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Abstract. We study the random graph obtained by random deletion

of vertices or edges from a random graph with given vertex degrees.

A simple trick of exploding vertices instead of deleting them, enables

us to derive results from known results for random graphs with given

vertex degrees. This is used to study existence of giant component and

existence of k-core. As a variation of the latter, we study also bootstrap

percolation in random regular graphs.

We obtain both simple new proofs of known results and new results.

An interesting feature is that for some degree sequences, there are several

or even infinitely many phase transitions for the k-core.

1. Introduction

One popular and important type of random graph is given by the uni-
formly distributed random graph with a given degree sequence, defined as
follows. Let n ∈ N and let d = (di)

n
1 be a sequence of non-negative integers.

We let G(n,d) be a random graph with degree sequence d, uniformly chosen
among all possibilities (tacitly assuming that there is any such graph at all;
in particular,

∑
i di has to be even).

It is well-known that it is often simpler to study the corresponding random
multigraph G∗(n,d) with given degree sequence d = (di)

n
1 , defined for every

sequence d with
∑

i di even by the configuration model (see e.g. Bollobás
[3]): take a set of di half-edges for each vertex i, and combine the half-edges
into pairs by a uniformly random matching of the set of all half-edges (this
pairing is called a configuration); each pair of half-edges is then joined to
form an edge of G∗(n,d).

We consider asymptotics as the numbers of vertices tend to infinity, and
thus we assume throughout the paper that we are given, for each n, a se-

quence d(n) = (d
(n)
i )n

1 with
∑

i d
(n)
i even. (As usual, we could somewhat

more generally assume that we are given a sequence nν → ∞ and for each

ν a sequence d(ν) = (d
(ν)
i )nν

1 .) For notational simplicity we will usually not
show the dependency on n explicitly; we thus write d and di, and simi-
larly for other (deterministic or random) quantities introduced below. All
unspecified limits and other asymptotic statements are for n → ∞. For
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example, w.h.p. (with high probability) means ’with probability tending to

1 as n→ ∞’, and
p−→ means ’convergence in probability as n→ ∞’. Sim-

ilarly, we use op and Op in the standard way, always implying n→ ∞. For
example, if X is a parameter of the random graph, X = op(n) means that

P(X > εn) → 0 as n→ ∞ for every ε > 0; equivalently, X/n
p−→ 0.

We may obtain G(n,d) by conditioning the multigraph G∗(n,d) on being
a (simple) graph, i.e., on not having any multiple edges or loops. By Janson
[9] (with earlier partial results by many authors),

lim inf P
(
G∗(n,d) is simple

)
> 0 ⇐⇒

n∑

i=1

d2
i = O

(
n∑

i=1

di

)
. (1.1)

In this case, many results transfer immediately from G∗(n,d) to G(n,d), for
example, every result of the type P(En) → 0 for some events En, and thus
every result saying that some parameter converges in probability to some
non-random value. This includes every result in the present paper.

We will in this paper study the random multigraph G∗(n,d); the reader
can think of doing this either for its own sake or as a tool for studying
G(n,d). We leave the statement of corollaries for G(n,d), using (1.1), to
the reader. Moreover, the results for G(n,d) extend to some other random
graph models too, in particular G(n, p) with p ∼ λ/n and G(n,m) with
m ∼ λn/2 with λ > 0, by the standard device of conditioning on the degree
sequence; again we omit the details and refer to [10; 11; 12] where this
method is used.

We will consider percolation of these random (multi)graphs, where we
first generate a random graph G∗(n,d) and then delete either vertices or
edges at random. (From now on, we simply write ’graph’ for ’multigraph’.)
The methods below can be combined to treat the case of random deletion of
both vertices and edges, which is studied by other methods in e.g. Britton,
Janson and Martin-Löf [4], but we leave this to the reader.

To be precise, we consider the following two constructions, given any
graph G and a probability π ∈ [0, 1].

Site percolation: Randomly delete each vertex (together with all in-
cident edges) with probability 1 − π, independently of all other ver-
tices. We denote the resulting random graph by Gπ,v.

Bond percolation: Randomly delete each edge with probability 1−π,
independently of all other edges. (All vertices are left.) We denote
the resulting random graph by Gπ,e.

Thus π denotes the probability to be kept in the percolation model. When,
as in our case, the original graph G itself is random, it is further assumed
that we first sample G and then proceed as above, conditionally on G.

The cases π = 0, 1 are trivial: G1,v = G1,e = G, while G0,v = ∅, the totally
empty graph with no vertices and no edges, and G0,e is the empty graph
with the same edge set as G but no edges. We will thus mainly consider
0 < π < 1.
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We may generalize the site percolation model by letting the probability
depend on the degree of the vertex. Thus, if π = (πd)∞0 is a given sequence
of probabilities πd ∈ [0, 1], let Gπ,v be the random graph obtained by delet-
ing vertices independently of each other, with vertex v ∈ G deleted with
probability 1 − πd(v) where d(v) is the degree of v in G.

For simplicity and in order to concentrate on the main ideas, we will in
this paper consider only the case when the probability π (or the sequence
π) is fixed and thus does not depend on n, with the exception of a few
remarks where we briefly indicate how the method can be used also for a
more detailed study of thresholds.

The present paper is inspired by Fountoulakis [7], and we follow his idea of
deriving results for the percolation models G∗(n,d)π,v and G∗(n,d)π,e from
results for the model G∗(n,d) without deletions, but for different degree
sequences d. We will, however, use another method to do this, which we
find simpler.

Fountoulakis [7] shows that for both site and bond percolation onG∗(n,d),
if we condition the resulting random graph on its degree sequence d′, and
let n′ be the number of its vertices, then the graph has the distribution of
G∗(n′,d′), the random graph with this degree sequence constructed by the
configuration model. He then proceeds to calculate the distributions of the
degree sequence d′ for the two percolation models and finally applies known
results to G∗(n′,d′).

Our method is a version of this, where we do the deletions in two steps.
For site percolation, instead of deleting a vertex, let us first explode it by
replacing it by d new vertices of degree 1, where d is its degree; we further
colour the new vertices red. Then clean up by removing all red vertices. Note
that the (random) explosions change the number of vertices, but not the
number of half-edges. Moreover, given the set of explosions, there is a one-to-
one correspondence between configurations before and after the explosions,
and thus, if we condition on the new degree sequence, the exploded graph
is still described by the configuration model. Furthermore, by symmetry,
when removing the red vertices, all vertices of degree 1 are equivalent, so we
may just as well remove the right number of vertices of degree 1, but choose
them uniformly at random. Hence, we can obtain G∗(n,d)π,v as follows:

Site percolation: For each vertex i, replace it with probability 1− π
by di new vertices of degree 1 (independently of all other vertices).

Let d̃π,v be the resulting (random) degree sequence, let ñ be its
length (the number of vertices), and let n+ be the number of new

vertices. Construct the random graph G∗(ñ, d̃π,v). Finish by delet-
ing n+ randomly chosen vertices of degree 1.

The more general case when we are given a sequence π = (πd)∞0 is handled
in the same way:

Site percolation, general: For each vertex i, replace it with proba-
bility 1−πdi

by di new vertices of degree 1. Let d̃π,v be the resulting
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(random) degree sequence, let ñ be its length (the number of ver-
tices), and let n+ be the number of new vertices. Construct the

random graph G∗(ñ, d̃π,v). Finish by deleting n+ randomly chosen
vertices of degree 1.

Remark 1.1. We have here assumed that vertices are deleted at random,
independently of each other. This is not essential for our method, which may
be further extended to the case when we remove a set of vertices determined
by any random procedure that is independent of the edges in G(n,d) (but
may depend on the vertex degrees). For example, we may remove a fixed
number m of vertices, chosen uniformly at random. It is easily seen that if
m/n → π, the results of Subsection 2.1 below still hold (with all πj = π),
and thus the results of the later sections hold too. Another, deterministic,
example is to remove the first m vertices.

For bond percolation, we instead explode each half-edge with probability
1−√

π, independently of all other half-edges; to explode a half-edge means
that we disconnect it from its vertex and transfer it to a new, red vertex of
degree 1. Again this does not change the number of half-edges, and there
is a one-to-one correspondence between configurations before and after the
explosions. We finish by removing all red vertices and their incident edges.
Since an edge consists of two half-edges, and each survives with probability√
π, this gives the bond percolation model G∗(n,d)π,e where edges are kept

with probability π. This yields the following recipe:

Bond percolation: Replace the degrees di in the sequence d by inde-
pendent random degrees d̃i ∼ Bi(di,

√
π). Add n+ :=

∑n
i=1(di − d̃i)

new degrees 1 to the sequence (d̃i)
n
1 , and let d̃π,e be the resulting

degree sequence and ñ = n + n+ its length. Construct the random
graph G∗(ñ, d̃π,e). Finish by deleting n+ randomly chosen vertices
of degree 1.

In both cases, we have reduced the problem to a simple (random) modifi-
cation of the degree sequence, plus a random removal of a set of vertices of
degree 1. The latter is often more or less trivial to handle, see the applica-
tions below. We continue to call the removed vertices red when convenient.

Of course, to use this method, it is essential to find the degree sequence d̃

after the explosions. We study this in Section 2. We then apply this method
to three different problems:

Existence of a giant component in the percolated graph, i.e., what is called
percolation in random graph theory (Section 3). Our results include and
extend earlier work by Fountoulakis [7], which inspired the present study,
and some of the results by Britton, Janson and Martin-Löf [4].

Existence of a k-core in the percolated graph (Section 4). We obtain a
general result analogous to (and extending) the well-known result by Pittel,
Spencer and Wormald [17] for G(n, p). We study the phase transitions that
may occur in some detail and show by examples that it is possible to have
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several, and even an infinite number of, different phase transitions as the
probability π increases from 0 to 1.

Bootstrap percolation in random regular graphs (Section 5), where we
obtain a new and simpler proof of results by Balogh and Pittel [1].

For a graph G, let v(G) and e(G) denote the numbers of vertices and
edges in G, respectively, and let vj(G) be the number of vertices of degree j,
j ≥ 0. We sometimes use G∗(n,d)π to denote any of the percolation models
G∗(n,d)π,v, G

∗(n,d)π,v or G∗(n,d)π,e.

2. The degree sequence after explosions

Let nj := #{i ≤ n : di = j}, the number vj(G
∗(n,d)) of vertices of degree

j in G∗(n,d). Thus
∑∞

j=0 nj = n. We assume for simplicity the following
regularity condition.

Condition 2.1. There exists a probability distribution (pj)
∞
j=0 with finite

positive mean λ :=
∑

j jpj ∈ (0,∞) such that (as n→ ∞)

nj/n → pj, j ≥ 0, (2.1)

and ∑∞
j=0 jnj

n
→ λ :=

∞∑

j=0

jpj . (2.2)

Note that, in order to avoid trivialities, we assume that λ > 0, which is
equivalent to p0 < 1. Thus, there is a positive fraction of vertices of degree
at least 1.

Note that
∑

j jnj =
∑

i di equals twice the number of edges in G∗(n,d),

and that (2.2) says that the average degree in G∗(n,d) converges to λ.

Let the random variable D̂ = D̂n be the degree of a random vertex in
G∗(n,d), thus D̂n has the distribution P(D̂n = j) = nj/n, and let D be
a random variable with the distribution (pj)

∞
0 . Then (2.1) is equivalent

to D̂n
d−→ D, and (2.2) is E D̂n → λ = ED. Further, assuming (2.1),

(2.2) is equivalent to uniform integrability of D̂n, or equivalently uniform
summability (as n→ ∞) of

∑
j jnj/n, see for example Gut [8, Theorem

5.5.9 and Remark 5.5.4].

Remark 2.2. The uniform summability of
∑

j jnj/n is easily seen to imply

that ifH is any (random or deterministic) subgraph onG∗(n,d) with v(H) =
o(n), then e(H) = o(n), and similarly with op(n).

We will also use the probability generating function of the asymptotic
degree distribution D:

gD(x) := ExD =

∞∑

j=0

pjx
j , (2.3)

defined at least for |x| ≤ 1.
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We perform either site or bond percolation as in Section 1, by the explo-
sion method described there, and let ñj := #{i ≤ ñ : d̃i = j} be the number
of vertices of degree j after the explosions. Thus

∞∑

j=0

ñj = ñ. (2.4)

It is easy to find the distribution of (ñj) and its asymptotics for our two
percolation models.

2.1. Site percolation. We treat the general version with a sequence π.
Let n◦j be the number of vertices of degree j that are not exploded. Then

n◦j ∼ Bi(nj , πj) (independent of each other), (2.5)

n+ =
∞∑

j=0

j(nj − n◦j), (2.6)

ñj = n◦j , j 6= 1, (2.7)

ñ1 = n◦1 + n+. (2.8)

By the law of large numbers, n◦j = njπj +op(n) and thus, using the assump-

tion (2.1) and the uniform summability of
∑

j jnj/n (which enables us to

treat the infinite sums in (2.10) and (2.13) by a standard argument),

n◦j = njπj + op(n) = πjpjn+ op(n), (2.9)

n+ =

∞∑

j=0

j(1 − πj)pjn+ op(n), (2.10)

ñj = πjpjn+ op(n), j 6= 1, (2.11)

ñ1 =
(
π1p1 +

∞∑

j=0

j(1 − πj)pj

)
n+ op(n), (2.12)

ñ =
∞∑

j=0

(
πj + j(1 − πj)

)
pjn+ op(n). (2.13)

We can write (2.13) as

ñ

n

p−→ ζ :=

∞∑

j=0

(
πj + j(1 − πj)

)
pj > 0. (2.14)

Further, by (2.11) and (2.12),

ñj

ñ

p−→ p̃j :=

{
ζ−1πjpj, j 6= 1,

ζ−1
(
π1p1 +

∑∞
j=1 j(1 − πj)pj

)
, j = 1.

(2.15)
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Since ñj ≤ nj for j ≥ 2 and ñ ≥ n− n0, the uniform summability of jnj/n
implies uniform summability of jñj/ñ, and thus also

∑∞
j=0 jñj

ñ

p−→ λ̃ :=

∞∑

j=0

jp̃j <∞. (2.16)

Hence Condition 2.1 holds, in probability, for the random degree sequence d̃

too. Further, the total number of half-edges is not changed by the explosions,
and thus also, by (2.14) and (2.2),

∑∞
j=0 jñj

ñ
=

∑∞
j=0 jnj

ñ
=
n

ñ
·
∑∞

j=0 jnj

n

p−→ ζ−1λ; (2.17)

hence (or by (2.15)),

λ̃ = ζ−1λ. (2.18)

In the proofs below it will be convenient to assume that (2.15) and (2.16)

hold a.s., and not just in probability, so that Condition 2.1 a.s. holds for d̃;
we can assume this without loss of generality by the Skorohod coupling the-
orem [13, Theorem 4.30]. (Alternatively, one can argue by selecting suitable
subsequences.)

Let D̃ have the probability distribution (p̃j), and let gD̃ be its probability
generating function. Then, by (2.15),

ζgD̃(x) =

∞∑

j=0

ζp̃jx
j =

∞∑

j=0

πjpjx
j +

∞∑

j=0

j(1−πj)pjx = λx+

∞∑

j=0

πjpj(x
j−jx).

(2.19)
In particular, if all πj = π,

ζgD̃(x) = πgD(x) + (1 − π)λx, (2.20)

where now ζ = π + (1 − π)λ.

2.2. Bond percolation. For bond percolation, we have explosions that do
not destroy the vertices, but they may reduce their degrees. Let ñjl be the
number of vertices that had degree l before the explosions and j after. Thus
ñj =

∑
l≥j ñjl for j 6= 1 and ñ1 =

∑
l≥1 ñ1l + n+. A vertex of degree l will

after the explosions have a degree with the binomial distribution Bi(l, π1/2),
and thus the probability that it will become a vertex of degree j is the
binomial probability blj(π1/2), where we define

blj(p) := P
(
Bi(l, p) = j

)
=

(
l

j

)
pj(1 − p)l−j . (2.21)

Since explosions at different vertices occur independently, this means that,
for l ≥ j ≥ 0,

ñjl ∼ Bi
(
nl, blj(π1/2)

)

and thus, by the law of large numbers and (2.1),

ñjl = blj(π
1/2)pln+ op(n).
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Further, the number n+ of new vertices equals the number of explosions,
and thus has the binomial distribution Bi(

∑
l lnl, 1 − π1/2). Consequently,

using also (2.2) and the uniform summability of
∑

j jnj/n,

n+ =
∑

l

lnl(1 − π1/2) + op(n) = (1 − π1/2)λn+ op(n), (2.22)

ñj =
∑

l≥j

ñjl =
∑

l≥j

blj(π1/2)pln+ op(n), j 6= 1, (2.23)

ñ1 =
∑

l≥1

ñ1l + n+ =
∑

l≥1

bl1(π1/2)pln+
(
1 − π1/2

)
λn+ op(n), (2.24)

ñ = n+ n+ = n+
(
1 − π1/2

)
λn+ op(n). (2.25)

In analogy with site percolation we thus have, by (2.25),

ñ

n

p−→ ζ := 1 +
(
1 − π1/2

)
λ (2.26)

and further, by (2.23) and (2.24),

ñj

ñ

p−→ p̃j :=

{
ζ−1

∑
l≥j blj(π

1/2)pl, j 6= 1,

ζ−1
(∑

l≥1 bl1(π1/2)pl +
(
1 − π1/2

)
λ
)
, j = 1.

(2.27)

Again, the uniform summability of jnj/n implies uniform summability of
jñj/ñ, and the total number of half-edges is not changed; thus (2.16), (2.17)
and (2.18) hold, now with ζ given by (2.26). Hence Condition 2.1 holds in

probability for the degree sequences d̃ in bond percolation too, and by the
Skorohod coupling theorem we may assume that it holds a.s.

The formula for p̃j is a bit complicated, but there is a simple formula for
the probability generating function gD̃. We have, by the binomial theorem,∑

j≤l blj(π)xj = (1 − π + πx)l, and thus (2.27) yields

ζgD̃(x) =

∞∑

l=0

(1 − π1/2 + π1/2x)lpl + (1 − π1/2)λx

= gD(1 − π1/2 + π1/2x) + (1 − π1/2)λx. (2.28)

3. Giant component

The question of existence of a giant component in G(n,d) and G∗(n,d)
was answered by Molloy and Reed [15], who showed that (under some weak
technical assumptions) a giant component exists w.h.p. if and only if (in the
notation above) ED(D−2) > 0. (The term giant component is in this paper
used, somewhat informally, for a component containing at least a fractions
ε of all vertices, for some small ε > 0 that does not depend on n.) They
further gave a formula for the size of this giant component in Molloy and
Reed [16]. We will use the following version of their result, given by Janson
and Luczak [12, Theorem 2.3 and Remark 2.6]. Let, for any graph G, Ck(G)
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denote the k:th largest component of G. (Break ties by any rule. If there
are fewer that k components, let Ck := ∅.)

Proposition 3.1 ([16; 12]). Consider G∗(n,d), assuming that Condition 2.1
holds and p1 > 0. Let Ck := Ck(G∗(n,d)) and let gD(x) be the probability
generating function in (2.3).

(i) If ED(D− 2) =
∑

j j(j − 2)pj > 0, then there is a unique ξ ∈ (0, 1)

such that g′D(ξ) = λξ, and

v(C1)/n
p−→ 1 − gD(ξ) > 0, (3.1)

vj(C1)/n
p−→ pj(1 − ξj), for every j ≥ 0, (3.2)

e(C1)/n
p−→ 1

2λ(1 − ξ2). (3.3)

Furthermore, v(C2)/n
p−→ 0 and e(C2)/n

p−→ 0.

(ii) If ED(D − 2) =
∑

j j(j − 2)pj ≤ 0, then v(C1)/n
p−→ 0 and

e(C1)/n
p−→ 0.

Remark 3.2. ED2 = ∞ is allowed in Proposition 3.1(i).

Remark 3.3. In Proposition 3.1(ii), where ED(D− 2) ≤ 0 and p1 < 0, for
0 ≤ x < 1

λx− g′D(x) =

∞∑

j=1

jpj(x− xj−1) = p1(x− 1) + x

∞∑

j=2

jpj(1 − xj−2)

≤ p1(x− 1) + x
∞∑

j=2

jpj(j − 2)(1 − x)

<

∞∑

j=1

j(j − 2)pjx(1 − x) = ED(D − 2)x(1 − x) ≤ 0.

Hence, in this case the only solution in [0, 1] to g′D(ξ) = λξ is ξ = 1, which
we may take as the definition in this case.

Remark 3.4. Let D∗ be a random variable with the distribution

P(D∗ = j) = (j + 1) P(D = j + 1)/λ, j ≥ 0;

this is the size-biased distribution of D shifted by 1, and it has a well-known
natural interpretation as follows. Pick a random half-edge; then the number
of remaining half-edges at its endpoint has asymptotically the distribution of
D∗. Therefore, the natural (Galton–Watson) branching process approxima-
tion of the exploration of the successive neighbourhoods of a given vertex is
the branching process X with offspring distributed as D∗, but starting with
an initial distribution given by D. Since

gD∗(x) =

∞∑

j=1

P(D∗ = j − 1)xj−1 =

∞∑

j=1

jpj

λ
xj−1 =

g′D(x)

λ
,
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the equation g′D(ξ) = λξ in Proposition 3.1(i) can be written gD∗(ξ) = ξ,
which shows that ξ has an interpretation as the extinction probability of
the branching process X with offspring distribution D∗, now starting with a
single individual. (This also agrees with the definition in Remark 3.3 for the
case Proposition 3.1(ii).) Thus gD(ξ) in (3.1) is the extinction probability
of X . Note also that

ED∗ =
ED(D − 1)

λ
=

ED(D − 1)

ED
,

so the condition ED(D − 2) > 0, or equivalently ED(D − 1) > ED, is
equivalent to ED∗ > 1, the classical condition for the branching process to
be supercritical and thus have a positive survival probability.

The intuition behind the branching process approximation of the local
structure of a random graph at a given vertex is that an infinite approximat-
ing branching process corresponds to the vertex being in a giant component.
This intuition agrees also with the formulas (3.2) and (3.3), which reflect
the fact that a vertex of degree j [an edge] belongs to the giant component
if and only if one of its j attached half-edges [one of its two constituent
half-edges] connects to the giant component. (It is rather easy to base rig-
orous proofs on the branching process approximation, see e.g. [4], but in the
present paper we will only use the branching process heuristically.)

Consider one of our percolation models G∗(n,d)π, and construct it using

explosions and an intermediate random graph G∗(ñ, d̃) as described in the

introduction. (Recall that d̃ is random, while d and the limiting probabilities

pj and p̃j are not.) Let Cj := Cj

(
G∗(n,d)π

)
and C̃j := Cj

(
G∗(ñ, d̃)

)
denote

the components of G∗(n,d)π, and G∗(ñ, d̃), respectively.

As remarked in Section 2, we may assume that G∗(ñ, d̃) too satisfies

Condition 2.1, with pj replaced by p̃j. (At least a.s.; recall that d̃ is random.)

Hence, assuming p̃1 > 0, if we first condition on d̃, then Proposition 3.1
applies immediately to the exploded graph G∗(ñ, d̃). We also have to remove
n+ randomly chosen “red” vertices of degree 1, but luckily this will not

break up any component. Consequently, if E D̃(D̃ − 2) > 0, then G∗(ñ, d̃)

w.h.p. has a giant component C̃1, with v(C̃1), vj(C̃1) and e(C̃1) given by
Proposition 3.1 (with pj replaced by p̃j), and after removing the red vertices,

the remainder of C̃1 is still connected and forms a component C in G∗(n,d)π.

Furthermore, since E D̃(D̃ − 2) > 0, p̃j > 0 for at least one j > 2, and it

follows by (3.2) that C̃1 contains cn + op(n) vertices of degree j, for some
c > 0; all these belong to C (although possibly with smaller degrees), so C
contains w.h.p. at least cn/2 vertices. Moreover, all other components of

G∗(n,d)π are contained in components of G∗(ñ, d̃) different from C̃1, and

thus at most as large as C̃2, which by Proposition 3.1 has op(ñ) = op(n)
vertices. Hence, w.h.p. C is the largest component C1 of G∗(n,d)π, and this
is the unique giant component in G∗(n,d)π.
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Since we remove a fraction n+/ñ1 of all vertices of degree 1, we remove
by the law of large numbers (for a hypergeometric distribution) about the

same fraction of the vertices of degree 1 in the giant component C̃1. More
precisely, by (3.2), C̃1 contains about a fraction 1− ξ of all vertices of degree

1, where g′
D̃

(ξ) = λ̃ξ; hence the number of red vertices removed from C̃1 is

(1 − ξ)n+ + op(n). (3.4)

By (3.1) and (3.4),

v(C1) = v(C̃1)− (1− ξ)n+ +op(n) = ñ
(
1−gD̃(ξ)

)
−n+ +n+ξ+op(n). (3.5)

Similarly, by (3.3) and (3.4), since each red vertex that is removed from C1

also removes one edge with it,

e(C1) = e(C̃1)− (1− ξ)n+ + op(n) = 1
2 λ̃ñ(1− ξ2)− (1− ξ)n+ + op(n). (3.6)

The case E D̃(D̃ − 2) ≤ 0 is even simpler; since the largest component

C1 is contained in some component C̃j of G∗(ñ, d̃), it follows that v(C1) ≤
v(C̃j) ≤ v(C̃1) = op(ñ) = op(n).

This leads to the following results, where we treat site and bond percola-
tion separately and add formulas for the asymptotic size of C1.

Theorem 3.5. Consider the site percolation model G∗(n,d)π,v, and suppose
that Condition 2.1 holds and that π = (πd)∞0 with 0 ≤ πd ≤ 1; suppose
further that there exists j ≥ 1 such that pj > 0 and πj < 1. Then there is
w.h.p. a giant component if and only if

∞∑

j=0

j(j − 1)πjpj > λ :=

∞∑

j=0

jpj . (3.7)

(i) If (3.7) holds, then there is a unique ξ = ξv(π) ∈ (0, 1) such that

∞∑

j=1

jπjpj(1 − ξj−1) = λ(1 − ξ) (3.8)

and then

v(C1)/n
p−→ χv(π) :=

∞∑

j=1

πjpj(1 − ξj) > 0, (3.9)

e(C1)/n
p−→ µv(π) := (1 − ξ)

∞∑

j=1

jπjpj −
(1 − ξ)2

2

∞∑

j=1

jpj . (3.10)

Furthermore, v(C2)/n
p−→ 0 and e(C2)/n

p−→ 0.

(ii) If (3.7) does not hold, then v(C1)/n
p−→ 0 and e(C1)/n

p−→ 0.
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Proof. We apply Proposition 3.1 to G∗(ñ, d̃) as discussed above. Note that
p̃1 > 0 by (2.15) and the assumption (1 − πj)pj > 0 for some j. By (2.15),

ζ E D̃(D̃ − 2) = ζ

∞∑

j=0

j(j − 2)p̃j =

∞∑

j=1

j(j − 2)πjpj −
∞∑

j=1

j(1 − πj)pj

=
∞∑

j=1

j(j − 1)πjpj −
∞∑

j=1

jpj .

Hence, the condition E D̃(D̃ − 2) > 0 is equivalent to (3.7).
In particular, it follows that v(C2) = op(n) in (i) and v(C1) = op(n) in

(ii). That also e(C2) = op(n) in (i) and e(C1) = op(n) in (ii) follows by

Remark 2.2 applied to G∗(ñ, d̃).
It remains only to verify the formulas (3.8)–(3.10). The equation g′

D̃
(ξ) =

λ̃ξ is by (2.18) equivalent to ζg′
D̃

(ξ) = λξ, which can be written as (3.8) by

(2.15) and a simple calculation.
By (3.5), using (2.10), (2.14) and (2.19),

v(C1)/n
p−→ ζ − ζgD̃(ξ) − (1 − ξ)

∞∑

j=1

j(1 − πj)pj

=

∞∑

j=0

πjpj −
∞∑

j=0

(
πjpjξ

j + j(1 − πj)pjξ
)

+ ξ

∞∑

j=0

j(1 − πj)pj

=

∞∑

j=0

πjpj(1 − ξj).

Similarly, by (3.6), (2.18), (2.14) and (2.10),

e(C1)/n
p−→ 1

2λ(1 − ξ2) − (1 − ξ)

∞∑

j=1

j(1 − πj)pj

= (1 − ξ)

∞∑

j=1

jπjpj −
(1 − ξ)2

2
λ. �

In the standard case when all πd = π, this leads to a simple criterion,
which earlier has been shown by Britton, Janson and Martin-Löf [4] and
Fountoulakis [7] by different methods. (A modification of the usual branch-
ing process argument for G∗(n,d) in [4] and a method similar to ours in
[7].)

Corollary 3.6 ([4; 7]). Suppose that Condition 2.1 holds and 0 < π < 1.
Then there exists w.h.p. a giant component in G∗(n,d)π,v if and only if

π > πc :=
ED

ED(D − 1)
. � (3.11)
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Remark 3.7. Note that πc = 0 is possible; this happens if and only if
ED2 = ∞. (Recall that we assume 0 < ED < ∞, see Condition 2.1.) Fur-
ther, πc ≥ 1 is possible too: in this case there is w.h.p. no giant component
in G∗(n,d) (except possibly in the special case when pj = 0 for all j 6= 0, 2),
and consequently none in the subgraph G∗(n,d)π.

Note that by (3.11), πc ∈ (0, 1) if and only if ED < ED(D − 1) < ∞,
i.e., if and only if 0 < ED(D − 2) <∞.

Remark 3.8. Another case treated in [4] (there called E1) is πd = αd for
some α ∈ (0, 1). Theorem 3.5 gives a new proof that then there is a giant
component if and only if

∑∞
j=1 j(j − 1)αjpj > λ, which also can be written

α2g′′D(α) > λ = g′D(1). (The cases E2 and A in [4] are more complicated and
do not follow from the results in the present paper.)

For edge percolation we similarly have the following; this too has been
shown by Britton, Janson and Martin-Löf [4] and Fountoulakis [7]. Note
that the permutation threshold π is the same for site and bond percolation,
as observed by Fountoulakis [7].

Theorem 3.9 ([4; 7]). Consider the bond percolation model G∗(n,d)π,e, and
suppose that Condition 2.1 holds and that 0 < π < 1. Then there is w.h.p.
a giant component if and only if

π > πc :=
ED

ED(D − 1)
. (3.12)

(i) If (3.12) holds, then there is a unique ξ = ξe(π) ∈ (0, 1) such that

π1/2g′D
(
1 − π1/2 + π1/2ξ

)
+ (1 − π1/2)λ = λξ, (3.13)

and then

v(C1)/n
p−→ χe(π) := 1 − gD

(
1 − π1/2 + π1/2ξ

)
> 0, (3.14)

e(C1)/n
p−→ µe(π) := π1/2(1 − ξ)λ− 1

2λ(1 − ξ)2. (3.15)

Furthermore, v(C2)/n
p−→ 0 and e(C2)/n

p−→ 0.

(ii) If (3.12) does not hold, then v(C1)/n
p−→ 0 and e(C1)/n

p−→ 0.

Proof. We argue as in the proof of Theorem 3.5, noting that p̃1 > 0 by
(2.27). By (2.28),

ζ E D̃(D̃ − 2) = ζg′′
D̃

(1) − ζg′
D̃

(1) = πg′′D(1) − π1/2g′D(1) − (1 − π1/2)λ

= πED(D − 1) − λ,

which yields the criterion (3.12). Further, if (3.12) holds, then the equation

g′
D̃

(ξ) = λ̃ξ, which by (2.18) is equivalent to ζg′
D̃

(ξ) = ζλ̃ξ = λξ, becomes

(3.13) by (2.28).
By (3.5), (2.26), (2.22) and (2.28),

v(C1)/n
p−→ ζ − ζgD̃(ξ) − (1 − ξ)(1 − π1/2)λ = 1 − gD

(
1 − π1/2 + π1/2ξ)

)
,
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which is (3.14). Similarly, (3.6), (2.26), (2.18) and (2.22) yield

e(C1)/n
p−→ 1

2λ(1 − ξ2) − (1 − ξ)(1 − π1/2)λ = π1/2(1 − ξ)λ− 1
2λ(1 − ξ)2,

which is (3.15). The rest is as above. �

Remark 3.10. It may come as a surprise that we have the same criterion
(3.11) and (3.12) for site and bond percolation, since the proofs above arrive
at this equation in somewhat different ways. However, remember that all re-
sults here are consistent with the standard branching process approximation
in Remark 3.4 (even if our proofs use different arguments) and it is obvious
that both site and bond percolation affect the mean number of offspring in
the branching process in the same way, namely by multiplication by π. Cf.
[4], where the proofs are based on such branching process approximations.

Define

ρv = ρv(π) := 1 − ξv(π) and ρe = ρe(π) := 1 − ξe(π); (3.16)

recall from Remark 3.4 that ξv and ξe are the extinction probabilities in the
two branching processes defined by the site and bond percolation models,
and thus ρv and ρe are the corresponding survival probabilities. For bond
percolation, (3.13)–(3.15) can be written in the somewhat simpler forms

π1/2g′D
(
1 − π1/2ρe

)
= λ(π1/2 − ρe), (3.17)

v(C1)/n
p−→ χe(π) := 1 − gD

(
1 − π1/2ρe(π)

)
, (3.18)

e(C1)/n
p−→ µe(π) := π1/2λρe(π) − 1

2λρe(π)2. (3.19)

Note further that if we consider site percolation with all πj = π, (3.8) can
be written

π
(
λ− g′D(1 − ρv)

)
= λρv (3.20)

and it follows by comparison with (3.17) that

ρv(π) = π1/2ρe(π). (3.21)

Furthermore, (3.9), (3.10), (3.18) and (3.19) now yield

χv(π) = π
(
1 − gD(ξv(π))

)
= π

(
1 − gD(1 − ρv(π))

)
= πχe(π), (3.22)

µv(π) = πλρv(π) − 1
2λρv(π)2 = πµe(π). (3.23)

We next consider how the various parameters above depend on π, for both
site percolation and bond percolation, where for site percolation we in the
remainder of this section consider only the case when all πj = π.

We have so far defined the parameters for π ∈ (πc, 1) only; we extend
the definitions by letting ξv := ξe := 1 and ρv := ρe := χv := χe := µv :=
µe := 0 for π ≤ πc, noting that this is compatible with the branching process
interpretation of ξ and ρ in Remark 3.4 and that the equalities in (3.8)–(3.23)
hold trivially.
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Theorem 3.11. Assume Condition 2.1. The functions ξv, ρv, χv, µv, ξe, ρe,
χe, µe are continuous functions of π ∈ (0, 1) and are analytic except at π =
πc. (Hence, the functions are analytic in (0, 1) if and only if πc = 0 or
πc ≥ 1.)

Proof. It suffices to show this for ξv; the result for the other functions then
follows by (3.16) and (3.21)–(3.23). Since the case π ≤ πc is trivial, it suffices
to consider π ≥ πc, and we may thus assume that 0 ≤ πc < 1.

If π ∈ (πc, 1), then, as shown above, g′
D̃

(ξv) = λ̃ξv, or, equivalently,

G(ξv, π) = 0, where G(ξ, π) := g′
D̃

(ξ)/ξ− λ̃ is an analytic function of (ξ, π) ∈
(0, 1)2. Moreover, G(ξ, π) is a strictly convex function of ξ ∈ (0, 1] for any
π ∈ (0, 1), and G(ξv, π) = G(1, π) = 0; hence ∂G(ξv, π)/∂ξ < 0. The implicit
function theorem now shows that ξv(π) is analytic for π ∈ (πc, 1).

For continuity at πc, suppose πc ∈ (0, 1) and let ξ̂ = limn→∞ ξv(πn)

for some sequence πn → πc. Then, writing D̃(π) and λ̃(π) to show the

dependence on π, g′
D̃(πn)

(ξv(πn)) = λ̃(πn)ξv(πn) and thus by continuity, e.g.

using (2.28), g′
D̃(πc)

(ξ̂) = λ̃(πc)ξ̂. However, for π ≤ πc, we have E D̃(D̃−2) ≤
0 and then ξ = 1 is the only solution in (0, 1] of g′

D̃
(ξ) = λ̃ξ; hence ξ̂ = 1.

This shows that ξv(π) → 1 as π → πc, i.e., ξv is continuous at πc. �

Remark 3.12. Alternatively, the continuity of ξv in (0, 1) follows by Re-
mark 3.4 and continuity of the extinction probability as the offspring dis-
tribution varies, cf. [4, Lemma 4.1]. Furthermore, by the same arguments,
the parameters are continuous also at π = 0 and, except in the case when
p0 + p2 = 1 (and thus D̃ = 1 a.s.), at π = 1 too.

At the threshold πc, we have linear growth of the size of the giant com-
ponent for (slightly) larger π, provided ED3 <∞, and thus a jump discon-
tinuity in the derivative of ξv, χv, . . . . More precisely, the following holds.
We are here only interested in the case 0 < πc < 1, which is equivalent to
0 < ED(D − 2) <∞, see Remark 3.7.

Theorem 3.13. Suppose that 0 < ED(D − 2) < ∞; thus 0 < πc < 1. If
further ED3 <∞, then as εց 0,

ρv(πc + ε) ∼ 2 ED(D − 1)

πc ED(D − 1)(D − 2)
ε =

2
(
ED(D − 1)

)2

ED · ED(D − 1)(D − 2)
ε (3.24)

χv(πc + ε) ∼ µv(πc + ε) ∼ πcλρv(πc + ε) ∼ 2 ED · ED(D − 1)

ED(D − 1)(D − 2)
ε. (3.25)

Similar results for ρe, χe, µe follow by (3.21)–(3.23).

Proof. For π = πc + εց πc, by g′′D(1) = ED(D− 1) = λ/πc, see (3.11), and
(3.20),

εg′′D(1)ρv = (π−πc)g
′′
D(1)ρv = πg′′D(1)ρv−λρv = π

(
g′′D(1)ρv−λ+g′D(1−ρv)

)
.

(3.26)
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Since ED3 <∞, gD is three times continuously differentiable on [0, 1], and
a Taylor expansion yields g′D(1 − ρv) = λ − ρvg

′′
D(1) + ρ2

v
g′′′D(1)/2 + o(ρ2

v
).

Hence, (3.26) yields, since ρv > 0,

εg′′D(1) = πρvg
′′′
D(1)/2 + o(ρv) = πcρvg

′′′
D(1)/2 + o(ρv).

Thus, noting that g′′D(1) = ED(D− 1) and g′′′D(1) = ED(D− 1)(D− 2) > 0
(since ED(D − 2) > 0),

ρv ∼
2g′′D(1)

πcg′′′D(1)
ε =

2 ED(D − 1)

πc ED(D − 1)(D − 2)
ε,

which yields (3.24). Finally, (3.25) follows easily by (3.22) and (3.23). �

If ED3 = ∞, we find in the same way a slower growth of ρv(π), χv(π),
µv(π) at πc. As an example, we consider D with a power law tail, pk ∼ ck−γ ,
where we take 3 < γ < 4 so that ED2 <∞ but ED3 = ∞.

Theorem 3.14. Suppose that pk ∼ ck−γ as k → ∞, where 3 < γ < 4 and
c > 0. Assume further that ED(D−2) > 0. Then πc ∈ (0, 1) and, as εց 0,

ρv(πc + ε) ∼
(

ED(D − 1)

cπcΓ(2 − γ)

)1/(γ−3)

ε1/(γ−3),

χv(πc + ε) ∼ µv(πc + ε) ∼ πcλρv(πc + ε)

∼ πcλ

(
ED(D − 1)

cπcΓ(2 − γ)

)1/(γ−3)

ε1/(γ−3).

Similar results for ρe, χe, µe follow by (3.21)–(3.23).

Proof. We have, for example by comparison with the Taylor expansion of(
1 − (1 − t)

)γ−4
,

g′′′D(1 − t) =

∞∑

k=3

k(k − 1)(k − 2)pk(1 − t)k ∼ cΓ(4 − γ)tγ−4, tց 0,

and thus by integration

g′′D(1) − g′′D(1 − t) ∼ cΓ(4 − γ)(γ − 3)−1tγ−3 = c|Γ(3 − γ)|tγ−3,

and, integrating once more,

ρvg
′′
D(1) − (λ− g′D(1 − ρv)) ∼ cΓ(2 − γ)ργ−2

v
.

Hence, (3.26) yields

εg′′D(1)ρv ∼ cπcΓ(2 − γ)ργ−2
v

and the results follow, again using (3.22) and (3.23). �
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4. k-core

Let k ≥ 2 be a fixed integer. The k-core of a graph G, denoted by
Corek(G), is the largest induced subgraph of G with minimum vertex de-
gree at least k. (Note that the k-core may be empty.) The question whether
a non-empty k-core exists in a random graph has attracted a lot of atten-
tion for various models of random graphs since the pioneering papers by
Bollobás [2],  Luczak [14] and Pittel, Spencer and Wormald [17] for G(n, p)
and G(n,m); in particular, the case of G(n,d) and G∗(n,d) with given de-
gree sequences have been studied by several authors, see Janson and Luczak
[10, 11] and the references given there.

We study the percolated G∗(n,d)π by the exposion method presented in
Section 1. For the k-core, the cleaning up stage is trivial: by definition,
the k-core of G∗(ñ, d̃) does not contain any vertices of degree 1, so it is
unaffected by the removal of all red vertices, and thus

Corek

(
G∗(n,d)π

)
= Corek

(
G∗(ñ, d̃)

)
. (4.1)

Let, for 0 ≤ p ≤ 1, Dp be the thinning of D obtained by taking D points
and then randomly and independently keeping each of them with probability
p. Thus, given D = d, Dp ∼ Bi(d, p). Define, recalling the notation (2.21),

h(p) := E
(
Dp1[Dp ≥ k]

)
=

∞∑

j=k

∞∑

l=j

jplblj(p), (4.2)

h1(p) := P(Dp ≥ k) =
∞∑

j=k

∞∑

l=j

plblj(p). (4.3)

Note that Dp is stochastically increasing in p, and thus both h and h1 are
increasing in p, with h(0) = h1(0) = 0. Note further that h(1) =

∑∞
j=k jpj ≤

λ and h1(1) =
∑∞

j=k pj ≤ 1, with strict inequalities unless pj = 0 for all
j = 1, . . . , k − 1 or j = 0, 1, . . . , k − 1, respectively. Moreover,

h(p) = EDp − E
(
Dp1[Dp ≤ k − 1]

)
= EDp −

k−1∑

j=1

j P(Dp = j)

= λp−
k−1∑

j=1

∑

l≥j

jpl

(
l

j

)
pj(1 − p)l−j

= λp−
k−1∑

j=1

pj

(j − 1)!
g
(j)
D (1 − p). (4.4)

Since gD(z) is an analytic function in {z : |z| < 1}, (4.4) shows that h(p) is
an analytic function in the domain {p : |p − 1| < 1} in the complex plane;
in particular, h is analytic on (0, 1]. (But not necessarily at 0, as seen by
Example 4.13.) Similarly, h1 is analytic on (0, 1].

We will use the following result by Janson and Luczak [10, Theorem 2.3].
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Proposition 4.1 ([10]). Suppose that Condition 2.1 holds. Let k ≥ 2 be
fixed, and let Core∗k be the k-core of G∗(n,d). Let p̂ := max{p ∈ [0, 1] :
h(p) = λp2}.

(i) If h(p) < λp2 for all p ∈ (0, 1], which is equivalent to p̂ = 0, then
Core∗k has op(n) vertices and op(n) edges. Furthermore, if also k ≥ 3

and
∑n

i=1 e
αdi = O(n) for some α > 0, then Core∗k is empty w.h.p.

(ii) If h(p) ≥ λp2 for some p ∈ (0, 1], which is equivalent to p̂ ∈ (0, 1],
and further p̂ is not a local maximum point of h(p) − λp2, then

v(Core∗k)/n
p−→ h1(p̂) > 0, (4.5)

vj(Core∗k)/n
p−→ P(Dbp = j) =

∞∑

l=j

plblj(p̂), j ≥ k, (4.6)

e(Core∗k)/n
p−→ h(p̂)/2 = λp̂2/2. (4.7)

Remark 4.2. The result (4.6) is not stated explicitly in [10], but as re-
marked in [11, Remark 1.8], it follows immediately from the proof in [10] of
(4.5). (Cf. [5] for the random graph G(n,m).)

Remark 4.3. The extra condition in (ii) that p̂ is not a local maximum
point of h(p) − λp2 is actually stated somewhat differently in [10], viz. as
λp2 < h(p) in some interval (p̂ − ε, p̂). However, since g(p) := h(p) − λp2

is analytic at p̂, a Taylor expansion at p̂ shows that for some such interval
(p̂−ε, p̂), either g(p) > 0 or g(p) ≤ 0 throughout the interval. Since g(p̂) = 0
and g(p) < 0 for p̂ < p ≤ 1, the two versions of the condition are equivalent.

The need for this condition is perhaps more clearly seen in the percolation
setting, cf. Remark 4.8.

There is a natural interpretation of this result in terms of the branching
process approximation of the local exploration process, similar to the one
described for the giant component in Remark 3.4. For the k-core, this was
observed already by Pittel, Spencer and Wormald [17], but (unlike for the
giant component), the branching process approximation has so far mainly
been used heuristically; the technical difficulties to make a rigorous proof
based on it are formidable, and have so far been overcome only by Riordan
[18] for a related random graph model. We, as most others, avoid this
complicated method of proof, and only identify the limits in Proposition 4.1
(which is proved by other, simpler, methods in [10]) with quantities for the
branching process. Although this idea is not new, we have, for the random
graphs that we consider, not seen a detailed proof of it in the literature, so
for completeness we provide one in Appendix A.

Remark 4.4. If k = 2, then (4.4) yields

h(p) = λp−
∞∑

l=0

pllp(1 − p)l−1 = λp− pg′D(1 − p) (4.8)
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and thus

h(p) − λp2 = p
(
λ(1 − p) − g′D(1 − p)

)
.

It follows that p̂ = 1 − ξ, where ξ is as in Proposition 3.1 and Remark 3.3;
i.e., by Remark 3.4, p̂ = ρ, the survival probability of the branching process
X with offspring distribution D∗. (See Appendix A for further explanations
of this.)

We now easily derive results for the k-core in the percolation models. For
simplicity, we consider for site percolation only the case when all πk are
equal; the general case is similar but the explicit formulas are less nice.

Theorem 4.5. Consider the site percolation model G∗(n,d)π,v with 0 ≤
π ≤ 1, and suppose that Condition 2.1 holds. Let k ≥ 2 be fixed, and let
Core∗k be the k-core of G∗(n,d)π,v. Let

πc = π
(k)
c := inf

0<p≤1

λp2

h(p)
=

(
sup

0<p≤1

h(p)

λp2

)−1

. (4.9)

(i) If π < πc, then Core∗k has op(n) vertices and op(n) edges. Further-

more, if also k ≥ 3 and
∑n

i=1 e
αdi = O(n) for some α > 0, then

Core∗k is empty w.h.p.
(ii) If π > πc, then w.h.p. Core∗k is non-empty. Furthermore, if p̂ = p̂(π)

is the largest p ≤ 1 such that h(p)/(λp2) = π−1, and p̂ is not a local
maximum point of h(p)/(λp2) in (0, 1], then

v(Core∗k)/n
p−→ πh1(p̂) > 0,

vj(Core∗k)/n
p−→ π P(Dbp = j), j ≥ k,

e(Core∗k)/n
p−→ πh(p̂)/2 = λp̂2/2.

Theorem 4.6. Consider the bond percolation model G∗(n,d)π,e with 0 ≤
π ≤ 1, and suppose that Condition 2.1 holds. Let k ≥ 2 be fixed, and let

Core∗k be the k-core of G∗(n,d)π,e. Let πc = π
(k)
c be given by (4.9).

(i) If π < πc, then Core∗k has op(n) vertices and op(n) edges. Further-

more, if also k ≥ 3 and
∑n

i=1 e
αdi = O(n) for some α > 0, then

Core∗k is empty w.h.p.
(ii) If π > πc, then w.h.p. Core∗k is non-empty. Furthermore, if p̂ = p̂(π)

is the largest p ≤ 1 such that h(p)/(λp2) = π−1, and p̂ is not a local
maximum point of h(p)/(λp2) in (0, 1], then

v(Core∗k)/n
p−→ h1(p̂) > 0,

vj(Core∗k)/n
p−→ P(Dbp = j), j ≥ k,

e(Core∗k)/n
p−→ h(p̂)/2 = λp̂2/(2π).

For convenience, we define ϕ(p) := h(p)/p2, 0 < p ≤ 1.
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Remark 4.7. Since h(p) is analytic in (0, 1), there is at most a countable
number of local maximum points of ϕ(p) := h(p)/p2 (except when h(p)/p2 is
constant), and thus at most a countable number of local maximum values of
h(p)/p2. Hence, there is at most a countable number of exceptional values of
π in part (ii) of Theorems 4.5 and 4.6. At these exceptional values, we have
a discontinuity of p̂(π) and thus of the relative asymptotic size πh1(p̂(π))
or h1(p̂(π)) of the k-core; in other words, there is a phase transition of the
k-core at each such exceptional π. (See Figures 1 and 2.) Similarly, if ϕ
has an inflection point at p̂(π), i.e., if ϕ′(p̂) = ϕ′′(p̂) = · · · = ϕ(2ℓ)(p̂) = 0

and ϕ(2ℓ+1)(p̂) < 0 for some ℓ ≥ 1, then p̂(π) and h1(p̂(π)) are continuous
but the derivatives of p̂(π) and h1(p̂(π)) become infinite at this point, so we
have a phase transition of a different type. For all other π > πc, the implicit
function theorem shows that p̂(π) and h1(p̂(π)) are analytic at π.

Say that p̃ is a critical point of ϕ if ϕ′(p̃) = 0, and a bad critical point if
further, p̃ ∈ (0, 1), ϕ(p̃) > λ and ϕ(p̃) > ϕ(p) for all p ∈ (p̃, 1). It follows
that there is a 1–1 correspondence between phase transitions in (πc, 1) or
[πc, 1) and bad critical points p̃ of ϕ, with the phase transition occurring
at π̃ = λ/ϕ(p̃). This includes πc if and only if sup(0,1] ϕ(p) is attained and
larger than λ, in which case the last global maximum point is a bad critical
point; if this supremum is finite not attained, then there is another first-
order phase transition at πc, while if the supremum is infinite, then πc = 0.
Finally, there may be a further phase transition at π̃ = 1 (with p̃ = 1); this
happens if and only if ϕ(1) = h(1) = λ and ϕ′(1) ≤ 0.

The phase transitions are first-order when the corresponding p̃ is a bad
local maximum point of ϕ, i.e., a bad critical point that is a local maximum
point. (This includes πc when sup(0,1] ϕ is attained, but not otherwise.)
Thus, the phase transition that occur are typically first order, but there are
exceptions, see Examples 4.13 and 4.18.

Remark 4.8. The behaviour at π = πc depends on more detailed properties

of the degree sequences (d
(n)
i )n

1 , or equivalently of D̂n. Indeed, more precise
results can be derived from Janson and Luczak [11, Theorem 3.5], at least

under somewhat stricter conditions on (d
(n)
i )n

1 ; in particular, it then follows

that the width of the threshold is of the order n−1/2, i.e., that there is a

sequence πcn depending on (d
(n)
i )n

1 , with πcn → πc, such that G∗(n,d)π,v

and G∗(n,d)π,e w.h.p. have a non-empty k-core if π = πcn + ω(n)n−1/2

with ω(n) → ∞, but w.h.p. an empty k-core if π = πcn − ω(n)n−1/2,

while in the intermediate case π = πcn + cn−1/2 with −∞ < c < ∞,
P(G∗(n,d)π has a non-empty k-core) converges to a limit (depending on c)
in (0, 1). We leave the details to the reader.

The same applies to further phase transitions that may occur.

Remark 4.9. If k = 2, then (4.8) yields

ϕ(p) := h(p)/p2 =
∑

j≥2

pjj(1 − (1 − p)j−1)/p,
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which is decreasing on (0, 1] (or constant, when P(D > 2) = 0), with

sup
p∈(0,1]

ϕ(p) = lim
p→0

ϕ(p) =
∑

j

pjj(j − 1) = ED(D − 1) ≤ ∞.

Hence
π

(2)
c = λ/ED(D − 1) = ED/ED(D − 1),

coinciding with the critical value in (3.11) for a giant component.
Although there is no strict implication in any direction between “a giant

component” and “a non-empty 2-core”, in random graphs these seem to
typically appear together (in the form of a large connected component of
the 2-core), see Appendix A for branching process heuristics explaing this.

Remark 4.10. We see again that the results for site and bond percolation
are almost identical. In fact, they become the same if we measure the size
of the k-core in relation to the size of the percolated graph G∗(n,d)π, since

v(G∗(n,d)π,e) = n but v(G∗(n,d)π,v) ∼ Bi(n, π), so v(G∗(n,d)π,v)/n
p−→ π.

Again, this is heuristically explained by the branching process approxima-
tions; see Appendix A and note that random deletions of vertices or edges
yield the same result in the branching process, assuming that we do not
delete the root.

Proof of Theorem 4.5. The case P(D ≥ k) = 0 is trivial; in this case h(p) =
0 for all p and πc = 0 so (i) applies. Further, Proposition 4.1(i) applies to
G∗(n,d), and the result follows from Corek(G∗(n,d)π,v) ⊆ Corek(G∗(n,d)).
In the sequel we thus assume P(D ≥ k) > 0, which implies h(p) > 0 and
h1(p) > 0 for 0 < p ≤ 1.

We apply Proposition 4.1 to the exploded graph G∗(ñ, d̃), recalling (4.1).
For site percolation, G∗(n,d)π,v, p̃j = ζ−1πpj for j ≥ 2 by (2.15), and thus

P(D̃p = j) = ζ−1π P(Dp = j), j ≥ 2,

and, because k ≥ 2,

h̃(p) := E
(
D̃p1[D̃p ≥ k]

)
= ζ−1πh(p), (4.10)

h̃1(p) := P(D̃p ≥ k) = ζ−1πh1(p). (4.11)

Hence, the condition h̃(p) ≥ λ̃p2 can, using (2.18), be written

πh(p) ≥ λp2. (4.12)

If π < πc, then for every p ∈ (0, 1], by (4.9), π < πc ≤ λp2/h(p) so (4.12)

does not hold and h̃(p) < λ̃p2. Hence Proposition 4.1(i) applies to G∗(ñ, d̃),
which proves (i); note that if

∑n
i=1 e

αdi = O(n) for some α > 0, then also

ñ∑

i=1

eαd̃i ≤
n∑

i=1

eαdi + n+e
α ≤

n∑

i=1

eαdi + eα
∑

j≥1

jnj = O(n).

If π > πc, then there exists p ∈ (0, 1] such that π > λp2/h(p) and thus

(4.12) holds and Proposition 4.1(ii) applies to G∗(ñ, d̃). Moreover, p̂ in
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Proposition 4.1(ii) is the largest p ≤ 1 such that (4.12) holds. Since πh(1) ≤
h(1) ≤ λ and h is continuous, we have equality in (4.12) for p = p̂, i.e.,
πh(p̂) = λp̂2, so p̂ is as asserted the largest p ≤ 1 with h(p)/(λp2) = π−1.

Further, if p̂ is a local maximum point of h̃(p)− λ̃p2 = ζ−1(πh(p) − λp2),
then πh(p)−λp2 ≤ 0 in a neighbourhood of p̂ and thus h(p)/(λp2) ≤ 1/π =
h(p̂)/(λp̂2) there; thus p̂ is a local maximum point of h(p)/(λp2). Excluding
such points, we obtain from Proposition 4.1(ii) using (4.1), (2.14), (2.15),
(2.18), (4.10) and (4.11),

v(Core∗k)

n
=
ñ

n
· v(Core∗k)

ñ

p−→ ζh̃1(p̂) = πh1(p̂),

vj(Core∗k)

n
=
ñ

n
· vj(Core∗k)

ñ

p−→ ζ P(D̃bp = j) = π P(Dbp = j), j ≥ k,

e(Core∗k)

n
=
ñ

n
· e(Core∗k)

ñ

p−→ ζ
λ̃p̂2

2
=
λp̂2

2
.

This proves the result when p̂ is not a local maximum point of h(p)/(λp2).
In particular, since h1(p̂) > 0, Core∗k is non-empty w.h.p. when π > πc is
not a local maximum value of h(p)/(λp2). Finally, even if π is such a local
maximum value, we can find π′ with πc < π′ < π that is not, because by
Remark 4.7 there is only a countable number of exceptional π. By what we
just have shown, G∗(n,d)π′,v has w.h.p. a non-empty k-core, and thus so
has G∗(n,d)π,v ⊇ G∗(n,d)π′,v. �

Proof of Theorem 4.6. We argue as in the proof just given of Theorem 4.6,
again using (4.1) and applying Proposition 4.1 to the exploded graphG∗(ñ, d̃).
We may again assume P(D ≥ k) > 0, and thus h(p) > 0 and h1(p) > 0 for
0 < p ≤ 1. We may further assume π > 0.

The main difference from the site percolation case is that for bond per-
colation G∗(n,d)π,e, (2.27) yields

P(D̃ = j) = ζ−1
P(Dπ1/2 = j), j ≥ 2,

and hence

P(D̃p = j) = ζ−1
P(Dpπ1/2 = j), j ≥ 2, (4.13)

and thus

h̃(p) := E
(
D̃p1[D̃p ≥ k]

)
= ζ−1h(pπ1/2), (4.14)

h̃1(p) := P(D̃p ≥ k) = ζ−1h1(pπ1/2). (4.15)

Consequently, the condition h̃(p) ≥ λ̃p2 can, using (2.18), be written as

h(pπ1/2) ≥ λp2, or

πh(pπ1/2) ≥ λ
(
pπ1/2

)2
. (4.16)

If π < πc, then for every p ∈ (0, 1] we have pπ1/2 ∈ (0, 1] and thus by
(4.9)

π < πc ≤
λ(pπ1/2)2

h(pπ1/2)
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so (4.16) does not hold and h̃(p) < λ̃p2. Hence Proposition 4.1(i) applies to

G∗(ñ, d̃) as in the proof of Theorem 4.5.
If π > πc, then there exists p ∈ (0, 1] such that π > λp2/h(p) and, as

before, p̂ is the largest such p and satisfies h(p̂)/(λp̂2) = π−1. Furthermore,

if π1/2 < p ≤ 1, then

πh(p) ≤ πh(1) ≤ πλ < λp2, (4.17)

and thus p 6= p̂. Hence p̂ ≤ π1/2. Let p̂0 := p̂/π1/2. Then p̂0 ∈ (0, 1] and
p̂0 is the largest p ≤ 1 such that (4.16) holds; i.e., the largest p ≤ 1 such

that h̃(p) ≥ λ̃p2. We thus can apply Proposition 4.1(ii) to G∗(ñ, d̃), with

p̂ replaced by p̂0, noting that if p̂0 is a local maximum point of h̃(p) − λ̃p2,
then p̂ is a local maximum point of

h̃(pπ−1/2) − λ̃(pπ−1/2)2 = ζ−1
(
h(p) − π−1λp2

)

and thus of πh(p)−λp2, which as in the proof of Theorem 4.5 implies that p̂
is a local maximum point of h(p)/(λp2). (The careful reader may note that
there is no problem with the special case p̂0 = 1, when we only consider a
one-sided maximum at p̂0: in this case p̂ = π1/2 and πh(p̂) = λp̂2 = λπ so
h(p̂) = λ and p̂ = 1, π = 1.) Consequently, when p̂ is not a local maximum
point of h(p)/(λp2), Proposition 4.1(ii) yields, using (2.26), (4.13), (4.15),

v(Core∗k)

n
=
ñ

n
· v(Core∗k)

ñ

p−→ ζh̃1(p̂0) = h1(p̂),

vj(Core∗k)

n
=
ñ

n
· vj(Core∗k)

ñ

p−→ ζ P(D̃bp0
= j) = P(Dbp = j), j ≥ k,

e(Core∗k)

n
=
ñ

n
· e(Core∗k)

ñ

p−→ ζ
λ̃p̂2

0

2
=
λp̂2

2π
.

The proof is completed as before. �

Consider now what Theorems 4.5 and 4.6 imply for the k-core as π in-
creases from 0 to 1. (We will be somewhat informal; the statements below
should be interpreted as asymptotic as n→ ∞ for fixed π, but we for sim-

plicity omit “w.h.p.’’ and “
p−→”.)

If k = 2, we have by Remark 4.9 a similar behaviour as for the giant
component in Section 3: in the interesting case 0 < πc < 1, the 2-core
is small, o(n), for π < πc and large, Θ(n), for π > πc, with a relative size
h1(p̂(π)) that is a continuous function of π also at πc and analytic everywhere
else in (0, 1), cf. Theorem 3.11.

Assume now k ≥ 3. For the random graph G(n, p) with p = c/n, the
classical result by Pittel, Spencer and Wormald [17] shows that there is a
first-order (=discontinuous) phase transition at some value ck; for c < ck the
k-core is empty and for c > ck it is non-empty and with a relative size ψk(c)
that jumps to a positive value at c = ck, and thereafter is analytic. We can
see this as a percolation result, choosing a large λ and regarding G(n, c/n)
as obtained by bond percolation on G(n, λ/n) with π = c/λ for c ∈ [0, λ];
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G(n, λ/n) is not exactly a random graph of the type G∗(n,d) studied in
the present paper, but as said in the introduction, it can be treated by our
methods by conditioning on the degree sequence, and it has the asymptotic
degree distribution D ∼ Po(λ). In this case, see Example 4.11 and Figure 1,
ϕ is unimodal, with ϕ(0) = 0, a maximum at some interior point p0 ∈ (0, 1),
and ϕ′ < 0 on (p0, 1). This is a typical case; ϕ has these properties for many
other degree distributions too (and k ≥ 3), and these properties of ϕ imply
by Theorems 4.5 and 4.6 that there is, provided ϕ(p0) > λ, a first-order
phase transition at π = πc = λ/ϕ(p0) where the k-core suddenly is created
with a positive fraction h1(p0) of all vertices, but no other phase transitions
since h1(p̂(π)) is analytic on (πc, 1). Equivalently, recalling Remark 4.7, we
see that p0 is the only bad critical point of ϕ.

However, there are other possibilities too; there may be several bad criti-
cal points of ϕ, and thus several phase transitions of ϕ. There may even be
an infinite number of them. We give some examples showing different pos-
sibilities that may occur. (A similar example with several phase transitions
for a related hypergraph process is given by Darling, Levin and Norris [6].)

0

5

10

15

20

25

30

0.2 0.4 0.6 0.8 1

Figure 1. ϕ(p) = h(p)/p2 for D ∼ Po(10) and k = 3.

Example 4.11. A standard case is when D ∼ Po(λ) and k ≥ 3. (This
includes, as said above, the case G(n, λ/n) by conditioning on the degree
sequence, in which case we recover the result by [17].) Then Dp ∼ Po(λp)
and a simple calculation shows that h(p) = λpP(Po(λp) ≥ k − 1), see [10,
p. 59]. Hence, if ck := minµ>0 µ/P(Po(µ) ≥ k − 1) and λ > ck, then
πc = inf0<p≤1

(
λp2/h(p)

)
= ck/λ. Moreover, it is easily shown that h(p)/p2
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Figure 2. ϕ(p) = h(p)/p2 for k = 3 and p10i = 99 · 10−2i,
i = 1, 2, . . . , (pj = 0 for all other j). Cf. Example 4.15.

is unimodal, see [10, Lemma 7.2] and Figure 1. Consequently, there is as
discussed above a single first-order phase transition at π = ck/λ [17].

Example 4.12. Let k = 3 and consider graphs with only two vertex degrees,
3 and m, say, with m ≥ 4. Then, cf. (4.4),

h(p) = 3p3 P(Dp = 3 | D = 3) + pm E(Dp −Dp1[Dp ≤ 2] | D = m)

= 3p3p
3 + pm

(
mp−mp(1 − p)m−1 −m(m− 1)p2(1 − p)m−2

)
.

Now, let p3 := 1−a/m and pm := a/m, with a > 0 fixed and m ≥ a, and let
m→ ∞. Then, writing h = hm, hm(p) → 3p3 + ap for p ∈ (0, 1] and thus

ϕm(p) :=
hm(p)

p2
→ ϕ∞(p) := 3p+

a

p
.

Since ϕ′
∞(1) = 3 − a, we see that if we choose a = 1, say, then ϕ′

∞(1) > 0.
Furthermore, then ϕ∞(1/4) = 3

4 + 4 > ϕ∞(1) = 4. Since also ϕ′
m(1) =

3p3 −mpm = 3p3 − a → ϕ′
∞(1), it follows that if m is large enough, then

ϕ′
m(1) > 0 but ϕm(1/4) > ϕm(1). We fix such an m and note that ϕ = ϕm

is continuous on [0,1] with ϕ(0) = 0, because the sum in (4.2) is finite with
each term O(p3).

Let p̃0 be the global maximum point of ϕ in [0,1]. (If not unique, take the
largest value.) Then, by the properties just shown, p̃0 6= 0 and p̃0 6= 1, so
p̃0 ∈ (0, 1); moreover, 1 is a local maximum point but not a global maximum
point. Hence, πc = λ/ϕ(p̃0) is a first-order phase transition where the 3-
core suddenly becomes non-empty and containing a positive fraction h1(p̃0)
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of all (remaining) vertices. There is another phase transition at π = 1. We
have ϕ(1) = h(1) = λ, but since ϕ′(1) > 0, if p̃1 := sup p < 1 : ϕ(p) > ϕ(1),
then p̃1 < 1. Hence, as π ր 1, p̂(π) ր p̃1 and h(p̂(π)) ր h1(p̃1) < 1.
Consequently, the size of the 3-core jumps again at π = 1.

For an explicit example, numerical calculations (using Maple) show that
we can take a = 1 and m = 12, or a = 1.9 and m = 6.

Example 4.13. Let k = 3 and let D be a mixture of Poisson distributions:

P(D = j) = pj =
∑

i

qi P(Po(λi) = j), j ≥ 0, (4.18)

for some finite or infinite sequences (qi) and (λi) with qi ≥ 0,
∑

i qi = 1 and
λi ≥ 0. In the case D ∼ Po(λ) we have, cf. Example 4.11, Dp ∼ Po(λp) and
thus

h(p) = EDp − P(Dp = 1) − 2 P(Dp = 2) = λp− λpe−λp − (λp)2e−λp

= (λp)2f(λp),

where f(x) :=
(
1 − (1 + x)e−x

)
/x. Consequently, by linearity, for D given

by (4.18),

h(p) =
∑

i

qi(λip)
2f(λip), (4.19)

and thus

ϕ(p) =
∑

i

qiλ
2
i f(λip). (4.20)

As a specific example, take λi = 2i and qi = λ−2
i = 2−2i, i ≥ 1, and add

q0 = 1 −∑i≥1 qi and λ0 = 0 to make
∑
qi = 1. Then

ϕ(p) =
∞∑

i=1

f(2ip). (4.21)

Note that f(x) = O(x) and f(x) = O(x−1) for 0 < x < ∞. Hence, the sum
in (4.21) converges uniformly on every compact interval [δ, 1]; moreover, if
we define

ψ(x) :=

∞∑

i=−∞

f(2ix), (4.22)

then the sum converges uniformly on compact intervals of (0,∞) and |ϕ(p)−
ψ(p)| = O(p). Clearly, ψ is a multiplicatively periodic function on (0,∞):
ψ(2x) = ψ(x); we compute the Fourier series of the periodic function ψ(2y)
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on R and find ψ(2y) =
∑∞

n=−∞ ψ̂(n)e2πiny with, using integration by parts,

ψ̂(n) =

∫ 1

0
ψ(2y)e−2πiny dy =

∫ 1

0

∞∑

j=−∞

f(2j2y)e−2πiny dy

=

∞∑

j=−∞

∫ 1

0
f(2j+y)e−2πiny dy =

∫ ∞

−∞

f(2y)e−2πiny dy

=

∫ ∞

0
f(x)x−2πin/ ln 2 dx

x ln 2

=
1

ln 2

∫ ∞

0

(
1 − (1 + x)e−x

)
x−2πin/ ln 2−2 dx

=
1

ln 2(2πin/ ln 2 + 1)

∫ ∞

0
xe−xx−2πin/ ln 2−1 dx

=
Γ(1 − 2πin/ ln 2)

ln 2 + 2πin
.

Since these Fourier coefficients are non-zero, we see that ψ is a non-
constant continuous function on (0,∞) with multiplicative period 2. Let
a > 0 be any point that is a global maximum of ψ, let b ∈ (a, 2a) be a point
that is not, and let Ij := [2−j−1b, 2−jb]. Then ψ attains its global maximum
at the interior point 2−ja in Ij, and since ϕ(p)−ψ(p) = O(2−j) for p ∈ Ij, it
follows that if j is large enough, then ϕ(2−ja) > max(ϕ(2−j−1b), ϕ(2−jb)).
Hence, if the maximum of ϕ on Ij is attained at p̃j ∈ Ij (choosing the largest
maximum point if it is not unique), then, at least for large j, p̃j is in the
interior of Ij , so p̃j is a local maximum point of ϕ. Further, as j → ∞,

ϕ(p̃j) → maxψ > ψ̂(0) = 1/ ln 2 while λ := ED =
∑

i qiλi =
∑∞

1 2−i = 1,
so ϕ(p̃j) > λ for large j. Moreover, p̃j/2 ∈ Ij+1, and since (4.21) implies

ϕ(p/2) =

∞∑

i=1

f(2i−1p) =

∞∑

i=0

f(2ip) > ϕ(p), p > 0, (4.23)

thus ϕ(p̃j) < ϕ(p̃j/2) ≤ ϕ(p̃j+1). It follows that if p ∈ Ii for some i < j, then
ϕ(p) ≤ ϕ(p̃i) < ϕ(p̃j). Consequently, for large j at least, p̃j is a bad local
maximum point, and thus there is a phase transition at πj := λ/ϕ(p̃j) ∈
(0, 1). This shows that there is an infinite sequence of (first-order) phase
transitions.

Further, in this example ϕ is bounded (with supϕ = maxψ), and thus
πc > 0. Since, by (4.23), supϕ is not attained, this is an example where the
phase transition at πc is continuous and not first-order; simple calculations
show that as π ց πc, p̂(π) = Θ(π − πc) and h1(p̂(π)) = Θ((π − πc)

2).

Because of the exponential decrease of |Γ(z)| on the imaginary axis, |ψ̂(n)|
is very small for n 6= 0; we have |ψ̂(±1)| ≈ 0.78 · 10−6 and the others much

smaller, so ψ(x) deviates from its mean ψ̂(0) = 1/ ln 2 ≈ 1.44 by less than
1.6 · 10−6. The oscillations of ψ and ϕ are thus very small and hard to
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observe numerically or graphically unless a large precision is used. (Taking
e.g. λi = 10i yields larger oscillations.)

Note also that in this example, ϕ is not continuous at p = 0; ϕ(p) is
bounded but does not converge as pց 0. Thus h is not analytic at p = 0.

Example 4.14. Taking λi = 2i as in Example 4.13 but modifying qi to
2(ε−2)i for some small ε > 0, similar calculations show that pεϕ(p) = ψε(p)+
O(p) for a non-constant function ψε with multiplicative period 2, and it
follows again that, at least if ε is small enough, there is an infinite number
of phase transitions. In this case, ϕ(p) → ∞ as p→ 0, so πc = 0.

Since ϕ is analytic on (0, 1], if there is an infinite number of bad crit-
ical points, then we may order them (and 1, if ϕ′(1) ≤ 0 and ϕ(1) = λ)
in a decreasing sequence p̃1 > p̃2 > . . . , with p̃j → 0. It follows from
the definition of bad critical points that then ϕ(p̃1) < ϕ(p̃2) < . . . , and
sup0<p≤1 ϕ(p) = supj ϕ(p̃j) = limj→∞ϕ(p̃j). Consequently, if there is an
infinite number of phase transitions, they occur at {πj}∞1 ∪ {πc} for some
decreasing sequence πj ց πc ≥ 0.

Example 4.15. We can modify 4.13 and 4.14 and consider random graphs
where all vertex degrees di are powers of 2; thus D has support on {2i}.

If we choose p2i ∼ 2−2i or p2i ∼ 2(ε−2)i suitably, the existence of infinitely
many phase transitions follows by calculations similar to the ones above.
(But the details are a little more complicated, so we omit them.) A similar
example concentrated on {10i} is shown in Figure 2.

Example 4.16. We may modify Example 4.13 by conditioningD onD ≤M
for some large M . If we denote the corresponding h and ϕ by hM and ϕM , it
is easily seen that hM → h unformly on [0,1] as M → ∞, and thus ϕM → ϕ
uniformly on every interval [δ, 1]. It follows that if we consider N bad local
maximum points of ϕ, then there are N corresponding bad local maximum
points of ϕM for large M , and thus at least N phase transitions. This
shows that we can have any finite number of phase transitions with degree

sequences (d
(n)
i )n

1 where the degrees are uniformly bounded. (Example 4.17
shows that we cannot have infinitely many phase transitions in this case.)

Example 4.17. In Examples 4.13 and 4.14 with infinitely many phase tran-
sitions, we have ED2 =

∑
i qi(λ

2
i + λi) = ∞. This is not a coincidence; in

fact, we can show that: If ED2 <∞, then the k-core has only finite number
of phase transitions.

This is trivial for k = 2, when there never is more than one phase transi-
tion. Thus, assume k ≥ 3. If k = 3, then, cf. (4.4),

ϕ(p) = h(p)/p2 =
∑

l≥3

lpl

(
p− p(1 − p)l−1 − (l − 1)p2(1 − p)l−2

)
p−2

=
∑

l≥3

lpl

(1 − (1 − p)l−1

p
− (l − 1)(1 − p)l−2

)
.
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Each term in the sum is non-negative and bounded by lpl

(
1−(1−p)l−1

)
/p ≤

lpl(l − 1), and as p → 0 it converges to lpl(l − 1 − (l − 1)) = 0. Hence, by
dominated convergence, using the assumption

∑
pll(l − 1) = ED(D − 1) <

∞, we have ϕ(p) → 0 as p → 0. For k > 3, h(p) is smaller than for k = 3
(or possibly the same), so we have the same conclusion. Consequently, ϕ
is continuous on [0, 1] and has a global maximum point p0 in (0,1]. Every
bad critical point has to belong to [p0, 1]. Since ϕ is analytic on [p0, 1], it
has only a finite number of critical points there (except in the trivial case
ϕ(p) = 0), and thus there is only a finite number of phase transitions.

Example 4.18. We give an example of a continuous (not first-order) phase
transition, letting D be a mixture as in Example 4.13 with two components
and carefully chosen weights q1 and q2.

Let f be as in Example 4.13 and note that f ′(x) ∼ 1/2 as x → 0 and
f ′(x) ∼ −x−2 as x → ∞. Hence, for some a,A ∈ (0,∞), 1

4 < f ′(x) < 1

for 0 < x ≤ 4a and 1
2x

−2 ≤ −f ′(x) ≤ 2x−2 for x ≥ A. Let f1(x) := f(Ax)
and f2(x) := f(ax). Then, f ′1(x) < 0 for x ≥ 1. Further, if g(x) :=
f ′2(x)/|f ′1(x)| = (a/A)f ′(ax)/|f ′(Ax)|, then

g(1) =
af ′(a)

A|f ′(A)| <
a

A ·A−2/2
= 2aA,

g(4) =
af ′(4a)

A|f ′(4A)| >
a/4

A · 2(4A)−2
= 2aA,

and thus g(1) < g(4). Further, if x ≥ A/a, then f ′2(x) < 0 and thus g(x) < 0.
Consequently, supx≥1 g(x) = max1≤x≤A/a g(x) < ∞, and if x0 is the point
where the latter maximum is attained (choosing the largest value if the
maximum is attained at several points), then 1 < x0 <∞ and g(x) < g(x0)
for x > x0. Let β := g(x0) and

ψ(x) := βf1(x) + f2(x) = βf(Ax) + f(ax). (4.24)

Then ψ′(x) ≤ 0 for x ≥ 1, ψ′(x0) = 0 and ψ′(x0) < 0 for x > x0.
Let b be large, to be chosen later, and let D be as in Example 4.13 with

q1 := βa2/(βa2 +A2), q2 := 1 − q1, λ1 := bA, λ2 := ba. Then, by (4.20),

ϕ(p) = q1(bA)2f(bAp) + q2(ba)2f(bap) =
b2a2A2

βa2 +A2
ψ(bp). (4.25)

Hence, ϕ′(x0/b) = 0, ϕ′(x) ≤ 0 for x ≥ 1/b and ϕ′(x) < 0 for x > x0/b. Con-
sequently, x0/b is a critical point but not a local maximum point. Further-
more, ϕ(x0/b) = q1b

2A2f(Ax0)+q2b
2a2f(ax0) and λ := ED = q1λ1+q2λ2 =

b(q1A+q2a); hence, if b is large enough, then ϕ(x0/b) > λ. We choose b such
that this holds and b > x0; then p̃ := x0/b is a bad critical point which is an
inflection point and not a local maximum point. Hence there is a continuous
phase transition at π̃ := λ/ϕ(p̃) ∈ (πc, 1).

We have ϕ′(p̃) = ϕ′′(p̃) = 0; we claim that, at least if A is chosen large
enough, then ϕ′′′(p̃) 6= 0. This implies that, for some c1, c2, c3 > 0, ϕ(p) −
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ϕ(p̃) ∼ −c1(p− p̃)3 as p→ p̃, and p̂(π)− p̂(π̃) ∼ c2(π− π̃)1/3 and h1(p̂(π))−
h1(p̂(π̃)) ∼ c3(π − π̃)1/3 as π → π̃, so the critical exponent at π̃ is 1/3.

To verify the claim, note that if also ϕ′′′(p̃) = 0, then by (4.25) and (4.24),
ψ′(x0) = ψ′′(x0) = ψ′′′(x0) = 0,, and thus

βAjf (j)(Ax0) + ajf (j)(ax0) = 0, j = 1, 2, 3. (4.26)

Let x1 := Ax0 and x2 := ax0. Then x1 ≥ A, and f ′(x2) > 0 so x2 ≤ C for
some C. Further, (4.26) yields

x2f
′′(x2)

f ′(x2)
=
x1f

′′(x1)

f ′(x1)
and

x2
2f

′′′(x2)

f ′(x2)
=
x2

1f
′′′(x1)

f ′(x1)
. (4.27)

Recall that x1 and x2 depend on our choices of a and A, and that we always
can decrease a and increase A. Keep a fixed and let A → ∞ (along some
sequence). Then x1 → ∞ but x2 = O(1), so by selecting a subsequence we
may assume x2 → y ≥ 0. As x → ∞, f ′(x) ∼ −x−2, f ′′(x) ∼ 2x−3, and
f ′′′(x) ∼ −6x−4. Hence, if (4.27) holds for all large A (or just a sequence
A→ ∞), we obtain by taking the limit

yf ′′(y)

f ′(y)
= lim

x→∞

xf ′′(x)

f ′(x)
= −2 and

y2f ′′′(y)

f ′(y)
= lim

x→∞

x2f ′′′(x)

f ′(x)
= 6.

Finally, let F (x) := xf(x) = 1 − (1 + x)e−x. Then F ′′(y) = yf ′′(y) +
2f ′(y) = 0 and F ′′′(y) = yf ′′′(y) + 3f ′′(y) = 6y−1f ′(y) − 6y−1f ′(y) = 0. On
the other hand, F ′(x) = xe−x, F ′′(x) = (1 − x)e−x, F ′′′(x) = (x − 2)e−x,
so there is no solution to F ′′(y) = yF ′′′(y) = 0. This contradiction finally
proves that ϕ′′′(p̃) 6= 0, at least for large A.

5. Bootstrap percolation in random regular graphs

Bootstrap percolation on a graph G is a process that can be regarded as a
model for the spread of an infection. We start by infecting a subset A0 of the
vertices; typically we let A0 be a random subset of the vertex set V (G) such
that each vertex is infected with some given probability q, independently of
all other vertices, but other choices are possible, including a deterministic
choice of A0. Then, for some given threshold ℓ ∈ N, every uninfected vertex
that has at least ℓ infected neighbours becomes infected. (Infected vertices
stay infected; they never recover.) This is repeated until there are no further

infections. We let Af = A(ℓ)
f be the final set of infected vertices. (This is

perhaps not a good model for infectious diseases, but may be reasonable as
a model for the spread of rumors or beliefs: you are skeptical the first time
you hear something but get convinced the ℓth time.)

Bootstrap percolation is more or less the opposite to taking the k-core.
For regular graphs, there is an exact correspondence: it is easily seen that

if the common vertex degree in G is d, then the set V (G) \ A(ℓ)
f of finally

uninfected vertices equals the (d + 1 − ℓ)-core of the set V (G) \ A0 of ini-
tially uninfected vertices. Furthermore, if the initial infection is random,
with vertices infected independently with a common probability q, then the
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initial infection can be seen as a site percolation, where each vertex remains
uninfected with probability π = 1 − q. Consequently, in this case we ob-
tain results on the size of the final uninfected set from Theorem 4.5, taking
k = d− ℓ+ 1 and π = 1 − q.

Bootstrap percolation on the random regular graph G(n, d) with fixed
vertex degree d was studied by Balogh and Pittel [1]. We can recover a large
part of their results from Theorem 4.5. We have, as just said, k = d− ℓ+ 1

and π = 1 − q. Moreover, all degrees d
(n)
i = d; hence the definitions in

Section 2 yield nj = nδjd, pj = δjd, D̂n = d, D = d and λ = ED = d.
Condition 2.1 is satisfied trivially. Furthermore, (4.2) and (4.3) yield, since
Dp ∼ Bi(d, p),

h(p) =
d∑

j=k

jbdj(p) =
d∑

j=k

j

(
d

j

)
pj(1 − p)d−j =

d∑

j=k

dp

(
d− 1

j − 1

)
pj−1(1 − p)d−j

= dpP
(
Bi(d− 1, p) ≥ k − 1

)
= dpP

(
Bi(d− 1, p) ≥ d− ℓ

)

= dpP
(
Bi(d− 1, 1 − p) ≤ ℓ− 1

)

and

h1(p) = P
(
Bi(d, p) ≥ k

)
= P

(
Bi(d, p) ≥ d− ℓ+ 1

)
= P

(
Bi(d, 1 − p) ≤ ℓ− 1

)
.

Consequently, (4.9) yields

πc := inf
0<p≤1

dp2

h(p)
= inf

0<p≤1

p

P
(
Bi(d− 1, 1 − p) ≤ ℓ− 1

) .

We define qc := 1 − πc, and Theorem 4.5 translates as follows. (Recall that
we have proven Theorem 4.5 for the random multigraph G∗(n, d), but as said
in the introduction, the result holds for the simple random graph G(n, d) by
a standard conditioning.)

Theorem 5.1 ([1]). Let d, ℓ and q ∈ [0, 1] be given with 1 ≤ ℓ ≤ d −
1. Consider bootstrap percolation on the random d-regular graph G(n, d),
with threshold ℓ and vertices initially infected randomly with probability q,
independently of each other. Let

qc = q
(ℓ)
c := 1 − inf

0<p≤1

p

P
(
Bi(d− 1, 1 − p) ≤ ℓ− 1

) . (5.1)

(i) If q > qc, then |Af | = n − op(n). Furthermore, if l ≤ d − 2 then
w.h.p. |Af | = n, i.e., all vertices eventually become infected.

(ii) If q < qc, then w.h.p. a positive proportion of the vertices remain
uninfected, More precisely, if p̂ = p̂(q) is the largest p ≤ 1 such that
P
(
Bi(d− 1, 1 − p) ≤ ℓ− 1

)
/p = (1 − q)−1, then

|Af |/n
p−→ 1 − (1 − q) P

(
Bi(d, 1 − p̂) ≤ ℓ− 1

)
< 1.

Proof. It remains only to show that in case (ii), p̂ is not a local maximum
point of ϕ̄(p) := h(p)/(dp2) = P

(
Bi(d−1, 1−p) ≤ ℓ−1

)
/p. (In the notation
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of Section 4, ϕ̄(p) = ϕ(p)/λ.) In fact, some simple calculus shows, see [1,
§3.2, where R(y) = ϕ̄(y)−1] for details, that the function ϕ̄ is unimodal when
ℓ < d − 1 and decreasing when ℓ = d − 1; thus there is no local maximum
point when ℓ = d − 1, and otherwise the only local maximum point is the
global maximum point p0 with ϕ̄(p0) = π−1

c
= (1 − qc)

−1. (It follows also
[1] that the equation ϕ̄(p) = (1− q)−1 in (ii) has exactly two roots for every
q < qc when ℓ < d− 1 and one when ℓ = d− 1.) �

Remark 5.2. The case ℓ = 1 (k = d) is rather trivial; in this case, Af

is the union of all components of G(n, d) that contain at least one initially
infected vertex. If further d ≥ 3, then G(n, d) is w.h.p. connected, and thus
any non-empty A0 w.h.p. yields |Af | = n. (The case d = 2 is different but
also simple: G(n, 2) consists of disjoint cycles, and only a few small cycles
will remain uninfected.)

Actually, Balogh and Pittel [1] study primarily the case when the initially
infected set A0 is deterministic; they then derive the result above for a
random A0 by conditioning on A0. Thus, assume now that A0 is given,
with |A0| = m. (For G(n, d), because of the symmetry, it does not matter
whether we remove a specified set of m vertices or a uniformly distributed
random set with m vertices.) Assuming m ∼ nq, we have the same results
in this case, see Remark 1.1; indeed, the proof is slightly simpler since the
use of the law of large numbers in Subsection 2.1 is replaced by the obvious
ñd = n−m, ñ1 = n+ = dm.

Theorem 5.3. Theorem 5.1 remains valid if the initially infected set is any
given set with m = m(n) vertices, where m/n→ q.

Remark 5.4. As in Remark 4.8, it is also possible to study the threshold
in greater detail by allowing q to depend on n. If we assume ℓ ≤ d− 2 (i.e.,
k ≥ 3) and q = q(n) → qc defined by (5.1), then Janson and Luczak [11,
Theorem 3.5] applies and implies the following, also proved by Balogh and
Pittel [1] by different methods.

Theorem 5.5 ([1]). Consider bootstrap percolation on G(n, d) with ℓ ≤ d−2,
and assume that the set A0 of initially infected vertices either is deterministic
with |A0| = q(n)n or random, with each vertex infected with probability q(n).

(i) If q(n) − qc ≫ n−1/2, then w.h.p. |Af | = n, i.e., all vertices become
infected.

(ii) If qc − q(n) ≫ n−1/2, then w.h.p. |Af | < n and, moreover,

|Af | = h1

(
p̂(q(n))

)
n+Op

(
n1/2|q(n) − qc|−1/2

)
.

Janson and Luczak [11, Theorem 3.5] is stated for random multigraphs,
and for G∗(n, d) it yields further an asymptotic normal distribution in case
(ii), as well as a precise result for P(|Af | = n) in the transition window

q(n) − qc = O(n−1/2). The latter result can easily be transformed into the
following analogue of [11, Theorem 1.4]; the asymptotic variance σ2 is given
by explicit but rather complicated formulas in [11].
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Theorem 5.6. Assume ℓ ≤ d − 2. Infect (from the outside) the vertices
in G∗(n, d) one by one in random order, letting the infection spread as
above to every vertex having at least ℓ infected neighbours, and let M be
the number of externally infected vertices required to make |Af | = n. Then

(M − nqc)/n
1/2 d−→ N(0, σ2), with σ2 > 0.

Presumably, the same results hold for G(n, d), but technical difficulties
have so far prevented a proof, cf. [11]. In any case, it follows from Theo-

rem 5.6 that the size of the transition window is O(n−1/2) for G(n, d) too,
and not smaller.

Appendix A. The k-core and branching processes

We give a precise statement of the relation between Proposition 4.1 and
branching processes. This can be seen heuristically from the branching
process approximation of the local exploration process, but as said above,
we do not attempt to make this approximation rigorous; instead we compare
the quantities in Proposition 4.1 with branching process probabilities.

Theorem A.1. Let X be a Galton–Watson branching process with offspring
distribution D∗ and starting with one individual o, and let X be the modified
branching process where the root o has offspring distribution D but everyone
else has offspring distribution D∗. We regard these branching processes as
(possibly infinite) trees with root o. Further, let Tk be the infinite rooted tree
where each node has k−1 children, and let T k be the infinite rooted k-regular
tree where the root has k children and everyone else k − 1.

Then p̂ = P(X ⊇ Tk), the probability that X contains a rooted copy of Tk

(i.e., a copy of Tk with root o) and h1(p̂) = P(X ⊇ T k), the probability that
X contains a rooted copy of T k.

Hence, by Proposition 4.1, the probability that a random vertex be-
longs to the k-core, which is E(v(Core∗k)/n), converges to the probability

P(X ⊇ T k), the probability that the branching process approximating the
local structure at a random vertex contains the infinite k-regular tree T k.
Similarly, the probability that a random edge belongs to the Core∗k, which
is ∼ E(e(Core∗k)/(nλ/2)), converges to h(p̂)/λ = p̂2 = P(X ⊇ Tk)2, which
can be interpreted as the probability that both endpoints of a random edge
grow infinite k-regular trees in the branching process approximation.

Proof. Let Tkn be the subtree of Tk consisting of all nodes of height ≤ n,
i.e., the rooted tree of height n where each node of height < n has k − 1
children, and let qn be the probability that X contains a copy of Tkn. Thus,
q0 = 1, and for n ≥ 0, qn+1 is the probability that the root o has at least
k − 1 children that each is the root of a copy of Tkn in the corresponding
subtree of X ; let us call such children good. By the branching property, the
subtrees rooted at the children of o are independent copies of X : thus the
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probability that a given child is good is qn, and the number of good children
of o has the tinned distribution D∗

qn
. Hence,

qn+1 = P(D∗
qn

≥ k − 1) =

∞∑

d=k

P(D∗ = d− 1)

∞∑

l=k

P
(
Bi(d− 1, qn) = l − 1

)

=
∑

d≥k

∑

l≥k

d

λ
P(D = d)

l

dqn
P
(
Bi(d, qn) = l

)

=
1

λqn

∑

l≥k

l P(Dqn = l) =
1

λqn
h(qn).

Since x 7→ h(x)/(λx) is increasing (e.g. by the same calculation) and 1 =
q0 ≥ q1 ≥ . . . , it follows that qn decreases to the largest root p̂ of 1

λqh(q) = q

in [0, 1]. On the other hand, the events En := {X ⊇ Tkn} are decreasing,
E1 ⊇ E2 ⊇ · · · , and

⋂
n En is, by a compactness argument, equal to the event

{X ⊇ Tk}. Hence, P(X ⊇ Tk) = limn qn = p̂.
Similarly, X contains a rooted copy of T k if and only if the root o has at

least k good (now with n = ∞) children. We have shown that each child
is good with probability p̂, and thus the number of good children has the
thinned distribution Dbp; hence P(X ⊇ T k) = P(Dbp ≥ k) = h1(p̂). �

Remark A.2. When k = 2, T2 is just an infinite path, and thus p̂ =
P(X ⊇ T2) is just the survival probability ρ of the branching process X , as
observed algebraically in Remark 4.4. Hence the thresholds for 2-core and
giant component coincide, for any of our percolation models. Moreover, we
see that if v is a random vertex, the events “v is in a giant component” and
“v is in the 2-core” are approximated by “the root o in X has at least one
child with infinite progeny” and “the root o in X has at least two children
with infinite progeny”, respectively, which again shows the close connection
between these properties.
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