x,

P(Bbr > x) ≥ P(Bbr+ > x or Bbr− > x)

= P(Bbr+ > x) + P(Bbr− > x)− P(Bbr+ > x and Bbr− > x)

≥ 2P(Bbr+ > x)− 2P(Bbr > 2x).

By Theorems 1.2 and 1.6, the ratio between the two sides is 1 + 1
36x

−2 +
O(x−4); hence, these inequalities are tight for large x. This shows, in a very
precise way, the intuitive fact that the most probable way to obtain a large
value of Bbr is with one of Bbr+ and Bbr− large and the other close to 0.

The same is true for Bbm and Bbm± by Theorems 1.2 and 1.6. It is
interesting to note that for both Bbr and Bbm, the ratio P(B > x)/2P(B+) =
1 + 1

36x
−2 + O(x−4), with the first two terms equal for the two cases (the

third terms differ).

Tolmatz’s method is based on inverting a double Laplace transform; this
double Laplace transform has simple explicit forms (involving the Airy func-
tion) for all seven Brownian areas, see the survey [9] and the references given
there. The inversion is far from trivial; a straightforward inversion leads to
a double integral that is not even absolutely convergent, and not easy to
estimate. Tolmatz found a clever change of contour that together with prop-
erties of the Airy function leading to near cancellations makes it possible to
rewrite the integral as a double integral of a rapidly decreasing function, for
which the saddle point method can be applied. (Kearney, Majumdar and
Martin [12] have recently used a similar change of contour together with
similar near cancellations to invert a (single) Laplace transform for another
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type of Brownian area.) We follow Tolmatz’s approach, and state his in-
version using a change of contour in a rather general form in Section 3; the
proof is given in Section 8. This inversion formula is then applied to the
seven Brownian areas in Sections 4–6. Moment asymptotics are derived in
Section 9.

A completely different proof for the asymptotics of P(Bbr > x) and
P(Bbm > x) in Theorems 1.2 and 1.3 has been given by Fatalov [5] using
Laplace’s method in Banach spaces. This method seems to be an interest-
ing and flexible alternative way to obtain at least first order asymptotics in
many situations, and it would be interesting to extend it to cover all cases
treated here.

We use C1, C2, . . . and c1, c2, . . . to denote various positive constants; ex-
plicit values could be given but are unimportant. We also write, for example,
C1(M) to denote dependency on a parameter (but not on anything else).

2. Asymptotics of density and distribution functions

The relation between the asymptotics for density functions and distribu-
tion functions in Theorems 1.1–1.7 can be obtained as follows.

Suppose that X is a positive random variable with a density function f
satisfying

f(x) ∼ axαe−bx2
, x→∞, (2.1)

for some numbers a, b > 0, α ∈ R. It is easily seen, e.g. by integration by
parts, that (2.1) implies

P(X > x) ∼ a

2b
xα−1e−bx2

, x→∞. (2.2)

Obviously, there is no implication in the opposite direction; X may even
satisfy (2.2) without having a density at all. On the other hand, if it is
known that (2.1) holds with some unknown constants a, b, α, then the
constants can be found from the asysmptotics of P(X > x) by (2.2).

The argument extends to asymptotic expansions with higher order terms.
If, as for the Brownian areas studied in this paper, there is an asymptotic
expansion

f(x) = xαe−bx2 (
a0 + a2x

−2 + a4x
−4 + · · ·+O(x−2N )

)
, x→∞, (2.3)

then repeated integrations by parts yield a corresponding expansion

P(X > x) = xα−1e−bx2 (
a′0 + a′2x

−2 + a′4x
−4 + · · ·+O(x−2N )

)
, x→∞,

(2.4)
where a′0 = a0/(2b), a′2 = a0(α − 1)/(2b)2 + a2/(2b), . . . ; in general, the
expansion (2.3) is recovered by formal differentiation of (2.4), which gives a
simple method to find the coefficients in (2.4).
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3. A double Laplace inversion

We state the main step in (our version of) Tolmatz’ method as the follow-
ing inversion formula, which is based on and generalizes formulas in Tolmatz
[23; 24; 25].

Fractional powers of complex numbers below are interpreted as the prin-
cipal values, defined in C \ (−∞, 0].

Theorem 3.1. Let X be a positive random variable and let ψ(s) := E e−sX

be its Laplace transform. Suppose that 0 < ν < 3/2 and that
1

Γ(ν)

∫ ∞

0
e−xsψ(s3/2)sν−1 ds = Ψ(x), x > 0, (3.1)

where Ψ is an analytic function in the sector {z ∈ C : | arg z| < 5π/6} such
that

Ψ(z) = o(|z|−ν), z → 0 with | arg z| < 5π/6, (3.2)

Ψ(z) = O(1), |z| → ∞ with | arg z| < 5π/6. (3.3)

Let
Ψ∗(z) := e2πνi/3Ψ

(
e2πi/3z

)
− e−2πνi/3Ψ

(
e−2πi/3z

)
. (3.4)

Finally, assume that

Ψ∗(z) = O(|z|−6), |z| → ∞ with | arg z| < π/6. (3.5)

Then X is absolutely continuous with a continuous density function f given
by, for x > 0 and every ξ > 0,

f(x) =
3Γ(ν)
8π2i

ξ5/2−νx2ν/3−5/3

·
∫ π/2

θ=−π/2

∫ ∞

r=0
exp
(
ξx−2/3 sec θeiθ − eiθ(ξ sec θ)3/2r−3/2

)
· e(1−2ν/3)iθ(sec θ)7/2−νrν−5/2Ψ∗(reiθ/3) dr dθ. (3.6)

Note that Ψ∗ is analytic in the sector | arg z| < π
6 , with, by (3.2) and

(3.3),

Ψ∗(z) = o(|z|−ν), z → 0 with | arg z| < π

6
, (3.7)

Ψ∗(z) = O(1), |z| → ∞ with | arg z| < π

6
. (3.8)

However, we need, as assumed in (3.5), a more rapid decay as |z| → ∞ than
this.

Remark 3.2. In all our applications, Ψ is, in fact, analytic in the slit plane
C \ (−∞, 0], and (3.2) and (3.3) hold in any sector | arg z| ≤ π − δ; thus Ψ∗

is analytic in | arg z| < π/3, and (3.7) and (3.8) hold for | arg z| ≤ π/3− δ.

Remark 3.3. To obtain Tolmatz’ version of the formulas, for example [23,
(30)] (correcting a typo there), take ν = 1/2 and Ψ∗ as in (4.5) below, and
make the substitutions x = λ, ξ = aλ2/3 and r = aρ−2/3 sec θ.
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We prove Theorem 3.1 in Section 8, but show first how it applies to the
Brownian areas.

4. The function Ψ∗ for Brownian areas

For the Brownian bridge area Bbr we have ν = 1/2 and, see e.g. [9, (126)],

Ψ(z) = −21/6 Ai(21/3z)
Ai′(21/3z)

, (4.1)

which by the formula [1, 10.4.9]

Ai(ze±2πi/3) = 1
2e
±πi/3

(
Ai(z)∓ iBi(z)

)
(4.2)

and its consequence

Ai′(ze±2πi/3) = 1
2e
∓πi/3

(
Ai′(z)∓ iBi′(z)

)
(4.3)

together with the Wronskian [1, 10.4.10]

Ai(z)Bi′(z)−Ai′(z)Bi(z) = π−1 (4.4)

by a simple calculation leads to, as shown by Tolmatz [23, Lemma 2.1], see
(4.7) below,

Ψ∗(z) =
27/6π−1i

Ai′(21/3z)2 + Bi′(21/3z)2
. (4.5)

It seems simpler to instead consider
√

2Bbr. Note that, by the simple change
of variables s 7→ 21/3s and x 7→ 2−1/3x in (3.1), if (3.1) holds for some
random variable X and a function Ψ, it holds for

√
2X and 2−ν/3Ψ(2−1/3z).

We use the notations Ψbr and Ψ∗
br for the case X =

√
2Bbr and obtain from

(4.1) the simpler

Ψbr(z) = − Ai(z)
Ai′(z)

(4.6)

and thus, by (4.2), (4.3) and (4.4),

Ψ∗
br(z) =

∑
±
±e±πi/3Ψ

(
e±2πi/3z

)
=
∑
±
∓e±3πi/3 Ai(z)∓ iBi(z)

Ai′(z)∓ iBi′(z)

=
∑
±
±
(
Ai(z)∓ iBi(z)

)(
Ai′(z)± iBi′(z)

)
Ai′(z)2 + Bi′(z)2

=
2π−1i

Ai′(z)2 + Bi′(z)2
. (4.7)

For the Brownian excursion area Bex we have ν = 1/2 and by Louchard
[14], see also [9, (80)],

Ψ(z) = −25/6 d
dz

(
Ai′(21/3z)
Ai(21/3z)

)
= 21/2

(
21/3 Ai′(21/3z)

Ai(21/3z)

)2

− 23/2z, (4.8)



8 SVANTE JANSON AND GUY LOUCHARD

Again, it seems simpler to instead consider
√

2Bex, for which we use the
notation Ψex and Ψ∗

ex. We have, see Louchard [14] and [9, (81)], or by (4.8)
and the general relation above,

Ψex(z) = −2
d
dz

(
Ai′(z)
Ai(z)

)
= 2

(
Ai′(z)
Ai(z)

)2

− 2z, (4.9)

and thus by (4.2), (4.3) and (4.4)

Ψ∗
ex(z) =

∑
±
±e±πi/3Ψex

(
e±2πi/3z

)
=
∑
±
±
(
e±πi/32

(
e∓2πi/3 Ai′(z)∓ iBi′(z)

Ai(z)∓ iBi(z)

)2

− 2e±2πi/3z

)

= 2
∑
±
±e∓3πi/3

(
Ai′(z)∓ iBi′(z)

)2(Ai(z)± iBi(z)
)2(

Ai(z)2 + Bi(z)2
)2 + 0

= 2
∑
±
∓
(
Ai′(z)Ai(z) + Bi′(z)Bi(z)∓ iπ−1

)2(
Ai(z)2 + Bi(z)2

)2
=

8π−1i
(
Ai(z)Ai′(z) + Bi(z)Bi′(z)

)(
Ai(z)2 + Bi(z)2

)2 . (4.10)

The Brownian motion area Bbm is another case treated by Tolmatz [24].
Note that in this case ν = 1. For

√
2Bbm, we have by Takács [21], see also

Kac [10], Perman and Wellner [17], and [9, Section 20 and Appendix C.1],
ν = 1 and

Ψbm(z) = −AI(z)
Ai′(z)

, (4.11)

where we use the notation, see [9, Appendix A],

AI(z) :=
∫ +∞

z
Ai(t) dt =

1
3
−
∫ z

0
Ai(t) dt. (4.12)

If we further define

BI(z) :=
∫ z

0
Bi(t) dt, (4.13)

we have by (4.2)

AI(ze±2πi/3) =
1
3
−
∫ ze±2πi/3

0
Ai(t) dt

=
1
3
− e±2πi/3

∫ z

0
Ai(te±2πi/3) dt

=
1
3
− 1

2
e±3πi/3

∫ z

0

(
Ai(t)∓ iBi(t)

)
dt

= 1
2 −

1
2AI(z)∓ 1

2 iBI(z). (4.14)
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Consequently, using (4.11) and (4.3),

Ψ∗
bm(z) =

∑
±
±e±2πi/3Ψbm

(
e±2πi/3z

)
=
∑
±
∓e±3πi/3 1−AI(z)∓ iBI(z)

Ai′(z)∓ iBi′(z)

=
∑
±
±
(
1−AI(z)∓ iBI(z)

)(
Ai′(z)± iBi′(z)

)
Ai′(z)2 + Bi′(z)2

= 2i
Bi′(z)−AI(z)Bi′(z)−Ai′(z)BI(z)

Ai′(z)2 + Bi′(z)2
. (4.15)

For the Brownian meander, or more precisely
√

2Bme, by Takács [22], see
also [9, Section 22 and Appendix C.3], (3.1) holds with ν = 1/2 and

Ψme(z) =
AI(z)
Ai(z)

. (4.16)

Consequently, using (4.14) and (4.2),

Ψ∗
me(z) =

∑
±
±e±πi/3Ψme

(
e±2πi/3z

)
=
∑
±
±1−AI(z)∓ iBI(z)

Ai(z)∓ iBi(z)

=
∑
±
±
(
1−AI(z)∓ iBI(z)

)(
Ai(z)± iBi(z)

)
Ai(z)2 + Bi(z)2

= 2i
Bi(z)−AI(z)Bi(z)−Ai(z)BI(z)

Ai(z)2 + Bi(z)2
. (4.17)

For the Brownian double meander, or more precisely
√

2Bdm, by Ma-
jumdar and Comtet [15], see also [9, Section 23], (3.1) holds with ν = 1
and

Ψdm(z) =
(

AI(z)
Ai(z)

)2

. (4.18)
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Consequently, using (4.14) and (4.2),

Ψ∗
dm(z) =

∑
±
±e±2πi/3Ψdm

(
e±2πi/3z

)
=
∑
±
±
(

1−AI(z)∓ iBI(z)
Ai(z)∓ iBi(z)

)2

=
∑
±
±
((

1−AI(z)∓ iBI(z)
)(

Ai(z)± iBi(z)
))2

(Ai(z)2 + Bi(z)2)2

= 4i

(
(1−AI(z))Ai(z) + BI(z)Bi(z)

)(
(1−AI(z))Bi(z)− BI(z)Ai(z)

)
(Ai(z)2 + Bi(z)2)2

.

(4.19)

The positive part of a Brownian bridge is another case treated by Tolmatz
[25]. For

√
2Bbr+, by Perman and Wellner [17], see also Tolmatz [25] and

[9, Section 22 and Appendix C.2], (3.1) holds with ν = 1/2 and

Ψbr+(z) = 2
Ai(z)

z1/2Ai(z)−Ai′(z)
. (4.20)

Consequently, by (4.2), (4.3) and (4.4),

Ψ∗
br+(z) =

∑
±
±e±πi/3Ψbr+

(
e±2πi/3z

)
=
∑
±
±2e±πi/3 Ai

(
e±2πi/3z

)
e±πi/3z1/2Ai

(
e±2πi/3z

)
−Ai′

(
e±2πi/3z

)
= 2

∑
±
± Ai(z)∓ iBi(z)
z1/2

(
Ai(z)∓ iBi(z)

)
− e∓3πi/3

(
Ai′(z)∓ iBi′(z)

)
= 2

∑
±
± Ai(z)∓ iBi(z)(

z1/2Ai(z) + Ai′(z)
)
∓ i
(
z1/2Bi(z) + Bi′(z)

)
= 2

∑
±
±
(
Ai(z)∓ iBi(z)

)(
z1/2Ai(z) + Ai′(z)± i

(
z1/2Bi(z) + Bi′(z)

))(
z1/2Ai(z) + Ai′(z)

)2 +
(
z1/2Bi(z) + Bi′(z)

)2
=

4iπ−1(
z1/2Ai(z) + Ai′(z)

)2 +
(
z1/2Bi(z) + Bi′(z)

)2 . (4.21)

For the positive part of a Brownian motion, or more precisely
√

2Bbm+,
by Perman and Wellner [17], see also [9, Section 23 and Appendix C.1], (3.1)
holds with ν = 1 and

Ψbm+(z) =
z−1/2Ai(z) + AI(z)
z1/2Ai(z)−Ai′(z)

. (4.22)
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Note that this Ψ is singular at 0, but still satisfies (3.2). By (4.2), (4.3),
(4.14) and (4.4),

Ψ∗
bm+(z) =

∑
±
±e±2πi/3Ψbm+

(
e±2πi/3z

)
=
∑
±
±e±2πi/3 e

∓πi/3z−1/2Ai
(
e±2πi/3z

)
+ AI

(
e±2πi/3z

)
e±πi/3z1/2Ai

(
e±2πi/3z

)
−Ai′

(
e±2πi/3z

)
=
∑
±
±

z−1/2
(
Ai(z)∓ iBi(z)

)
+ 1−AI(z)∓ iBI(z)

z1/2
(
Ai(z)∓ iBi(z)

)
− e∓3πi/3

(
Ai′(z)∓ iBi′(z)

)
=
∑
±
±
z−1/2Ai(z) + 1−AI(z)∓ i

(
z−1/2Bi(z) + BI(z)

)(
z1/2Ai(z) + Ai′(z)

)
∓ i
(
z1/2Bi(z) + Bi′(z)

)
= 2i

(
z−1/2Ai(z) + 1−AI(z)

)(
z1/2Bi(z) + Bi′(z)

)(
z1/2Ai(z) + Ai′(z)

)2 +
(
z1/2Bi(z) + Bi′(z)

)2
− 2i

(
z−1/2Bi(z) + BI(z)

)(
z1/2Ai(z) + Ai′(z)

)(
z1/2Ai(z) + Ai′(z)

)2 +
(
z1/2Bi(z) + Bi′(z)

)2
= 2i

(
1−AI(z)

)(
z1/2Bi(z) + Bi′(z)

)
− BI(z)

(
z1/2Ai(z) + Ai′(z)

)
+ z−1/2π−1(

z1/2Ai(z) + Ai′(z)
)2 +

(
z1/2Bi(z) + Bi′(z)

)2
(4.23)

Note that the functions Ψbr, Ψex, Ψbm, Ψme and Ψdm given above in (4.6),
(4.9), (4.11), (4.16), (4.18) are meromorphic, with poles only on the negative
real axis, because the only zeros of Ai and Ai′ are on the negative real axis
[1, p. 450]. The functions Ψbr+ and Ψbm+ in (4.20) and (4.22) are analytic in
the slit plane C \ (−∞, 0], since Tolmatz [25] showed that z1/2Ai(z)−Ai′(z)
has no zeros in the slit plane; see Appendix A for an alternative proof. In
particular, all seven functions are analytic in the slit plane. Furthermore,
all except Ψbm+ have finite limits as z → 0, and in particular they are O(1)
as z → 0 so (3.2) holds. By (4.22), we have Ψbm+(z) ∼ z−1/2Ai(0)/Ai′(0)
and thus Ψbm+ = O(|z|−1/2) as z → 0; since in this case ν = 1, (3.2) holds
for Ψbm+ too.

Next we consider asymtotics as |z| → ∞. The Airy functions have
well-known asymptotics, see [1, 10.4.59, 10.4.61, 10.4.63, 10.4.66, 10.4.82,
10.4.84]. The leading terms are, as |z| → ∞ and uniformly in the indicated
sectors for any δ > 0,

Ai(z) ∼ π−1/2

2
z−1/4e−2z3/2/3, | arg(z)| ≤ π − δ, (4.24)

Ai′(z) ∼ −π
−1/2

2
z1/4e−2z3/2/3, | arg(z)| ≤ π − δ, (4.25)

AI(z) ∼ π−1/2

2
z−3/4e−2z3/2/3, | arg(z)| ≤ π − δ, (4.26)
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Bi(z) ∼ π−1/2z−1/4e2z3/2/3, | arg(z)| ≤ π/3− δ, (4.27)

Bi′(z) ∼ π−1/2z1/4e2z3/2/3, | arg(z)| ≤ π/3− δ, (4.28)

BI(z) ∼ π−1/2z−3/4e2z3/2/3, | arg(z)| ≤ π/3− δ. (4.29)

It follows by using (4.24), (4.25) and (4.26) in (4.6), (4.9), (4.16), (4.11),
(4.20), (4.22) that in all seven cases (3.3) holds; more precisely, Ψ(z) ∼ z−ν

as |z| → ∞ with | arg z| < π − δ. (For real z > 0, this is always true, as
follows from (3.1) by the change of variables s = t/x and monotone (or
dominated) convergence.)

Turning to Ψ∗, we observe first that, by (3.4), in all seven cases, Ψ∗(z)
is analytic in | arg z| < 1/3. Next, (4.24)–(4.29) show that, as |z| → ∞ in
a sector | arg(z)| ≤ π/3 − δ, Ai,Ai′,AI decrease superexponentially while
Bi,Bi′,BI increase superexponentially. Hence, we can ignore all terms in-
volving Ai. More precisely, (4.7), (4.10), (4.15), (4.17), (4.19), (4.21), (4.23)
together with (4.24)–(4.29) yield the asymptotics, as |z| → ∞ with (for
example) | arg z| ≤ π/6,

Ψ∗
br(z) =

2π−1i
Bi′(z)2

(
1 +O

(
e−8z3/2/3

))
, (4.30)

Ψ∗
ex(z) = 8π−1i

Bi′(z)
Bi(z)3

(
1 +O

(
e−8z3/2/3

))
, (4.31)

Ψ∗
bm(z) =

2i
Bi′(z)

(
1 +O

(
e−2z3/2/3

))
, (4.32)

Ψ∗
me(z) =

2i
Bi(z)

(
1 +O

(
e−2z3/2/3

))
, (4.33)

Ψ∗
dm(z) = 4i

BI(z)
Bi(z)2

(
1 +O

(
e−2z3/2/3

))
, (4.34)

Ψ∗
br+(z) =

4iπ−1(
z1/2Bi(z) + Bi′(z)

)2(1 +O
(
e−4z3/2/3

))
, (4.35)

Ψ∗
bm+(z) =

2i
z1/2Bi(z) + Bi′(z)

(
1 +O

(
e−2z3/2/3

))
. (4.36)

In all seven cases, Ψ∗ decreases superexponentially in the sector; in par-
ticular, (3.5) holds. It is remarkable that in all seven cases, Ψ(z) decreases
slowly, as z−1/2 or z−1, but the linear combination Ψ∗(z) decreases extremely
rapidly in a sector around the positive real axis; there are thus almost com-
plete cancellations between the values of Ψ(z) at, say, arg z = ±2πi/3. These
cancellations are an important part of the success of Tolmatz’s method.

We have verified all the conditions of Theorem 3.1. Hence, the theorem
shows that the variables have continuous density functions given by (3.6).
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5. The saddle point method

We proceed to show how the tail asymptotics for the Brownian areas
follow from Theorem 3.1 and the formulae in Section 4 by straightforward
applications of the saddle point method. For simplicity, we give first a
derivation of the leading terms. In the next section we show how the cal-
culations can be refined to obtain the asymptotic expansions in Theorems
1.1–1.7.

We use Ξ ∈ {br, ex, bm, me, dm, br+, bm+} as a variable indicating the
different Brownian areas we consider. We begin by writing (4.30)–(4.36),
using (4.27) and (4.28), as

Ψ∗
Ξ(z) = hΞ(z)e−γΞz3/2

, (5.1)

where γbr = γex = γbr+ = 4/3 and γbm = γme = γdm = γbm+ = 2/3 (note
that these cases differ by having two or one points tied to 0) and, as |z| → ∞
with | arg z| ≤ π/6,

hbr(z) ∼ 2iz−1/2 (5.2)

hex(z) ∼ 8iz (5.3)

hbm(z) ∼ 2iπ1/2z−1/4 (5.4)

hme(z) ∼ 2iπ1/2z1/4 (5.5)

hdm(z) ∼ 4iπ1/2z−1/4 (5.6)

hbr+(z) ∼ iz−1/2 (5.7)

hbm+(z) ∼ iπ1/2z−1/4. (5.8)

We write the right hand sides as ih0
br(z), . . . , ih

0
bm+(z), and thus these for-

mulae can be written
hΞ(z) ∼ ih0

Ξ(z), (5.9)

where h0
br(z) = 2z−1/2, h0

ex(z) = 8z, and so on.
Consider, for simplicity, first the cases Ξ ∈ {br, ex, me, br+} where ν =

1/2. We then rewrite (3.6) as, using f∗Ξ for the density of
√

2BΞ,

f∗Ξ(x) = ξ2x−4/3

∫ π/2

−π/2

∫ ∞

0
F0(r, θ)eϕ0(r,θ;x,ξ) dr dθ (5.10)

where, with γ = γΞ,

F0(r, θ) :=
3π−3/2

8i
e2iθ/3(sec θ)3r−2hΞ(reiθ/3), (5.11)

ϕ0(r, θ;x, ξ) := ξx−2/3 sec θeiθ − eiθ(ξ sec θ/r)3/2 − γr3/2eiθ/2. (5.12)

Remember that ξ is arbitrary; we choose ξ = ρx8/3 for a positive constant ρ
that will be chosen later. Further, make the change of variables r = x4/3s2/3.
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Thus,

f∗Ξ(x) = ρ2x8/3

∫ π/2

θ=−π/2

∫ ∞

s=0
F1(s, θ;x)ex

2ϕ1(s,θ) dsdθ (5.13)

where

F1(s, θ;x) :=
1

4π3/2i
e2iθ/3(sec θ)3s−5/3hΞ(x4/3s2/3eiθ/3), (5.14)

ϕ1(s, θ) := ρ
(
1 + i tan θ

)
− ρ3/2s−1eiθ(sec θ)3/2 − γseiθ/2. (5.15)

In particular,

Reϕ1(s, θ) = ρ− ρ3/2s−1(cos θ)−1/2 − γs cos(θ/2). (5.16)

In the cases Ξ ∈ {bm, dm, bm+} when ν = 1, we obtain similarly

f∗Ξ(x) = ρ3/2x7/3

∫ π/2

θ=−π/2

∫ ∞

s=0
F1(s, θ;x)ex

2ϕ1(s,θ) dsdθ (5.17)

where

F1(s, θ;x) :=
1

4π2i
eiθ/3(sec θ)5/2s−4/3hΞ(x4/3s2/3eiθ/3) (5.18)

and ϕ1 is the same as above.
Consider first θ = 0; then

ϕ1(s, 0) = Reϕ1(s, 0) = ρ− ρ3/2s−1 − γs, (5.19)

which has a maximum at s = s0 := ρ3/4γ−1/2. In order for (s0, 0) to be a
saddle point of ϕ1, we need also

0 =
∂ϕ1

∂θ
(s0, 0) = iρ− iρ3/2s−1 − 1

2 iγs = i
(
ρ− 3

2ρ
3/4γ1/2

)
(5.20)

and thus

ρ = ρΞ :=
(3γ1/2

2

)4
=
(9γ

4

)2
=

{
9, Ξ ∈ {br, ex,br+},
9/4, Ξ ∈ {bm,me,dm,bm+}.

(5.21)

With this choice of ρ, we find from (5.15) and (5.20) that the value at the
saddle point is

ϕ1(s0, 0) = ρ− 2ρ3/4γ1/2 = −ρ
3

=

{
−3, Ξ ∈ {br, ex,br+},
−3/4, Ξ ∈ {bm,me,dm,bm+}.

(5.22)
This yields the constant coefficient in the exponent of the asymptotics. We
denote this value by −b = −bΞ, and have thus, using (5.20),

ρ = 3b, ρ3/4γ1/2 = 2b. (5.23)

Further, by (5.23) and (5.22)

s0 = ρ3/4γ−1/2 = 2bγ−1 =

{
9/2, Ξ ∈ {br, ex,br+},
9/4, Ξ ∈ {bm,me,dm,bm+}.

(5.24)
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The significant part of the integrals in (5.13) and (5.17) comes from the
square

Q :=
{
(s, θ) : |s− s0| ≤ log x/x, |θ| ≤ log x/x

}
(5.25)

around the saddle point, as we will see in Lemma 5.1 below. We consider
first this square.

By (5.14), (5.18) and (5.2)–(5.8), uniformly for (s, θ) ∈ Q, as x→∞,

F1(s, θ;x) =


1+o(1)

4π3/2 s
−5/3
0 h0

Ξ(x4/3s
2/3
0 ), Ξ ∈ {br, ex,me,br+},

1+o(1)
4π2 s

−4/3
0 h0

Ξ(x4/3s
2/3
0 ), Ξ ∈ {bm,dm,bm+}.

(5.26)

For the exponential part, we let s = s0(1 + u/x) and θ = 2v/x, and note
that Q corresponds to

Q′ :=
{
(u, v) : |u| ≤ (log x)/s0, |θ| ≤ (log x)/2

}
. (5.27)

A Taylor expansion yields, for (u, v) ∈ Q′, after straightforward computa-
tions,

ϕ1(s, θ) = −b− 2bu2x−2 + 2ibuvx−2− bv2x−2 +O
(
(|u|3 + |v|3)x−3

)
. (5.28)

Hence,∫∫
Q
ex

2ϕ1(s,θ) dsdθ = 2s0x−2

∫∫
Q′
e−bx2−2bu2+2ibuv−bv2+o(1) du dv

= 2s0x−2e−bx2

(∫ ∞

0

∫ ∞

0
e−2bu2+2ibuv−bv2+o(1) du dv + o(1)

)
= 2s0x−2e−bx2

(
π

∣∣∣∣ 2b −ib
−ib b

∣∣∣∣−1/2

+ o(1)
)

∼ 2s0π√
3 b
x−2e−bx2

. (5.29)

Further,
∫∫

Q

∣∣ex2ϕ1(s,θ)
∣∣ dsdθ is of the same order. Consequently, if we write

G1(s, θ;x) := F1(s, θ;x)ex
2ϕ1(s,θ),

then (5.29) and (5.26) yield∫∫
Q
G1(s, θ;x) dsdθ =


1+o(1)

2
√

3π b
s
−2/3
0 h0

Ξ(x4/3s
2/3
0 )x−2e−bx2

, Ξ ∈ {br, ex,me,br+},
1+o(1)

2
√

3 πb
s
−1/3
0 h0

Ξ(x4/3s
2/3
0 )x−2e−bx2

, Ξ ∈ {bm,dm,bm+}.
(5.30)

For the complement Qc := (0,∞)×(−π/2, π/2)\Q, we have the following.

Lemma 5.1. For every N <∞, for large x,∫∫
Qc

|G1(s, θ;x)|dsdθ = O
(
x−Ne−bx2

)
.
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We postpone the proof and find from (5.13), (5.17) and (5.30), using
(5.23),

f∗(x) ∼


√

3 ρ
2
√

π
s
−2/3
0 h0

Ξ(x4/3s
2/3
0 )x2/3e−bx2

, Ξ ∈ {br, ex,me,br+},
√

3ρ
2π s

−1/3
0 h0

Ξ(x4/3s
2/3
0 )x1/3e−bx2

, Ξ ∈ {bm,dm,bm+}.

Substituting the functions h0
Ξ implicit in (5.2)–(5.8) and the values of ρ, b

and s0 given in (5.21)–(5.24), we finally find

f∗br(z) ∼
√

3 ρ√
π
s−1
0 e−bx2

=
2
√

3√
π
e−3x2

, (5.31)

f∗ex(z) ∼
4
√

3 ρ√
π
x2e−bx2

=
36
√

3√
π
x2e−3x2

, (5.32)

f∗bm(z) ∼
√

3ρ√
π
s
−1/2
0 e−bx2

=
√

3√
π
e−3x2/4, (5.33)

f∗me(z) ∼
√

3 ρs−1/2
0 xe−bx2

=
3
√

3
2
xe−3x2/4, (5.34)

f∗dm(z) ∼ 2
√

3ρ√
π
s
−1/2
0 e−bx2

=
2
√

3√
π
e−3x2/4, (5.35)

f∗br+(z) ∼
√

3 ρ
2
√
π
s−1
0 e−bx2

=
√

3√
π
e−3x2

, (5.36)

f∗bm+(z) ∼
√

3ρ
2
√
π
s
−1/2
0 e−bx2

=
√

3
2
√
π
e−3x2/4. (5.37)

Recall that these are the densities of
√

2BΞ. The density of BΞ is fΞ(x) =√
2 f∗Ξ(

√
2x), and we obtain the leading term of the asymptotics in Theorems

1.1–1.7. The leading terms of the asymptotics for P(BΞ > x) follow by
integration by parts, as discussed in Section 2.

It remains to prove Lemma 5.1. We begin by observing that by (3.7),
(5.1) and (5.2)–(5.8),

|h(z)| = O
(
|z|+ |z|−1

)
, | arg z| < π/6. (5.38)

Hence (5.14) and (5.18) show that, with some margin,

|F1(s, θ;x)| ≤ C1

(
x2s−1 + x−2s−3

)
(cos θ)−3. (5.39)

and thus by (5.16), for x ≥ 1,

|G1(s, θ;x)| ≤ C2x
2(cos θ)−3

(
s−1 + s−3

)
eρx2−x2A(θ)s−1−x2B(θ)s, (5.40)

where A(θ) = ρ3/2(cos θ)−1/2 and B(θ) := γ cos(θ/2). We integrate over s,
using the following lemma.

Lemma 5.2. Let M ≥ 0.
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(i) If A and B are positive numbers and AB ≥ 1, then∫ ∞

0
s−M−1e−As−1−Bs ds ≤ C3(M)(B/A)M/2e−2

√
AB. (5.41)

(ii) If further 0 < δ < 1, then∫∣∣s−√A/B
∣∣>δ
√

A/B, s>0
s−M−1e−As−1−Bs ds ≤ C4(M)(B/A)M/2e−(2+δ2/2)

√
AB.

(5.42)

Proof. (i): The change of variables s =
√
A/B t followed by t 7→ t−1 for

t > 1 yields∫ ∞

0
s−Me−As−1−Bs ds

s
= (B/A)M/2

∫ ∞

0
t−Me−

√
AB(t−1+t) dt

t

= (B/A)M/2

∫ 1

0

(
t−M + tM

)
e−
√

AB(t−1+t) dt
t
.

(5.43)

For t ∈ (1
6 , 1) we write t = 1−u and use (1−u)−1 +1−u ≥ 2+u2; hence

the integral over (1
6 , 1) is bounded by

C5(M)
∫ ∞

0
e−
√

AB(2+u2) du ≤ C6(M)e−2
√

AB

For t ∈ (0, 1
6) we use

t−M−1e−
√

AB t−1/2 ≤ C7(M)(AB)−(M+1)/2 ≤ C7(M);

hence the integral over (0, 1
6) is bounded by

C7(M)
∫ 1/6

0
e−
√

AB t−1/2 dt ≤ C7(M)e−3
√

AB. (5.44)

(ii): Arguing as in (5.43), we see that the integral is bounded by

(B/A)M/2

∫ 1/(1+δ)

0
2t−Me−

√
AB(t−1+t) dt

t
.

The integral over (0, 1/6) is bounded by (5.44), and the integral over (1/6,
1/(1 + δ)) by

C8(M)e−
√

AB
(
1+δ+1/(1+δ)

)
≤ C8(M)e−

√
AB(2+δ2/2). �

Proof of Lemma 5.1. Returning to (5.40), we have B(θ)/A(θ) ≤ γ/ρ2/3 and

A(θ)B(θ) = ρ2/3γ(cos θ)−1/2 cos(θ/2). (5.45)

Noting that ρ2/3γ = (2b)2 by (5.23) and

cos(θ/2)2

cos θ
=

cos θ + 1
2 cos θ

=
1
2

+
1

2 cos θ
≥ 1 + c1θ

2, |θ| < π/2,
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we see that √
A(θ)B(θ) ≥ 2b+ c2θ

2. (5.46)
Hence Lemma 5.2 applies with A = x2A(θ) and B = x2B(θ) when x2 ≥
1/(2b) and shows, using (5.40), that for every θ with |θ| < π/2,∫ ∞

0
|G1(s, θ;x)|ds ≤ C9x

2(cos θ)−3eρx2−4bx2−2c2x2θ2

= C9x
2(cos θ)−3e−bx2−c3x2θ2

. (5.47)

For |θ| close to π/2, we use instead of (5.46)√
A(θ)B(θ) ≥ c4(cos θ)−1/4, (5.48)

another consequence of (5.45). Hence, (5.40) and Lemma 5.2(i) show that
if ε > 0 is small enough, and |θ| > π/2− ε, then∫ ∞

0
|G1(s, θ;x)|ds ≤ C10x

2(cos θ)−3eρx2−c4x2(cos θ)−1/4

≤ C11e
−bx2−c4x2/2. (5.49)

Moreover, (5.45) implies that if |θ| ≤ 1, say, then√
A(θ)/B(θ) = s0 +O(θ2).

Hence, if |θ| ≤ (log x)/x and |s− s0| > (log x)/x, then, for large x,∣∣∣s−√A(θ)/B(θ)
∣∣∣ > log x

2x
> c5

log x
x

√
A(θ)/B(θ),

and Lemma 5.2(ii) implies, using (5.46), that if |θ| ≤ (log x)/x, then∫
|s−s0|>log x/x, s>0

|G1(s, θ;x)|ds ≤ C12x
2eρx2−4bx2−c6(log x)2

≤ C13e
−bx2−c7(log x)2 . (5.50)

The lemma follows by using (5.50) for |θ| ≤ (log x)/x, (5.49) for |θ| > π/2−ε,
and (5.47) for the remaining θ, and integrating over θ. �

6. Higher order terms

The asymptotics for fΞ(x) obtained above can be refined to full asymp-
totic expansions by standard methods and straightforward, but tedious, cal-
culations. With possible future extensions in view, we find it instructive to
present two versions of this; the first is more straightforward brute force,
while the second (in the next section) performs a change of variables leading
to simpler integrals.

First, the asymptotics (4.27) and (4.28) can be refined into well-known
asymptotic series [1, 10.4.63,10.4.66 (with a typo in early printings)]; we
write these as

Bi(z) = π−1/2z−1/4e2z3/2/3β0(z), (6.1)

Bi′(z) = π−1/2z1/4e2z3/2/3β1(z), (6.2)
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with

β0(z) = 1 +
5
48
z−3/2 +

385
4608

z−3 + · · ·+O
(
z−3N/2

)
, | arg(z)| ≤ π/3− δ,

(6.3)

β1(z) = 1− 7
48
z−3/2 − 455

4608
z−3 + · · ·+O

(
z−3N/2

)
, | arg(z)| ≤ π/3− δ,

(6.4)

where the expansions can be continued to any desired power N of z3/2.
Similarly, (4.29) can be refined to an asymptotic series

BI(z) = π−1/2z−3/4e2z3/2/3β−1(z), (6.5)

with

β−1(z) = 1 +
41
48
z−3/2 +

9241
4608

z−3 + · · ·+O
(
z−3N/2

)
, | arg(z)| ≤ π/3− δ;

(6.6)

this is easily verified by writing (4.13) as BI(z) = BI(1) +
∫ z
1 t

−1Bi′′(t) dt
followed by repeated integrations by parts, as in corresponding argument for
AI(z) in [9, Appendix A]. The coefficients in (6.6) are easily found noting
that a formal differentiation of (6.5) yields (6.1). (They are the numbers
denoted βk in [9].)

Hence, by (4.30)–(4.36), (5.9) can be refined to, for | arg z| ≤ π/6,

hΞ(z) = ih0
Ξ(z)

(
h1

Ξ(z) +O
(
e−2z3/2/3

))
, (6.7)

where

h1
br(z) := β1(z)−2 = 1 +

7
24
z−3/2 + . . . , (6.8)

h1
ex(z) := β1(z)β0(z)−3 = 1− 11

24
z−3/2 + . . . , (6.9)

h1
bm(z) := β1(z)−1 = 1 +

7
48
z−3/2 + . . . , (6.10)

h1
me(z) := β0(z)−1 = 1− 5

48
z−3/2 + . . . , (6.11)

h1
dm(z) := β−1β0(z)−2 = 1 +

31
48
z−3/2 + . . . , (6.12)

h1
br+(z) :=

(
(β0(z) + β1(z))/2

)−2 = 1 +
1
24
z−3/2 + . . . , (6.13)

h1
bm+(z) :=

(
(β0(z) + β1(z))/2

)−1 = 1 +
1
48
z−3/2 + . . . (6.14)

By (6.3) and (6.4), h1
Ξ has an asymptotic series expansion

h1
Ξ(z) = 1 + dΞ

1 z
−3/2 + dΞ

2 z
−3 + · · ·+O

(
z−3N/2

)
, | arg(z)| ≤ π/3− δ,

(6.15)
for some readily computed coefficients dΞ

k ; moreover, we can clearly ignore
the O term in (6.7).
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Next, by Lemma 5.1, it suffices to consider (s, θ) ∈ Q in (5.13) and (5.17).
We use (6.7) and (6.15) in (5.14) and (5.18) and obtain, for example, for
Ξ = ex,

F1(s, θ;x) =
2x4/3

π3/2

(
eiθ(sec θ)3s−1− 11

24
eiθ/2(sec θ)3s−2x−2 + · · ·+O(x−2N )

)
.

(6.16)
We substitute s = s0(1 + u/x) and θ = 2v/x as above and obtain by Taylor
expansions a series in x−1 (with a prefactor x4/3) where the coefficients are
polynomials in u and v.

Similarly, the Taylor expansion (5.28) can be continued; we write the
remainder term as R(u, v;x) and have

R(u, v;x) = r3(u, v)x−3 + · · ·+O(x−2N−2), (6.17)

for some polynomials rk(u, v). Another Taylor expansion then yields

ex
2R(u,v;x) = r∗1(u, v)x

−1 + · · ·+O(x−2N ), (6.18)

for some polynomials r∗k(u, v). We multiply this, the expansion of F1 and
the main term exp(−bx2 − 2bu2 + 2ibuv − bv2), and integrate over Q; we
may extend the integration domain to R2 with a negligible error. This yields
an asymptotic expansion for f∗Ξ(x), and thus for fΞ(x), where the leading
term found above is multiplied by a series in x−1, up to any desired power.
Furthermore, it is easily seen that all coefficients for odd powers of x−1

vanish, since they are given by the integrals of an odd functions of u and v;
hence this is really an asymptotic series in x−2.

We obtain the explicit expansions for fΞ(x) in Theorems 1.1–1.7 by cal-
culations with Maple. The asymptotics for P(BΞ > x) follow by integration
by parts, see Section 2.

Remark 6.1. In particular, since h0
br+ = 1

2h
0
br and h0

bm+ = 1
2h

0
bm, the

leading terms for br+ and bm+ differ from those of br and bm by a factor 1
2

as discussed in Remark 1.8. The second order terms in h1 are different, as is
seen above; more precisely, h1

br+ = h1
br−

1
4z
−3/2+O(z−3) and h1

bm+ = h1
bm−

1
8z
−3/2 +O(z−3); it is easily seen that if we ignore terms beyond the second,

this difference transfers into factors 1 − (4s0)−1x−2 and 1 − (8s0)−1x−2,
respectively, for f∗Ξ, which in both cases equals 1− 1

18x
−2, and thus a factor

1 − 1
36x

−2 for fΞ, which explains the difference between the second order
terms in fbr or fbm and 2fbr+ or 2fbm+; cf. again Remark 1.8.

7. Higher order terms, version II

Our second version of the saddle point method leads to simpler calcu-
lations (see for instance, Bleistein and Handelsman [2]). We illustrate it
with Bex; the other Brownian areas are treated similarly. We use again
(5.13), and recall that by Lemma 5.1, it suffices to consider (s, θ) close to
(s0, 0) = (9/2, 0).
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We make first the substitution s = 9
2(sec θ)3/2u−1 (this is not necessary,

but makes the integral more similar to Tolmatz’ versions). This transforms
(5.13) into

f∗ex(x) =
∫ π/2

θ=−π/2

∫ ∞

u=0
F2(u, θ;x)ex

2ϕ2(u,θ) du dθ, (7.1)

where, by (5.14), (5.15), (5.21), (6.7), (5.3), (6.9), for u bounded, at least,

F2(u, θ;x) =
81x8/3

4π3/2i
e2iθ/3(sec θ)2

(
9
2

)−2/3
u−1/3hex

((
9
2

)2/3
x4/3u−2/3eiθ/3 sec θ

)
,

=
162x4eiθ

π3/2u(cos θ)3
h1

ex

((
9
2

)2/3
x4/3u−2/3eiθ/3 sec θ

)
(7.2)

=
162x4eiθ

π3/2u(cos θ)3
− 33x2eiθ/2

2π3/2(cos θ)3/2
+O(1), (7.3)

ϕ2(u, θ) = 9(1 + i tan θ)− 6ueiθ − 6e−iθ(1 + i tan θ)3/2

u
. (7.4)

The saddle point is now (u, θ) = (1, 0), and in a neighbourhood we have, cf.
(5.28), with v = u− 1,

ϕ2(u, θ) = −3− 6v2 − 3ivθ − 3
4θ

2 +O
(
|v|3 + |θ|3

)
. (7.5)

The function ϕ2 has a non-degenerate critical point at (1, 0), and by the
Morse lemma, see e.g. Milnor [16, Lemma 2.2], we can make a complex
analytic change of variables in a neighbourhood of (1, 0) such that in the
new variables ϕ2+3 becomes a diagonal quadratic form. (The Morse lemma
is usually stated for real variables, but the standard proof in e.g. [16] applies
to the complex case too.) The quadratic part of (7.5) is diagonalized by
(ṽ, θ) with v = ṽ− iθ/4; we may thus choose the new variables ũ and θ̃ such
that ũ ∼ ṽ and θ̃ ∼ θ at the critical point, and thus

u = 1 + ũ− iθ̃/4 +O
(
|ũ|2 + |θ̃|2

)
, (7.6)

θ = θ̃ +O
(
|ũ|2 + |θ̃|2

)
, (7.7)

ϕ2(u, θ) = −3− 6ũ2 − 9
8 θ̃

2. (7.8)

Note that the new coordinates are not uniquely determined; we will later
use this and simplify by letting some Taylor coefficients be 0. In the new
coordinates, (7.1) yields,

f∗ex(x) ∼
∫

θ̃

∫
ũ
F3(ũ, θ̃;x)e−3x2−x2(6ũ2+ 9

8
θ̃2)J(ũ, θ̃) dũ dθ̃, (7.9)

where F3 is obtained by substituting u = u(ũ, θ̃) and θ = θ(ũ, θ̃) in (7.2)
and J(ũ, θ̃) = ∂u

∂ũ
∂θ
∂θ̃
− ∂u

∂θ̃
∂θ
∂ũ is the Jacobian. Recall that, up to a negligible

error, we only have to integrate in (7.1) over a small disc, say with radius
log x/x; this becomes in the new coordinates a surface in C2 as the integra-
tion domain in (7.9). The next step is to replace this integration domain
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by, for example, the disc {(ũ, θ̃) ∈ R2 : |ũ|2 + |θ̃|2 ≤ (log x/x)2}, in analogy
with the much more standard change of integration contour in one complex
variable. To verify the change of integration domain, note that if F (z1, z2)
is any analytic function of two complex variables, then F (z1, z2) dz1 ∧ dz2
is a closed differential form in C2 (regarded as a real manifold of dimension
four), and thus

∫
∂M F (z1, z2) dz1∧ dz2 = 0 by Stokes’ theorem for any com-

pact submanifold M with boundary ∂M . In our case, it follows that the
difference between the integrals over the two domains equals an integral over
boundary terms at a distance � log x/x from the origin, which is negligible.
(The careful reader may parametrize the two domains by suitable mappings
ψ0, ψ1 : U → C2, where U is the unit disc in R2, and apply Stokes’ theorem
to the cylinder U × [0, 1] and the pullback of F (z1, z2) dz1 ∧ dz2 by the map
(w, t) 7→ (1− t)ψ0(w) + tψ1(w).)

We next change variable again to w = xũ, t = xθ̃, and obtain by (7.9)

f∗ex(x) ∼ x−2e−3x2

∫∫
F3(w/x, t/x;x)J(w/x, t/x)e−6w2− 9

8
t2 dw dt, (7.10)

integrating over (w, t) ∈ R2 with, say, w2 + t2 ≤ (log x)2. To obtain the
desired asymptotics for f∗ex, and thus for fex, we mechanically expand F3

and J in Taylor series up to any desired order and compute the resulting
Gaussian integrals, extending the integration domains to R2.

We illustrate this by giving the details for the first two terms in (1.1). We
have, cf. (7.6) and (7.7), expansions

u = 1 + ũ− iθ̃/4 + α1ũ
2 + α2ũθ̃ +O(|ũ|3 + |θ̃|3),

θ = θ̃ + α3θ̃
2 + α4ũθ̃ +O(|ũ|3 + |θ̃|3),

where we, as we may, have chosen two Taylor coefficients to be 0. To de-
termine α1, . . . , α4, we substitute into ϕ2(u, θ). We obtain from (7.4), up to
terms of order three,

ϕ2(u, θ) ∼ −3− [6ũ2 +9θ̃2/8]+ (6− 12α1)ũ3 +(−3iα4− 12α2− 15i/2)θ̃ũ2

+
(
−9α4

4
− 3iα3 +

33
8

)
θ̃2ũ+

(
−9α3

4
+

15i
32

)
θ̃3.

Annihilating the coefficients, cf. (7.8), leads to a linear system, the solution
of which is

α1 = 1/2, α2 = −83i/72, α3 = 5i/24, α4 = 19/9.

This leads to the Jacobian

J(ũ, θ̃) = 1 +

(
−5iθ̃

24
+

28ũ
9

)
+O

(
θ̃2 + ũ2

)
.

Furthermore, by (7.3), with w = xũ and t = xθ̃,

F3(ũ, θ̃;x) = F2(u, θ;x) ∼
162x4

π3/2
+

162x3

π3/2

(5
4
it− w

)
+O

(
x2(1 + w2 + t2)

)
.



TAIL ESTIMATES FOR BROWNIAN AREAS 23

Integrating in (7.10) yields the leading term

f∗ex(x) ∼
36
√

3
π1/2

x2e−3x2
(7.11)

together with correction terms of order xe−3x2
that all vanish by symmetry,

since they involve integrals of odd functions, plus a remainder term of order
e−3x2

.
The next term in the expansion of e3x2

f∗ex is thus the constant term. To
find it, we try, again setting some Taylor coefficients to 0 as we may,

u ∼ 1 + (ũ− iθ̃/4) + ũ(α1ũ+ α2θ̃) + ũ(β1ũ
2 + β2ũθ̃ + β3θ̃

2),

θ ∼ θ̃ + θ̃(α3θ̃ + α4ũ) + θ̃(β4ũ
2 + β5ũθ̃ + β6θ̃

2).

We obtain now

ϕ2(u, θ) ∼ −3−[6ũ2+9θ̃2/8]+(3/2−12β1)ũ4+(−131i/6−3iβ4−12β2)ũ3θ̃

+ (−9β4/4 + 2627/288− 12β3 − 3iβ5)ũ2θ̃2 + (−9β5/4 + 535i/96− 3iβ6)ũθ̃3

+ (−1283/768− 9β6/4)θ̃4.

We set for instance β4 = 0. This gives

β1 = 1/8, β2 = −131i/72, β3 = 16867/10368, β5 = 4493i/1296, β6 = −1283/1728.

The Jacobian becomes

J(ũ, θ̃) ∼ 1 +

(
28ũ
9
− 5iθ̃

24

)
+
(

179
72

ũ2 +
2405
648

iũθ̃ − 379
384

θ̃2

)
.

The first term in (7.3) becomes

∼ 162x4

π3/2
+

162x4

π3/2

(5
4
iθ̃ − ũ

)
+

x4

π3/2

(
81ũ2 +

1143
4

iũθ̃ +
621
8
θ̃2
)
.

and the second is

∼ − 33x2

2π3/2
.

Collecting terms, the coefficient of x2 in F3(w/x, t/x)J(w/x, t/x) equals

−1296w2 − 99248iwt+ 2565t2

64π3/2
− 33

2π3/2
.

Multiplying by exp(−6w2 − 9
8 t

2) and integrating yields the contribution

x2−8
√

3
π1/2

(7.12)

to the integral in (7.10). So, finally, combining (7.11) and (7.12),

f∗ex(x) ∼
31/2e−3x2

π1/2

[
36x2 − 8

]
,

which fits with the first two terms for fex(x) in Theorem 1.1. More terms
can be found in a mechanical way.
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8. Proof of Theorem 3.1

Let T ∼ Γ(ν) be a Gamma distributed random variable independent of
X and let XT := T 3/2X. Then T has the density Γ(ν)−1tν−1e−t, t > 0, and
thus XT has, using (3.1), the Laplace transform

ψT (u) := E e−uT 3/2X = Eψ
(
uT 3/2

)
= Γ(ν)−1

∫ ∞

0
ψ
(
ut3/2

)
tν−1e−t dt

= Γ(ν)−1

∫ ∞

0
ψ
(
s3/2

)
u−2ν/3sν−1e−u−2/3s ds

= u−2ν/3Ψ
(
u−2/3

)
, u > 0. (8.1)

By (8.1) and our assumption on Ψ, ψT extends to an analytic function in
C \ (∞, 0]. Furthermore, XT has a density g on (0,∞), because T 3/2 has,
and it is easily verified that this density is continuous. We next use Laplace
inversion for XT . The Laplace transform ψT is, by (8.1), not absolutely
integrable on vertical lines (at least not in our cases, where Ψ(z) is bounded
away from 0 as z → 0), so we will use the following form of the Laplace
inversion formula, assuming only conditional convergence of the integral.

Lemma 8.1. Let h be a measurable function on R. Suppose that the Laplace
transform h̃(z) :=

∫∞
−∞ h(y)e−zy dy exists in a strip a < Re z < b, and that

σ ∈ (a, b) is a real number such that the generalized integral
∫ σ+i∞
σ−i∞ exzh̃(z) dz

exists in the sense that the limit limA→∞ sA exists, where

sA :=
∫ σ+iA

σ−iA
exzh̃(z) dz.

If further x is a continuity point (or, more generally, a Lebesgue point) of
h, then ∫ σ+i∞

σ−i∞
exzh̃(z) dz := lim

A→∞
sA = 2πih(x).

Proof. By considering instead e−σyh(y), we may suppose that σ = 0. In this
case, h is integrable and h̃(it) = ĥ(t), the Fourier transform of h, and the
result is a classical result on Fourier inversion. (It is the analogue for Fourier
transforms of the more well-known fact that if a Fourier series converges at
a continuity (or Lebesgue) point of the function, then the limit equals the
function value.) For a proof, note that if sA converges as A → ∞, then so
does the Abel mean

∫∞
0 ye−yAsA dA as y → 0, and this Abel mean equals 2πi

times the Poisson integral
∫∞
−∞ π−1y(u2 +y2)−1h(x−u) du, which converges

to h(x). �
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We verify the condition of the lemma with h = g and σ = 1, recalling
that g̃ = ψT . Thus, by (8.1),

sA :=
∫ 1+iA

1−iA
exzψT (z) dz =

∫ 1+iA

1−iA
exzz−2ν/3Ψ(z−2/3) dz.

We may here change the integration path from the straight line segment
[1− iA, 1 + iA] to the path consisting of the following seven parts:

γ1: the line segment [1− iA,−A− iA],
γ2: the line segment [−A− iA,−A− i0],
γ3: the line segment [−A− i0,−ε− i0],
γ4: the circle {εeit : t ∈ [−π, π]}.
γ5: the line segment [−ε+ i0,−A+ i0],
γ6: the line segment [−A+ i0,−A+ iA],
γ7: the line segment [−A+ iA, 1 + iA].

(Here, γ3 could formally be interpreted as the line segment [−A−iη,−
√
ε2 − η2−

iη] for a small positive η, taking the limit of the integral as η → 0, and
similarly for the other parts with ±i0.) Letting A → ∞, we see that we
essentially change the integration path from a vertical line to a Hankel con-
tour; however, we do this carefully since, as said above, the integral along
the vertical line is not absolutely convergent.

We now first let ε→ 0. By (3.3),∫
γ4

exzz−2ν/3Ψ(z−2/3) dz = O
(
ε1−2ν/3

)
→ 0,

and, again by (3.3), the integrals along γ3 and γ5 converge to the absolutely
convergent integrals∫ −i0

−A−i0
exzz−2ν/3Ψ(z−2/3) dz =

∫ A

0
e−xρρ−2ν/3e2πνi/3Ψ

(
e2πi/3ρ−2/3

)
dρ

and∫ −A+i0

i0
exzz−2ν/3Ψ(z−2/3) dz = −

∫ A

0
e−xρρ−2ν/3e−2πνi/3Ψ

(
e−2πi/3ρ−2/3

)
dρ,

which together make

IA :=
∫ A

0
e−xρρ−2ν/3Ψ∗(ρ−2/3

)
dρ.

Hence, for every A > 0,

sA = IA +
(∫

γ1

+
∫

γ2

+
∫

γ6

+
∫

γ7

)
exzz−2ν/3Ψ(z−2/3) dz.

Now let A→∞. By (3.2),∫
γ1

exzz−2ν/3Ψ(z−2/3) dz = o

(∫ 1

−∞
ext dt

)
= o(1),
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and similarly
∫
γ2

= o(1),
∫
γ6

= o(1),
∫
γ7

= o(1). Finally, IA → I∞, and
Lemma 8.1 applies and yields the following.

Lemma 8.2. For every x > 0, we have

g(x) =
1

2πi

∫ ∞

0
e−xρρ−2ν/3Ψ∗(ρ−2/3) dρ, (8.2)

where the integral is absolutely convergent by (3.7) and (3.8).

By the change of variables ρ = u−3/2, (8.2) may be rewritten as

g(x) =
3

4πi

∫ ∞

0
e−xu−3/2

uν−5/2Ψ∗(u) du, x > 0. (8.3)

We can here, using (3.7) and (3.8), change the integration path from the
positive real axis to the line {reiϕ : r > 0}, for every fixed ϕ with |ϕ| < π

6 .
Consequently, we further have, for x > 0 and |ϕ| < π

6 ,

g(x) =
3

4πi
e(ν−3/2)iϕ

∫ ∞

0
exp
(
−e−3iϕ/2xr−3/2

)
rν−5/2Ψ∗(reiϕ) dr. (8.4)

The right hand side of (8.4) is an analytic function of x in the sector {x :
| arg x− 3ϕ/2| < π/2}, which contains the positive real axis; together, these
thus define an analytic extension of g(x) to the sector | arg x| < 3π/4 such
that (8.4) holds whenever | arg x| < 3π/4, |ϕ| < π

6 and | arg x−3ϕ/2| < π/2.
We next find the density of X from g by another Laplace inversion. As-

sume first, for simplicity, that we already know that X has a continuous
density f on (0,∞). Then t3/2X has the density t−3/2f(t−3/2x), and thus
(using t = x2/3s), for x > 0,

g(x) = Γ(ν)−1

∫ ∞

0
tν−1e−tt−3/2f

(
t−3/2x

)
dt

= Γ(ν)−1x2ν/3−1

∫ ∞

0
e−x2/3ssν−5/2f

(
s−3/2

)
ds. (8.5)

Let
F (s) := sν−5/2f

(
s−3/2

)
. (8.6)

Then (8.5) can be written, with x = y3/2,

g(y3/2) = Γ(ν)−1yν−3/2

∫ ∞

0
e−ysF (s) ds, y > 0. (8.7)

In other words, F has the Laplace transform

F̃ (y) :=
∫ ∞

0
e−ysF (s) ds = Γ(ν)y3/2−νg(y3/2), y > 0. (8.8)

Since this is finite for all y > 0, the Laplace transform F̃ is analytic in the
half-plane Re y > 0. Hence, using our analytic exytension of g to | arg z| <
3π/4,, (8.8) holds for all y with Re y > 0. Consequently, by standard Laplace
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inversion, for every s > 0 and every ξ > 0 such that the integrals are
absolutely (or even conditionally, see Lemma 8.1) convergent,

F (s) =
1

2πi

∫ ξ+i∞

ξ−i∞
esyF̃ (y) dy =

Γ(ν)
2πi

∫ ξ+i∞

ξ−i∞
esyy3/2−νg(y3/2) dy. (8.9)

We have for (mainly notational) simplicity assumed that X has a density. In
general, we may replace the density function f in (8.5) and (8.6) by a prob-
ability measure µ (with suitable interpretations; we identify here absolutely
continuous measures and their densities as in the theory of distributions).
Then F is a (positive) measure on (0,∞), and its Laplace transform is still
given by (8.8). The fact, proved below, that F̃ is absolutely integrable on a
vertical line Re y = ξ implies by standard Fourier analysis that F actually
is the continuous function given by (8.9), and thus the measure µ too is a
continuous function; i.e., X has a continuous density f as asserted, and (8.5)
and (8.6) hold.

We change variables in (8.9) to θ := arg y ∈ (−π/2, π/2), that is y =
ξ(1+ i tan θ) = ξ sec(θ)eiθ. We further express g(y3/2) by (8.4) with ϕ = θ/3
(which satisfies the conditions above for (8.4)); this yields, assuming absolute
convergence of the double integral,

F (s) =
3Γ(ν)
8π2i

∫ π/2

θ=−π/2

∫ ∞

r=0
exp
(
ξs(1 + i tan θ)− eiθ(ξ sec θ)3/2r−3/2

)
e(1−2ν/3)iθξ5/2−ν(sec θ)7/2−νrν−5/2Ψ∗(reiθ/3) dr dθ. (8.10)

To verify absolute convergence of this double integral, take absolute values
inside the integral. Since

Re
(
eiθ(ξ sec θ)3/2r−3/2

)
≥ ξ3/2(sec θ)1/2r−3/2,

the resulting integral is, using (3.5) and (3.7), for fixed s and ξ bounded by

C14(s, ξ)
∫ ∞

0

∫ ∞

0
e−ξ3/2(sec θ)1/2r−3/2

(sec θ)7/2−νrν−5/2 min
(
r−ν , r−6

)
dr dθ.

We split this double integral into the two parts: 0 < θ < 1 and 1 < θ <∞.
For 0 < θ < 1, sec θ is bounded above and below, and it is easy to see that
the integral is finite. For θ > 1, tan θ < sec θ < 2 tan θ, and with t = tan θ
we obtain at most

C15

∫ ∞

1

∫ ∞

0
e−ξ3/2t1/2r−3/2

t3/2−νrν−5/2 min
(
r−ν , r−6

)
dr dt.

Substituting t = r3u, we find that this is at most

C15

∫ ∞

0
e−ξ3/2u1/2

u3/2−ν du
∫ ∞

0
r5−2ν min

(
r−ν , r−6

)
dr <∞.

This verifies absolute convergence of the double integral in (8.10) for every
ξ > 0, which implies absolute convergence of the integrals in (8.9). Conse-
quently, (8.9) and (8.10) are valid for every s > 0 and ξ > 0. We now put
s = x−2/3 in (8.10) and obtain by (8.6) the sought result (3.6).
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Remark 8.3. We have chosen ϕ = θ/3, which leads to (3.6) and, see Re-
mark 3.3, the formulas by Tolmatz [23, 24, 25]. Other choices of ϕ are
possible and lead to variations of the inversion formula (3.6). In particular,
it may be noted that we may take ϕ = 0 for, say, |θ| < 1; this yields a
formula that, apart from a small contribution for |θ| > π/4, involves Ψ∗(x)
for real x only. However, we do not find that this or any other variation
of (3.6) simplifies the application of the saddle method, and we leave these
versions to the interested reader.

9. Moment asymptotics

Suppose that X is a positive random variable with a density function f
satisfying (2.1). Then, as r →∞, using Stirling’s formula,

EXr ∼
∫ ∞

0
axr+αe−bx2

dx

=
a

2

∫ ∞

0
y(r+α+1)/2−1e−by dy

=
a

2
b−(r+α+1)/2Γ

(r + α+ 1
2

)
∼ a

2
b−(r+α+1)/2

(r
2

)(α+1)/2
Γ
(r

2

)
= a

√
π(2b)−(α+1)/2rα/2

( r

2eb

)r/2
. (9.1)

(It is easily seen, by an integration by parts, that the same result follows
from the weaker assumption (2.2).)

For the Brownian areas studied in this paper, Theorems 1.1–1.7 thus
imply the following.

Corollary 9.1. As n→∞,

EBn
ex ∼ 3

√
2n
( n

12e

)n/2
, (9.2)

EBn
br ∼

√
2
( n

12e

)n/2
, (9.3)

EBn
bm ∼

√
2
( n

3e

)n/2
, (9.4)

EBn
me ∼

√
3πn1/2

( n
3e

)n/2
, (9.5)

EBn
dm ∼ 2

√
2
( n

3e

)n/2
, (9.6)

EBn
br+ ∼

1√
2

( n

12e

)n/2
, (9.7)

EBn
bm+ ∼

1√
2

( n
3e

)n/2
. (9.8)
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Most of these results have been found earlier: (9.2) by Takács [19], (9.3) by
Takács [20] and Tolmatz [23], (9.4) by Takács [21] and Tolmatz [24], (9.5) by
Takács [22], (9.6) by Janson [9], (9.7) by Tolmatz [25]; Takács used recursion
formulas derived by other methods, while Tolmatz used the method followed
here. Note that, as remarked by Tolmatz [25], EBn

br+ ∼
1
2 EBn

br and similarly
EBn

bm+ ∼
1
2 EBn

bm, cf. Remark 1.8.
In the opposite direction, we do not know any way to get precise asymp-

totics of the form (2.1) or (2.2) from moment asymptotics, but, as observed
by Csörgő, Shi and Yor [3], the much weaker estimate (1.3) and its analogue
for other Brownian areas can be obtained by the following special case of
results by Davies [4] and Kasahara [11]. (See [8, Theorem 4.5] for a more
general version with an arbitrary power xp instead of x2 in the exponent.)

Proposition 9.2. If X is a positive random variable and b > 0, then the
following are equivalent:

− ln P(X > x) ∼ bx2, x→∞,(
EXn

)1/n ∼
√

n

2eb
, n→∞,

ln
(
E etX

)
∼ 1

4b
t2, t→∞.

Returning to (9.1), we obtain in the same way more precise asymptotics
for the moments if we are given an asymptotic series for f or P(X > x).
For simplicity, we consider only the next term, but the calculations can be
extended to an asymptotic expansion with any number of terms. Thus,
suppose that, as for the Brownian areas, (2.1) is sharpened to (2.3) with
N ≥ 2. Then, also using further terms in Stirling’s formula,

EXn =
a0

2
b−(n+α+1)/2Γ

(n+ α+ 1
2

)
+
a2

2
b−(n+α−1)/2Γ

(n+ α− 1
2

)
+O

(
b−n/2Γ

(n+ α− 3
2

))
=

1
2
b−(n+α+1)/2Γ

(n+ α+ 1
2

)(
a0 + a2b

2
n

+O(n−2)
)

=
√

2π(2b)−(α+1)/2nα/2
( n

2eb

)n/2

·
(
a0 +

(
a0
α2 − 1

4
+
a0

6
+ 2a2b

)
n−1 +O(n−2)

)
.

In particular, for the Brownian excursion, where by Theorem 1.1 (2.3) holds
with α = 2, b = 6, a0 = 72

√
6/π and a2 = −8

√
6/π,

EBn
ex =

1
2
√

2

( n

12e

)n/2
n

(
12 +

9 + 2− 16
n

+O(n−2)
)

= 3
√

2
( n

12e

)n/2
n

(
1− 5

12n
+O(n−2)

)
. (9.9)
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If we, following Takács [19], introduce Kn defined by

EBn
ex =

4
√
π 2−n/2n!

Γ((3n− 1)/2)
Kn,

further applications of Stirling’s formula shows that (9.9) is equivalent to

Kn = (2π)−1/2n−1/2
(3n

4e

)n
(

1− 7
36n

+O(n−2)
)
. (9.10)

Again, the leading term is given by Takács [19], in the equivalent form

Kn ∼
1
2π

(3
4

)n
(n− 1)! as n→∞. (9.11)

Takács [19] further gave the recursion formula (with K0 = −1/2)

Kn =
3n− 4

4
Kn−1 +

n−1∑
j=1

KjKn−j , n ≥ 1, (9.12)

It is easy to obtain from (9.11) and (9.12) the refined asymptotics

Kn =
1
2π

(3
4

)n
(n− 1)!

(
1− 5

18n
+O(n−2)

)
, (9.13)

which is equivalent to (9.10). and, by recursion, (9.13) can be extended
to an asymptotic expansion of arbitrary length. (Another method to ob-
tain an asymptotic expansion of Kn is given by Kearney, Majumdar and
Martin [12].) Hence (9.9) (also with further terms) can, alternatively, be
derived from (9.11) and (9.12) by straightforward calculations. However,
as said above, we do not know any way to derive Theorem 1.1 from this.
(Nevertheless, the calculations above serve as a check of the coefficients in
Theorem 1.1.)
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Appendix A. Proof that
√
zAi(z)−Ai′(z) has no zeros

The double Laplace transforms for the positive part areas Bbr+ and Bbm+

have both the denominator
√
zAi(z)− Ai′(z), and it is important that this

function has no zeros, whence Ψ∗
br+ and Ψ∗

bm+ are analytic in the slit plane
C \ (−∞, 0]. This was proved by Tolmatz [25] (for the same reason), but
we give here an alternative proof that does not need the careful numerical
integration done by Tolmatz. (Our proof is, like Tolmatz’, based on the
argument principle.)

Lemma A.1 (Tolmatz [25]). The function
√
zAi(z)−Ai′(z) is non-zero for

all z = reiθ with r ≥ 0 and |θ| ≤ π.
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Proof. We use the notations

ζ(z) := 2
3z

3/2,

f(z) :=
√
π
(√
zAi(z)−Ai′(z)

)
,

g(z) := eζ(z)f(z).

Note that these functions are analytic in the slit plane C \ (−∞, 0] and
extend continuously to (−∞, 0] from each side, so we can regard them as
continuous functions of reiθ with r ≥ 0 and −π ≤ r ≤ π, where we regard the
two sides re±iπ = −r± i0 of the negative real axis as different. (The reader
that dislikes this can reformulate the proof and study zAi(z2)− Ai′(z2) for
Re z ≥ 0; this avoids the ambiguities of square roots.)

We will use the argument principle on g(z) and the contour γR consisting
of the interval from 0 to −R − i0 along the lower side of the negative real
axis, the circle Reiθ for −π ≤ θ ≤ π and the interval from −R + i0 back to
0, where R is a large real number.

First, fix a small δ > 0. By (4.24) and (4.25), as |z| → ∞,

f(z) ∼ z1/4e−ζ(z), | arg z| ≤ π − δ. (A.1)

Next, assume 0 < arg z < 2π/3−δ. Note that then arg(−z) = arg(z)−π ∈
(−π,−π/3− δ) and thus

(−z)1/2 = −iz1/2, ζ(−z) = e−(3/2)iπζ(z) = iζ(z). (A.2)

Furthermore, we have as |z| → ∞ with | arg z| < 2π/3 − δ the expansions
[1, 10.4.60,10.4.62]

Ai(−z) = π−1/2z−1/4
(
sin
(
ζ(z) +

π

4
)(

1 +O(ζ−2)
)
− cos

(
ζ(z) +

π

4
)
·O(ζ−1)

)
Ai′(−z) = π−1/2z1/4

(
− cos

(
ζ(z) +

π

4
)(

1 +O(ζ−2)
)

+ cos
(
ζ(z) +

π

4
)
·O(ζ−1)

)
and thus

f(−z) = z1/4
(
cos
(
ζ(z) +

π

4
)(

1 +O(ζ−1)
)
− i sin

(
ζ(z) +

π

4
)(

1 +O(ζ−1)
))
.

In the range arg z ∈ (0, 2π/3 − δ), further =ζ(z) > 0, and thus by Euler’s
formulas∣∣∣cos

(
ζ(z) +

π

4
)∣∣∣+∣∣∣sin(ζ(z) +

π

4
)∣∣∣ ≤ ∣∣∣eiζ(z)

∣∣∣+∣∣∣e−iζ(z)
∣∣∣ ≤ 2e=ζ(z) = 2

∣∣∣e−iζ(z)
∣∣∣ .

Hence, as |z| → ∞ with arg z ∈ (0, 2π/3− δ), using (A.2).

f(−z) = z1/4e−i(ζ(z)+π/4)
(
1 +O(ζ−1)

)
∼ (−z)1/4e−ζ(−z).

Consequently, (A.1) holds as |z| → ∞ with −π < arg z < −π/3 − δ too.
Since f(z) = f(z), it holds for π/3 + δ < arg z < π too, and combining the
three ranges, we see that as |z| → ∞, for all | arg z| < π,

f(z) ∼ z1/4e−ζ(z), (A.3)

and thus
g(z) = z1/4

(
1 + o(1)

)
. (A.4)
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Consider now f(z) on the lower side of the negative real axis, i.e. for
z = re−iπ = −r − i0, r ≥ 0. Note that then Ai(z) and Ai′(z) are real
and z1/2 purely imaginary. Since Ai and Ai′ have no common zeros, and
Ai′(0) 6= 0, f(−r− i0) 6= 0. Moreover, f(0) > 0, and as r grows from 0 to ∞,
f(−r− i0) is real at r = 0 and at the zeros −r = ak of Ai, and imaginary at
the zeros−r = a′k of Ai′. Consider continuous determinations of arg f(z) and
arg g(z) along the neagtive real axis, starting with arg f(0) = arg g(z) = 0.
It is easily seen that arg f(z) then is −π/2 for z = a′1, −π for z = a1, and
so on, with arg f(ak − i0) = −kπ. Furthermore, for z = −r − i0,

arg g(z) = arg f(z) + =ζ(z) = arg f(z) + 2
3=z

3/2 = arg f(z) + 2
3r

3/2.

In particular, using the asymptotic formula [1, 10.4.94] for the Airy zeros
ak,

arg g(ak) = −πk + 2
3 |ak|3/2 = −πk +

2
3

3π(4k − 1)
8

(
1 +O(k−2)

)
= −π

4
+O(k−1). (A.5)

Consider now a continuous determination of arg g(z) along the contour
γR, with R = |ak| for a large k. On the part from 0 to −R−i0, the argument
decreases by −π/4 + O(k−1) by (A.5), and on the half-circle from −R − i0
to R, it increases by (A.4) by π/4 + o(1), so the total change from 0 to R is
o(1), i.e., tends to 0 as k →∞. Since furthermore g(R) > 0, the change is a
multiple of 2π, and thus exactly 0 for large k. By symmetry, the change of
the argument on the remaining half of γR is the same, so the total change
along γR is 0, which proves that g(z) has no zero inside γR for R = |ak| with
k large. Letting k →∞, we see that g(z) has no zeros. �
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[13] G. Louchard, Kac’s formula, Lévy’s local time and Brownian excursion.
J. Appl. Probab. 21 (1984), no. 3, 479–499.

[14] G. Louchard, The Brownian excursion area: a numerical analysis. Com-
put. Math. Appl. 10 (1984), no. 6, 413–417. Erratum: Comput. Math.
Appl. Part A 12 (1986), no. 3, 375.

[15] S. N. Majumdar & A. Comtet, Airy distribution function: from the
area under a Brownian excursion to the maximal height of fluctuating
interfaces. J. Stat. Phys. 119 (2005), no. 3-4, 777–826.

[16] J. Milnor, Morse theory. Princeton University Press, Princeton, N.J.,
1963.

[17] M. Perman & J. A. Wellner, On the distribution of Brownian areas.
Ann. Appl. Probab. 6 (1996), no. 4, 1091–1111.

[18] D. Revuz & M. Yor, Continuous martingales and Brownian motion. 3rd
edition. Springer-Verlag, Berlin, 1999.
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