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We study the evolution of the susceptibility in the subcritical random graph G�n , p�
as n tends to infinity. We obtain precise asymptotics of its expectation and variance
and show that it obeys a law of large numbers. We also prove that the scaled
fluctuations of the susceptibility around its deterministic limit converge to a Gauss-
ian law. We further extend our results to higher moments of the component size of
a random vertex and prove that they are jointly asymptotically normal. © 2008
American Institute of Physics. �DOI: 10.1063/1.2982848�

I. INTRODUCTION

The susceptibility ��G� of a graph G �deterministic or random� is defined as the mean size of
the component containing a random vertex. �As is well known, for random graphs of the random-
cluster model, this, or rather its expectation, corresponds to the magnetic susceptibility in the Ising
and Potts models.� If G has n vertices and components C1 , . . . ,CK, where K is the number of
components, then

��G� = �
i=1

K �Ci�
n

�Ci� =
1

n
�
i=1

K

�Ci�2. �1.1�

We define, for integers k�1,

Sk�G� ª �
i=1

K

�Ci�k. �1.2�

Thus ��G�=n−1S2�G�, and similarly n−1Sm+1�G� is the mth moment of the size of the component
containing a random vertex. �Note that, by choosing a uniform random vertex, we bias the com-
ponents by their sizes. The mean size of a uniformly chosen random component is n /K, which is
different and which will not be treated here.�

The purpose of this paper is to study ��G�n , p�� or equivalently S2�G�n , p�� for the standard
Erdős–Rényi random graph G�n , p� with n vertices where each possible edge appears with prob-
ability p independently of all other edges; we will also give extensions to Sk�G�n , p�� for larger k.

We consider asymptotics as n→�, with p= p�n� a function of n. �All unspecified limits are as
n→�.�

It is well known, see, e.g., Bollobás2 and Janson et al.,13 that, if np is a little larger than 1,
np−1�n−1/3 to be precise, then G�n , p� has with hig probability �w.h.p.� a giant component which
is much larger than the others �the supercritical case�. It is easily seen that then the giant com-
ponent will dominate all other terms in sum �1.2�; hence, if the largest component is C1, then
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Sk�G�n , p��= �1+op�1���C1�k and ��G�n , p��= �1+op�1���C1�2 /n. See Appendix A for a more precise
statement �and proof�.

Similarly, if np=1+O�n−1/3� �the critical case�, then there are several components of the order
n2/3; in this case Sk will be of order n2k/3, and thus � of order n1/3, and it follows from Aldous1 that
these quantities, properly normalized, converge in distribution to some random variables but not to
constants. See Appendix B for details.

In this paper we therefore concentrate on the case np�1, and, in particular, 1−np�n−1/3 �the
subcritical case�. We will prove the following results for ��G�n , p��, together with similar results
for Sk�G�n , p�� stated later.

We use Op and op in the standard sense, see, e.g., Ref. 13, pp. 10 and 11, and write Xn

�pan for Xn=an+op�an� or, equivalently, Xn /an→
p

1. We will also write Xn=OLp�an� if �Xn�Lp

ª �E�Xn�p�1/p=O�an�, and, similarly, Xn=oLp�an� if �Xn�Lp =o�an�. �Here, Xn and an are sequences
of random variables and positive numbers, respectively.�

Theorem 1.1: Uniformly, for all n�1 and 0� p�n−1,

E��G�n,p�� =
1

1 − np
	1 + O	 1

n�1 − np�3

 , �1.3�

Var ��G�n,p�� = O	 1

n�1 − np�5
 , �1.4�

and

��G�n,p�� =
1

1 − np
�1 + Op��n�1 − np�3�−1/2�� . �1.5�

In particular, if 1−np�n−1/3, then ��G�n , p���p1 / �1−np�.
One way to handle the explosion at p=1 /n is to consider 1 /E� or 1 /�. In this form we can

obtain uniform estimates for all p.
Corollary 1.2: Uniformly, for all n�1 and 0� p�1,

1

E��G�n,p��
= �1 − np�+ + O�n−1/3� , �1.6�

1

��G�n,p��
= �1 − np�+ + Op�n−1/3� . �1.7�

The last statement of Theorem 1.1 can be sharpened to asymptotic normality. We will also find
the variance more precisely. We write Xn�AsN��n ,�n

2� if Xn is a sequence of random variables

and �n and �n	0 are real numbers such that �Xn−�n� /�n→
d

N�0,1�.
Theorem 1.3: If p= p�n��n−1 and further p�n−2 and 1−np�n−1/3, then

��G�n,p�� � AsN	 1

1 − np
,

2p

�1 − np�5

and Var ��G�n , p���2p / �1−np�5.

It follows easily from ��G�n , p��	0 that the asymptotic normality in Theorem 1.3 cannot
hold for 1−np=O�n−1/3�. Similarly, it does not hold in the case n2p=O�1� when the number of
edges is Op�1�, for example, because n��G�n , p�� is integer valued. �The variance asymptotics
hold in this case too.�

The proof of Theorem 1.1 �given in Secs. III and IV� is fairly simple and is based on studying
how Sk evolves for the Erdős–Rényi random graph process G�n , t� �defined in Sec. II�. Heuristi-
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cally, it is easy to see that �ignoring the difference between a random variable and its mean�, Sk

ought to be an approximative solution to the differential equation f��t�= f2�t�, which �with the
initial value f�0�=n� is solved by f�t�=n / �1−nt�. We make this precise and rigorous below. This
simple idea has presumably been noticed by several people, and at least the leading terms in �1.3�
and �1.5� are more or less known folk theorems. However, we do not know of any rigorous
treatments, except Ref. 19 which uses the susceptibility to study a class of more complicated
random graph process. Their processes include the Erdős–Rényi process studied here, so their
results include the leading term asymptotics in �1.3� and �1.5� in the case where p� �1−
� /n for
some constant 
	0. Their analysis involves branching process approximation, as well as differ-
ential equations, and seems contingent on the fact that the component distribution �excluding the
giant in the supercritical case� has exponentially decaying tails. Furthermore, Durrett5 studied the
expectation �E��G�n , p��� using the branching process approximation; the result is stated for fixed
np�1 but the argument yields �1.3� for all np�1.

The proof of Theorem 1.3 is more involved; the asymptotic normality is based on using a
martingale central limit theorem for a suitable modification of the process Sk�G�n , t�� �Sec. V�,
while the variance is estimated directly �Sec. VI�.

In Sec. VII, the asymptotic results for Sk are interpreted using the Borel distribution and its
moments.

Remark 1.4: It is seen from Theorem 1.1 that the susceptibility blows up at p=1 /n, which of
course is another sign of the phase transition there, with the emergence of a giant component. In
fact, our results give a new proof that there is no giant component for smaller p. In the opposite
direction, the explosion of the susceptibility at �or close to� p=1 /n shows that there are large
components at that stage; it is tempting to conclude that a giant component emerges around this
instance �as we know by other arguments�, but a formal proof based on this seems to require some
additional work. See Ref. 19 where this type of arguments is used for a class of more complicated
random graph processes.

Remark 1.5: An alternative approach to at least some of our results is to use the standard
branching process approximation of the neighborhood exploration process; this will be treated
elsewhere for a larger class of random graphs.3

Remark 1.6: In this paper we study the random graph G�n , p�. Most or all of our results
transfer easily to the random graph G�n ,m� with a fixed number of edges by monotonicity
�Lemma 2.1� and the standard device of coupling G�n ,m� with G�n , p� for a suitable p such that
the expected number of edges is slightly smaller or larger than m. We leave the details to the
reader.

II. PRELIMINARIES

We first note a simple monotonicity.
Lemma 2.1: If H is a subgraph of G, then Sk�H��Sk�G� for every k�1.
Proof: It suffices to consider the case when G is obtained from H by either adding a single

edge or adding a single vertex �and no edges�; both cases are immediate. �

The random graph process G�n , t� starts at t=0 with n vertices and no edges and where edges
are added randomly and independently to every possible pair of vertices with rate 1, i.e., the time
edge ij is added has an exponential distribution with mean 1. Hence, at a given time t, each
possible edge is present with probability 1−e−t, so G�n , t� is a random graph G�n ,1−e−t�. We are
interested in the subcritical case where t�1 /n; then the difference between 1−e−t and t is
O�t2�=O�n−2� which is negligible, and we can see G�n , t� as a convenient version of G�n , t�. More
precisely, G�n , p� can be obtained as G�n ,−log�1− p��; this slight reparametrization is annoying
but harmless, and it will be convenient in the proofs below.

We write Sk�t� for Sk�G�n , t��. �These and other quantities introduced below depend on n, but
we choose not to show this explicitly in the notation.�

We further define, for a graph G with components Ci and k , l�1,
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Sk,l�G� ª �
i�j

�Ci�k�C j�l = Sk�G�Sl�G� − Sk+l�G� . �2.1�

We write Sk,l�t� for Sk,l�G�n , t��.

III. THE EXPECTATION

We may and will assume that the edges are added to G�n , t� at distinct times. If a new edge
joins two different components Ci and C j in G�n , t�, then Sk�t� increases by a jump

�Sk�t� = ��Ci� + �C j��k − �Ci�k − �C j�k = �
l=1

k−1 	k

l

�Ci�l�C j�k−l. �3.1�

For each unordered pair �i , j�, the intensity of such jumps equals the number of possible edges
joining the two components, i.e., �Ci��C j�. We consider ordered pairs of components and therefore
divide this by 2, and summing over all pairs we find that the drift of Sk�t� is

Vk�t� ª �
i�j

1

2
�Ci��C j��

l=1

k−1 	k

l

�Ci�l�C j�k−l = �

l=1

k−1
1

2
	k

l

Sl+1,k+1−l�t�; �3.2�

in other words, noting that Sk�0�=n,

Mk�t� ª Sk�t� − n − �
0

t

Vk�u�du �3.3�

is a martingale on �0,�� with Mk�0�=0. �Note that Mk�t� is bounded for each fixed n and t in a
finite interval �0,T�; hence, there are no problems with integrability of this martingale. The same
holds for all similar martingales below.�

We define sk�t�ªESk�t�, noting that sk�0�=n, and conclude from the martingale property that
EMk�t�=EMk�0�=0 and thus

sk�t� = ESk�t� = n + �
0

t

EVk�u�du . �3.4�

In order to use this, we need information on ESk,l�t�.
Lemma 3.1: For all k , l�1:

�i� ESk,l�t��sk�t�sl�t�,
�ii� ESk,l�t��sk�t�sl�t�−sk+l�t�.

Proof: �i� Let An be the set of all nonempty subsets of �n�. If A�An, let IA�t�ª1 �A is a
component of G�n , t��. Thus,

Sk�t� = �
A�An

�A�kIA�t�

and since IAIB=0 if A�B�0” but A�B,

Sk,l�t� = �
A�B

�A�k�B�lIA�t�IB�t� = �
A�An

�A�kIA�t� �
B��n�\A

�B�lIB�t� . �3.5�

Conditioned on IA�t�=1, the conditional distribution of the restriction of G�n , t� to �n� \A is a
random graph with the same distribution as G�n− �A� , t�, apart from a relabeling of the vertices.
Hence, using also Lemma 2.1,
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E	 �
B��n�\A

�B�lIB�t��IA�t� = 1
 = ESl�G�n − �A�,t�� � ESl�G�n,t�� = sl�t� .

Consequently, taking the expectation in �3.5� yields

ESk,l�t� � E �
A�An

�A�kIA�t�sl�t� = sk�t�sl�t� .

�ii� By �2.1�,

ESk,l�t� = E�Sk�t�Sl�t�� − sk+l�t� ,

and it remains to show that E�Sk�t�Sl�t���sk�t�sl�t�, i.e., that Sk�t� and Sl�t� are positively corre-
lated. This follows by Harris’ inequality �a special case of the FKG inequality� since Sk�t� and Sl�t�
are �by Lemma 2.1� increasing functions of the edge indicators of G�n , t�, and these are indepen-
dent. �

We use this first to find an upper bound for sk�t�. Combining �3.4� and �3.2� and Lemma 3.1�i�,
we find

sk��t� = EVk�t� � �
l=1

k−1
1

2
	k

l

sl+1�t�sk−l+1�t� . �3.6�

The first cases are

s2��t� � s2�t�2, �3.7�

s3��t� � 3s2�t�s3�t� , �3.8�

s4��t� � 4s2�t�s4�t� + 3s3�t�2. �3.9�

Integrating �3.7�, with the initial value s2�0�=n, we find, e.g., via �1 /s2�t����−1 and thus
1 /s2�t��1 /n− t,

s2�t� �
n

1 − nt
, 0 � t � 1/n . �3.10�

Next, �3.8� and �3.10� yield ��1−nt�3s3�t����0 and thus since s3�0�=n,

s3�t� �
n

�1 − nt�3 , 0 � t � 1/n . �3.11�

We can continue recursively and obtain the following bounds.
Lemma 3.2: For every k�2, there exists a constant Ck such that, for all n,

ESk�t� = sk�t� � Ck
n

�1 − nt�2k−3 , 0 � t � 1/n .

Proof: We have proven this for k=2 and 3. For k�4 we use induction and assume that the
lemma holds for smaller values of k; then �3.6� yields, for some constant Ck�, taking the terms l
=1 and l=k−1 separately and using �3.10�,

sk��t� � ks2�t�sk�t� + �
l=2

k−2
1

2
	k

l

 Cl+1n

�1 − nt�2l−1

Ck−l+1n

�1 − nt�2k−2l−1 �
kn

1 − nt
sk�t� +

Ck�n
2

�1 − nt�2k−2 .

Hence, ��1−nt�ksk�t����Ck�n
2�1−nt�−�k−2� and thus
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�1 − nt�ksk�t� � n + �
0

t Ck�n
2

�1 − nu�k−2du � n +
Ck�n

�k − 3��1 − nt�k−3 �
Ckn

�1 − nt�k−3 .

�

We write the estimate in Lemma 3.2 as sk�t�=O�n�1−nt�3−2k� where, as in all similar estimates
below, the implicit constant may depend on k �and later sometimes l� but not on n or t �in the given
range 0� t�1 /n�.

We can now use this upper bound in a more or less repetition of the same argument to obtain
more precise estimates. By Lemmas 3.1 and 3.2, for 0� t�1 /n,

ESk,l�t� = sk�t�sl�t� + O�sk+l�t�� = sk�t�sl�t� + O	 n

�1 − nt�2k+2l−3
 .

Hence, �3.6� and �3.2� yield

sk��t� = EVk�t� = �
l=1

k−1
1

2
	k

l

sl+1�t�sk−l+1�t� + O	 n

�1 − nt�2k+1
 . �3.12�

The first cases are

s2��t� = s2�t�2 + O�n�1 − nt�−5� , �3.13�

s3��t� = 3s2�t�s3�t� + O�n�1 − nt�−7� , �3.14�

s4��t� = 4s2�t�s4�t� + 3s3�t�2 + O�n�1 − nt�−9� . �3.15�

We first treat s2�t�.
Theorem 3.3:

ES2�t� = s2�t� =
n

1 − nt
	1 + O	 nt

n�1 − nt�3

, 0 � t � 1/n .

Proof: Let Tª inf�t : �1−nt�s2�t�=n /2
. Since f�t�ª �1−nt�s2�t� is continuous with f�0�=n
and f�1 /n�=0, then 0�T�1 /n and for 0� t�T we have s2�t��

1
2n / �1−nt� and thus, by �3.13�,

	 1

s2�t�

�

= − 1 + O	 n

�1 − nt�5s2�t�2
 = − 1 + O	 1

n�1 − nt�3
 .

This implies, recalling s2�0�=n and noting that �0
t �1−nu�−3du=O�t / �1−nt�2� �which is, like simi-

lar integrals below, perhaps simplest seen by considering the cases nt�1 /2 and nt�1 /2 sepa-
rately�,

1

s2�t�
=

1

n
+ �

0

t 	 1

s2�u�

�

du =
1

n
− t + O	 t

n�1 − nt�2
 =
1 − nt

n
	1 + O	 nt

n�1 − nt�3

 .

�3.16�

Taking here t=T, we find 1=O�1 / �n�1−nT�3��, and thus n�1−nT�3=O�1� or 1−nT=O�n−1/3�.
Choosing A large enough, we see that if 1−nt�An−1/3, then t�T, and further the O term in �3.16�
is, in absolute value, less than 1

2 . Thus �3.16� yields the result for 1−nt�An−1/3. The result for
1−nt�An−1/3 follows trivially from bound �3.10�. �

Theorem 3.3 proves �1.3� by the change of variable t=−log�1− p�= p+O�p2� as discussed in
Sec. II, noting that the result is utterly trivial for 1−np=O�n−1�.

We continue with higher k.
Theorem 3.4: The following holds for 0� t�1 /n:
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ES3�t� = s3�t� =
n

�1 − nt�3	1 + O	 nt

n�1 − nt�3

 ,

ES4�t� = s4�t� =
n�3 − 2�1 − nt��

�1 − nt�5 	1 + O	 nt

n�1 − nt�3

 .

More generally, for every k�2 there exists a polynomial pk of degree 2k−3 such that

ESk�t� = sk�t� = npk	 1

1 − nt

 + O	 nt

�1 − nt�2k
 = npk	 1

1 − nt

	1 + O	 nt

n�1 − nt�3

 .

�3.17�

We have p2�x�=x, p3�x�=x3, and p4�x�=3x5−2x4. In general, for k�3, pk�x�=xkqk�x� for a poly-
nomial qk�x� of degree k−3 that is recursively defined by qk�1�=1 and

qk��x� =
1

2�
l=2

k−2 	k

l

ql+1�x�qk−l+1�x�, k � 3. �3.18�

Equivalently, pk�1�=1 and

pk��x� =
1

2x2�
l=1

k−1 	k

l

pl+1�x�pk−l+1�x�, k � 2. �3.19�

A probabilistic interpretation of pk�x� and a simpler recursion formula are given in Sec. VII.
The polynomials pk for small k are given in Table I. It follows from recursion �3.18� that pk has
degree 2k−3 with a positive leading term; since further qk and pk are nondecreasing on �1,��, for
example, by �3.18� again, and thus strictly positive there, it follows that pk�x��x2k−3 for x�1.
This shows that the two forms of �3.17�, with the error term written as an absolute or a relative
error, are equivalent.

Proof: We have shown the result for k=2, with p2�x�=x which satisfies �3.19�. For larger k, we
use induction and assume that �3.17� is true for smaller values of k. Then, by �3.12�, taking the
terms l=1 and l=k−1 separately and �3.18�,

sk��t� = ks2�t�sk�t� + �
l=2

k−2
1

2
	k

l

sl+1�t�sk−l+1�t� + O	 n

�1 − nt�2k+1
 =
kn

1 − nt
sk�t�

+ n2�
l=2

k−2
1

2
	k

l

pl+1	 1

1 − nt

pk−l+1	 1

1 − nt

 + O	 n

�1 − nt�2k+1
 =
kn

1 − nt
sk�t�

+
n2

�1 − nt�k+2qk�	 1

1 − nt

 + O	 n

�1 − nt�2k+1
 .

Thus,

TABLE I. The polynomials pk�x� for k�8.

p2�x�=x
p3�x�=x3

p4�x�=3x5−2x4

p5�x�=15x7−20x6+6x5

p6�x�=105x9−210x8+130x7−24x6

p7�x�=945x11−2520x10+2380x9−924x8+120x7

p8�x�=10 395x13−346 50x12+44 100x11−26 432x10+7308x9−720x8
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��1 − nt�ksk�t��� =
n2

�1 − nt�2qk�	 1

1 − nt

 + O	 n

�1 − nt�k+1
 = n
d

dt
qk	 1

1 − nt

 + O	 n

�1 − nt�k+1
 .

The result follows by integration, recalling that sk�0�=n. �

IV. THE VARIANCE

Theorem 4.1: For every k�2, Var�Sk�t���s2k�t�. Hence,

Var�Sk�t�� = O�n�1 − nt�−�4k−3��, 0 � t � 1/n .

Proof: By �2.1� and Lemma 3.1�i�,

E�Sk�t�2� = ESk,k�t� + ES2k�t� � �ESk�t��2 + s2k�t� .

The final estimate follows by Lemma 3.2. �

A more precise result will be given in Sec. VI. This will show that the bound in Theorem 4.1
is of the right order as long as 1−nt�n−1/3.

Corollary 4.2: If 1−nt�n−1/3, then Sk�t��pnpk�1 / �1−nt�� for every k�2.
Proof: By Theorem 3.4, ESk�t��npk�1 / �1−nt��. Further, Theorems 4.1 and 3.4 show that

Var�Sk�t��
�ESk�t��2 = O	 n�1 − nt�3−4k

n2�1 − nt�6−4k
 = O	 1

n�1 − nt�3
 = o�1� ,

and the result follows by Chebyshev’s inequality. �

Proof of Theorem 1.1: As remarked above, �1.3� follows from Theorem 3.3. Similarly, the case
k=2 of Theorem 4.1 yields �1.4�. Together, these estimates yield �1.5� for 1−np�n−1/3. For
1 /n�1−np�n−1/3, �1.5� follows from the estimate E��G�n , p��=O�1 / �1−np�� one obtains from
Lemma 3.2 �or �3.10��; for 0�1−np�1 /n, �1.5� follows from the trivial ��G�n , p���n. �

Proof of Corollary 1.2: Let A	0 be so large that the O term in �1.3� is �
1
2 for 1−np

�An−1/3. Then �1.3� yields, for np�1−An−1/3,

1

E��G�n,p��
= �1 − np�	1 + O	 1

n�1 − np�3

 = 1 − np + O�n−1/3� ,

which shows �1.6� for these p. In particular, for np=1−An−1/3 we find 1 /E��G�n , p��=O�n−1/3�.
This, and thus �1.6�, then holds for all larger p too by monotonicity �Lemma 2.1�.

The proof of �1.7� is similar using �1.5�. �

V. ASYMPTOTIC NORMALITY

The quadratic variation of the martingale Mk�t� is

�Mk,Mk�t ª �
0�u�t

�Mk�u�2 = �
0�u�t

�Sk�u�2,

where �X�s�ªX�s�−X�s−� denotes the jump �if any� of a process X at s. �This formula holds
because Mk is a martingale with paths of finite variation and Mk�0�=0; see, e.g., Ref. 8 for a
definition for general �semi�martingales.� Using �3.1�, we find, in analogy with �3.2�, that
�Mk ,Mk�t has drift

Wk�t� ª �
i�j

1

2
�Ci��C j�	�

l=1

k−1 	k

l

�Ci�l�C j�k−l
2

= �
l=1

k−1

�
m=1

k−1
1

2
	k

l

	 k

m

Sl+m+1,2k+1−l−m�t�; �5.1�

i.e., �Mk ,Mk�t−�0
t Wk�u�du is a martingale.
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It turns out to be advantageous to work with a slightly different martingale. In order to cancel
some terms later on, we multiply Sk�t� by �1−nt�k �see the proof of Theorem 3.4 where we did the
same with the expectation in order to simplify the differential equation�; we thus define

S̃k�t� ª �1 − nt�kSk�t� , �5.2�

which �by a simple instance of Ito’s formula� has the drift

Ṽk�t� ª �1 − nt�kVk�t� − kn�1 − nt�k−1Sk�t� . �5.3�

Thus,

M̃k�t� ª S̃k�t� − n − �
0

t

Ṽk�u�du �5.4�

is a martingale with M̃k�0�=0. The quadratic variation is

�M̃k,M̃k�t ª �
0�u�t

�M̃k�u�2 = �
0�u�t

�S̃k�u�2 = �
0�u�t

�1 − nu�2k�Sk�u�2.

This has drift

W̃k�t� ª �1 − nt�2kWk�t� , �5.5�

and thus

M̃̃k�t� ª �M̃k,M̃k�t − �
0

t

W̃k�u�du �5.6�

is another martingale with M̃̃k�0�=0.

We repeat the argument and find that M̃̃k has quadratic variation,

�M̃̃k, M̃̃k�t ª �
0�u�t

�M̃̃k�u�2 �
0�u�t

���M̃k,M̃k�u�2 = �
0�u�t

�M̃k�u�4 = �
0�u�t

�1 − nu�4k�Sk�u�4,

which has drift, in analogy with �3.2� and �5.1�,

W̃̃k�t� ª �1 − nt�4k�
i�j

1

2
�Ci��C j�	�

l=1

k−1 	k

l

�Ci�l�C j�k−l
4

= �1 − nt�4k �
l1,l2,l3,l4=1

k−1
1

2�
i=1

4 	k

li

S�ili+1,4k+1−�ili

�t�;

�5.7�

thus, �M̃̃k , M̃̃k�t−�0
t W̃̃k�u�du is yet another martingale which starts at 0.

Assume in the remainder of the section that 1−nt�n−1/3, i.e.,

0 � t � n−1 − n−4/3. �5.8�

�Although some estimates require only 0� t�1 /n.� By Lemmas 3.1�i� and 3.2, for any k , l�2,

ESk,l�t� = O	 n2

�1 − nt�2k+2l−6
 .

Hence, �5.7� yields
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EW̃̃k�t� = O	�1 − nt�4k n2

�1 − nt�8k−2
 = O	 n2

�1 − nt�4k−2
 .

Since Var�M�t��=EM�t�2=E�M ,M�t for every square integrable martingale with M�0�=0,

E�M̃̃k�t��2 = E�M̃̃k, M̃̃k�t = E�
0

t

W̃̃k�u�du = O	�
0

t n2

�1 − nu�4k−2du
 = O	 n2t

�1 − nt�4k−3
 . �5.9�

We define, subtracting by �3.17� an approximation to the mean,

Yk�t� ª Sk�t� − npk	 1

1 − nt

 . �5.10�

Lemma 5.1: For every k�2 and 1−nt�n−1/3,

Yk�t� = OL2	 n1/2

�1 − nt�2k−3/2
 .

Proof:

�Yk�t��L2
2 = Var Sk�t� + �ESk�t� − npk	 1

1 − nt

�2

,

and the result follows by Theorems 4.1 and 3.4 using n�1−nt�3�1. �

Lemma 5.2: For every k , l�2 and 1−nt�n−1/3,

Sk,l�t� = n2pk	 1

1 − nt

pl	 1

1 − nt

 + OL1	 n3/2

�1 − nt�2k+2l−9/2
 .

Proof: By �2.1� and �5.10�,

Sk,l�t� = 	npk	 1

1 − nt

 + Yk�t�
	npl	 1

1 − nt

 + Yl�t�
 − Sk+l�t�

and thus, using Lemmas 5.1 and 3.2 and the Cauchy–Schwarz inequality,

�Sk,l�t� − n2pk	 1

1 − nt

pl	 1

1 − nt

�

L1
= O�n3/2�1 − nt�−2k−2l+9/2 + n�1 − nt�−2k−2l+3� ,

which yields the result by our assumption n�1−nt�3�1. �

Lemma 5.3: For every k�2, there exists a polynomial P̃k of degree 2k−2 given by

P̃k�x� = x−2k�
l=1

k−1

�
m=1

k−1
1

2
	k

l

	 k

m

pl+m+1�x�p2k+1−l−m�x� = x2�

l=1

k−1

�
m=1

k−1
1

2
	k

l

	 k

m

ql+m+1�x�q2k+1−l−m�x�

�5.11�

such that, for 1−nt�n−1/3,

W̃k�t� = n2P̃k	 1

1 − nt

 + OL1	 n3/2

�1 − nt�2k−1/2
 .

Proof: An immediate consequence of �5.5� and �5.1� and Lemma 5.2. �

Lemma 5.4: �i� For every k�2, there exists a polynomial Q̃k of degree 2k−3 given by

Q̃k��x� = x−2P̃k�x� , �5.12�
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with Q̃k�1�=0, such that, for 1−nt�n−1/3,

�M̃k,M̃k�t = nQ̃k	 1

1 − nt

 + OL1	 nt1/2

�1 − nt�2k−3/2
 . �5.13�

�ii� If n2t→� and n�1−nt�3→�, then

�M̃k,M̃k�t = nQ̃k	 1

1 − nt

�1 + oL1�1�� = nQ̃k	 1

1 − nt

�1 + op�1�� .

Proof: �i� By �5.6�, Lemma 5.3, and �5.9�,

�M̃k,M̃k�t = �
0

t

W̃k�u�du + M̃̃k�t� = �
0

t

n2P̃k	 1

1 − nu

du + OL1	 n3/2t + nt1/2

�1 − nt�2k−3/2

and �5.13� follows noting that n3/2t�nt1/2.

�ii� By �5.12�, Q̃k is increasing for x	1, and thus nonzero, and it follows that Q̃k�1 / �1
−nt���nt�1−nt�3−2k. It remains only to verify that nt1/2�1−nt�3/2=o�n2t�1−nt�3�, which is obvious
under our conditions if we consider nt�

1
2 and nt�

1
2 separately. �

We will use the following general result based on Ref. 8; see Ref. 11, Proposition 9.1 for a
detailed proof. �See also Refs. 9, 10, and 12 for similar versions.�

Proposition 5.5: Assume that for each n, M�n��x� is a martingale on �0,1� with M�n��0�=0, and
that �2�x�, x� �0,1�, is a nonrandom continuous function such that for every fixed x� �0,1�,

�M�n�,M�n��x→
p

�2�x� as n → � , �5.14�

sup
n

E�M�n�,M�n��x � � . �5.15�

Then M�n�→
d

M as n→� in D�0,1�, where M is a continuous Gaussian martingale with EM�x�
=0 and covariances

E�M�x�M�y�� = �2�x�, 0 � x � y � 1.

In particular, M�n��1�→
d

N�0,�2�1��.
Remark 5.6: Proposition 5.5 extends to vector-valued martingales; see the versions in Refs,

11 and 12.
Remark 5.7: The versions in Refs. 11 and 12 are for martingales on �0,��; it is easily seen

that the versions are equivalent by stopping the martingales at a fixed time; moreover, by a
�deterministic� change of time, we may replace �0,1� by any closed or half-open interval �a ,b� or
�a ,b�� �−� ,��.

Further, �5.15� is equivalent to supn E�M�n��x��2��, the form used in, e.g., Ref. 11.
Lemma 5.8: If n2t→� and n�1−nt�3→�, then

M̃k�t� � AsN	0,nQ̃k	 1

1 − nt


 .

Proof: In order to apply Proposition 5.5, we have to change the time scale to a fixed interval
so that the quadratic variation converges. By considering subsequences, we may assume that nt
→a for some a� �0,1�. We then define M�n��x� for x� �0,1� as follows.

�i� If 0�a�1, we let M�n��x�ª �n2t�−1/2M̃k�xt� and see that Lemma 5.4�ii� implies �5.14� with

�2�x�=a−1Q̃k�1 / �1−ax��.
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�ii� If a=0, we define M�n��x� in the same way, and find now that Lemma 5.4�ii� implies �5.14�
with �2�x�=xQ̃k��1�.

�iii� If a=1, we let M�n��x�ªn−1/2�1−nt�k−3/2M̃k�tn�x��, where

tn�x� ª �0, x � 1 − nt ,

1

n
	1 −

1 − nt

x

 , x � 1 − nt; �

thus 1−ntn�x�=min��1−nt� /x ,1�. In this case Lemma 5.4�ii� implies �5.14� with �2�x�
=ckx

2k−3, where ck	0 is the leading coefficient in Q̃k.

In all cases, the same calculation yields also �5.15� because the factor 1+oL1�1� in Lemma 5.4
is OL1�1�. The result follows from the final statement in Proposition 5.5. �

Let us now consider the case k=2.
Theorem 5.9: If n2t→� and n�1−nt�3→�, then

S2�t� � AsN	 n

1 − nt
,

2n2t

�1 − nt�5
 .

Proof: By �3.2� and �2.1�, V2�t�=S2,2�t�=S2�t�2−S4�t�, and thus �5.3� yields

Ṽ2�t� = �1 − nt�2V2�t� − 2n�1 − nt�S2�t� = ��1 − nt�S2�t� − n�2 − n2 − �1 − nt�2S4�t� .

By Theorems 4.1 and 3.3,

E��1 − nt�S2�t� − n�2 = �1 − nt�2Var�S2�t�� + ��1 − nt�ES2�t� − n�2 = O	 n

�1 − nt�3
 + O	 1

�1 − nt�6

= O	 n

�1 − nt�3
 .

By Lemma 3.2, ��1−nt�2S4�t��L1 is also estimated by O�n�1−nt�−3�. Hence,

Ṽ2�t� = − n2 + OL1	 n

�1 − nt�3
 .

We now obtain from �5.4�

S̃2�t� = M̃2�t� + n + �
0

t

Ṽ2�u�du = M̃2�t� + n − n2t + OL1	 nt

�1 − nt�2
 . �5.16�

For k=2, �5.11� and �5.12� yield P̃2�x�=2x2q3�x�2=2x2 and Q̃2�x�=2�x−1�. Hence Lemma 5.8
yields

M̃2�t� � AsN	0,
2n2t

1 − nt

 . �5.17�

It is easily verified that nt / �1−nt�2� �n2t / �1−nt��1/2. Hence, �5.16� and �5.17� yield

S̃2�t� � AsN	n�1 − nt�,
2n2t

1 − nt

 .

Recalling the definition S̃2�t�= �1−nt�2S2�t�, we obtain the assertion. �

Proof of Theorem 1.3, asymptotic normality: Immediate from Theorem 5.9 by our usual
relation ��G�n , p��=n−1S2�−log�1− p��. �
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For k	2, the argument is more involved, and we will be somewhat sketchy. We assume 1
−nt�n−1/3 and consider first k=3. By �3.2� and �2.1�, V3�t�=3S2,3�t�=3S2�t�S3�t�−3S5�t�, and thus
�5.3� yields, using �5.10�, Lemmas 3.2 and 5.1 and the Cauchy–Schwarz inequality,

Ṽ3�t� = �1 − nt�3V3�t� − 3n�1 − nt�2S3�t� = 3�1 − nt�3	S2�t� −
n

1 − nt

S3�t� − 3�1 − nt�3S5�t�

= 3�1 − nt�3Y2�t�S3�t� − 3�1 − nt�3S5�t� = 3n�1 − nt�3p3	 1

1 − nt

Y2�t� + OL1	 n

�1 − nt�4
 .

Hence, by �5.4�, recalling p3�x�=x3,

S̃3�t� = M̃3�t� + n + 3n�
0

t

Y2�u�du + OL1	 nt

�1 − nt�3
 , �5.18�

where we may ignore the O term but not the integral, unlike corresponding expression �5.16� for
k=2. We find from �5.16�

Y2�u� = �1 − nu�−2�S̃2�u� − n�1 − nu�� = �1 − nu�−2M̃2�u� + OL1	 nu

�1 − nu�4
 .

Hence, �5.18� yields

S̃3�t� − n = M̃3�t� + 3n�
0

t

�1 − nu�−2M̃2�u�du + OL1	 nt

�1 − nt�3
 . �5.19�

We applied Proposition 5.5 above to M̃2, but we only used the final statement �with x=1� in
order to obtain Lemma 5.8. Now we use the full process statement of Proposition 5.5, from which
we conclude �after a change of variables as in the proof of Lemma 5.8� that �0

t �1
−nu�−2M̃2�u�du also has an asymptotic normal distribution. Moreover, by the vector-valued ver-
sion of Proposition 5.5 mentioned in Remark 5.6, the argument in the proof of Lemma 5.8 yields

joint asymptotic normality of the processes M̃k for different k; this uses a straightforward exten-

sion of Lemma 5.4 to quadratic covariations �M̃k1
,M̃k2

�t. As a result, the first two terms on the
right hand side of �5.19� are jointly normal, and the O term can be ignored. �The right normal-
ization here is, see Theorem 4.1, to divide by nt1/2�1−nt�−3/2.� A careful but rather tedious �even

with MAPLE� calculation of the involved covariances yields S̃3�t��AsN�n ,nQ3�1 / �1−nt��� with

Q3�x�=96x3−198x2+126x−24. Hence, with P̂3�x�=x6Q3�x�=96x9−198x8+126x7−24x6,

S3�t� � AsN	 n

�1 − nt�3 ,nP̂3	 1

1 − nt


 . �5.20�

We can argue in the same way for k	3 too. It follows from �5.3�, �3.2�, �2.1�, and �5.10� and
Lemmas 3.2 and 5.1 that

Ṽk�t� = n�1 − nt�k�
j=2

k−1 	 k

j − 1

pk+2−j	 1

1 − nt

Y j�t� +

1

2
n2�1 − nt�k�

l=2

k−2 	k

l

pl+1	 1

1 − nt



k+1−l
	 1

1 − nt



+ OL1	 nt

�1 − nt�k+1
 .

which, using �5.10�, �5.2�, �5.4�, and �3.18�, leads to the recursive formula �for all k�2, see �5.16�
and �5.18� for k=2 and 3�
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Yk�t� = �1 − nt�−kM̃k�t� + n�1 − nt�−k�
j=2

k−1 	 k

j − 1

�

0

t

�1 − nu�kpk+2−j	 1

1 − nu

Y j�u�du

+ OL1	 nt

�1 − nt�2k
 . �5.21�

This yields, by induction, see �5.16� and �5.19� for k=2 and 3,

Yk�t� = �1 − nt�−kM̃k�t� + n�1 − nt�−k�
j=2

k−1 �
0

t

P̄k,j	 1

1 − nu

M̃ j�u�du + OL1	 nt

�1 − nt�2k

�5.22�

for some polynomials P̄k,j�x� having degree at most k+1− j and no terms of degree �1. The

asymptotic joint normality of the processes M̃k �with a careful count of the degrees of the involved
polynomials� now shows the following extension of Theorem 5.9 and �5.20�.

Theorem 5.10: There exist polynomials P̂k�x� of degree (at most) 4k−3 such that if n2t→�
and 1−nt�n−1/3, then

Sk�t� � AsN	npk	 1

1 − nt

,nP̂k	 1

1 − nt


, k � 2.

Furthermore, this holds jointly for all k�2, with asymptotic covariances given by polynomials

P̂k,l�x� of degree (at most) 2k+2l−3.

We have, for example, P̂2�x�=2x5−2x4, P̂3�x�=96x9−198x8+126x7−24x6 �as said above�,
and P̂2,3�x�=12x7−18x6+6x5. To find P̂k= P̂k,k and P̂k,l in general by this method seems quite
difficult, although it is in principle possible using computer algebra. In Sec. VI we will, by a
different method, find the asymptotics of the covariances of the variables Sk�t�. It is natural to
conjecture that these coincide with the asymptotic covariances in Theorem 5.10, which by general
probability theory, e.g., Ref. 7, Theorem 5.5.9, is equivalent to uniform square integrability of each
of the standardized variables �Sk�t�−ESk�t�� /Var�Sk�t��1/2 as n→�. This is very plausible �and

thus verified for k=2 and 3 by our calculations of P̂2 and P̂3�, but we have so far been unable to
verify it in general, and we leave this as an open problem and conjecture. �It would suffice to
consider the case nt�

1
2 , say, and show, for example, that then E�Sk�t�−ESk�t��4=O�n2�.�

Conjecture 5.11: P̂k,l equals the polynomial Pk,l defined in �6.1�.
Remark 5.12: The purpose of introducing S̃k in �5.2� is that if we argued directly with Sk and

Mk, we would obtain an equation similar to �5.21� but with Yk�u� in one of the integrals on the
right hand side. Thus, to derive the asymptotic normality of Y�t� from the asymptotic normality of
the processes Mk, we would have to invert a Volterra equation �also for k=2�. This is effectively

what we do by introducing S̃k.

VI. THE VARIANCE AGAIN

In Theorem 4.1 we gave a simple upper bound for the variance Sk�t�. We shall now, using a
more involved argument, find the precise asymptotics.

Theorem 6.1: For every k , l�2 and 0� t�1 /n,

Cov�Sk�t�,Sl�t�� = nPk,l	 1

1 − nt

 + O	 nt

�1 − nt�2k+2l
 ,

where Pk,l is a polynomial of degree 2k+2l−3 given by
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Pk,l�x� = pk+l�x� −
pk+1�x�pl+1�x�

x
. �6.1�

Some polynomials Pk,l are given in Table II. In particular, P2,2�1 /y�=2�1−y� /y5 and thus

Var�S2�t�� =
2n2t

�1 − nt�5	1 + O	 1

n�1 − nt�3

 . �6.2�

For 1−nt�n−1/3, Theorem 6.1 is a trivial �and uninteresting� consequence of Theorem 4.1 and
the Cauchy–Schwarz inequality, so we assume in the sequel that 1−nt�n−1/3. We precede the
proof by several lemmas.

We begin by defining, extending �2.1�,

Sk1,. . .,km
�G� ª �

i1,. . .,im

��Ci1
�k1

¯ m�Cim
�km,

where �� denotes the sum over distinct indices only. For G=G�n , t� we write Sk1,. . .,km
�t� and have

the following estimate, see Lemma 3.1.
Lemma 6.2: For each m�1, k1 , . . . ,km�2, and 1−nt�n−1/3,

ESk1,. . .,km
�t� = nmpk1

	 1

1 − nt

¯ pkm

	 1

1 − nt

	1 + O	 1

n�1 − nt�3

 .

Proof: First, the argument in the proof of Lemma 3.1�i� extends to show that ESk1,. . .,km
�t�

�ESk1,. . .,km−1
�t�ESk�t�. Thus, by induction, ESk1,. . .,km

�t���i=1
m ESki

�t�, which by Theorem 3.4 yields
an upper bound of the required type.

Second, we have, for any graph G,

�
i=1

m

Ski
�G� = �

i1,. . .,im

�Ci1
�k1

¯ �Cim
�km. �6.3�

Each vector �i1 , . . . , im� defines a partition 
�i1 , . . . , im� of �1, . . . ,m
 into the sets �j : ij = i
, i�1
�ignoring empty such sets�. For any given partition 
 of �1, . . . ,m
, let Sk1,. . .,km;
�G� be the sum of
all terms in �6.3� with 
�i1 , . . . , im�=
. Thus,

�
i=1

m

Ski
�G� = �




Sk1,. . .,km;
�G� . �6.4�

The term with 
=
0ª �1
¯m�m
 equals Sk1,. . .,km
�G�, and any other term equals Sk1�,. . .,kl�

�G� for
some l�m �l= �
�, the number of parts of 
� and some kj� with � jkj�=�iki �each kj� is the sum
�i�Aj

ki over a set Aj �
�.
We now take G=G�n , t� and use induction on m. Recall that pk�x��x2k−3 for x�1. Thus

TABLE II. The polynomials Pk,l�x� for k , l�4.

P2,2�x�=2x5−2x4

P3,3�x�=96x9−198x8+126x7−24x6

P4,4�x�=10 170x13−34 050x12+43 520x11−26 192x10+7272x9−720x8

P3,2�x�=12x7−18x6+6x5

P4,2�x�=90x9−190x8+124x7−24x6

P4,3�x�=900x11−2430x10+2322x9−912x8+120x7
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nmpk1
	 1

1 − nt

¯ pkm

	 1

1 − nt

 � �n�1 − nt�3�m�1 − nt�−�iki,

and we find, by induction on m, for every 
�
0 and with l= �
��m,

ESk1,. . .,km;
�t� = O	nmpk1
	 1

1 − nt

¯ pkm

	 1

1 − nt

�n�1 − nt�3�l−m
 .

Hence, �6.4� yields

ESk1,. . .,km
�t� = E�

i=1

m

Ski
�t� + O	nmpk1

	 1

1 − nt

¯ pkm

	 1

1 − nt

�n�1 − nt�3�−1
 .

By Harris’ inequality, E�i=1
m Ski

�t���i=1
m ESki

�t�, and we obtain by Theorem 3.4 a lower bound of
the required type. �

We write Sk�t ;n� when needed to show the number of vertices explicitly.
Lemma 6.3: For each k�2 and 1−nt�n−1/3,

ESk�t;n + 1� − ESk�t;n� = pk
�	 1

1 − nt

 + O	 t

�1 − nt�2k+1
 , �6.5�

where pk
� is a polynomial of degree 2k−2 given by

pk
��x� ª pk�x� + �x2 − x�pk��x� = x−1pk+1�x� . �6.6�

Formula �6.5� is, not surprisingly, essentially what a formal differentiation of �3.17� with
respect to n would give.

Proof: Let G�n , t� have the components C1 , . . . ,CK. Add a new vertex and add edges to it with
the correct probabilities and let �SkªSk�t ;n+1�−Sk�t ;n� be the resulting increase of Sk�t�. Let Ji

be the indicator of the event that there is an edge between the new vertex and Ci. Then

�S2 = 1 + �
i

2�Ci�Ji +
1

2�
i,j

�2�Ci��C j�JiJj ,

�S3 = 1 + �
i

�3�Ci� + 3�Ci�2�Ji +
1

2�
i,j

��3�Ci�2�C j� + 3�Ci��C j�2 + 6�Ci��C j��JiJj +
1

6 �
i,j,k

�6�Ci��C j��Ck�JiJjJk,

and so on. Given the components C1 ,C2 , . . ., the indicators Ji are independent with EJi=1−e−�Ci�t

= �Ci�t+O��Ci�2t2�. Hence, for k=2, using �Ci�t�nt�1 to simplify terms like �Ci�2t2�C j�2t2,

E��S2�G�n,t�� = 1 + 2tS2�t� + O�t2S3�t�� + t2S2,2�t� + O�t3S3,2�t�� .

Taking the expectation we find, using Lemma 6.2,

E�S2 = 1 + 2ntp2	 1

1 − nt

 + �nt�2p2	 1

1 − nt

2

+ O	 t

�1 − nt�5
 . �6.7�

The same argument applies to every k and yields an expression for E�Sk where the main terms are
of the type c�nt�mpk1+1�1 / �1−nt��¯pkm+1�1 / �1−nt��, where c is a positive combinatorial constant,
0�m�k, 1�ki�k−1, and �iki�k; the error terms are all O�1 / �n�1−nt�3�� of some such terms.
The main terms are polynomials in 1 / �1−nt� of degree �i�2ki−1��2k−2, so the result can be
written as �6.5� for some polynomial pk

�.
To identify pk

�, fix y� �0, 1
2

� and a rational 
� �0,1�, consider only n such that 
n is an integer
and let t=y /n and repeat �6.5� 
n times. This yields
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ESk�t;�1 + 
�n� − ESk�t;n� = 
n	pk
�	 1

1 − y

 + O�
�
 + O�
� ,

and thus, by Theorem 3.4,

�1 + 
�npk	 1

1 − �1 + 
�y
 − npk	 1

1 − y

 = 
npk

�	 1

1 − y

 + O�
2n� + O�1� .

Divide by n and let n→�; this gives


pk
�	 1

1 − y

 = �1 + 
�pk	 1

1 − �1 + 
�y
 − pk	 1

1 − y

 + O�
2� .

Divide by 
 and let 
→0; this gives, with x=1 / �1−y�,

pk
��x� = pk�x� +

y

�1 − y�2 pk��x� = pk�x� + �x2 − x�pk��x� .

The final identification of this as x−1pk+1�x� follows by �7.8� proved in Sec. VII below.
Alternatively, the proof of Theorem 6.1 below and the symmetry of Cov�Sk ,Sl� show that pk+l

− pk+1pl
�= pk+l− pl+1pk

�, and thus, choosing l=2, pk
�= pk+1p2

� / p3, which yields the formula, since it
follows from �6.7� that p2

��x�=x2. �This thus gives an alternative proof of �7.8�.� �

Proof of Theorem 6.1: Let An and IA�t� be as in the proof of Lemma 3.1. Conditioned on
IA�t�=1, the complement of A is a random graph equivalent to G�n− �A� , t�. Thus,

Cov�Sk�t�,Sl�t�� = E	 �
A�An

�A�kIA�t� �
B�An

�B�lIB�t�
 − ESk�t�ESl�t� = E �
A�An

�A�k+lIA�t�

+ E �
A�An

�A�kIA�t�	 �
B�A=0”

�B�lIB�t� − ESl�t�
 = ESk+l�t� + E �
A�An

�A�kIA�t��ESl�t;n

− �A�� − ESl�t;n�� .

By Lemma 6.3, for some �� �0,1�,

ESl�t;n� − ESl�t;n − �A�� = �A�pl
�	 1

1 − nt + ��A�t
 + O	 �A�t
�1 − nt�2l+1
 = �A�pl

�	 1

1 − nt



+ O	 t�A�2

�1 − nt�2l−1
 + O	 t�A�
�1 − nt�2l+1
 .

Consequently,

Cov�Sk�t�,Sl�t�� = ESk+l�t� − ESk+1�t�pl
�	 1

1 − nt

 + O	 t

�1 − nt�2l−1ESk+2�t�

+ O	 t

�1 − nt�2l+1ESk+1�t�
 ,

and the result follows by Theorem 3.4. �

In the case nt→1, only the leading term of Pk,l is significant in Theorem 6.1. Since the leading
term of pk is �2k−5� ! !x2k−3, as follows by �7.8� in Sec. VII, we have the following corollary.

Corollary 6.4: For every k , l�2, if nt→1 with 1−nt�n−1/3, then

Cov�Sk�t�,Sl�t�� � ck,ln�1 − nt�3−2k−2l,

with ck,lª �2k+2l−5� ! !−�2k−3� ! ! �2l−3� ! !.
In particular, under these conditions,
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Var�S2�t�� � 2n�1 − nt�−5,

Var�S3�t�� � 96n�1 − nt�−9,

Var�S4�t�� � 10 170n�1 − nt�−11,

see Table II and �6.2�.
Proof of Theorem 1.3, asymptotic variance: Immediate from Theorem 6.1, see �6.2�. �

VII. THE BOREL DISTRIBUTION

Let T�z� be the tree function,

T�z� ª �
j=1

�
j j−1zj

j!
, �z� � e−1,

and recall the well-known formulas T�z�e−T�z�=z��z��e−1�, T��e−��=� �0���1�, and

T��z� =
T�z�

z�1 − T�z��
. �7.1�

A random variable B� has the Borel distribution Bo��� with parameter �� �0,1� if

P�B� = j� =
j j−1

j!
� j−1e−j� =

1

T��e−��
j j−1

j!
��e−�� j, j = 1,2, . . . . �7.2�

The probability generating function of the Borel distribution is thus

EzB� = �
l=1

�

P�B� = l�zl =
T��e−�z�
T��e−��

=
T��e−�z�

�
. �7.3�

It is well known that Bo��� is the distribution of the total progeny of a Galton–Watson branching
process where each individual has Po��� children; for this and related results, see, e.g., Refs. 4, 17,
16, 22, 20, 6, 21, 18, and 15.

Now consider G�n , p� with p=� /n for a fixed ��1, and let Cv be the component containing
a fixed vertex v. It is easily seen that as n→�, for every fixed j�1, P��Cv�= j�→P�B�= j� given
by �7.2� either by the usual branching process approximation and the result just quoted or by a
direct estimation of the probability using Cayley’s formula for the number of trees of order j and

the fact that w.h.p. the component Cv is a tree. In other words, �Cv�→
d

B�. For any integer m, the
moment E�Cv�m=ESm+1�G�n , p�� /n, and Theorem 3.4 shows, with t=−log�1− p� and thus nt→�,
that

E�Cv�m =
ESm+1�G�n,�/n��

n
→ pm+1	 1

1 − �

 .

Since thus �Cv� converges in distribution and all moments converge �to finite limits�, the moments
have to converge to the moments of the limit distribution. We have thus shown the following.

Theorem 7.1: The polynomials pk describe the moments of the Borel distribution Bo��� by the
formula

EB�
m = pm+1	 1

1 − �

, m � 1.

For example, as is well known, EB�= �1−��−1 and EB�
2 = �1−��−3.
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Remark 7.2: By Theorem 7.1, Corollary 4.2 can be written as

Sk�t��pnEBnt
k−1, 1 − nt � n−1/3.

This is not surprising since we have Sk�G�=�v�Cv�k−1, and we expect only a weak dependence
between the components Cv in this range, so this is a kind of law of large numbers.

Let, see �7.3�, for �t� small enough,

��t;�� = EetB� = �
m=0

�
tm

m!
EB�

m =
T��e−�et�

�
�7.4�

be the moment generating function of B��Bo���. The moments of B� can be obtained by differ-
entiation of ��t ;�� at t=0.

Lemma 7.3: For each m�0 there exists a polynomial rm such that

dm

dtm��t;�� =
T��e−�et�

�
rm	 1

1 − T��e−�et�
 . �7.5�

We have r0�x�=1 and

rm+1�x� = xrm�x� + �x3 − x2�rm� �x�, m � 0. �7.6�

By �7.6�, r1�x�=x, and it follows by induction that rm has degree 2m−1 for m�1.
Proof: For m=0, �7.5� is just �7.4�.
Suppose that �7.5� holds for some m�0. Then, by the chain rule and �7.1�, with T

=T��e−�et�,

dm+1

dtm+1��t;�� =
d

dT
	T

�
rm	 1

1 − T


 ·

T

1 − T
=

1

�

T

1 − T
rm	 1

1 − T

 +

T2

��1 − T�3rm� 	 1

1 − T



=
T

�
	 1

1 − T
rm	 1

1 − T

 + 	 1

�1 − T�3 −
1

�1 − T�2
rm� 	 1

1 − T


 ,

which verifies �7.5� for m+1 with rm+1 given by �7.6�. �

Setting t=0 in �7.5� yields

EB�
m =

dm

dtm��t;���t=0 = rm	 1

1 − �

, m � 0.

Consequently, Theorem 7.1 shows that

rm�x� = pm+1�x�, m � 1. �7.7�

In particular, �7.6� yields the simple linear recursion

pk+1�x� = xpk�x� + �x3 − x2�pk��x�, k � 2. �7.8�

It is evident from �7.8� and induction that, for k�2, the leading term of pk is �2k−5� ! !x2k−3 �with
the standard interpretation �−1� ! ! =1� and that for k�3, the lowest order nonzero term is
�−1�k−1�k−2� !xk, see Table I.

Remark 7.4: Quadratic recursion �3.19� can be seen to be equivalent to the quadratic partial
differential equation

�

��
��t;�� = ���t;�� − 1�

�

�t
��t;�� ,

while linear recursion �7.8� is equivalent to the linear partial differential equation
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��

�t
�t;�� =

1

1 − �
��t;�� +

�

1 − �

��

��
�t;�� .

Remark 7.5: By Theorem 7.1, recursion �3.19� can be written as

d

d�
EB�

k−1 = �1 − ��−2pk�	 1

1 − �

 =

1

2�
l=1

k−1 	k

l

EB�

l EB�
k−l,

or, if B�� and B�� are independent copies of B�, using �d /d��P�B�= j�= ���j−1� /��− j�P�B�= j� from
�7.2�,

E�B�� + B���k = 2EB�
k + 2

d

d�
EB�

k−1 = �
j=1

�

P�B� = j�	2jk + 2jk−1	 j − 1

�
− j

 = �

j=1

�

P�B� = j�
2�j − 1�

j�
jk,

which is equivalent to the well-known formula

P�B�� + B�� = j� =
2�j − 1�

j�
P�B� = j� = 2

j j−3

�j − 2�!
� j−2e−j�, j � 2;

see, e.g., Refs. 22, 21, 18, and 15 and note that B��+B�� can be seen as the total progeny of a
Galton–Watson process with Po��� offspring started with two individuals, or as the limit distribu-
tion of �Cv�Cw� if Cv and Cw are the components contaning two given vertices in G�n ,� /n�.

Remark 7.6: The cumulants �m of the Borel distribution Bo��� are the Taylor coefficients of
log ��t ;�� at t=0 �times m!�. Since T�z�=zeT�z�, �7.4� yields

log ��t;�� = T��e−�et� − � + t = ���t;�� − � + t ,

and thus

�m�B�� =
dm

dtm log ��t;���t=0 = �EB�
m = �pm+1	 1

1 − �

, m � 2,

while, of course, �1�B��=EB�= �1−��−1.
We can interpret the asymptotic covariances and the polynomials Pk,l in Sec. VI by introduc-

ing the size-biased Borel distribution B̂� defined by

P�B̂� = j� =
jP�B� = j�

EB�

= �1 − ��
j j

j!
� j−1e−j�. �7.9�

Then

EB̂�
m = EB�

m+1/EB� = �1 − ��pm+2	 1

1 − �

, m � 0, �7.10�

and thus, by �6.1�,

Pk,l	 1

1 − nt

 =

1

1 − nt
Cov�B̂nt

k−1,B̂nt
l−1� . �7.11�

Hence, by Theorem 6.1, the random variables n−1/2�1−nt�1/2Sk�t�, k�2, have asymptotically

the same covariance structure as B̂nt
k−1.
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APPENDIX A: THE SUPERCRITICAL CASE

Consider G�n , p� with np−1�n−1/3. It is well known, see, e.g., Ref. 13, Chap. 5, that w.h.p.
G�n , p� has a unique giant component. More precisely, there is a deterministic function �	0 on
�1,�� such that, if the components C1 ,C2 , . . . of G�n , p� are ordered with �C1�� �C2�� . . ., then
�C1��pn��np��n2/3, while �C2�=op�n2/3�. The function ���� is the survival probability of a Galton–
Watson branching process with Po��� offspring and is given by the equation

���� = 1 − e−�����. �A1�

The largest component is thus much larger than the others, and it turns out that it dominates
all other terms in the sums Sk. We write in this appendix Sk�n , p� for Sk�G�n , p�� and continue to
let C1 denote the largest component of G�n , p�.

Theorem A1: If np−1�n−1/3, then for every k�2,

Sk�n,p� = �C1�k + Op	 n

�np − 1�2k−3
�p�C1�k�p�n��np��k.

In particular, then ��G�n , p���pn��np�2. We first prove a technical lemma.
Lemma A2: There exists a function � : �1,��→ �0,1� such that the following holds for some

c	0:

�i� For any p= p�n� with np−1�n−1/3, w.h.p. �C1�	��np�n.
�ii� �����c min��−1,1�.
�iii� If 1���2, then ��1−������1−c��−1�.
�iv� If ��2, then ��1−������1−c.
�v� For each m�0, 1−����=O��−m�.

Proof: Note first that �ii� follows from �iii� and �iv� because 1−�������1−�����.
For any fixed M 	1, we can take ����= �1−
����� for 1���M if 
 is sufficiently small.

This choice satisfies �i� and in this range �v� is trivial, and it is easily seen that �iii� and �iv� follow
�provided 
 is small enough� from the facts that �����2��−1� and ��1−�����=1− ��−1�+O��
−1�2 as �↘1 and ��1−������1 for �	1. �All three are easily verified by writing �A1� as �
=−log�1−�� /�.�

For large �, we argue as follows. Take ����2�. Thus, w.h.p. G�n ,2 /n� has a giant component
of order at least �n. For �=np	2, construct G�n , p� by the usual two-round method: first take
G�n ,2 /n� and then add further edges independently in a second round with probabilities p−2 /n
�or, to be precise, �np−2� / �n−2�	 p−2 /n�. If we obtain a component of order at least �n in the
first round, then the probability that a given vertex will not be joined to this component in the
second round is less than exp�−�n�p−2 /n��=exp�2�−���. Hence, w.h.p. the number of such
vertices is less than n exp�2�−�� /2� for �=O�1� by concentration of the binomial distribution
and for �→� by Markov’s inequality. Consequently, there is w.h.p. a component with more than
n−n exp�2�−�� /2� vertices; hence �i� holds with ����=1−exp�2�−�� /2�. This � satisfies �v�
too and �iv� for large enough �. We thus can use this � for �	M for some large M and the first
construction for smaller �. �

Proof of Theorem A1: Let �=��np� be as in Lemma A2 and use the notation of the proof of
Lemma 3.1. By Lemma A2�ii� and the assumption np−1�n−1/3, we have ��n−1/3.

Let N be the number of components of size 	�n in G�n , p� �thus w.h.p. N�1 by Lemma
A2�i��, and let
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Zk ª �
�A�	�n

�
B�A=0”

�B�kIAIB.

Then

EZk ª E �
�A�	�n

IAESk�n − �A�,p� � ENESk�n − ��n�,p� . �A2�

If 1�np�2, then by Lemma A2�iii�, �n− ��n��p�np�1−���1−c�np−1�, and thus by Lemma
3.2,

ESk�n − ��n�,p� = O	 n − ��n�
�np − 1�2k−3
 = O	 n

�np − 1�2k−3
 .

If instead np	2, then by Lemma A2�iv�, �n− ��n��p�np�1−���1−c, and thus by Lemmas 3.2
and A2�v�, with m=2k−3,

ESk�n − ��n�,p� = O�n − ��n�� = O	 n

�np�2k−3
 .

Hence, for all np,

ESk�n − ��n�,p� = O	 n

�np − 1�2k−3
 = o�n2k/3� . �A3�

Note first that Zk�N�N−1���n�k. Hence, by �A2� and �A3�,

EN�N − 1� � ��n�−kEZk = o�ENn2k/3��n�−k� = o�EN� .

Since N�1+N�N−1�, it follows that EN�N−1�=o�1� and EN=O�1�; hence �A2� and �A3� yield
EZk=O�n / �np−1�2k−3�. By Lemma A2�i�, w.h.p. �C1�	�n; in this case, �C1�k�Sk�n , p�� �C1�k
+Zk, and the result follows. �

APPENDIX B: THE CRITICAL CASE

The critical case is np=1+O�n−1/3�. By considering subsequences, it suffices to consider the
case n1/3�np−1�→� for some �� �−� ,��, i.e., np=1+ ��+o�1��n−1/3.

We continue to use the notations of Appendix A. It is well known that in the critical case, �C1�
is of the order n2/3 in the sense that �C1� /n2/3 converges in distribution to some nondegenerate
random variable, and the same holds for �C2� , �C3� , . . .. Moreover, Aldous1 showed that, with nota-
tions as in Appendix A, the sequence �n−2/3�C1� ,n−2/3�C2� , . . .� �extended by an infinite number of
zeros� converges in distribution to a certain random sequence �C��1� ,C��2� , . . .stretchy=�true�� that
can be described as the sequence of excursion lengths of a certain reflecting Brownian motion with
inhomogeneous drift �depending on �� that is defined in Ref. 1. The convergence is in the �2

topology and thus immediately implies convergence of the sums of squares. Moreover, conver-
gence in �2 implies convergence in �k for every k�2, and thus we also have convergence of the
sums of kth powers. Consequently we have the following.

Theorem B1: If np=1+ ��+o�1��n−1/3 with −�����, then for every k�2,

n−2k/3Sk�n,p�→
d

Wk ª �
i

C��i�k.

Note that we here have limits that are nondegenerate random variables and not constants, unlike
the subcritical and supercritical cases where Sk�n , p��pan for a suitable sequence an.

Remark B2: Janson and Spencer14 gave a related description of the limit of the component
sizes as a point process ���� on �0,��. It follows that we also have Wk=�0

�xkd�����x�, and thus
EWk=�0

�xkd�����x�, where ���� is the intensity of ���� given in Ref. 14, Theorem 4.1.

125207-22 S. Janson and M. J. Luczak J. Math. Phys. 49, 125207 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



1 Aldous, D., “Brownian excursions, critical random graphs and the multiplicative coalescent,” Ann. Appl. Probab. 25, 812
�1997�.

2 Bollobás, B., Random Graphs, 2nd ed. �Cambridge University Press, Cambridge, England, 2001�.
3 Bollobás, B., Janson, S., and Riordan, O. �unpublished�.
4 Borel, É., “Sur l’emploi du théorème de Bernoulli pour faciliter le calcul d’une infinité de coefficients: Application au
problème de l’attente à un guichet,” Acad. Sci., Paris, C. R. 214, 452 �1942�.

5 Durrett, R., Random Graph Dynamics �Cambridge University Press, Cambridge, England, 2007�.
6 Dwass, M., “The total progeny in a branching process and a related random walk,” J. Appl. Probab. 6, 682 �1969�.
7 Gut, A., Probability: A Graduate Course �Springer, New York, 2005�.
8 Jacod, J. and Shiryaev, A. N., Limit Theorems for Stochastic Processes �Springer, Berlin, 1987�.
9 Janson, S., “A functional limit theorem for random graphs with applications to subgraph count statistics,” Random Struct.
Algorithms 1, 15 �1990�.

10 Janson, S., Orthogonal Decompositions and Functional Limit Theorems for Random Graph Statistics, Member American
Mathematical Society Vol. 111 �American Mathematical Society, Providence, RI, 1994�.

11 Janson, S. “Functional limit theorems for multitype branching processes and generalized Pólya urns,” Stochastic Proc.
Appl. 110, 177 �2004�.

12 Janson, S. and Luczak, M. “Asymptotic normality of the k-core in random graphs,” Ann. Appl. Probab. 18, 1085 �2008�.
13 Janson, S., Łuczak, T., and Ruciński, A., Random Graphs �Wiley, New York, 2000�.
14 Janson, S. and Spencer, J., “A point process describing the component sizes in the critical window of the random graph

evolution,” Combinatorics, Probab. Comput. 16, 631 �2007�.
15 Johnson, N. L., Kemp, A. W., and Kotz, S., Univariate Discrete Distributions, 3rd ed. �Wiley-Interscience, Hoboken, NJ,

2005�.
16 Kendall, D. G., “Some problems in the theory of queues,” J. R. Stat. Soc. Ser. B �Methodol.� 13, 151 �1951�.
17 Otter, R., “The multiplicative process,” Ann. Math. Stat. 20, 206 �1949�.
18 Pitman, J., Microsurveys in Discrete Probability (Princeton University, Princeton, NJ, 1997), DIMACS Series in Dis-

crete Mathematics and Theoretical Computer Science Vol. 41 �American Mathematical Society, Providence, RI, 1998�,
pp. 163–180.

19 Spencer, J. and Wormald, N. “Birth control for giants,” Combinatorica 27, 587 �2007�.
20 Takács, L., Combinatorial Methods in the Theory of Stochastic Processes �Wiley, New York, 1967�.
21 Takács, L. “Ballots, queues and random graphs,” J. Appl. Probab. 26, 103 �1989�.
22 Tanner, J. C., “A derivation of the Borel distribution,” Biometrika 48, 222 �1961�.

125207-23 Susceptibility in subcritical random graphs J. Math. Phys. 49, 125207 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp

http://dx.doi.org/10.2307/3212112
http://dx.doi.org/10.1002/rsa.3240010103
http://dx.doi.org/10.1002/rsa.3240010103
http://dx.doi.org/10.1017/S0963548306008327
http://dx.doi.org/10.1214/aoms/1177730031
http://dx.doi.org/10.1007/s00493-007-2163-2
http://dx.doi.org/10.2307/3214320

