Sparse random graphs with clustering

Béla Bollobgs*t* Svante Janson® Oliver Riordan¥

July 13, 2008

Abstract

In 2007 we introduced a general model of sparse random graphs with
independence between the edges. The aim of this paper is to present an
extension of this model in which the edges are far from independent, and
to prove several results about this extension. The basic idea is to con-
struct the random graph by adding not only edges but also other small
graphs. In other words, we first construct an inhomogeneous random
hypergraph with independent hyperedges, and then replace each hyper-
edge by a (perhaps complete) graph. Although flexible enough to produce
graphs with significant dependence between edges, this model is nonethe-
less mathematically tractable. Indeed, we find the critical point where
a giant component emerges in full generality, in terms of the norm of a
certain integral operator, and relate the size of the giant component to
the survival probability of a certain (non-Poisson) multi-type branching
process. While our main focus is the phase transition, we also study the
degree distribution and the numbers of small subgraphs. We illustrate
the model with a simple special case that produces graphs with power-
law degree sequences with a wide range of degree exponents and clustering
coefficients.

1 Introduction and results

In [10], a very general model for sparse random graphs was introduced, corre-
sponding to an inhomogeneous version of G(n, ¢/n), and many properties of this
model were determined, in particular, the critical point of the phase transition
where the giant component emerges. Part of the motivation was to unify many
of the new random graph models introduced as approximations to real-world
networks. Indeed, the model of [10] includes many of these models as exact
special cases, as well as the ‘mean-field’ simplified versions of many of the more
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complicated models. (The original forms are frequently too complex for rigorous
mathematical analysis, so such mean-field versions are often studied instead.)
Unfortunately, there are many models with key features that are not captured
by their mean-field versions, and hence not by the model of [10]. The main
problem is that many real-world networks exhibit clustering: for example, while
there are n vertices and only 5n edges, there may be 10n triangles, say. In con-
trast, the model of [10], like G(n,c/n), produces graphs that contain essentially
no triangles or short cycles.

Most models introduced to approximate particular real-world networks turn
out to be mathematically intractable, due to the dependence between edges.
Nevertheless, many such models have been studied; as this is not our main focus,
let us just list a few examples of early work in this field. One of the starting
points in this area was the (homogeneous) ‘small-world’ model of Watts and
Strogatz [35]. Another was the observation of power-law degree sequences in
various networks by Faloutsos, Faloutsos and Faloutsos [26], among others. Of
the new inhomogeneous models, perhaps the most studied is the ‘growth with
preferential attachment’ model introduced in an imprecise form by Barabasi and
Albert [5], later made precise as the ‘LCD model’ by Bollobds and Riordan [15].
Another is the ‘copying’ model of Kumar, Raghavan, Rajagopalan, Sivakumar,
Tomkins and Upfal [31], generalized by Cooper and Frieze [22], among others.
For (early) surveys of work in this field see, for example, Barabdsi and Albert [1],
Dorogovtsev and Mendes [24], or Bollobéds and Riordan [13].

Roughly speaking, any sparse model with clustering must include significant
dependence, so one might expect it to be impossible to construct a general model
of this type that is still mathematically tractable. However, it turns out that
one can do this. The model that we shall define is essentially a generalization
of that in [10], although we shall handle certain technicalities in a different way
here.

1.1 The model

Let us set the scene for our model. By a type space we simply mean a prob-
ability space (S, u). Often, we shall take S = [0,1] or (0,1] with u Lebesgue
measure. Sometimes we consider S finite. Of course, any model with S finite
can be realized as a model with type space [0, 1], but sometimes the notation
will be simpler with S finite. More generally, as shown in [28], every instance of
the random graph model we are going to describe can be realized as an equiv-
alent model with type space [0,1]. Hence, when it comes to proofs, we lose no
generality by taking S = [0, 1], but we usually prefer allowing an arbitrary type
space, which is more flexible for applications. For example, as with the model
in [10], type spaces such as S = [0,1]? are likely to be useful for geometric
applications, as in [11].

Let F consist of one representative of each isomorphism class of finite con-
nected graphs, chosen so that if F € F has r vertices then V(F) = [r] =
{1,2,...,r}. Given F' € F with r vertices, let kr be a measurable function from
8" to [0, 00); we call kp the kernel corresponding to F'. A sequence k = (kp)per



is a kernel family. In our results we shall impose an additional integrability con-
dition on &, but this is not needed to define the model.

Let k be a kernel family and n an integer; we shall define a random graph
G(n,k) with vertex set [n] = {1,2,...,n}. First let z1,29,...,2, € S be
iid (independent and identically distributed) with the distribution u. Given

x = (z1,...,%n), construct G(n, k) as follows, starting with the empty graph.
For each r and each F € F with |F| = r, and for every r-tuple of distinct
vertices (v1,...,v,) € [n]", add a copy of F on the vertices v1,...,v, (with

vertex ¢ of F' mapped to v;) with probability

p=p(on... vy ) = B T), )
all these choices being independent. If p > 1, then we simply add a copy
with probability 1. We shall often call the added copies of the various F' that
together form G(n, k) atoms since, in our construction of G(n, k), they may
be viewed as indivisible building blocks. Sometimes we refer to them as small
graphs, although there is in general no bound on their sizes. Usually we think of
G(n,k) as a simple graph, in which case we simply replace any multiple edges
by single edges. Typically there will be very few multiple edges, so this makes
little difference.
Note that we assume that the atoms of G(n, k) are connected. The extension
to the case where some atoms may be disconnected is discussed in Subsection 4.1.
The reason for dividing by n"~! in (1) is that we wish to consider sparse
graphs; indeed, our main interest is the case when G(n, k) has O(n) edges. As
it turns out, we can be slightly more general; however, when kp is integrable
(which we shall always assume), the expected number of added copies of each
graph F'is O(n).

Remark 1. There are several plausible choices for the normalization in (1). The
one we have chosen means that if kK = ¢ is constant, then (asymptotically) there
are on average cn copies of F' in total, and each vertex is on average in rc copies
of F. An alternative is to divide the expression in (1) by r; then (asymptotically)
each vertex would on average be in ¢ copies of F. Another alternative, natural
when adding cliques only but less so in the general case, would be to divide
by r!; this is equivalent to considering unordered sets of r vertices instead of
ordered r-tuples. When there is only one kernel, corresponding to adding edges,
this would correspond to the normalization used in [10], and in particular to
that of the classical model G(n, c/n); the normalization we use here differs from
this by a factor of 2. Yet another normalization would be to divide by aut(F),
the number of automorphisms of F'; this is equivalent to considering the distinct
copies of F' in K,,, which is natural but leads to extra factors aut(F') in many
formulae, and we do not find that the advantages outweigh the disadvantages.

As in [10], there are several minor variants of G(n,k); perhaps the most
important is the Poisson multi-graph version of G(n, k). In this variant, for
each F and each r-tuple, we add a Poisson Po(p) number of copies of F' with
this vertex set, where p is given by (1), and we keep multiple edges.



Alternatively, we could add a Poisson number of copies and delete multiple
edges, which is the same as adding one copy with probability 1 — e~ and no
copy otherwise. More generally, we could add one copy of F' with probability
p + o(p), and two or more copies with probability o(p). As long as the error
terms are uniform over graphs F' and r-tuples (vy,...,v,), all our results will
apply in this greater generality. Since this will follow by simple sandwiching
arguments (after reducing to the ‘bounded’ case; see Definition 15), we shall
consider whichever form of the model is most convenient; usually this turns out
to be the Poisson multi-graph form.

Remark 2. Under certain mild conditions, the results of [29] imply a strong
form of asymptotic equivalence between the various versions of the model. For
example, if we add copies of F' with probability p + O(p?), where the implied
constant is uniform over F' and (v1,...,v,), and

EY " > por,..,vp; )P =o(1), (2)
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then the resulting model is equivalent to that with probability p, in that the
two random graphs can be coupled to agree whp; this is a straightforward
modification of [29, Corollary 2.13(i)]. Extending the argument in [29, Example
3.2], it can be shown that (2) holds if
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This certainly holds for the bounded kernel families (see Definition 15) that we
consider in most of our proofs, although (2) is easy to verify directly for such
kernel families.

In the special case where all kp are zero apart from rg,, the kernel corre-
sponding to an edge, we recover (essentially) a special case of the model of [10];
we call this the edge-only case, since we add only edges, not larger graphs. We
write ko for ki,. Note that in the edge-only case, given x, two vertices ¢ and j
are joined with probability

Ko(mi, xj) + Ko(xj, ;) ((ﬁz(ﬂ% z;) + Ka(z;, xi))Q)
+0 )

n n?2

The correction term will never matter, so we may as well replace ko by its
symmetrized version. In fact, we shall always assume that xp is invariant under
the action of the automorphism group Aut(F') of the graph F. In the Poisson
version, or if we add copies of graphs F' with probability 1 — e™P, there are no
correction terms at all; in the edge-only case, given x, vertices ¢ and j are joined
with probability 1 — exp((k2(x;,2;) + k2(2;,2;))/n), and in general we obtain
exactly the same random graph if we symmetrize each kp w.r.t. Aut(F).



For any kernel family &, let ke be the corresponding edge kernel, defined by
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where the second sum runs over all 2e(F') ordered pairs (4, j) with ij € E(F'), and
we integrate over all variables apart from x and y. Note that the sum need not
always converge; since every term is positive this causes no problems: we simply
allow ke(z,y) = oo for some z,y. Given z; and z;, the probability that ¢ and j
are joined in G(n, k) is at most Ke(z;,z;)/n, and this upper bound is typically
quite sharp. For example, if x is bounded in the sense of Definition 15 below,
then the probability is re(z;, z;)/n + O(1/n?). In other words, k. captures the
edge probabilities in G(n, k), but not the correlations.

Before proceeding to deeper properties, let us note that the expected num-
ber of added copies of Fis (1+ O(n™"))n [r £p. Unsurprisingly, the actual
number turns out to be concentrated about this mean. Let

=S ep) [ wr=j [ n<o
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be the asymptotic edge density of k. Since every copy of F' contributes e(F)
edges, the following theorem is almost obvious, provided we can ignore overlap-
ping edges. A formal proof will be given in Section 6. (A similar result for the
total number of atoms is given in Lemma 40.)

Theorem 3. As n — oo, e(G(n,k))/n converges in probability to the asymp-
totic edge density {(k). In other words, if £(k) < oo then e(G(n,k)) = &(k)n +
op(n), and if £(k) = oo then, for every constant C, we have e(G(n,k)) > Cn
whp. Moreover, Ee(G(n,k))/n — &(k) < o0

As in [10], our main focus will be the emergence of the giant component.
When studying the component structure of G(n, k), the model can be simplified
somewhat: when we add a connected graph F' to a graph G, the effect on the
component structure is simply to unite all components of G' that meet the ver-
tex set of F'| so only the vertex set of F' matters, not the graph structure. We
say that k is a clique kernel family if the only non-zero kernels are those corre-
sponding to complete graphs; the corresponding random graph model G(n, k)
is a clique model. For questions concerning component structure, it suffices to
study clique models. For clique kernels we write x, for k. ; as above, we always
assume that x, is symmetric, here meaning invariant under all permutations of
the coordinates of S”. Given a general kernel family k, the corresponding (sym-
metrized) clique kernel family is given by & = (k,),>2 with

’ir(gjlw",zr): Z Z ’iF LTr(1)y s Tr(r) )a (4)
FeF:|F|=r 'wee

where &, denotes the symmetric group of permutations of [r]. (This is con-
sistent with our notation k2 = kk,.) In the Poisson version, with or without



merging of parallel edges, the probability of adding some connected graph F
on a given set of r vertices is exactly the same in G(n, ) and G(n,E), so there
is a natural coupling of these random graphs in which they have exactly the
same components. In the non-Poisson version, the probabilities are not quite
the same, but close enough for our results to transfer from one to the other.
Thus, when considering the size of the giant component in G(n, k), we may
always replace k by the corresponding clique kernel family.

It is often convenient to think of a clique model as a random hypergraph,
with the cliques as the hyperedges; for this reason we call a clique kernel family
a hyperkernel. Note that each unordered set of r vertices corresponds to r!
r-tuples, so the probability that we add a K, on a given set of r vertices is
P e (Toys - -5 20, )/n" L. (More precisely, this is the expected number of K,s
added with this vertex set.)

1.2 A branching process

Associated to each hyperkernel k¥ = (k,),>2, there is a branching process X,
with type space S, defined as follows. We start with generation 0 consisting
of a single particle whose type is chosen randomly from S according to the
distribution p. A particle P of type z gives rise to children in the next generation
according to a two step process: first, for each r > 2, construct a Poisson process
Z, on 8”71 with intensity

rip(T, T, ..., @) du(xs) - - - du(z,). (5)

We call the points of Z = |J,.~.4 Z, the child cliques of P. There are r—1 children
of P for each child clique (z2,...,2,) € S"!, one each of types za,...,x,.
Thus the children of P form a multiset on S, with a certain compound Poisson
distribution we have just described. As usual, the children of different particles
are independent of each other, and of the history.

Considering the relationship to the graph G(n, k), the initial factor r in (5)
arises because a particular vertex v may be any one of the r vertices in an
r-tuple (v1,...,v,) on which we add a K.

We also consider the branching processes X, (z), z € S, defined exactly as
X, except that we start with a single particle of the given type z.

1.3 Two integral operators

We shall consider two integral operators naturally associated to X,. Given any
(measurable) f: S — [0,1], define S, (f) by

S(1)()
= Z - TRy (T, T2, T3, ..., Ty) (1 — H(l — f(;vl))> du(z2) - -+ du(z,), (6)
r=2 i=2



and let _5.(P&)
q)ﬁ(f)(.r):1—e ~ :

(The factors r in (6) and in the definition of X, are unfortunate consequences

of our choice of normalization.)
Let P be a particle of X,; in generation ¢ with type x, and suppose that

each particle in generation ¢+ 1 of type y has some property Q with probability
f(y), independently of the other particles. Given a child clique (z3,...,z;,) of
P, the bracket in the definition of S,; expresses the probability that one or more

of the r —1 corresponding child particles has property Q. Hence S, (f)(w) is the

expected number of child cliques containing a particle with property Q, and,
from the Poisson distribution of the child cliques, ®,(f)(x) is the probability
that there is at least one such clique, i.e., the probability that at least one child
of P has property Q.

Let p(x) denote the survival probability of the branching process X, and

pr () the survival probability of X, (x). From the comments above we see that
the function p, satisfies

Pr = (I)ﬁ(pﬁ)'

Using simple standard arguments as in [10], for example, it is easy to check
that p, is given by the maximum solution to this equation, i.e., the pointwise

supremum of all solutions f : S — [0,1] to
f=1-e =0 (7)

see Lemma 7 below. From the definitions of X,; and X, (), it is immediate that

pls) = /S pe () du(z).

In our analysis, we shall also consider the linear operator T} defined by
T (D)) = [ el ) o) )

For a hyperkernel &,

ﬂe(l"y) - ZT(T_l)/ 2KT(Iayaz3vI47"'7xT) d,u(l'g) d:U’(xT)7 (9)
r>2 S

from which it is easy to check that T, is the linearized form of S,: more

precisely, T}, is obtained by replacing 1 — []_,(1 — f(;)) by Y., f(z;) in

the definition (6) of 5.

Let us note two simple consequences of this fact. For any sequence (y;); in
[0,1] we have 1 — J[,(1 —v;) <>, i, s0

0<8(f) < T (f) (10)



for any f:S — [0,1]. Also, 1 —[[;(1 — ;) > 0 if and only if ), y; > 0. Since
the integral of a non-negative function is positive if and only if the function is
positive on a set of positive measure, it follows that for any f : S — [0,1] we
have

Se(f)(x) >0 = T, (f)(x) > 0. (11)

In the edge-only case, when only k3 is non-zero, ke = 2k and T),, = S.
When translating results from [10], it is sometimes 7, and sometimes S,; that
plays the role of the linear operator T, appearing there.

1.4 Main results

In most of our results we shall need to impose some sort of integrability condition
on our kernel family; the exact condition depends on the context.

Definition 4. (i) A kernel family k = (kp)per is integrable if

/ﬁ =Y |F| Kp < 00. (12)
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This means that the expected number of atoms containing a given vertex is
bounded.
(ii) A kernel family k = (kp)rer is edge integrable if

ZS(F)/ Kp < 00;

FeF sirl

equivalently, (k) < oo or |, g2 e < 00. This means that the expected number
of edges in G(n, k) is O(n), see Theorem 3, and thus the expected degree of a
given vertex is bounded.

Note that a hyperkernel (r,) is integrable if and only if > o, 7 Jsr Kr < 00,
and edge integrable if and only if > o, 7? [, £, < co.
Since we only consider connected atoms F, it is clear that

edge integrable = integrable.

Our main result is that, if £ is an integrable kernel family satisfying a certain
extra assumption, then the normalized size of the giant component in G(n, k) is
simply p(k). The extra assumption is essentially that the graph does not split
into two pieces. As in [10], we say that a symmetric kernel . : S — [0, 00) is
reducible if

JA C § with 0 < u(A) < 1 such that kK, =0 a.e. on A x (S\ A);
otherwise k. is irreducible. Thus k. is irreducible if

AC S and K, =0a.e.on A x (S\ A) implies u(A4) =0 or u(S\ A) =0.



A kernel family (kp)per or (k,)r>2 is irreducible if the corresponding edge
kernel k, is irreducible. It is easy to check that a kernel family (kp)per is
irreducible if and only if for every A C S with 0 < p(A) < 1 there exists
an F € F such that, with » = |F|, if z1,...,2, are chosen iid at random in
S with distribution u, then there is a positive probability that {z;} N A # 0,
{z;}N(S\A) # 0 and kp(x1,...,2,) > 0. Informally, (kp)per is irreducible if,
whenever we partition the type space into two non-trivial parts, edges between
vertices with types in the two parts are possible.

Note that a kernel family s’ and the corresponding hyperkernel s do not
have the same edge kernel: replacing each atom by a clique in general adds
edges, so k!, < k. with strict inequality possible. If . is irreducible, then so
is Ke; using the characterization of irreducibility above, it is easy to check that
the reverse implication also holds.

We are now ready to state our main result; we write C; for the number of
vertices in the ith largest component of a graph G.

Theorem 5. Let ' = (klz)per be an irreducible, integrable kernel family, and
let kK = (Ky)r>2 be the corresponding hyperkernel, given by (4). Then

C1(G(n, &) = p(k)n + op(n),

and C3(G(n,x')) = op(n).

The reducible case reduces to the irreducible one; see Remark 26.

Of course, for Theorem 5 to be useful we would like to know something about
the survival probability p(x); as noted earlier, p(x) can be calculated from p,,
which is in turn the largest solution to a certain equation (7). Of course, the
main thing we would like to know is when p(k) is positive; as in [10], it turns
out that the answer depends on the L2-norm |7} | < oo of the operator T,
defined by (8). (Since this operator is symmetric, its L2-norm is the same as its
spectral radius. In other contexts, it may be better to work with the latter.)

Theorem 6. Let £ be an integrable hyperkernel. Then p(k) > 0 if and only if
|Tx.|| > 1. Furthermore, if x is irreducible and ||T, || > 1, then py(x) is the
unique non-zero solution to the functional equation (7), and p,(x) > 0 holds for
a.e. x.

In general, ||T,. || may be rather hard to calculate; a non-trivial example
where we can calculate the norm easily is given in Subsection 7.2. Let us give
a trivial example here: suppose that each k, is constant, say k, = ¢,.. Then
ke(z,y) = >, r(r —1)c, = 2§(k) for all z and y, so

1T, || = 2£(5).- (13)

This is perhaps surprising: it tells us that for such uniform hyperkernels, the
critical point where a giant component emerges is determined only by the total
number of edges added; it does not matter what size cliques they lie in. This



is not true for arbitrary kernel families: we must first replace each atom by a
clique.
Note that for any hyperkernel,

Tl = (LT 1) = [ [ =260

with equality if and only if 1 is an eigenfunction, i.e., if the asymptotic expected
degrees A(x) = [ ke(z,y) du(y) are the same (ignoring sets of measure 0); c.f.
[10, Proposition 3.4].

Before turning to the proofs, let us remark on the relationship of the results
above to the main results of [10]. In the edge-only case, the present results are
almost (see below) special cases of those [10]. The set-up here is much simpler,
as we choose to insist that the vertex types z1,...,x, are iid. This avoids many
of the complications arising in [10]. In one way, the present set-up is, even in
the edge-only case, more general than that considered in [10]: with the types
iid, there is no need to restrict the kernels other than to assume integrability
(in [10] we needed them continuous a.e.), and one does not need to impose
the ‘graphicality’ assumption of [10]. Thus the edge-only case here actually
complements the results in [10]. We could form a common generalization, but
we shall not do this in detail; we believe that it is just a question of combining
the various technicalities here and in [10], and that no interesting new difficulties
arise. Of course, these technicalities are rather beside the point of the present
paper; our interest is the extension from kernels to hyperkernels. This turns out
not to be quite as straightforward as one might perhaps expect. The problem is
that the correlation between edges forces us to deal with a non-linear operator,
namely S.

The rest of the paper is organized as follows. In the next section we prove
the results about the non-Poisson branching process X,; that we shall need later,
the most important of which is Theorem 6. In Section 3 we consider the local
coupling between the graph and the branching process, showing in particular
that the ‘right’ number of vertices are in components of any fixed size. In
Section 4 we complete the proof of Theorem 5, showing that whp there is at
most one ‘large’ component, which is then a ‘giant’ component of the right
size. In Sections 5 and 6 we consider simpler properties of G(n, k), namely the
asymptotic degree distribution and the number of subgraphs isomorphic to a
given graph. Our results in Section 6 include Theorem 3 as a simple special case.
In Section 7 we illustrate the flexibility of the model by carrying out explicit
calculations for a special case, giving graphs with power-law degree sequences
with a range of exponents and a range of clustering and mixing coefficients; see
Section 7 for the definitions of these coefficients. Finally, in Section 8 we discuss
connections between our model and various notions of graph limit, and state
two open questions.

10



2 Analysis of the branching process

In this section, which is the heart of the paper, we forget about graphs, and
study the (compound Poisson) branching process Xx. One might expect the
arguments of [10] to carry over mutatis mutandis to the present context, but
in the branching process analysis this is very far from the truth; this applies
especially to the proof of Theorem 10.

Throughout the section we work with an integrable hyperkernel k = (k)r>2,
ie., we assume that [k =Y 7 [k, < co. Our main aim in this section is to
prove Theorem 6.

For x € S let

Az) = (Se(1))(z) = Z /ST?I Tk (T, 2, T3, .., @) dp(zo) - - - dp(z,),
r=2

so A(x) is the expected number of child cliques of a particle of type . We have

/S)\(ac)d,u(a:)=Z/r7”Fér=/ﬁa

r>2

which is finite by our assumption (12). It follows that A(z) < oo holds almost
everywhere. Changing each kernel x, on a set of measure zero, we may assume
that A(z) is finite for all . (Such a change is irrelevant for the branching process
and for the graph.) From now on, we thus assume that A\(z) < co holds for all
x, for any hyperkernel k we consider.

Since a Poisson random variable with finite mean is always finite, any particle
in X,; has a finite number of child cliques, and hence a finite number of children,
even though the expected number of children may perhaps be infinite. Hence,
the event that the branching process dies out (i.e., that some generation is
empty) coincides with the event that it is finite.

Using this fact, we have the following, standard result. Recall that pﬁ(x)
denotes the survival probability of the branching process X, () that starts with

a single particle of type =, and p, the function x — p, () .

Lemma 7. The function p, satisfies the functional equation (7). Furthermore,
if f S —[0,1] is any other solution to (7), then 0 < f(x) < pu(x) < 1 holds
for every x.

Proof. Let p¢(x) be the probability that X.(v) survives for at least ¢ gen-
erations, so po is identically 1. Then p;1 = ®4(pr). The result follows
from the monotonicity of ®, and the fact that p;(x) \, px(z), noting that
Qp(1)(z) =1~ e~ M=) < 1 for the strict inequality. O

We next turn to the uniqueness of the non-zero solution (if any) to (7). The

key ingredient in establishing this is the following simple inequality concerning
the non-linear operator Sj;.

11



Lemma 8. Let k be an integrable hyperkernel, and let f and g be measurable
functions on S with 0 < f < g < 1. Then

/S fSeg < /S 45,1

Proof. We may write Sy as ) -, 5., where S, is the nonlinear operator cor-
responding to the single kernel &, so S,.(f) is defined by the summand in (6).
Thus it suffices to prove that

/SfSrgﬁ/sgSrf. (14)

We shall in fact show that for any (distinct) x1,...,z, € S we have

> f@r) (1 -] - 9(%@)))) < Y 9@ (1 -] - f(%(i))))

€S, =2 TeS, =2
(15)

Since k, is symmetric, (14) follows. (In fact, (14) can be true in general only if
(15) always holds, considering the symmetrization of a delta function.) Now (15)
can be viewed as an inequality in 2r variables f(z1),..., f(z,),g(z1),...,g(z;).
This inequality is linear in each variable. Furthermore, it is linear in each pair
(f(z1), g(x;)). In proving (15) for any 0 < f < g < 1, we may thus assume that
for each i one of three possibilities holds: 0 = f(z;) = g(=;), f(z:) = g(z;) =1,
or f(x;) = 0 and g(x;) = 1. In other words, we may assume that f and g are
{0, 1}-valued.

Suppose then for a contradiction that (15) fails for some {0, 1}-valued f and
g with f < g. Then there must be some permutation 7 such that

() (1 -] - 9(%@)))) > 9(Tx(1)) (1 -] - f(%(i)))) ,  (16)

=2 =2

which we may take without loss of generality to be the identity permutation.
Since both sides of (16) are {0, 1}-valued, the left must be 1 and the right 0.
Since the left is 1, we have f(z1) = 1, so, using f < g, g(z1) = 1. But now
for the right hand side of (16) to be 0 the final product in (16) must be 1, so
f(xz;)=0fori=2,...,r ie., f takes the value 1 only once. Of course, g must
take the value 1 at least twice, otherwise we have equality. But now the left
hand side of (15) is exactly (r—1)!, coming from terms with 7(1) = 1 and hence
f(2r1)) = 1. The right hand side is at least (r — 1)!, from any 7 mapping 1 to
some j # 1 with g(z;) = 1. Hence (15) holds after all, giving a contradiction
and completing the proof. O

If k is reducible, then (7) may in general have several non-zero solutions.
To prove uniqueness in the irreducible case we need to know what irreducibility
tells us about S.
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Lemma 9. If there exists a measurable f : S — [0,1] with 0 < p{f > 0} < 1
and {S.f > 0} C {f > 0}, then x is reducible.

Proof. Let A = {f > 0}, so by assumption S, f =0 on A° =S\ A. From (11)
we have {7y, f = 0} = {S.f = 0}, so T}, f = 0 on A°. From the definition of
T.. it follows that ke = 0 a.e. on A° x A, S0 k. is reducible. But this is what it
means for k to be reducible. O

In fact, taking f to be a suitable characteristic function, one can check that
the converse of Lemma 9 also holds.

Using Lemmas 8 and 9 it is easy to deduce uniqueness of any non-zero
solution to (7).

Theorem 10. Let k be an irreducible, integrable hyperkernel, and let f and g
be solutions to (7) with 0 < f(x) < g(z) < 1 for every x. Then either f =0
or f = g. In particular, the only solutions to (7) are pr and the zero function,
which may or may not coincide.

Proof. We may suppose that f is not 0 a.e.; otherwise, f = ®,(f) would be
identically zero. Since k is irreducible and f solves (7), which implies {f =
0} = {Sxf = 0}, it follows from Lemma 9 that f > 0 a.e. Note that, since  is
integrable, S (g)(7) < Sk(1)(x) = A(x) < oo for a.e. x, and thus g = ®.(g) < 1
a.e.

Since f and g solve (7), we have S, (f)(z) = —log(1 — f(z)) and S,(g)(x) =
—log(1 — g(z)). Hence,

Ss(9) = —flog(l—g) = flg+¢°/2+¢°/3+ ")

>g9(f+ 224 f2/3+--) = g5:(f)

whenever 0 < f < g < 1, with strict inequality whenever 0 < f < g. Since
K is integrable, it is immediate from the definition (6) that S, f and S.g are
integrable, and it follows that

/S [Seq > /S 45, ],

with strict inequality unless f = g a.e. Since Lemma 8 gives the reverse inequal-
ity, we have f = g a.e., and thus f = ®,f = ®,9 = g. The second statement
then follows from Lemma 7. O

Theorem 10 generalizes the corresponding result in [10], namely Lemma 5.9.
Indeed, in the edge-only case (when only x2 is non-zero), the operators S,; and
T, coincide, and Lemma 8 holds trivially, using the symmetry of T, . This
shows that, with hindsight, the proof of Lemma 5.9 in [10] may be simplified
considerably, by considering [ fTg instead of [¢ fTh, h = (g — f)/2. This is
significant, since the proof in [10] does not adapt readily to the present context.
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Although simple, the proof of Theorem 10 above is a little mysterious from
a branching process point of view. It is tempting to think that the result is
‘obvious’, and indeed that a corresponding result should hold for any Galton—
Watson process. However, some conditions are certainly necessary, and it is
not clear what the right conditions are for a general process. (Irreducibility
is always needed, of course.) In [34], a corresponding result is proved for a
general branching process satisfying a certain continuity assumption; the proof
uses the convexity property ®(Af) > A®(f) for any function 0 < f < 1 and any
0 < A <1, which holds for all branching processes. In Theorem 10, continuity is
not needed, but some kind of symmetry is; there does not seem to be an obvious
common generalization of these results.

Indeed, the next example shows that the situation is not that simple: in the
compound Poisson case (as opposed to the simple Poisson case), symmetry of
the relevant linear operator is not enough.

Example 11. Let S = {1,2,3,...} with u{i} = 27 for each 4, and consider the
branching process X = X(z) with type space (S, p) defined as follows. Start with
a single particle of some given type xz. Each particle of type i has a Poisson
number of children of type i + 1 with mean 2 = 2:+2u{i + 1}; we call these
‘forward children’. Also, for i > 2, a particle of type i has ‘backward children’
of type i — 1: the number of these is 4°*! times a Poisson with mean 4%, Note
that the expected number of backward children is 4 = 2+ {i — 1}. Defining
the ‘edge-kernel’ k, so that the expected number of children of type j that each
particle of type i has is given by ke(i,§)u{j}, we have re(i, ) = 21 Tmax{igh if
|i — j| = 1 and k.(4,j) = 0 otherwise, so k. is symmetric and irreducible.

Define the non-linear operator ¢ associated to X in the natural way, so
O(f)(z) is the probability that at least one child of the root of type x has a
certain property, if each child of type y has this property with probability f(y).
As before, the survival probability p(x) satisfies p = ®(p).

Let 7(x) denote the probability that the process survives transiently, i.e.,
survives forever, but, for each 4, contains in total only finitely many particles
of type i. Consider the ‘forward process’ given by ignoring backward children.
This is simply a Poisson Galton—Watson process with on average 2 offspring, and
so survives with some positive probability. Also, given that it survives, there is
a positive probability that for every ¢, generation ¢ contains at most 3! particles,
say. But since the particles in generation ¢ have type x+t, the expected number
of sets of backwards children of all particles in the forward process is at most
Y5034 < oo, and with positive probability the particles in the forward
process have no backwards children. But in this case, the forward process is the
whole process, and the process survives transiently. Hence 7(z) > 0 for every
x.

Let o(z) = p(z) — 7(z) be the probability that the process survives recur-
rently. Considering the children of the initial particle, we see that o = ®(o).
The process restricted to any two consecutive types is already supercritical,
and so has positive probability of surviving by alternating between these types.
Thus o(x) > 0 for all x. We showed above that 7(x) = p(z) — o(z) > 0 for
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all z, 50 0 < o(z) < p(z), and f = ®(f) has (at least) two non-zero solutions,
namely o and p.

Let us turn to the analysis of the solution pj to (7), and in particular the
question of when p > 0, i.e., when the branching process X, is supercritical.
Throughout we consider an integrable hyperkernel x, with corresponding edge
kernel ke.

Recall that we may assume that A(x) = S (1)(7) is finite everywhere. Hence,

for any f satisfying (7), we have f(z) < 1 for all z. On the other hand, we cannot
assume that k. is integrable, or indeed finite. For one natural example, consider
the integrable hyperkernel with each &, constant, and x, = 1/r3. In this case
Ke(x,y) = oo for all  and y. If k. is infinite on a set of positive measure, then
we take ||T}. || to be infinite.

Lemma 12. If | T, || <1, then p(k) = 0.

Proof. Suppose that f is a solution to (7) that is not 0 a.e. Since —log(1—¢) > ¢
for 0 < t < 1, we have S,(f)(x) > f(x), with strict inequality on a set of

positive measure. But Ty (f)(z) > Sk(f)(xz) by (10), so T (f)(z) > f(x),

with strict inequality on a set of positive measure. Hence ||Tx_f|l2 > || f]l2, so
[T |l > 1. O

Lemmas 5.12 and 5.13 of [10] carry over to the present context, with only
minor modifications.

Lemma 13. If0 < f < 1 and ®4(f) > f, then ®7'(f) /' g as m — oo, for
some 1 > g > f with ®4(g) = g.

Proof. By induction f < ®.(f) < ®Z(f) < ---. Since 0 < ®7(f) < 1, it
follows that g(z) = limy, o 7'(f)(2) exists for every z, and 0 < g < 1. From

monotone convergence we have Si(g) = limy, oo Sx(®7'(f)), from which it
follows that ®,(g) = g. O

Lemma 14. If there is a function f : S — [0,1], not a.e. 0, such that S, (f) >
(14 0)f for some § > 0, then p(k) > 0.

Proof. The proof is the same as that of Lemma 5.13 in [10], using S, in place
of T}. ]

The next step is to show that if ||T;_|| > 1, then there is a function f with the
property described in Lemma 14. In [10] we did this by considering a bounded
kernel. Here we have to be a little more careful, as we are working with the
non-linear operator S,; rather than with 7} ; this is no problem if we truncate
our kernels suitably.
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Definition 15. We call a hyperkernel & = (&,)r>2 bounded if two conditions
hold: only finitely many of the k, are non-zero, and each , is bounded.

Similarly (for later use), a general kernel family (kr)pecr is bounded if only
finitely many of the kp are non-zero, and each kg is bounded.

In other words, k is bounded if there are constants R and M such that
kr = 0 for r > R, and k, is pointwise bounded by M for r < R. Note that
if k is bounded, then the corresponding edge kernel &, is bounded in the usual
sense.

Given a hyperkernel x = (k,), for each M > 0 we let 5™ be the bounded
hyperkernel obtained from x by truncating each ., r < M, at M, and replacing
kr by a zero kernel for r > M. lLe.,

r NM, < M,
Iii\/[ _JE A r (17)
0, r > M.
The truncation kM = (k¥)per of a general kernel family (k) rer is defined

similarly.

Lemma 16. If | T, || > 1 then there is a 6 > 0 and an f : S — [0,1], not a.e.
0, such that S.(f) > (1+0)f.

Proof. We slightly modify the proof of Lemma 5.16 of [10].

Consider the truncated hyperkernels £ defined in (17). From (9) and
monotone convergence, the corresponding edge kernels kM tend up to e (which
may be infinite in some places) pointwise. Arguing as in the proof of Lemma
5.16 of [10], since ||T, || > 1 there is some positive f with [|f]]2 = 1 and
1 < ||T%, fll2 < oo. By monotone convergence, Tym f /" Ty, f, so | Tem fll2 /
[ T%. fll2, and there is some M with ||T,.a || > || T,m f[[2 > 1.

Since kM is bounded, by Lemma 5.15 of [10] it follows that there is a bounded
f >0 with f not 0 a.e. such that

T,{iwf = ||TK£\4||f = (1 + 2(5)f,

where § = (|| T || —1)/2 > 0. We may assume that 0 < f < 1. [f0 <y; <y <
1,i=1,...,r, then (by induction) 1 — [T/_, (1 —y;) > (1 —~)" "' 3] v, and it

i

follows that if v > 0 is chosen small enough, then
S (vf) = A =DM T (vf) > (1+6)(vf).
Since Sy (7f) = Seam (vf), the result follows. O

Theorem 6 follows by combining the results above.

Proof of Theorem 6. Together Lemmas 12, 14 and 16 show that p(x) > 0 if and
only if || T,.|| > 1. Uniqueness is given by Theorem 10. The final statement is
immediate from Lemma 9. O
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Having proved Theorem 6, our next aim is to prove Theorem 5. The basic
strategy will involve comparing the neighbourhoods of a vertex in the random
graph G(n, k) with the branching process X,. As in [10], it will be convenient
to carry out the comparison only for certain restricted hyperkernels. In order to
deduce results about G(n, k) in general, one needs approximation results both
for the graph and for the branching process. We now turn to such results for
branching processes.

Lemma 6.3 and Theorems 6.4 and 6.5 of [10] carry over to the present con-
text, mutatis mutandis, using the results above about p(x) instead of the equiva-
lents in [10], and replacing T}, by Sy or T, as appropriate: S, when considering
®,., and T, when arguing using L?-norms. In these results pr denotes the func-
tion @+ p, (), and p>(k, ) and p>y (k) denote respectively the probabilities
that X, (z) and X, have total size at least k.

Lemma 17. If k <K/, then p(k) < p(£'). O

Theorem 18. (i) Let k,, n =1,2,..., be a sequence of hyperkernels on (S, i)
increasing a.e. to an integrable hyperkernel k. Then py, /" px a.e. and p(kn) /

p(K).
(ii) Let kn, n =1,2,..., be a sequence of integrable hyperkernels on (S, )
decreasing a.e. to k. Then py, \, px a.e. and p(kn) \, p(K). O

Theorem 19. (i) Let k,, n =1,2,..., be a sequence of hyperkernels on (S, u)
increasing a.e. to a hyperkernel k. Then, for every k > 1, psi(kn;z) /

p>k(k; ) for a.e. v and p>i(kn) / pok(K).

(ii) Let kn, n=1,2,..., be a sequence of integrable hyperkernels on (S, )
decreasing a.e. to k. Then, for every k > 1, p>i(kn; ) \, p>i(K; ) for a.e.
and p>k(tn) \ p2r(£). N

Remark 20. The assumption that k, be integrable in Theorems 18(ii) and
19(ii) can be weakened to A, (z) < oo for a.e. ¥, where )\, () is the expected

number of child cliques in X, of a particle of type x; see [10].

3 Local coupling

We now turn to the local coupling between our random graph and the corre-
sponding branching process, relating the distribution of small components in
G(n, k) to the branching process X,. In [10], we were essentially forced to con-
dition on the vertex types, since these were allowed to be deterministic to start
with. Here, with iid vertex types, there is no need to do so. This allows us to
couple directly for all bounded hyperkernels, rather than simply for finite type
ones.

We shall consider a variant of the usual component exploration process,
designed to get around the following problem. When we test edges from a given
vertex v to all other vertices, the probability of finding a given edge vw depends
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on the type of w as well as that of v. Hence, not finding such an edge changes
the conditional distribution of the type of w. If the kernel is well behaved, it
is easy to see that this is a small effect. Rather than quantify this, it is easier
to embed G(n, k) inside a larger random graph with uniform kernels. Testing
edges in the larger graph does not affect the conditional distribution of the
vertex types; we make this precise below. In doing so, it will be useful to take
the hypergraph viewpoint: given a hyperkernel &, let H(n, k) be the hypergraph
on [n] constructed according to the same rules as G(n, k), except that instead
of adding a K, we add a hyperedge with r vertices. In fact, we consider the
Poisson version of the model, allowing multiple copies of the same hyperedge.

Let s be a bounded hyperkernel, and let ™ be a corresponding upper bound,
SO nj‘ is the constant kernel M for r < R, and zero for » > R, while x, < m,‘f‘
holds pointwise for all r.

We construct coupled random (multi-)hypergraphs H,, and H," on [n] as
follows: first construct H,” = H(n,x") by taking for 2 < r < R a Poisson
Po(r!M/n"=1) number of copies of each possible 7-element hyperedge, with all
these numbers independent. Although in our formal definition of H, we first
decide the vertex types, H, is clearly independent of these types. Hence, given
H, the types are (still) iid with distribution p.

Given H;" and the iid types x1,...,x, of the vertices, we may form H,
by selecting each hyperedge {v1,...,v,.} of H,\ to be a hyperedge of H,, with
probability &, (zy,, ..., Ty, ) /M, independently of all other hyperedges. It is easy
to see that this gives the right distribution for H,, = H(n, k). (If we disallowed
multiple copies of an edge, there would be an irrelevant small correction here.)

Turning to the branching processes, there is an analogous coupling of X, and
X+ first construct X+, which may be viewed as a single-type process, accord-
ing to our two-step construction via child cliques. Then assign each particle a
type according to the distribution y, independently of the other particles and of
the branching process. Then form the child cliques in X,; by keeping each child
clique in X+ with an appropriate probability depending on the types, deleting
not only the children corresponding to deleted child cliques, but also all their
descendants.

Let v € [n] be chosen uniformly at random, independently of H, and H,.
Let 'y denote the d-neighbourhood of v in H,,, and 1"; that in H. Counting
the expected number of cycles shows that for any fixed d, the hypergraph F(J{ is
whp treelike. Furthermore, standard arguments as for G(n, c¢/n) show that one
may couple F; and the first d generations of X+ so as to agree in the natural
sense whp. When F;}' is treelike, then I'y C F;l" may be constructed using exactly
the same random deletion process that gives (the first d generations of) X, as
a subset of X,+. It follows that I'y and the first d generations of X, may be

coupled to agree whp.
Recalling that G(n,k) and H, have the same components, for any fixed
k > 1 one can determine whether the component containing v has exactly k
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vertices by examining I'y11. It follows that
ENk(G(n, k) = nP(|X,| = k) + o(1).

As in [10], starting from two random vertices easily gives a corresponding second
moment bound, giving the following result.

Lemma 21. Let k be a bounded hyperkernel. Then

NG () 2 (| = )

for any fixed k. O

Of course it makes no difference whether we work with IV or N> = n —
25;11 Nj;: Lemma 21 also tells us that

N2 (G, ) B > ). (18)

The extension to arbitrary hyperkernels is easy from Theorem 19.

Lemma 22. Let k be an integrable hyperkernel. Then for each fized k we have

N2k (G, ) B o).

Proof. As in [10], we simply approximate x by bounded hyperkernels. For M >
0 let KM be the truncated hyperkernel defined by (17).

Let £ > 1 be fixed, and let € > 0 be arbitrary. From monotone convergence
and integrability,

i M _
Mlinwz/srrmT Z/ym, <o,
r>2 r>2
so for M large enough we have
A= Z/ r(k, — kM) < 2/(6k),
r>2 ST
say. By Theorem 19(i), increasing M if necessary, we may also assume that

p>e(EM) > psi(s) — /3. (19)

Since K™ < k holds pointwise, we may couple the hypergraphs H/, and H,
associated to G(n,x™) and G(n,k) so that H, C H,. Recall that G(n, k)
is produced from H, by replacing each hyperedge E with r vertices by an -
clique. However, as noted earlier, if we form G, from H, by replacing each F
by any connected simple graph on the same set of vertices, then G,, and G(n, k)
will have exactly the same component structure, and in particular N>x(Gy,) =
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N> (G(n,k)). Let us form G, and G, in this way from H,, and H), replacing
any hyperedge with r vertices by some tree on the same set of vertices. Recalling
that H] C H,, we may of course assume that G, C G,,.

Writing E,.(H) for the number of r-vertex hyperedges in a hypergraph H,

E(E(Ga) \ E(G,)) <Y (r — DE(E,(Hy) — Ex(H,))

r>2
< Z(r— 1)71/&(/@7/{5}4) < nA.
r>2

Hence,
P(|E(Gn) \ E(Gy,)| > en/6k) < nA/(en/6k) < e.

Recalling that G, C G,, and noting that adding one edge to a graph cannot
change N>j by more than 2k, we see that with probability at least 1 — ¢ we
have

|N>k(G(n, £")=N>k(G(n, k)| = [N>k(G),) = N>1(Gn)| < 2k(en/6k) = en/3.

Applying Lemma 21 (or rather (18)) to the bounded hyperkernel ™, we have
LNk (G(n,5M)) 2 psi(s™). Using (19) it follows that with probability at
least 1 — 2e, say, we have |2 N>y (G(n,k)) — p>i(x)| < e. Since € > 0 was

arbitrary, we thus have 1 N> (G(n, k) 2 psi(k) as required. O

4 The giant component

The local coupling results of the previous section easily give us the ‘right’ num-
ber of vertices in large components. As usual, we will pass from this to a giant
component by using the ‘sprinkling’ method of Erdds and Rényi [25], first un-
covering the bulk of the edges, and then using the remaining ‘sprinkled’ edges
to join up the large components. The following lemma gathers together the
relevant consequences of the results in the previous section.

Lemma 23. Let k = (k) be an integrable hyperkernel, and let G, = G(n, k).
Then C1(Gy) < p(k)n + op(n). Furthermore, given any € > 0, there is a § > 0
and w = w(n) — oo such that

Now(@) > (p(s) — &) (20)
holds whp, where G, = G(n, (1 — §)k).

Proof. From Lemma 22 we have = N>4(Gy) 2, psr(k) for each fixed k. Since
p>k(k) — p(k) as k — oo, it follows that for some w = w(n) — co we have

L Nou(@n) 2 ol 1)
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we may and shall assume that w = o(n). Since C1(G,) < max{w, N>, (Gn)},
the first statement of the lemma follows.

For the second, we may of course assume that p(k) > ¢; otherwise, there is
nothing to prove. As § — 0, from Theorem 18(i) we have p((1 — §)k) — p(K).
Fix 6 > 0 with p((1 —0)k) > p(k) —£/2, and let G, = G(n, (1 —d)x). Applying
(21) to G}, there is some w = w(n) — oo such that

N = N>u(Gy) = p((1 = 9)g)n + op(n) = (p(k) —€/2)n + op(n),
which implies (20). O

In the light of Lemma 23, to prove Theorem 5 it suffices to show that if & is
irreducible, then for any € > 0 we have

Ci(Gn) = (p(&) — 2e)n (22)

whp; then C1(G,)/n 2 p(k) as required. Also, from (21) and the fact that
C1(Gr) + C2(G) < max{2w, N>, (G,) + w}, we obtain C2(G,) = op(n) as
claimed.

Since (1 — §)k < Kk, there is a natural coupling of the graphs G/ and G,
appearing in Lemma 23 in which G/, C G,, always holds. Our aim is to show
that, whp, in passing from G, to G, the extra ‘sprinkled’ edges join up almost
all of the N vertices of G/, in ‘large’ components (those of size at least w) into
a single component.

Unfortunately, we have to uncover the vertex types before sprinkling, so we
do not have the usual independence between the bulk and sprinkled edges. A
similar problem arose in Bollobds, Borgs, Chayes and Riordan [9] in the graph
context, as opposed to the present hypergraph context. It turns out that we can
easily reduce to the graph case, and thus apply a lemma from [9]. This needs a
little setting up, however. Here it will be convenient to take S = [0, 1] with pu
Lebesgue measure; as noted in Section 1, this loses no generality.

Let x be a bounded symmetric measurable function « : [0,1]?> — R. Follow-
ing Frieze and Kannan [27], the cut norm ||&||g of « is defined by

/ K(z,y) dz dy
SxT

where the supremum is taken over all pairs of measurable sets.
Given a kernel x on [0,1] and a measurable function ¢ : [0,1] — [0,1], let
k(¥) be the kernel defined by

lsllo = sup
S,7C[0,1]

b

£ (2, 1) = r(o(x), o(y)).

If ¢ is a measure-preserving bijection, then k#) is a rearrangement of k. (One
can also consider measure-preserving bijections between subsets of [0, 1] with
full measure; it makes no difference.) We write k ~ x’ if £’ is a rearrangement
of k.
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Given two kernels x, k' on [0, 1], the cut metric of Borgs, Chayes, Lovész,
S6s and Vesztergombi [17] is defined by

Sk, /) = inf [lx— ||
KRT~K
Note that this is a pseudo-metric rather than a metric, as we can have dg(k, k) =
0 for different kernels. (Probabilistically, it is probably more natural to consider
couplings between kernels as in [17], rather than rearrangements, but this is
harder to describe briefly and turns out to make no difference.)

Let A, be a symmetric n-by-n matrix with non-negative entries a;;, which
we may think of as a (dense) weighted graph. There is a piecewise-constant
kernel k4, associated to A,; this simply takes the value a;; on the square
(6 =1)/n,i/n] x ((j —1)/n,j/n], 1 <4,j < n. There is also a sparse random
graph G(A,,) associated to A,; this is the graph on [n] in which edges are present
independently, and the probability that ¢j is an edge is a;;/n. (If A, has non-
zero diagonal entries then G(A,) may contain loops. These are irrelevant here.)

The main result of Bollobds, Borgs, Chayes and Riordan [9] is that if « is an
irreducible bounded kernel and (A4,,) is a sequence of matrices with uniformly
bounded entries such that dg(k4,,%) — 0, then the normalized size of the giant
component in G(A,) converges in probability to p(x). The sprinkling argument
there relies on the following lemma.

Lemma 24. Let k be an irreducible bounded kernel on [0,1], and 6 and Bmax
positive constants. There is a constant ¢ = ¢(K, Bmax,0) > 0 such that when-
ever A, is a sequence of symmetric matrices with entries in [0, Bmax| with
og(ka,,k) — 0, then for sufficiently large n we have

P(Vi ~aa,) Vi) = 1 —exp(—cn)

for all disjoint V,,, V,; C [n] with |V,[,|V| > on, where V, ~g(a,) V, denotes
the event that G(A,) contains a path starting in V,, and ending in V). O

In fact, this lemma is not stated explicitly in [9], but this is exactly the
content of the end of Section 3. (For a stronger version of this lemma see [12].)

We shall apply Lemma 24 to graphs G(A4,,) corresponding to (subgraphs of)
G(n,dk), where ¢ is as in Lemma 23. To achieve independence between edges,
we shall simply take only one edge from each hyperedge. Unfortunately, the
problem of conditioning on the z; still remains; we shall return to this shortly.

Let k be an integrable hyperkernel and H,, the Poisson (multi-)hypergraph
corresponding to G(n, k). Given the sequence x = (1, ..., %,), let G(n, 5, %) be
the random (multi-)graph formed from H,, by replacing each r-vertex hyperedge
FE by asingle edge, chosen uniformly at random from the (;) edges corresponding
to E. With x fixed, the numbers of copies of each edge E in H,, are independent
Poisson random variables. From basic properties of Poisson processes, it follows
that the number of copies of each edge ij in G(n,k,x) are also independent
Poisson random variables. Our next aim is to calculate the edge probabilities

in G(n, k,x).
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Given z1,...,x, and distinct 4, j € [n], for r > 2 let

—(r—2
Qg5 =T ( ) E K:T(xiaxj7xk37"'7xl%)a

where the sum runs over all (n — 2)(,_2) sequences ks, ..., k;, of distinct indices
in [n] \ {4,7}, and let A be the n-by-n matrix with entries

Qi = 2 Z Qg5 (23)
r>2
for i # j and a;; =0 if i = j.

With x given, the expected number of r-vertex hyperedges in H,, containing
ij is r(r — 1)a,; ;/n. Hence the expected number of ij edges in G(n,k,x)
is exactly a;;j/n. Now a;; clearly depends on z; and z;. Unfortunately, it
also depends on all the other z;. The next lemma will show that the latter

dependence can be neglected.
Set

Iﬁ:r($, Y, *) = / , HT(xa Y, T3,T4,- - 7x7’) dﬂ(l’g) e dlu’(xr)?
Sr—

and let 7 be the ‘re-scaled’ edge kernel defined by

T(.T,y) ZQZHrCﬂ?y’ *) (24)

r>2

Comparing with the formula (9) for k¢(z,y), note that we have divided each
term in the sum in (9) by (), the number of edges in K. Note that

T(2,y) =0 <= Ko(z,y) =0. (25)

Lemma 25. Let k = (ky)r>2 be an integrable hyperkernel. Then

1
Eﬁ Z lari; — Kr(zi,z5,%)| = o(1) (26)
i#£]
for every r, and
1
EEZW — 7(zi,25)| = o(1). (27)
1#]

Proof. We have
E(ari; | 2i,25) = (n—2) oy n” "Dk (2, 25, %).
Suppose first that x,. is bounded. Let
Yij = arig = (n = 2) gy 0™ nn (@i, 3, %)

= Tli(riz) Z(Kr(x%xja Lhys- -+ 7':l:kr) - Iir(l'i71'j, *))’
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where the sum again runs over all (n — 2)(T_2) sequences ks, ..., k, of distinct
indices in [n] \ {7,j}. Given z; and z;, each term in the sum has mean 0, and
any two terms with disjoint index sets {ks, ..., k,} are independent. Since there
are O(n?"=5) pairs of terms with overlapping index sets, and &, is bounded, we
have

E(YZ | 2i,2;) = O(n¥ —5=20-2) = O(n ).

Thus EY = O(n™!') and EL D Y2 = O(n™'), and the Cauchy-Schwarz
inequality yields

1 1
E > larij = bp(wi,zj,6)] = Es > Vil +0(1/n)
i#j 7]
1/2
1 —
< |E e +0(1/n) = O(n~1?).
1#]
This proves (26) and thus (27) for bounded hyperkernels.
For general hyperkernels, we use truncation and define k¥ by (17). For the

corresponding a™) A and ™,

752,37

1 M
By > lanis — a0 < [ — k),

i#]
1
By 3 (o) — 1 (om0 < [ (= ),

i#]

and thus

1 M
By S lay— a1 <23 [ =),
i#£] r

]E% Z ‘T(xi,xj) — TM(xi,l'j” < 22/(’% — ,‘gi\/[)

i#]

Since (k) is integrable, given any € > 0 we can make these expected differences
less than e by choosing M large enough, and the result follows from the bounded
case. O

With the preparation above we are now ready to prove Theorem 5.

Proof of Theorem 5. We assume without loss of generality that S = [0, 1], with
1 Lebesgue measure.

Let k' = (kz) per be an irreducible, integrable kernel family, let £ = (K, )r>2
be the corresponding hyperkernel, given by (4), and let £ > 0. As noted after
Lemma 23, in the light of this lemma, it suffices to prove the lower bound (22)
on C1(G(n,k)). We may and shall assume that p(k) > 0 and ¢ < p(x)/10, say.
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Let 6 > 0 and w = w(n) be as in Lemma 23, and let H,, H, and H, be
the Poisson multi-hypergraphs associated to the hyperkernels k, (1 — §)k and
0k, respectively. Using the same vertex types x = (z1,...,2,) for all three
hypergraphs, there is a natural coupling in which H,, = H], U H,, with H], and
Hn conditionally independent given x.

Define A and 7 by (23) and (24), respectively, starting from the integrable
hyperkernel §x. Note that 7 is a kernel on [0, 1], while A is an n-by-n matrix
that depends on x. Recall from (25) that 7(x,y) = 0 if and only if k.(z,y) = 0,
so 7 is irreducible. In order to be able to apply Lemma 24, we would like to
work with a bounded kernel and matrices that are bounded uniformly in n. We
achieve this simply by considering A = (a@;;) and 7 defined by

G;; = min{a;j,1} and 7T(z,y) = min{r(z,y),1}.
Let B be the ‘sampled’ matrix corresponding to 7, defined by
bij = (i, 7;),

and B the corresponding matrix associated to 7. The second statement of
Lemma 25 tells us that exactly

1
E— > laij — bij| = o(1).

i#]

Since \Eij — Eij| < |aij - bi]' for ¢ # j, while |az'i — B“| < 1, it follows that
1 . —
E— Z [@ij — bij| = o(1),
2J

or, equivalently, that E| k5 — k5|1 = o(1), where we write ks for the piecewise
constant kernel associated to a matrix M.

Since dp(k1, K2) < ||k1—kK2|lo < ||k1—k2]|1, it follows that Edq (x4, kg) — O,
and hence that 0q(k7, K5) 2. 0. Coupling the random sequences x for different
n appropriately, we may and shall assume that

da(kq, kg) — 0 (28)

almost surely.

Since 7T is a bounded kernel on [0,1], i.e., a ‘graphon’ in the terminology
of [17], Theorem 4.7 of Borgs, Chayes, Lovéasz, Sés and Vesztergombi [17] tells
us that with probability at least 1—e~""/(219821) = 1_¢(1), we have (kg T) <
10sup7/4/logyn = o(1). It follows that dm(xg,7) — 0 both in probability and
almost surely. Using (28), we see that

8ok, 7) — 0 (29)

almost surely. Note that x4 depends on the sequences x.
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Let G, and G, be the simple graphs underlying H!, and H,,. From Lemma 23,
(20) holds whp. Let us now condition on H/, and in particular on the vertex
types x and on GJ,. We assume, as we may, that (20) holds for all large enough
n, and that (29) holds. It suffices to show that with conditional probability
1 —o(1) we have C1(Gy) > (p(k) — 2¢e)n.

Let G, = G(n,dk,x) be the random (multi-)graph defined from H, by

taking one edge from each hyperedge as before, noting that G/, U Gn C Gh.
As noted earlier, given x (and G!), each possible edge ij is present in G
independently. In the multi-graph version, the number of copies of 7j is Poisson
with mean a;;/n. Passing to a subgraph, we shall take instead the number of
copies to be Poisson with mean @,;/n. Since this mean is O(1/n), the probability
that one or more copies of ij is present is a;; /n, where a;; = @;; +O(1/n). Since
da(kar, kg) = O(1/n) = o(1), we have dp(ka/,7) — 0. Since 7 is an irreducible
bounded kernel, the (simple graphs underlying) én satisfy the assumptions of
Lemma 24, so there is a constant ¢ > 0 such that for any two set V,,, V! of at
least en/2 vertices of én, the probability that V,, and V,/ are not joined by a
path in én is at most e~ “".

Recall that we have conditioned on GJ,, assuming (20). Suppose also that
C1(Gr) < (p(k) — 2¢)n. Then there is a partition (Vi,V2) of the set of vertices
of G), in large components in G}, with |Vi|, |V2| > en such that there is no path
in G,, from V; to V,. Let us call such partition (Vi,V2) a bad partition. Having
conditioned on G7,, noting that in any potential bad partition V; must be a union
of large components of G/, the number of possible choices for (V;, V2) is at most
27/« = (") On the other hand, since G, C G, the probability that any given
partition is bad is at most e~ ", so the expected number of bad partitions is
o(1), and whp there is no bad partition. Thus C1(G,) > (p(k) — 2¢)n holds
whp, as required. O

Remark 26. The restriction to irreducible kernel families in Theorem 5 is of
course necessary; roughly speaking, if k is reducible, then our graph G(n,k)
falls into two or more parts. Lemma 23 still applies to show that we have
p(k)n + op(n) vertices in large components, but it may be that two or more
parts have giant components, each of smaller order than p(k)n.

More precisely, let x be a reducible, integrable kernel family. Thus the edge

kernel k. is reducible. By Lemma 5.17 of [10], there is a partition S = Uf\io Si,
N < o0, of our ground space S (usually [0, 1]) such that each S; is measurable,
the restriction of ke to S; is irreducible (in the natural sense), and, apart from
a measure zero set, ke is zero off Uf\;l S; x S;.

Suppressing the dependence on n, let G; be the subgraph of G(n, k) induced
by the vertices with types in S;. Since the vertex types are iid, the probability
that G(n, k) contains any edges other than those of | J,~, G; is 0. Now G; has a
random number n; of vertices, with a binomial Bi(n, u(S;)) distribution, which
is concentrated around its mean. Given n;, the graph G; is another instance of
our model.
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Let a; = fSi () du(z), so that ), a; = p(x) < 1. From the remarks above

it is easy to check that Theorem 5 gives C1(G;)/n L a; and C2(G;) = op(n);
we omit the details. Sorting the a; into decreasing order aq, ds, ..., it follows
that C;(G(n, k)) = a;in + op(n) for each fixed (finite) 1 < ¢ < N, in particular,
fori=1and i=2.

4.1 Disconnected atoms and percolation

One of the most studied features of the various inhomogeneous network models is
their ‘robustness’ under random failures, and in particular, the critical point for
site or bond percolation on these random graphs. For example, this property of
the Barabdsi—Albert [5] model was studied experimentally by Barabdsi, Albert
and Jeong [2], heuristically by Callaway, Newman, Strogatz and Watts [20]
(see also [1]) and Cohen, Erez, ben-Avraham and Havlin [21], and rigorously
in [14, 34]. In the present context, given 0 < p < 1, we would like to study
the random subgraphs G{?)(n, ) and GP!(n, k) of G(n, r) obtained by deleting
edges or vertices respectively, keeping each edge or vertex with probability p,
independently of the others. In the edge-only model of [10], these graphs were
essentially equivalent to other instances of the same model: roughly speaking,
G'®)(n,k) = G(n,pk) and GPl(n, k) = G(pn,pk). (For precise statements,
see [10, Section 4].)

Here, the situation is a little more complex. When we delete edges randomly
from G(n, k), it may be that what is left of a particular atom F is disconnected.
This forces us to consider generalized kernel families (kp)reg with one kernel
kr for each F' € G, where the set G consists of one representative of each
isomorphism class of finite (not necessarily connected) graphs.

Rather than present a formal statement, let us consider a particular exam-
ple. Suppose that k is the generalized kernel family with only one kernel kg,
corresponding to the disjoint union F of K3 and K. Let ' be the kernel family
with two kernels,

ng(x,y,z) = / HF(LU,y,Z,’LL,’U) dﬂ(u) d,u(v),
S2

corresponding to K3 and

wa(0) = [ rplay.z,0,0) dule) duty) du:)

for K5. Then G(n, k) and G(n, ') are clearly very similar; the main differences
are that G(n, k) contains exactly the same number of added triangles and Kss,
whereas in G(n,x’) the numbers are only asymptotically equal, and that in
G(n,k) a triangle and a Ky added in one step are necessarily disjoint. Since
almost all pairs of triangles and Kss in G(n, ') are disjoint anyway, it is not
hard to check that G(n,k) and G(n,r’) are ‘locally equivalent’, in that the
neighbourhoods of a random vertex in the two graphs can be coupled to agree
up to a fixed size whp.
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More generally, given a generalized kernel family £ = (kr)reg, let £ be
the kernel family obtained by replacing each kernel kr by one kernel for each
component F’ of F, obtained by integrating over variables corresponding to
vertices of F'\ F’ as above. This may produce several new kernels for a given
connected F; we of course simply add these together to produce a single kernel

Kk'r. Note that
S s = 1R,
o SIF| =

SIF|

so if k is integrable, then so is k’. Although G(n,k) and G(n,k’) are not
exactly equivalent, the truncation and local approximation arguments used to
prove Theorem 5 carry over easily, and we find that whenever &’ is irreducible,

Ci1(G(n, k) = p(&")n + op(n), (30)

where k' is the hyperkernel corresponding to k', obtained by replacing each

atom F' by a clique as before. Note that this corresponds to replacing each
component of an atom F' in G(n, k) by a clique.

Turning to bond percolation on G(n, k), i.e., to the study of the random
subgraph G{P)(n, k) of G(n,x), let £P be the kernel family obtained by re-
placing each kernel kg by 2¢(F) kernels rp = peF) (1 — p)eE)=e(F) g one
for each spanning subgraph of F. (As before, we then combine kernels corre-
sponding to isomorphic graphs F’.) Working work with the Poisson multigraph
formulation of our model, the graphs G‘P)(n, k) and G(n, k") have exactly the
same distribution. This observation and (30) allow us (in principle, at least) to
decide whether G¥) (n, k) has a glant component, i.e., to find the critical point
for bond percolation on G(n, k).

Let us illustrate this with the very simple special case in which each kernel
kp, F € G, is constant, say kp = cp. We assume that & is integrable, i.e., that

Y r|Flcp < oo. In this case each kernel ﬁ? making up ‘) is also constant,

and the same applies to the hyperkernel £” corresponding to £®. Hence, from

the remarks above and (13), G} (n, k) has a giant component if and only if the
asymptotic edge density £(k”) of the hyperkernel " is at least 1/2. Since we
obtain k" by first taking random subgraphs of our original atoms F', and then
replacing each component by a clique, we see that

E(6") =Y crlr(p),
FeF

where 0 (p) is the expected number of unordered pairs of distinct vertices of F'
that lie in the same component of the random subgraph F?) of F obtained by
keeping each edge with probability p, independently of the others. Alternatively,

26(x") = Y er|FI(x(F?) — 1),

FeF

where X(F<”>) is the susceptibility of F'P)_i.e., the expected size of the compo-
nent of a random vertex of F(®). If we have only a finite number of non-zero cp,
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then £(k”) may be evaluated as a polynomial in p, and the critical point found
exactly.

Turning to site percolation, there is a similar reduction to another instance
of our model, most easily described by modifying the type space. Indeed, we add
a new type = corresponding to deleted vertices, and set p/(x) = 1 — p. Setting
W' (A) = pu(A) for A C S, we obtain a probability measure u’ on &' = SU {*}.
Replacing each kernel kr by 2/ kernels £z on S’ defined appropriately (with
F’ corresponding to the subgraph of F' spanned by the non-deleted vertices),
one can show that GPl(n, k) is very close to (in the Poisson version, identical
to) a suitable instance G(n’,k’) of our model, where n’ is now random but
concentrated around its mean pn. In the first instance £’ may include kernels
for disconnected graphs, but as above we can find an asymptotically equivalent
kernel family involving only connected graphs. In this way one can find the
asymptotic size of any giant component in G!(n, k); we omit the mathemati-
cally straightforward but notationally complex details.

5 Vertex degrees

Heuristically, the vertex degrees in G(n, k) can be described as follows. Con-
sider a vertex v and condition on its type x,. The number of atoms that
contain v then is asymptotically Poisson with a certain mean depending on s
and x,. However, each atom may add several edges to the vertex v, and thus the
asymptotic distribution of the vertex degree is compound Poisson (see below for
a definition). Moreover, this compound Poisson distribution typically depends
on the type x,, so the final result is that, asymptotically, the vertex degrees
have a mixed compound Poisson distribution. In this section we shall make this
precise and rigorous.

We begin with some definitions. If A is a finite measure on N, then CPo()\),
the compound Poisson distribution with intensity A, is defined as the distri-
bution of Zj’;l jX,;, where X; ~ Po(A{j}) are independent Poisson random
variables. Equivalently, CPo(\) is the distribution of the sum ) &, of the
points of a Poisson process {&,} on N with intensity A, regarded as a multi-
set. (The latter definition generalizes to arbitrary measures A on (0,00) such
that fooo t A 1dA(t) < oo, but we consider in this paper only the integer case.)
Since X; has probability generating function Ez%i = e*Mi}=1) " CPo(\) has
probability generating function

o o
Y iXi R H X = H MINE =D _ E AN D),

Jj=1 Jj=1

¢cpo(n) (2) = Ez

whenever this is defined, which it certainly is for |z| < 1.

If A is a random finite measure on N, then MCPo(A) denotes the corre-
sponding mized compound Poisson distribution. From now on, for each x € S,
Az will be a finite measure on N, depending measurably on x. We shall write
A for the corresponding random measure on N, obtained by choosing x from S
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according to the distribution p and then taking A,. Thus MCPo(A) is defined
by the point probabilities

MCPo(A){i} = /S CPo(A,){i} du(z)

or, equivalently, the probability generating function

@MCPo(A)(z):/S‘PCPo(Aw)(Z) du(x)Z/Sez?;lM{j}(Zj_l) dp(z).

Remark 27. Since we have assumed that A is a finite measure, E ) ;X =
A(N) < oo thus a.s. 37, X; < oo and only finitely many X; are non-zero,
whence Y ;JX; < oo as. This verifies that CPo()\) is a proper probability
distribution. On the other hand, the mean of CPo(\) is

ECPo(\) = Y JEX; = jA\j} = / tdA(t),
j j 0
which may be infinite. As a consequence,

EMCPo(A) = /S/Oootd)\m(t) du(x) < oo. (31)

Let dtv denote the total variation distance between two random variables,
or rather their probability distributions, defined by

drv(X,Y) = sup IP(X € A) —P(Y € A), (32)

where the supremum is taken over all measurable sets A C R. We shall use
the following trivial upper bound on the total variation distance between two
compound Poisson distributions.

Lemma 28. If A and N are two finite measures on N, then

dry (CPo(X), CPo(N)) < [|]A = X|| = (A} — N{j}I-

J

Proof. Let X; ~ Po(A{j}) be as above and let X} ~ Po(\'{j}) be another
family of independent Poisson variables. We can easily couple the families so
that P(X; # X}) < [A{j} — N'{j}]| for every j.

Then

drv (CPo(A), CPo(X)) < B(D X, # 3 iX)) < 3 B(X; # X))

NG EPYE! =

J
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Given an integrable kernel family k and z € S, F € F and j € V(F) = [|F|],
let

Apj(r) = /S‘F‘ 1 KE(T1, o @51, 2, %1, - T p)) dp(y) - - - dp(wg 1) dp(j41) -+ -

(33)
be the (asymptotic) expected number of added copies of F' containing a given
vertex of type x in which the given vertex corresponds to vertex j in F. Let
dr(j) be the degree of vertex j in F, and define the measure

=D D Ari@dan) (34)

FeF jeV(F)

where, as usual, 04 denotes the probability measure assigning mass 1 to d. Thus
Az is a measure on N, with point masses given by

Mfdy =0 D Aryla), (35)

FEF jidp(j)=d

the (asymptotic) expected number of atoms containing a given vertex of type x
and having degree d there. From (33), [ Ar;(z) du(z) = [r £F, and thus by

(34)
/H)\ | dp(x /)‘Fj ) dp(x Z|F|/ Kp < 00.

Consequently, A\, is a finite measure on N for a.e. x, and the mixed compound
Poisson distribution MCPo(A) is defined.

Let the random variable D = D,, be the degree of any fixed vertex in G(n, k).
Equivalently, by symmetry, we can take D, to be the degree of a uniformly
random vertex. Furthermore, for £ > 0, let ny be the number of vertices with
degree ¢ in G(n,k). Then the random sequence (n;/n)2, can be regarded
as a (random) probability distribution, viz., the conditional distribution of the
degree of a random vertex in G(n,k), given this random graph. Note that
P(D,, = {) = Eng/n.

Theorem 29. Suppose that k = (kr)rer is an integrable kernel family. Then,
as n — oo,

(i) D, 4, MCPo(A), and

(i) ED, — EMCPo(A) = > 2¢(F) / kp = 26(r) < oco.
FeF SiFl

(iii) Moreover, for every fized ¢,
ng = MCPo(A){{}n + o, (n) (36)

and thus (ne/n)32, 4, MCPo(A) in the space of probability measures on
N.
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Note that the limit distribution exists for every integrable kernel family, but
has finite expectation only if the kernel family is edge integrable.

As usual, Theorem 29 applies to the variants of the model G(n, k) discussed
in Section 1. In the proof, we shall mostly work with the (non-Poisson) multi-
graph form, where we add at most one copy of a certain small graph F' with a
particular vertex set, but keep any resulting multiple edges.

Proof. Assume first that x is a bounded kernel family, with kp < M and kp =0
if |F| > M. Fix a vertex v € [n], and let D be the degree of v. For F € F
with |F| < M and j € V(F), let Ng; be the number of added copies of F' that
contain v with v corresponding to vertex j in F. Let

D' =" Nrp;dr(j); (37)
F,j

this is the number of edges added to v, including possible repetitions. Thus
D = D’ unless two added edges with endpoint v coincide. For any other vertex

w, conditioned on the types x = (z1,...,,), the number of atoms containing
both v and w is a sum ), I, of independent Bernoulli variables I, ~ Be(p, ),
for v in some index set. For each r = 2, ..., M there are O(n"~2) such variables,

each with p, = O(n'~"). Hence,

IP’(Z I,>2 ‘ x) <D b < (ZPV)Q =0(n?).

v1#v2

Since there are n — 1 possible choices for w, it follows that
drv (D | %), (D | %)) B(D # D' |x) = O(n™?). (38)

Hence, in proving (i), it makes no difference whether we work with D’ or with
D, i.e., with the multi-graph or simple graph version of G(n, k).

Conditioned on x, N ; is a sum of independent Bernoulli variables Be(pr, j o (x))
for a in some index set Ag;, with pp;o(x) = O(n'~IFl) given by (1) and
[Ary] = O(ml1-1).

Let XFJ- (x) =E(Np; | x) = >, prja(x). By a classical Poisson approxi-
mation theorem (see [6, (1.8)]),

drv ((Nej | %), PoAp(x))) <D prjalx)? =0y =0m™).  (39)

(This follows easily from the elementary drv(Be(p), Po(p)) < p?; see e.g. [6,
page 4 and Theorem 2.M] for history and further results.) Furthermore, given
x, the random variables Np; are independent, and thus (37) and (39) imply

that if Xp; ~ PO(XF,]‘ (x)) are independent, then

drv (D' %), 3 di(j) K1) = On™).
F.j
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Since > p dF(j))?p’j has a compound Poisson distribution CPo(A(x)) with
intensity X(x) =r; Xp,j(x)édF(j), we have

drv ((D' | x), CPo(A(x))) = O(n™?).
By (38) and Lemma 28, this yields
dry ((D | %), CPo(s,)) < O(n™") + [A(x) = A, ||
In particular, for every ¢ € N, taking A = {¢} in (32),

IP(D = ¢ | x) — CPo(A,){€}] < O(n™") + |[A(X) = As, |-

(40)

Taking the expectation of both sides, and noting that EP(D = ¢ | x) = P(D = ¢)
and E CPo(\,, ){¢} = MCPo(A){¢}, we find that

[P(D = £) — MCPo(A){¢}| < O(n™?) + E|]A(x) — As, || (41)

We shall show that the final term is small.
By (1), with r = |F],

Ap;(x) = nt=’ Z’{F(xvu e T,

where the sum runs over all (n— 1)(r,1) sequences v1, . . . , U, of distinct elements
in [n] with v; = v. Consequently, by (33),

E(Arj(x) | 20) = (1= 0n"))Ap;(@). (42)

Recalling that k is bounded, it is easy to check (as in the similar argument in
the proof of Lemma 25) that

Var (A (x) | 20) = E((ry (%) = EQr (%) | 7)) | ) = O(n ")
and thus, by the Cauchy—Schwarz inequality and (42),

(A (%) = Apj ()] | 20) = O(n~Y/2).

Consequently, using again that x is bounded,
EIXG) = A, | SE D ri(x) = Ay ()| = O(n ) = o0(1),  (43)
Fj

SO =R
IAG) = Ag, || 0.

Combining (43) and (41) we see that P(D = ¢) — MCPo(A){¢} for every ¢, i.c.,
D4 MCPo(A), which proves (i) for bounded k.
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Next we turn to the proof of (iii), assuming still that k is bounded. Fix a
number £ € N, and for v € [n] let D, be the degree of v in G(n, k), and I, the
indicator 1[D,, = {].

Fix two distinct vertices v agd w, let G be the set of atoms that contain
both v and w, and let D, and D,, be the degrees of the vertices if we delete
(or ignore) the atoms in G. Since k bounded, the expected number E|G| of such
exceptional atoms is O(n~1), and thus

Moreover, these bounds hold conditional on x. Furthermore, given x, EU and
D,, are independent. Consequently, for any ¢ € N,

E(I 1, | x) =P(D, = Dy = | x) =P(D, = Dy = £ | x) + 0(1)

(
=P(Dy = £ | x)P(Dyy = £ | x) +o(1)
=P(D, =l [x)P(Dy = ]x)+0(1)
=E(L, | x)E(1y | x) + o(1),

and thus Cov(I,, I, | x) = o(1). Since ny =), I, it follows that Var(n, | x) =
o(n?) and thus
ne = E(ng | x) + op(n). (44)

Further, if we write h(z) = CPo(XA,){l} and sum (40) (where D = D,) over v,
we obtain

[Ene [ -3 h(e)
v=1

By (43), the right-hand side has expectation o(n) and thus

= > (BD, = £1%)-h(x,)| < O+ Y EIX)-A, I

v=1

n

E(ne | x) = Zh(wv) + op(n). (45)

v=1

Now h(x1), . %) are iid random variables with mean

h(xy) / h(x) dp(z /SCPO(/\;D){Z} du(x) = MCPo(A){l}.

Hence, by the law of large numbers, 1 3" | h(z,) L, MCPo(A){l}, which is
the same as

Z h(z,) = MCPo(A){l}n + op(n). (46)

The result (36) follows from (44), (45), (46).

Furthermore, (36) says that (ng/n); = MCPo(A) in the space R* of se-
quences, equipped with the product topology, which is the same as separate
convergence of the components. However, it is well-known, and easy to see
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(e.g. by compactness) that restricted to the set of probability distributions, this
equals the standard topology there.

We have proved (i) and (iii) for bounded k. For general k we use truncations:
define £ in analogy with (17), setting k¥ = kp AM for |[F| < M and k¥ =0
for |F| > M. We use A, n and so on to denote quantities defined for
G(n,xkM). For fixed M, applying (36) for the bounded kernel family ™, we

have n! /n % MCPo(AM){¢} as n — oo, and thus by dominated convergence
E[ny' /n — MCPo(AM){¢}] — 0. (47)
Furthermore, for every z € S and d > 1, the intensities A {d} converge to A\, {d}
as M — oo, by (35), (33) and monotone convergence. Thus a simple coupling
shows that MCPo(AM) 4, MCPo(A) as M — oco. We may couple G(n,g) and

G(n, M) in the obvious way so that G(n, k) is obtained from G(n,x™) by

adding further atoms, say N7 copies of each F € F. Then EN}Y < n [z (kp—

kM), and since at most Y . |[F|NM vertices are affected by the extra additions,

n n
| 2 ‘< EZ|F|NF <Z|F|/ (ki — kM) (48)

The right hand side is independent of n, and tends to 0 as M — oo by dominated
convergence and our assumption that x is integrable. For any ¢ > 0, we may
thus choose M so large that the right hand side of (48) is less than ¢, and also
so that | MCPo(AM){¢} — MCPo(A){¢}| < &; then by (47), for large enough n,

E|ng/n — MCPo(A){(}| < 3e,

which proves (36) and thus (iii). Further, (36) and dominated convergence yields
P(D,, = ¢) = E(n¢/n) — MCPo(A){¢}, which proves (i).

Finally we prove (ii). (This could also easily be done directly in a fairly
straightforward way.) First, (31) and (35) yield

E MCPo(A /ZAFJ => > de(j /S‘F‘ K,

FEF jeV(F)

which yields the formula for E MCPo(A) claimed in the theorem, since ) _; dr(j) =
2e(F).

Next, the convergence in distribution (i) yields (by a version of Fatou’s
Lemma) the inequality liminf, . ED, > EMCPo(A). Finally, recalling the
definition (37) of D), (denoted D’ in (37)), we have D,, < D/ and thus

ED, <ED) =Y dr(/)ENr; = Y > dr(j }“Il)/sF "

FEF jeV(F)

F,j
<> 2(F) / rp = EMCPo(A),
FeF sl

yielding the opposite inequality limsup,, ,., ED,, < EMCPo(A). O
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Part (ii) of Theorem 29 is not surprising. Also, since by symmetry ED,, =
2Ee(G(n, k)), it follows from Theorem 3 (which we shall not prove until the next
section). For bounded kernel families, it is easy to see that also higher moments
of D,, converge to the corresponding moments of MCPo(A), for example by first
showing that ED]" = O(1) for every fixed m and combining this with (i). This
extends to certain unbounded kernel families, but somewhat surprisingly not to
all integrable kernel families, as the following example shows.

Example 30. Let S = [0,1) with Lebesgue measure, and regard S as a circle
with the usual metric d(z,y) = min(|z — y|, 1 — |z — y|). We construct our
random graph by adding triangles only; thus kp = 0 for F' # K3, and we take

r3(z,y, 2) = d(z,y)* " +d(z,2)"7 +d(y, 2)° 7! (49)

for some small € > 0, for example ¢ = 1/10. Clearly, k is an integrable kernel
family (and a hyperkernel).

Let A = minj<;<j<p d(x;, ;) be the minimal spacing between the n inde-
pendent uniformly distributed random points x;, 1 < ¢ < n. It is well-known
that this minimal spacing is of order n~2; in fact, it is easy to see that for 0 < s <
1/n we have P(A > s) = (1 — sn)" ! < e=*™"=1 "and in particular A < n~2
whp. Hence there exist whp two distinct indices i and j with d(z;, z;) < n° 2,
and thus, for large n and every xy, K3(x;, x;, 1) > ne=2)(e=1) > 9p2-3¢ Tfjand
j are chosen such that this holds, then from (1) we have p(i, j, k; K3) > 2n =3¢
for all k # i, j, and thus the number of k such that the triangle ijk is an atom
stochastically dominates the binomial distribution Bi(n — 2,2n73¢); hence this
number is whp at least n!' =3¢,

We have shown that whp there are at least two vertices ¢ and j with degrees
> n'73¢ and thus, for large n, P(D,, > n'=3¢) > (1—0(1))% > % Consequently,
for large n,

1 _ _
> Zp20-3) _ pl=6e o
n

ED

2
n
On the other hand, for some finite ¢ = fss k3, by symmetry, Ak, ;(z) = ¢

and Ay = 3¢dy. Hence MCPo(A) = CPo(3cdz), which is the distribution of 2X
with X ~ Po(3¢), which has all moments finite.

As we shall see in Theorem 34, this situation cannot arise in the edge-only
version of the model, i.e., the model in [10]; in the terminology of the next
section, all copies of P, are then ‘regular’.

In Section 7 we shall illustrate Theorem 29 by giving a natural family of
examples with degree distributions with power-law tails.

6 Small subgraphs

In this section we turn to the final general property of G(n, k) we shall study,
the asymptotic number of copies of a fixed graph F' in G(n, k); throughout this
section, k denotes a kernel family (kp)per, rather than a hyperkernel. We work
with the multi-graph version of the model.
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Although mathematically not as interesting as the phase transition, the num-
ber of small graphs in G(n, ) is important as it is directly related to the original
motivation for the model. Indeed, recall that perhaps the main defect of the
model of [10], i.e., the edge-only case of the present model, is that it produces
graphs with very few (O, (1)) triangles, i.e., graphs with clustering coefficients
that are essentially zero. This contrasts strongly with many of the real-world
networks we wish to model.

The simplest way that a copy of some graph F may arise in G(n, k) is as an
atom. The expected number of such copies is simply

n(F)
< . 50
nlFl-1 /S‘F‘ FE = n/s\F\ wr ( )

The next simplest way that a copy of F' may arise is as a subgraph of some
atom F’ of G(n, k). Let us call such copies of F' direct. Let n(F, F') denote the
number of subgraphs of F’ isomorphic to F', so n(K3, K4) = 4, for example. Set

(W(FD = 3 n(BF) [ <

F'eF

and let ng(F, G(n, k)) denote the number of direct copies of F in G(n, ). Then
from (50) we see that

End(F7 G(nvi‘i)) < El(Fv E)nv
and that if x is bounded, then
Ena(F, G(n, 8)) = f1 (F, )n + O(1).

The reason for the somewhat peculiar notation #; is as follows: the subscript
1 indicates direct copies (arising from only one atom). The tilde will be useful
later to differentiate from standard notation ¢(F, ) in other contexts.

It will turn out that in well behaved cases (for example for all bounded
kernel families), essentially all copies of any 2-connected graph F in G(n,k)
arise directly. Unfortunately, this is not the case for general F. Perhaps the
main special cases we are interested in are stars; the number of copies of the
star K7 o (i.e., the path P;) is needed to calculate the clustering coefficient,
for example. Note that the number of copies of the star K;; (k > 2) in any
graph G is simply |G|/k! times the kth factorial moment of the degree of a
random vertex; hence counting stars is closely related to studying the degree
distribution, which we did for G(n, k) in Section 5.

Let us say that a copy of F in G(n, k) arises indirectly if it contains edges
of at least two of the atoms making up G(n, ). To understand the expected
number of such copies we first need to understand the probability that a certain
set of vertices form a copy of F' given the types of the vertices. More precisely,
we consider the expectation of the number of copies of F' with a given vertex
set, even though this number is highly unlikely to exceed 1.

37



Let F be a connected graph with r vertices. Let emb(F, F’) denote the
number of embeddings of F into F”’, i.e., the number of injective homomorphisms
from F to F’, so emb(F,F') = n(F,F')aut(F). Fixing a labelling of F, let
XY9%(G) denote the number of copies of F in a multigraph G with vertex i of
F corresponding to vertex i of G. (Thus X%(G) is 0 or 1 if G is simple.) The
contribution to EX%(G(n,k)) from copies of F arising as subgraphs of atoms
isomorphic to a given F’ with 7’ vertices is exactly

z : (’I’L—T) r'—r
r/fl )/ HF'(ylw-')yT’)a
n Srl—r

p:F—F'

where ¢ runs over all emb(F, F’) embeddings of F' into F’, we take y; = z; if
©(i) = j, and we integrate over the remaining r’ — r variables y;.
Set

UF(xla"'7xT):O-F(xlv"')x’r;,@):z Z / KF’(ylw-wyr')' (51)

F' @:F—F’ e
Then we have
E(X%(G(TL7 ,"i)) { Liy--- 7x’r) < n_(r_l)UF(xla sy Tpj 5)7 (52)

and if £ is bounded then the relative error is O(n™!).

Comparing (51) and (3), note that if F = K, then op = k.. Before con-
tinuing, let us comment on the normalization. Recall that in defining G(n, k),
we consider all r! possible ways of adding a (labelled) copy of F' on vertex set
{1,2,...,r}, say, adding each copy with probability xr(z1,...,x,)/n"~1. This
means that the contribution from rp to X%(G(n, k)) is aut(F)kp(z1, ..., ) /n" 1,
and, correspondingly, the contribution from kg to op is aut(F)kp(z1,...,z.).
In other words, while having the same form as a kernel, or is normalized dif-
ferently. This situation arises already in the edge-only case, where kq(z,y) =
2k9(z,y). It turns out that here the normalization of op, giving directly the
probability that a certain set of edges forming a copy of F' is present, is the
natural one. Note that if we had used this normalization from the beginning,
then formulae such as (50) would have extra factors.

Let F' be a connected graph with vertex set [r]. We say that a set Fy,..., Fy
of connected graphs forms a tree decomposition of F' if each F; is connected, the
union of the F; is exactly F', any two of the F; share at most one vertex, and
the F; intersect in a tree-like structure. The last condition may be expressed by
saying that the F; may be ordered so that each F; other than the first meets the
union of the previous ones in exactly one vertex. Equivalently, the intersection
is tree-like if |F| = 1+ >,(|F;| — 1). Equivalently, defining (as usual) a block
of a graph G to be either a maximal 2-connected subgraph of G or a bridge in
G, Fy,...,F, forms a tree composition of F' if each F; is a connected union of
one or more blocks of F, with each block contained in exactly one F;. (Cf. [8,
p. 74].)
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Note that we allow @ = 1, in which case F; = F. For a > 2, the order
of the factors is irrelevant, so, for example, K 2 has a unique non-trivial tree
decomposition, into two edges. Note also that if F' is 2-connected, then it has
only the trivial tree decomposition.

Let us say that a copy of F' in G(n, k) if regular if it is the union of graphs
Fy,..., F, forming a tree decomposition of F, where each F; arises directly
as a subgraph of some atom Fj, and V(F)) N V(F}) = V(F;) N V(F;) for all
i # j (with this intersection containing at most one vertex). We can write down
exactly the probability that G(n, k) contains a regular copy of F' with vertex
set 1,...,r in terms of certain integrals of products of conditional expectations
E(X§ (G) | x1,...,x5). We shall not do so. Instead, let

WPo) = [ omon o due) - dater),  (53)

where the sum runs over all tree decompositions of F' and each term op, is
evaluated at the subset of z1,...,x, corresponding to the vertices of F; C F,
and set

t(F, k) = aut(F) " 't(F, k). (54)

Note that these definitions extend to disconnected graphs F', taking the sum
over all combinations of one tree decomposition for each component of F'.

The upper bound (52) easily implies that the expected number of regular
copies of F in G(n, k) is at most #(F, k)n, and furthermore this bound is correct
within a factor 1+O0(n~!) if k is bounded; the factor aut(F)~! appears because
there are n,)/ aut(F') potential copies of F'. Note that the number emb(F, G) of
embeddings of a graph F into a graph G, i.e., the number of injective homomor-
phisms from F to G, is simply aut(F)n(F,G). Hence ¢(F, k) is the appropriate
normalization for counting embeddings of F' into G(n, k) rather than copies of
F'. In other contexts, when dealing with dense graphs, it turns out to be most
natural to consider homomorphisms from F' to G, the number of which will be
very close to emb(F,G). Thus the normalization in (53) is standard in related
contexts. (See, for example, Lovasz and Szegedy [32].)

Let us illustrate the definitions above with two simple examples.

Example 31. The simplest case is F' = K,. In this case, there is only the
trivial tree decomposition, and (53) and (54) yield

0) = 5 [ o) = 5 [ relean) = (o). (55)

Example 32. Suppose that x contains only two non-zero kernels, ks, corre-
sponding to an edge, and k3, corresponding to a triangle; our aim is to calculate
t(Pa2, k) in this case, where P, is the path with 2 edges. Using symmetry of xo
and kg3,

o1 () = 2a ) + 6 /S ka2, 9,2) du(2), (56)

39



while
UPQ(%?J,Z) = 6"{‘3(3"7?}"2)7 (57)

reflecting the fact the P, ijk appears directly in G(n, ) if and only if we added
a triangle with vertex set {, j, k}, and this vertex set corresponds to 6 3-tuples.
Since aut(P;) = 2, it follows that

(Pro) = 5 [ (On(0.:2) + 0w (0.0, (0, 2)) duo) du(y) du).

More generally, let F' be any (simple) subgraph of G,, = G(n,k) with k
components. (We abuse notation by now writing F' for a specific subgraph of
G, rather than an isomorphism class of graphs.) Let Fy,..., F, list all atoms
contributing edges of F', and let F; = F/ N F, where we take the intersection in
the multigraph sense, i.e., intersect the edge sets. For example, if e; and ey are
parallel edges in G,, and ey € E(F), e € E(FY), then Fy = F| N F contains no
ij edge, even though F} and F each do so. Thus each F; contains at least one
edge, and F' is the edge-disjoint union of the F;. Since F' has k components,
when adding the F; one by one, at least a — k times a new component is not
created, so at least a — k times at least one vertex of F;, and hence of F/, is
repeated. It follows that

S(F| 1) > ’UF’ (58)
Extending our earlier definition, we call F' regular if equality holds in (58), and
exceptional otherwise. Note that if any F; is disconnected, then F' is exceptional.

Let n.(F,G,) denote the number of regular copies of F in G,, = G(n, k),
and ny(F, G,) the number of exceptional copies.

Theorem 33. Let G, = G(n, k), where k is a kernel family, and let F be a
graph with k components. Then

En,(F,G,) < n*t(F, ).
If K is bounded, then
Eny(F,Gp) = O(n*™1),
Var(n(F,G,)) = O(n?*~1),

and
n(F,Gpn) = n:(F, Gpn) + nx(F, Gp) = n*i(F, £)(1 + Op(n1/2)).

Proof. We have essentially given the proof of the first statement, so let us just
outline it. To construct a regular copy of F' in G,, we must first choose graphs
Fy,...,F, on V(F) forming a tree decomposition of each component of F. Then
we must choose a graph F] containing each F; to be the atom that will contain
F;. Then we must choose s = |U; F/| distinct vertices v1,...,vs from 1,...,n to
be the vertices of the F;, where (since F' is regular), we have s = k+5, |F} —1]|.
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Note that there are n,) < n® choices for the vertices v;. (We are glossing
over the details of the counting, and in particular various factors aut(H) for
various graphs H. It should be clear comparing the definition of #(F, ) with
what follows that these are in the end accounted for correctly.)

Given the vertex types, the probability that these particular graphs F
arise is then (up to certain factors aut(F})) a product of factors of the form
/iFi//n‘Fi/‘*l, where the kernel is evaluated at an appropriate subset of z,,,, . .., Z,,.
Note that the overall power of n in the denominator is > ,(|F/| — 1) = s — k.
Integrating out over the variables x; corresponding to V(F}) \ V(F;), and sum-
ming over all F/ D F;, the factor kp; becomes a factor op. Finally, integrating
out over the remaining variables, corresponding to vertices of F; and summing
over decompositions, we obtain n*#(F,x) as an upper bound.

If k is bounded, then the number s of vertices appearing above is bounded,
0 ns)/n®* =1 —0(n""), where the error term is uniform over all choices for
F|, ..., F.. Tt follows that in this case,

En.(F,G,) = t(F,x)n*(1 — O(n™1)).

Arguing similarly for exceptional copies, the power ) .(|Fj| — 1) of n in the
denominator is now at least s — k + 1, and it follows that if k is bounded, then
Eny(F,Gp) = O(n*~1) as claimed. It follows that

En(F,G,) = t(F,)n* + O(n*~1). (59)

Finally, for the variance we simply note that En(F,G,,)? is the expected
number of ordered pairs (F, Fy) of not necessarily disjoint copies of F' in G,,.
If F; and F; share one or more vertices, then F; U F» has at most 2k — 1
components. From (59), the expected number of such pairs is O(n?*~!). The
expected number of pairs with Fy and F» disjoint is simply NEn(2F, G,,), where
2F is the disjoint union of two copies of FF and N = aut(2F)/aut(F)? is a
symmetry factor, the number of ways 2F can be divided into 2 copies of F'. (If
F' is connected then simply N = 2 and in general, if F' has distinct components
Fj with multiplicities mj, then N = [, (27:;’)) Since t(2F, k) = t(F,k)?, we
have #(2F, k) = t(F, k)% /N, so (59) gives

En(F,G,)? = t(F,5)*n?* + O(n*1),

from which the variance bound follows. The final bound follows by Chebyshev’s
inequality. O

For bounded kernel families, Theorem 33 is more or less the end of the story,
although one can of course prove more precise results. For unbounded kernel
families the situation is much more complicated. Let us first note that regular
copies of F' do not give rise to any problems.

Theorem 34. Let k be a kernel family and F' a connected graph, and let G,, =
G(n, k). Then n(F,Gp)/n 2 #(F,k) < oo. In other words, if i(F,r) = oo,
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then for any constant C, whp n.(F,G,) > Cn, while if #(F,k) < oo, then
nr(F7 Gn) = f(F7 @)n + OP(n)'

Proof. We consider the truncated kernel families k. Since #(F, k) is a sum

of integrals of products of sums of integrals of the kernels xp/, by monotone
convergence we have t(F, sM) — t(F, k) < oo as M — oo, and hence {(F, sM) —
t(F, k).

If £(F, k) = oo, choose M so that {(F,x™) > C, and couple G, = G(n, s™)
and G, in the natural way so that G/, C G,,. Since K™ is bounded, Theorem 33
implies that n.(F,G,) > Cn whp. Since n.(F,G,) > n,(F,G)), the result
follows.

If {(F, k) < 0o, then given £ > 0, the truncation argument above shows that
n.(F,Gy) > (t(F,k) — €)n holds whp. By the first statement of Theorem 33,
En,(F,G,) < t(F,k)n. Combining these two bounds gives the result. O

Note that we do not directly control the variance of n,(F, G,); as we shall
see in Section 7, there are natural examples where n,(F,G,)/n is concentrated
about its finite mean even though its variance tends to infinity.

The very simplest case of Theorem 34 concerns edges; we stated this as a
separate result in the introduction.

Proof of Theorem 3. Since all copies of K5 in G,, = G(n,k) are regular (and
direct), e(G,) = n(Ks, Gp) = n(Ka,Gy), and taking FF = K in Theo-
rem 34 and using (55) yields e(Gy)/n 2 &(k), which is the first claim of
Theorem 3. It remains to show that Ee(G,) = En,(K3,G,) — &(k). The
lower bound follows from the first part, since convergence in probability implies
liminf,, . Ee(G,)/n > &(k), while Theorem 33 gives Ee(Gy,)/n < t(Ka, k) =
&(k), completing the proof. O

It is also easy to prove Theorem 3 directly, using truncations as in this section
but avoiding many complications present in the general case.
By a moment of a kernel family x we shall mean any integral of the form

/d KE K, - fE, dp(ey) - dp(zq),
S

where Fi,...,F, are not necessarily distinct, and each term xp, is evaluated
at some |F;|-tuple of distinct ;. The proof of Theorem 33 shows that for any
connected F, Eny(F,G(n,k)) is bounded by a sum of moments of k. This gives
a very strong condition under which we can control ny(F,G(n, x)).

Theorem 35. Let k be a kernel family in which only finitely many kernels
K are mon-zero. Suppose also that all moments of k are finite. Then for any
connected F, Eny(F,G(n,k)) = O(1), and the conclusions of Theorem 34 apply
with ne(F, Gy) replaced by n(F,G,,).

Proof. This is essentially trivial from the comments above and Theorem 34. We
omit the details. O
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Example 30 shows that some conditions are necessary to control ny (F, G(n, K));
we refer the reader to (49) for the description of the kernel family in this case.
Plugging (49) into (56), in this case we have o, (z,y) = 6d(z,y) " + a for
some constant a (in fact, a = 24e7127%), and it easily follows that £(Ps, k) < co.
However, as shown in the discussion of that example, whp there is a vertex with
degree at least n' 73, and hence at least n?~%¢ copies of P, which is much larger
than n if € < 1/6. In this case the problem is exceptional Pys ijk arising from
atoms ¢j¢ and jk¢: the corresponding moment

/84 /€3($1,$2,$4)/€3($2,$3,$4)
is infinite, due to the contribution from d(wzy,x4)% 2.

Of course, not all moments contribute to En,(F,G,,); as we shall see in the
next section, it is easy to obtain results similar to Theorem 35 under weaker
assumptions in special cases. Also, in general it may happen that ny(F, G,) has
infinite expectation (in the multigraph form), but is nonetheless often small, i.e.,
that the large expectation comes from the small probability of having a vertex
in very many copies of F. Much more generally, it turns out that when & is
integrable, whp all exceptional copies of F' sit on a rather small set of vertices.

Theorem 36. Let k be an integrable kernel family and F a connected graph,
with t(F, k) finite. Let G, = G(n, k).

For any € > 0, there is a § > 0 such that whp every graph G, formed from
G, by deleting at most on vertices has n(F,G!) > (¢(F, k) — ¢)n.

For any e > 0 and any 6 > 0, whp there is some graph G., formed from G,
by deleting at most dn vertices such that n(F,G") < (t(F, k) + )n.

Together the statements above may be taken as saying that G,, contains
essentially (£(F, k) + o, (1))n copies of F, where ‘essentially’ means that we may
ignore o(n) vertices. In other words, the ‘bulk’ of G,, contains this many copies
of F, though a few exceptional vertices may meet many more copies.

Proof. We start with the second statement, since it is more or less immediate.
Indeed, writing [ & for 37 pcz |F| [g/r £F, and considering truncations &M as
usual, from monotone convergence we have fle /" [k as M — oco. Let € > 0,
§ > 0 and n > 0 be given. Since £ is integrable, i.e., [k < oo, there is some M
such that [k™ > [k —dn/2. Coupling GM = G(n,xM) and G,, = G(n, k) in
the usual way, let us call a vertex bad if it meets an atom present in G,, but not
GM. The expected number of bad vertices is at most the expected sum of the
orders of the extra atoms, which is at most n([ & — [ kM) < dnn/2. Hence the
probability that there are more than dn bad vertices is at most 1/2.

Deleting all bad vertices from G,, leaves a graph G!, with at most n(F, GM)
copies of F. Applying Theorem 33 this number is at most (£(F,s™) 4+ ¢)n <
(t(F, k) 4+ €)n whp, so we see that if n is large enough, then with probability
at least 1 — n we may delete at most on vertices to leave G!, with at most
(t(F, k) + )n copies of F, as required.
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Turning to the first statement, we may assume without loss of generality that
% is bounded. Indeed, there is some truncation k™ with #(F, M) > #(F, k) —
/2, and taking G(n,s™) C G(n,k) as usual, it suffices to prove the same
statement for G(n, k™) with ¢ replaced by £/2. Assuming & is bounded, then
by Theorem 33 we have n(F,x) > (£(F,x) — £/2)n whp, so it suffices to prove
that if k is bounded and € > 0, then there is some § > 0 such that whp any dn
vertices of G,, = G(n, k) meet at most en copies of F.

Let v be a fixed vertex of F, and for 1 < i < n let a; denote the number
of homomorphisms from F to G,, mapping v to vertex ¢. Let F’ be the graph
formed from two copies of F meeting only at v. Then there are exactly a?
homomorphisms from F’ to G, mapping v to 4, so in total there are > a?
homomorphisms from F’ to G,,. Now the image of any homomorphism from F”’
to G, is a connected subgraph F” of G,,, and each such subgraph is the image
of O(1) homomorphisms. Applying Theorem 33 to each of the O(1) possible
isomorphism types of F”, it follows that there is some constant C' such that,
whp,

Za? = hom(F’,G,) < Cn.

When the upper bound holds, given any set S C [n] with |S| < dn, by the
Cauchy—Schwartz inequality we have

S i < VIS8T, S a? < Vouv/n = VCon.

€S %

Repeating the argument above for each vertex v of F' and summing, we
see that there is some C' < oo (given by the sum of at most |F'| constants
corresponding to C' above) such that whp for any § > 0, and any set S of at
most on vertices of G,,, there are at most v/C’én homomorphisms from F to G,
mapping any vertex of F' into S. This condition implies that S meets at most
V/C"6n copies of F, so choosing & such that v/C'6 < e, we see that whp any én
vertices meet at most en copies of F. As noted above, the first statement of the
theorem follows. O

7 A power-law graph with clustering

Our aim in this paper has been to introduce a very general family of sparse
random graph models, showing that despite the generality, the models are still
susceptible to mathematical analysis. The question of which special cases of the
model may be relevant in applications is a very broad one, and not our focus.
Nevertheless, in the light of the motivation of the model, we shall investigate
one special case. We should like to show that, with an appropriate choice of
kernel family, our model gives rise to graphs with power-law degree distributions,
with various ranges of the degree exponent, the clustering coefficient (see (66)),
and the mixing coefficient (see (69)). We achieve this in the simplest possible
way, considering a ‘rank 1’ version of the model in which we add only edges
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and triangles. We do not claim that this particular model is appropriate for
any particular real-world example; nevertheless, it shows the potential of our
model to produce graphs that are similar to real-world graphs, where similarity
is measured by the values of these important and much studied parameters.

Throughout this section we fix three parameters, o > 1, and A,B > 0
with A+ B > 0. We consider one specific kernel family £ on & = (0, 1] with
it Lebesgue measure. Our kernel family has only two non-zero kernels, ks,
corresponding to edges, and k3 to triangles, with

Ko(z,y) = Az~ eyt

and
K3(x,y,z) = By~ oy tegmt/e

We could of course consider many other possible functions, but these seem the
simplest and most natural for our purposes. It would be straightforward to
carry out computations such as those that follow with each of the as above
replaced by a different constant, for example, although we should symmetrize
the kernels in this case. However, one of these exponents would determine the
power law, and it seems most natural to take them all equal.

For convenience, we define

1 @
& k
o= [ xk/adx_{w a>k, (60)
0

0, a<k.

In particular, 8; = a/(a — 1). We then have

/ ke = AB?  and / k3 = B},
52 53
so K is integrable. Also, for the asymptotic edge density in Theorem 3,
&(k) :/ I€2+3/ k3 = AB? +3BB35. (61)
S2 S3

In the following subsections we apply our general results to determine various
characteristics of this particular random graph G,, = G(n, K).

7.1 Degree distribution

From (33) and symmetry of k3 and k3 we see that

Aot (2) = sy o) = / a2 ) dpu(y) = ABra1/,
S
while for j = 1,2, 3,

Mo (@) = [ w2 duy) () = B/
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Since an edge contributes 1 to the degree of each endvertex, while a triangle
contributes 2 to the degrees of its vertices, for each x, the measure A, defined
by (34) is given by

Ao = 243127126, + 3BBZa—1/ 5,

Theorem 29 then tells us that the degree distribution of G,, = G(n, k) converges
to the mixed compound Poisson distribution MCPo(A), where A is the random
measure corresponding to A, with z chosen uniformly from (0, 1].

Note that if B = 0, then the limiting degree distribution is mixed Poisson,
while if A = 0, almost all degrees are even and the degrees divided by 2 have a
mixed Poisson distribution.

For the power law, note that the mean A(z) of A, is simply

AMz) = (24061 + GBﬂf)x_l/o‘ = cx~ Ve,

where 0 < ¢ = 2A8; + 6B37 = 2£(k)/B1 < oo is a constant depending on A, B
and «. Choosing = randomly from (0, 1], for any k > ¢ we have

P(A(x) > k) = B < (k/c) ™) = (k/)~°,

so the distribution of A(x) has a power-law tail. Using the concentration prop-
erties of Poisson distributions with large means, arguing as in the proof of
Corollary 13.1 of [10], it follows easily that

P(MCPo(A) > k) ~ (k/c)~“

as k — o0, so the asymptotic degree distribution does indeed have a power-law
tail with (cumulative) exponent .

Let d = P(MCPo(A) = k), so by Theorem 29, the asymptotic fraction of
vertices with degree k is simply di. If A > 0 then it is not hard to check that
in fact

dy ~ kot (62)

as k — oo, where 0 < ¢/ = ac® < oo, so the degree distribution is power-law in
this stronger sense. If A = 0, then d; = 0 if k is odd, but (62) still holds for
even k, for a different (doubled) constant ¢'.

7.2 The phase transition and the giant component

From (3), we have kq(z,y) = (24 + 6B )z~ *y~1/* which we may rewrite
as ke(z,y) = (2)(y), where

Y(z) = (2A + 6Bpy )/ 2=/,

By Theorems 5 and 6, the largest component of G,, is of size p(k)n+op(n), and
there is a giant component, i.e., p(k) > 0, if and only if |7}, || > 1. In this case
Ke 1s ‘rank 1’ in the terminology of [10], and we have

Tl = [[01I5 = (2A + 6B51)Be.
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Hence, fixing o > 2 and thus 31 and [, there is a giant component if and only
if 2A+ 6Ba/(a—1) > (a — 2)/a.

Turning to the normalized size p(k) of the giant component, Theorem 10
allows us to calculate this in terms of the solution to a functional equation.
Usually this is intractable, but for the special k we are considering this simplifies
greatly, as in the rank 1 case of the edge-only model; see Section 16.4 of [10], or
Section 6.2 of [34]. Indeed, writing p(x) for the survival probability of X, (),

from (6) we have
1
Sup)(w) = [ 240 1oy () dy
~ 0
1 1
+/ / 3Bx~ /oy =27 (p(y) + p(2) — p(y)p(2)) dy dz,
0 0
which simplifies to
Sk(p)(z) = 2 /*(2AC + 6BB,C — 3BC?),

where .
C’:/ V% (x) da. (63)
0

By Lemma 7, we have p(z) = 1 — exp(—S,(p)(z)), so

p(z) =1 —exp(—(2AC + 6BB,C — 3BC?)a~1/*). (64)

Although we defined C in terms of p, we can view C' as an unknown constant,
define p by (64), and substitute back into (63). The function p then solves (7)
if and only if C' solves

C = /0 gV (1 — exp(—((24 +6B,)C — 3302)x—1/a)) . (65)

and every solution to (7) arises in this way. In particular, by Theorem 10
there is a unique positive solution above the critical point. Transforming the
integral using the substitution y = 2=/, one can rewrite the right hand side
of (65) in terms of an incomplete gamma function, although it is not clear this
is informative. The point is that the form of p(z) is given by (64), and the
constant can in principle be found as the solution to an equation, and can easily
be found numerically for given values of A, B and «.

7.3 Subgraph densities

In the following subsections we shall need expressions for £(F,x) for various

small graphs I, where {(F, ), defined by (53) and (54), may be thought of as
the asymptotic density of copies of F' in the kernel family k.
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We start with direct copies of F. Since all atoms are edges or triangles, the
only graphs F' that can be produced directly are edges, triangles, and Pss, i.e.,
paths with 2 edges.

Putting the specific kernels k2 and k3 into the formulae (56) and (57) from
the previous section, we have

Oy (2,y) = (2A+ 6B )z~ oy,

and
O-PZ ($7 Y, Z) - 6B.fE71/043471/042:*1/@7

while
ok, (4, y,2) = 6k, (x,y, 2) = 6B~ Yoy~ ez =1/a

Edges may be formed only directly, so either from (53) and (54) or from
(55), we have

i(H2,) = 5 [ o ) dua) duty) = A5} + 355,

which agrees, as it should, with (61). Since a triangle is 2-connected, it has no
non-trivial tree decomposition, and (53) and (54) give

i00.0) = § [ Oa(o.9.2) (o) dn(y) ) = B3,

which may also be seen by noting that the only regular copies of a triangle are
those directly corresponding to k3.

A copy of P, may be formed by a single triangular atom (a direct copy), but
may also be formed by two edges from different atoms Hence, as in Example 32,

(Paur) = 5 [ (0m(00.2) + 0 (09)010 (1:2) di(e) dily) d(2)

_ % (636{’ + /(2A+ 6B1)x "y~ 27N dp(x) dply) dW))

(24 + 6B)* 57

=3B + 5

Ba.

In particular, if o < 2 then #(Py, k) is infinite.

For S3 = K3, the star with three edges, there are two types of tree-
decompositions: three edges or one edge and one copy of Ps, the latter occurring
in 3 different ways. (There are no direct copies.) Hence,

t(S3, k) = /UKz(-Th$2)UK2(55'1’-T3)0K2($1a374) +3/UP2(3327$1»$3)0K2(5”1’$4)
= (2A+ 6B31)*3; 35 + 18B(2A + 6B1) 53 32

and thus

[(S3,5) = 5 (24 + 6555155 + 3B2A + 65516z
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Finally, for Ps, there are again two types of tree-decompositions: three edges
or one edge and one copy of P, the latter now occurring in 2 different ways.
Hence,

- 1 2
t(P3aE) = 5 /0K2 (3]1,1‘2)0'1(2 (332,1’3)0'[(2 (IE3,$4) + 5/0132 (zl,z%xb’)alﬁ (:L’g,:l?4)

- %(2/1 +6BB1)> 5232 + 6B(2A + 6B1) 53 Bs.

As we shall see, the counts above are enough to calculate two more interesting
parameters of the graph G,, = G(n, k).

7.4 The clustering coefficient

The clustering coefficient C(G) of a graph G was introduced by Watts and
Strogatz [35] as a measure of the extent to which neighbours of a random vertex
in G tend to be joined directly to each other. After the degree distribution, it is
one of the most studied parameters of real-world networks. As discussed in [13],
for example, there are several different definitions of such clustering coefficients.
One of these turns out to be most convenient for mathematical analysis, and is
also very natural; following [13], we call this coefficient Co(G). (Hopefully there
will be no confusion with our earlier use of C2(G) for the number of vertices in
the 2nd largest component.) The coefficient Co(G) may be defined as a certain
weighted average of the ‘local clustering coefficients’ at individual vertices, but
is also simply given by ( )
3n K3, G
C2(G) n(Py, G

a ratio that is easily seen to lie between 0 and 1.
Now from above we have #(K3, k) = B3} < oo. Hence, by Theorem 34,

(66)

ny(K3,Gr) = Bﬂf’n + op(n),

where, as usual, G, = G(n,k). We shall return to exceptional copies of K3
shortly.

If o < 2 then #(Py, k) is infinite, and G,, will whp contain more than O(n)
copies of P,. Note that this is to be expected given the exponent of the asymp-
totic degree distribution, since in this case the expected square degree is infinite.

From now on we suppose that a > 2, so t~(P2,5) is finite. Suppose for the
moment that exceptional copies of P, and K3 are negligible, i.e., that

nx(Ps, Gy), nx(Ks, Gp) = op(n). (67)

By Theorem 34, we have n, (P2, Gy,)/n = t(P2, k) + 0,(1) and n,(K3,G,)/n =
t(K3, k) + 0p(1), so it follows that

_ 3t(Ks, k) _
Cy(Gyp) = FPon) +0p(1) = c2(A, B, o) + 0p(1)
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where, from the formulae in Subsection 7.3,

) 3353
=B ) = s a(a 3852000, (%)

with 1, 82 given by (60). It follows that with the degree exponent o > 2 fixed,
this special case of our model can achieve any possible value of the clustering
coefficient, with the trivial exception of 1 (achieved only by graphs that are
vertex disjoint unions of cliques). Indeed, c2(A,0,a) = 0 for any A, while
taking A = 0 we have .
R A S

which is decreasing as a function of B, and tends to 1 as B — 0 and to 0 as
B — oo.

Let us note in passing that by Theorem 34, if 2 < o < 4 then n, (P2, Gy)/n
is concentrated around its finite mean even though its variance, which involves
the expected 4th power of the degree of a random vertex, tends to infinity.

So far we considered only regular copies of P, and Kj3; we now turn our
attention to exceptional copies. Unfortunately, for any «, some moment of our
kernel is infinite, so Theorem 35 does not apply. However, it is easy to describe
the set of moments relevant to the calculation of Eny(F,G,) for the graphs F'
we consider.

Suppose that F' is an exceptional triangle (or Ps; the argument is then
almost identical) in G,, = G(n, k). Since F has (at most) three edges, there are
at most 3 atoms F; contributing edges to F'. Let H be the union of these atoms,
considered as a multigraph. For example, if F' is the triangle abc, then H might
consist of the union of the three triangles abd, bed, and cad. In some sense this
will turn out to be the ‘worst’ case.

Let us fix the isomorphism type of H, defined in the obvious way. Let h
be the total number of vertices in H, and write r = Y (|F;| — 1) — (h — 1) for
the ‘redundancy’ of H. Since F' is exceptional, r > 1. The expected number
of exceptional F arising in this way is exactly ng)n~ 2 (IF1=1) times a certain
integral of products of ko and k3. From the form of ko and k3, we may write
this as

s —ni/a —np/a
#‘/Sh :I:l 1/ ...xh h/ d/l/(l'])' dM(mh)’

where n; is the number of the atoms F; that contain the ith vertex of H. The
initial factor is at most n'~" < 1, while the integral is finite unless n; > o for
some ¢. Since H is made up of at most 3 atoms Fj, we always have n; < 3, so
if « > 3 then the relevant integrals (i.e., the relevant moments) are finite, and
we have Eny (K3, Gp), Eng (P, Gy,) = O(1), which certainly implies (67).

In fact, we do not need to assume that a > 3. Suppose that 2 < a < 3.
Then in the multigraph version of the model, Eny(K3,G,) = co. (Consider,
for example, three triangles sitting on 4 vertices as above.) On the other hand,
this does not mean that ny (K3, G,,) is often large. Indeed, when we choose our
vertex types uniformly from (0,1], whp there is no vertex whose type z is at
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most 6 = 1/(nlogn), say. Conditioning on this very likely event A, we may
consider the restrictions of kg and 3 to (6, 1]% and (4, 1], respectively. Now the
expected number of copies of some pattern H is at most a constant times

1 S
nt=r (/ z 3/ dx) ,
s

where s is the number of vertices ¢ of H with n; = 3. Since the graph K3 (or
P,) we are trying to form has maximum degree 2, every vertex of H with n; = 3
corresponds to a redundancy, so we always have r > s. Up to constants and a
power of logn the integral is n®~®)/® < \/n, and it follows that

E(nx (K3, Gn) | A) = O(v/n) = o(n).

Since P(A) = 1 — o(1), it follows that ny(Ks3,Gr) = op(n), even though its
expectation would not suggest this. The same holds for ny (P2, Gy), so we see
that (67) does indeed hold for any o > 2, and the clustering coefficient is indeed
concentrated about ca(A, B, a).

7.5 The mixing coefficient

Another interesting parameter of real networks is the extent to which the degrees
of the two ends of a randomly chosen edge tend to correlate; positive correlation
is known as assortative mizing, and negative correlation as disassortative mizing.
To define this precisely, let G be any graph, and let vw be an edge of G chosen
uniformly at random. More precisely, let (v, w) be chosen uniformly at random
from all 2¢(G) ordered pairs corresponding to edges of G. Let D, and D,
denote the degrees of v and w; we view these as random variables. Since the
events {v = v, w = vy} and {v = v9,w = v1} have the same probability, the
random vertices v and w have the same distribution, so D, and D,, have the
same distribution.

Let
~ Cov(Dy,Dy)  Cov(Dy, Dy) (69)

\/Var(D,) Var(D,,) Var(D,)
Here G is fixed, and all expectations are with respect to the random choice of
(v,w). Thus a(G) is simply the correlation coefficient between the degrees of
the two ends of a randomly chosen edge, so —1 < a(G) < 1, and a(G) > 0
corresponds to assortative mixing and a(G) < 0 to disassortative mixing. This
mixing coefficient was introduced by Callaway, Hopcroft, Kleinberg, Newman
and Strogatz [19], building on work of Krapivsky and Redner [30], and has been
studied by many people, for example Newman [33]. In [19], a(G) is denoted
p(G); we avoid this notation as it clashes with our notation for the survival
probability of a branching process.

Fortunately, we need no new theory to evaluate a(G) for G = G(n, k), since
a(@) can be expressed in terms of small subgraph counts. More precisely, for

a(G)
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any graph G,

Zd (PQ’G)’

E(D. - ()

i g

where i runs over all vertices of GG, then j over all neighbours of i, and d; is the
degree of vertex i in G. Also,

_ 20(P3, G) + 6n(K5, G
E((De=1)(Du=1)) = 53D (= 1)(d; — 1) (Ps 2)6(0)( 3,G)

i g
SO

(n(Ps, G) + 3n(K3,G))e(G) — n(P,, G)Q.

Cov(Dy, Dyy) = Cov(Dy—1, Dy—1) = (G

Also,
2¢(G)E((Dy—1)(Dy—2)) = ZZ(dH)( Zd )(di—2) = 6n(Ss, G),
where S3 = K 3 is the star with 3 edges. Thus

Var(D,) = Var(D, — 1) = E((D, — 1)(D, — 2)) + E(D, — 1) — (E(D, — 1))?

_ 3n(S3,G)e(G) + n(Py, Ge(G) — n(Py, G)?
e(G)? '

Hence
(n(Ps, G) + 3n(K3,G))e(G) — n(Ps, G)?

@) = 3n(S3, G)e(G) + n(Pe, G)e(G) — n(Py, G)?’

In well-behaved cases, for example for bounded kernel families, it follows from
our results here (Theorems 33-35) that if G,, = G(n, k), then

(70)

a(Gp) = a(k) + op(1), (71)
where
(P, )E(K) + 3H(K3, £)E(k) — L(P2, K)*
31(93, £)€ (k) + t(P2, £)€ (k) — H(P2, £)?
with &(k) = t(Ka, k); see (55).

Returning to our present specific example, substituting in the expressions
for #(-, k) in Subsection 7.3, the ratio (72) turns out to be

a(k) =

(72)

3ABSY
(464(B185 — B2) + 2(A + 6BS1)E203, + 3ABS: ) B

a(k) = (73)

where € = (A + 3Bf;) = £(k)/B?. Let us make a few comments on these
expressions.
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Firstly, the coefficients #(Ks, k), t(Pz, k), t(K3, k) and t(Ps, k) are finite for
all a > 2, while #(S3, k) is finite if and only if @ > 3. For the numerator, one
can argue for P5 as for P, and K3 above to show that the number of exceptional
copies of P is op(n) and thus negligible for every o > 2, and hence n(Ps, G,,) =
t(Ps, k)n + 0p(n) by Theorem 34. Consequently, the numerator in (70) (with
G = G,,) divided by n? converges in probability to the numerator in (72), and
this limit is finite. For o > 3, one can argue in the same way to show that the
number of exceptional copies of S is negligible, so n(Ss, G,) = t(Ss, k)n-+op(n)
and (71) does indeed hold. For o < 3, when #(S3, ) = oo, Theorem 34 implies

that n(Ss,k)/n = 0o, so in this case a(G,) ~ 0 = a(x), for the not very
interesting reason that Var(D, ) is unbounded while Cov(D,, D,,) is not. In any
case, we have shown that (71) holds in our example for every o > 2.

Secondly, we see that 0 < a(k) < oo for every o > 2, with a(k) > 0 whenever
a > 3 and we add both edges and triangles (i.e., if both A and B are non-zero).

Thirdly, if A and B are both positive and comparable but very small, then
it is easy to see that a(k) is close to 1, for the simple reason that the graph then
consists of rather few (though still order n) edges and triangles, which are almost
all vertex disjoint. In this case we almost always have either D, = D,, = 1, if
we pick an edge component, or D, = D,, = 2 if we pick an edge of a triangle.
This is also easily checked algebraically from (73): the denominator is of the
form 3ABA3? + O((A + B)?), which is asymptotically equal to the numerator if
A, B — 0 with A/B bounded above and below. It follows that as A and B are
varied, a(k) can take any value between 0 and 1, with 1 excluded.

Finally, it is easy to check that the form of a(k) as a function of A, B and «
is very different from that of co(A, B, ) given in (68). It follows that with the
degree exponent a > 3 fixed, if we vary A and B we may vary the clustering
coefficient and a(k) independently, subject to certain inequalities.

It so happens that in the example considered here, a(k) is always non-
negative, but it is easy to give examples where a(k) < 0. Indeed, this arises
already in the edge-only case (of the kind we treated in [10]), with two elements
of weights {1} = p and p{2} = ¢=1—p with 0 < p < 1, taking k2(1,1) = 0,
k2(2,2) =0 and k2(1,2) = A > 0. In symbols,

52(1'7?/) = Al[:E 7& y}v

where 1[F] is the indicator function of the event F.
For this kernel (family)

Ke(xay) = 2/@2(x,y) = 2A1[.13 7é y]’
) = [ w2 =24
or, (T,y) = 262(x,y) = ke(z,y) = 2A1[x # y).

Expanding the integrals as sums, it follows that

i(H2,r) = 5 [ o) ) duy) = €() = 244pg:

]



(P2, k) = % / o1, (2, )0, (y: 2) dp(x) dp(y) dp(z) = 2A%(pap + qpq)
= 2A4%pq;
t(K3, ’f) =0
f(Sg,f) = é/(jm (21, 22)0 K, (21, 23) 0K, (1, 24) du(xy) du(ze) du(zs) du(zy)

4 4
= gA?’(pq3 +qp®) = §A3pq(p2 +q%);
1

H(Ps, k) = 3 /UKz (21, 22) 0K, (T2, T3) 0 1, (T3, Ta) dp(z1) dp(z2) dp(zs) dp(za)
= 4A°(pgpq + qpap) = 8A”p*¢*.
Substituting these expressions into (72) and simplifying, we find that

Alp — q)*

ls) = A - +T

Hence a(k) < 0, and we have disassortative mixing as soon as p # ¢, i.e., when
p € (0,2)U(3,1). We see also that the coefficient a(x) can be made to take any
value in (—1,0] by choosing the parameters suitably.

One can easily combine the simple example above with that considered in
the bulk of this section to give graphs with power-law degree distributions with
various values of the clustering coefficient and of a(G,), now with negative
values of a(G,,) possible. Perhaps the simplest way of giving such graphs is to
divide the type space (0, 1] into two intervals I1 = (0, x| and Iy = (xo, 1], take
() =z Y on I, and (x) = (z—x0)~/* on Iy, to set ro(x,y) = Ayp(x)p(y)
if one of x is in I; and the other in I, and ka(z,y) = Asp(z)p(y) otherwise,
and to define k3(z,y,z) to be some constant times ¢(x)p(y)p(z), where the
constant depends on how many of x, y and z line in I;.

8 Limits of sparse random graphs

Although our main focus in this paper was the introduction of the model G(n, k),
and the study of the existence and size of the giant component in this graph,
we shall close by briefly discussing some connections to earlier work that arise
when considering the local structure of G(n, k).

Let us start by considering subgraph counts. As before, let G consist of one
representative of each isomorphism class of finite graphs, and let F C G consist
of the connected graphs in G. Given two graphs F and G, let hom(F,G) be
the number of homomorphisms from F to G, and emb(F,G) the number of
embeddings, so emb(F,G) = n(F,G)aut(F). Writing G,, for a graph with n
vertices, in the dense case, where G, has ©(n?) edges, one can combine the
normalized subgraph or embedding counts

s(F,Gp) =n(F,G,)/n(F, K,) = emb(F,G,)/emb(F, K,)
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to define a metric that turns out to have very nice properties. (Often one uses
the equivalent homomorphism densities ¢(F, G,,) = hom(F, G,,)/n/*'l, but when
we come to sparse graphs embeddings are more natural than homomorphisms.)
A sequence (G),) converges in this subgraph metric if and only if there are
constants s(F'), F' € F, such that s(F,G,) — s(F) for each F' € F. Lovész
and Szegedy [32] characterised the possible limits (s(F))pes, both in terms of
kernels and algebraically.

Borgs, Chayes, Lovéasz, Sés and Vesztergombi [17, 18] introduced the cut
metric g that we used in Section 4. They showed that this metric is equivalent
to the subgraph metric, as well as to various other notions of convergence for
sequences of dense graphs. One of the nicest features of these results is that for
every point in the completion of the space of finite graphs (with respect to any
of these metrics), there is a natural random graph model (called a W-random
graph in [32]) that produces sequences of graphs tending to this point. (See also
Diaconis and Janson [23], where connections to certain infinite random graphs
are described.)

Turning to sparse graphs, as described in [16], the situation is much less
simple. When G,, has ©(n) edges, as here, the natural normalization is to
consider, for each connected F,

5(F,Gy) = emb(F,G,)/n = aut(F)n(F,G,)/n.

Under suitable additional assumptions on the sequences G,,, one can again com-

bine these counts to define a metric, and consider the possible limit points.

Unfortunately, not much is known about these; see the discussion in [16].
Turning to our present model, Theorem 35 shows that if £ is a kernel family

with only finitely many non-zero kernels and all moments finite, then §(F, G,,) 2
t(F,k) for all connected F, where G, = G(n,x) and t(F,k) is given by (53).
This suggests the following question.

Question 1. Is there a simple characterization of those vectors (tp)pex for
which there is an integrable kernel family x such that tp = t(F, k) for all F € F?

As unbounded kernel families may cause technical difficulties, it may make
sense to ask the same question with the restriction that s should be bounded.

Note that Question 1 is very different from the question answered by Lovasz
and Szegedy [32]: our definition of ¢(F, k) is different from the corresponding
notion studied there, since it is adapted to the setting of sparse graphs. In
particular, if x consists only of a single kernel kg (as in [32]), then we have
t(F,k) = 0 for any F' that is not a tree.

As discussed in [16, Question 7.1], it is an interesting question to ask whether,
for various natural metrics on sparse graphs, one can provide natural random
graph models corresponding to points in the completion. For those vectors (tr)
where the answer to Question 1 is yes, the model G(n, k) provides a positive
answer (at least if £ is bounded, say). But these points will presumably only
be a very small subset of the possible limits, so there are many corresponding
models still to be found.
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Asnoted in [16, Section 6.6], rather than considering subgraph counts §(F, G,,),
for graphs with ©(n) edges it is more natural to consider directly the proba-
bility that the ¢-neighbourhood of a random vertex v is a certain graph F'; the
subgraph counts may be viewed as moments of these probabilities.

More precisely, let G* be the set of isomorphism classes of connected, locally
finite rooted graphs, and for ¢ > 0, let G; be the set of isomorphism classes of
finite connected rooted graphs with radius at most ¢, i.e., in which all vertices
are within distance ¢ of the root. A probability distribution 7 on G* naturally
induces a probability distribution 7; on each Gj, obtained by taking a m-random
element of G" and deleting any vertices at distance more than ¢ from the root.
Given F' € Gj and a graph G,, with n vertices, let p;(F, G,,) be the probability
that a random vertex v of GG,, has the property that its neighbourhoods up to
distance t form a graph isomorphic to F', with v as the root. A sequence (G,,)
with |G| — oo has local limit 7 if

pt(F, Gn) — 7Tt(F)

for every F' € G} and all t > 0. This notion has been introduced in several
different contexts under different names: Aldous and Steele [4] used the term
‘local weak limit’, and Aldous and Lyons [3], ‘random weak limit’. Also, Ben-
jamini and Schramm [7] defined a corresponding ‘distributional limit’ of certain
random graphs. Notationally it is convenient to map a graph G,, to the point
#(Gp) = (p(F,Gy)) € X =[],[0,1]9%, and to define ¢(r) similarly. Taking any
metric d on X giving rise to the product topology, we obtain a metric dj,. on
the set of graphs together with probability distributions on G, and (G,,) has
local limit 7 if and only if dijoe(Gp, ) — 0.

As noted in [16], under suitable assumptions (which will hold here if £ is
bounded, for example), the two notions of convergence described above are
equivalent, and one can pass from the limiting normalized subgraph counts §(F')
to the distribution 7 and wvice versa. Also, if k is a bounded kernel, then the
random graphs G(n, ) defined in [10] have as local limit a certain distribution
associated to w. This latter observation extends to the present model, and as
we shall now see, no boundedness restriction is needed.

Given an integrable hyperkernel , let G, be the random (potentially infi-
nite) rooted graph associated to the branching process Xj. This is defined in
the natural way: we take the root of X,; as the root vertex, for each child clique
of the root we take a complete graph in G, with these cliques sharing only the
root vertex. Each child w of the root then corresponds to a non-root vertex in
one of these cliques, and we add further cliques meeting only in w to correspond
to the child cliques of w, and so on.

More generally, given an integrable kernel family x = (kg)per, we may
define a random rooted graph G, in an analogous way; we omit the details. We
write 7, for the probability distribution on G" associated to G.

Theorem 37. Let k be an integrable kernel family and let G,, = G(n, k). Then
d10C<Gn, Fﬁ) £> 0.
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In fact, we conjecture that almost sure convergence holds for any coupling
of the G, for different n, and in particular if the different G,, are taken to
be independent. (The case of independent G,, is the extreme case, which by
standard arguments implies a.s. convergence for every other coupling too; a.s.
convergence in this case is known as complete convergence.)

Writing 7, ; for the probability distribution on G induced by 7, by defini-

tion we have dioc (G, Tx) 2.0 if and only if

pe(F,Gp) B mo i (F) (74)

for each ¢t and each F' € G;. The special case where k is a bounded hyperkernel
is essentially immediate: (74) is simply a formal statement of the local coupling
established for bounded hyperkernels in Section 3. Exactly the same argument
applies to a bounded kernel family. For the extension to general kernel families
we need a couple of easy lemmas.

Lemma 38. Let k be an edge integrable kernel family. For any € > 0 there is
ad = 01(k,e) > 0 such that whp any on vertices of G(n, k) meet at most en
edges.

Proof. This is an extension of Proposition 8.11 of [10]; the proof carries over
mutatis mutandis, using Theorem 33 with FF = P to bound the sum of the
squares of the vertex degrees in the bounded case. The key step is to use
edge integrability to find a bounded kernel family " such that G(n, k') may be
regarded as a subgraph of G(n, k) containing all but at most en/2 + op(n) of
the edges.

It turns out that we can weaken edge integrability to integrability. The price
we pay is that we cannot control the number of edges incident to a small set
of vertices, but only the size of the neighbourhood. As usual, given a set A of
vertices in a graph G, we write N*(A) for the set of vertices at graph distance
at most ¢ from A, so A C N(A) = N'(A) C N?(A4)---.

Lemma 39. Let K be an integrable kernel family. For any € > 0 there is a
0 = 02(k,€) > 0 such that whp every set A of at most on wvertices of G(n, k)
satisfies |N(A)| < en.

Proof. Replacing each atom by a clique, we may and shall assume that & is a
hyperkernel. Let s’ be the kernel family obtained from & by replacing each clique
by a star. Since x is integrable, x’ is edge integrable. Let 1 (g) = 01(x’, ) be the
function given by Lemma 38, and set 6 = d1(d1(¢)) > 0. Then whp every set A
of at most dn vertices of G(n, £’) has |[N(A)| < §1(¢)n and hence |[N2(A)| < en.
Coupling G(n, k) and G(n, ') in the obvious way, vertices adjacent in G(n, k)
are at distance at most 2 in G(n, '), and the result follows. O

Let v(G(n,k)) be the sum of the orders of the atoms making up G(n, k).
Our final lemma relates this sum to [k =Y [F| [gr Kr.
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Lemma 40. Let k = (kp)rer be an integrable kernel family. Thenv(G(n,k)) =
n [ &+ op(n).

Proof. Let X, be the number of atoms with order r, and X = v(G(n,k)) =
>, 5o Xr. Let ¢ = [k, and let ¢, be the contribution to [k from kernels
corresponding to graphs F with r vertices, so E(rX,) = (n)yc,/n"~! ~ ne, and
Y ¢ =c < oo. Given ¢ > 0, there is an R such that }° _pc¢, > ¢ —¢e. Each
X, has a Poisson distribution and is thus concentrated about its mean, so whp

X > ZTXT > Zcrn—anz (¢ — 2¢e)n.
r<R r<R

Writing (x)+ for max{xz,0}, since € was arbitrary we have shown that (¢ —
X/n)y 5 0. Since ¢ — X/n is bounded, it follows that E(c — X/n), — 0.
But EX < ¢n, so E(X/n —¢); = E(X/n —c¢) + E(c — X/n); — 0. Hence
(X/n—c)y 20,50 X/n 2 ¢ as claimed. O

Combining the last two lemmas, we can now prove Theorem 37.

Proof of Theorem 37. As noted after the statement of the theorem, the case
where g is bounded is straightforward.

Let k be an integrable kernel family, and let G,, = G(n,k). Fix t > 1,
F € Gf, and € > 0. It suffices to prove that

pe(F, Gn) = me i (F)| < €+ 0p(1). (75)

Then letting ¢ — 0 we have p;(F,G,) > Tyt (F7), so (74) holds. Since t and F

are arbitrary, this implies djoc(Gn, Wﬁ) 2o.

Applying Lemma 39 ¢ times, there is a § > 0 such that whp any set A
of at most dn vertices of G,, satisfies |[N*(A)| < en/2. Since k is integrable,
there is a bounded kernel family ™ which satisfies K™ < s pointwise and
[r—[M < §/2. As M — oo, we have M /' k pointwise, and it follows
that mon ((F) — 7 (F); the argument is as for Theorem 19(i). Taking M
large enough, we may thus assume that |Wﬁhf7t(F) - Wﬁ,t(F” <e/2. Let G, =
G(n,kM). Since kM is bounded, we have p;(F,G") = mem ¢ (F). Coupling Gy,
and G, as usual so that G}, C Gy, let B be the set of vertices incident with
an atom present in G,, but not G!,. By Lemma 40 we have |B| < én whp, so

whp no more than en/2 vertices are within distance ¢ of vertices in B. But then
|p:e(F, Gy) — pe(F,G),)| < e/2 whp, and (75) follows. O

The general question of which probability distributions on G arise as local
limits of sequences of finite graphs seems to be rather difficult. There is a
natural necessary condition noted in different forms in all of [3, 4, 7]; see also
[16, Section 6.6]. Aldous and Lyons [3] asked whether this condition is sufficient,
emphasizing the importance of this open question. Let us finish with a related
but perhaps much simpler question: given x, we defined X, as a branching
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process in which the particles have types. But in the corresponding random
graph G these types are not recorded. This means that x cannot simply be

read out of the distribution of G, i.e., out of 7. This suggests the following
question.

Question 2. Which probability distributions on G* are of the form 7, for some
integrable kernel family x?
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