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Abstract. We consider a conditioned Galton–Watson tree and prove
an estimate of the number of pairs of vertices with a given distance, or,
equivalently, the number of paths of a given length.

We give two proofs of this result, one probabilistic and the other
using generating functions and singularity analysis.

Moreover, the latter proof yields a more general estimate for gener-
ating functions, which is used to prove a conjecture by Bousquet–Mélou
and Janson [5], saying that the vertical profile of a randomly labelled
conditioned Galton–Watson tree converges in distribution, after suitable
normalization, to the density of ISE (Integrated Superbrownian Excur-
sion).

1. Introduction and results

Let Tn be a conditioned Galton–Watson tree, i.e., the random rooted tree
T obtained as the family tree of a Galton–Watson process with some given
offspring distribution ξ, conditioned on the number of vertices |T | = n. We
will always assume that

E ξ = 1 and 0 < σ2 := Var ξ <∞. (1.1)

In other words, the Galton–Watson process is critical and with finite vari-
ance, and P(ξ = 1) < 1. (Note that this entails 0 < P(ξ = 0) < 1.) It is
well-known that this assumption is without essential loss of generality, and
that the resulting random trees are essentially the same as the simply gen-
erated families of trees introduced by Meir and Moon [13]. The importance
of this construction lies in that many combinatorially interesting random
trees are of this type, for example (uniformly chosen) random plane (= or-
dered) trees, random unordered labelled trees (Cayley trees), random binary
trees, and (more generally) random d-ary trees. For further examples see
e.g. Aldous [1] and Devroye [6].
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We consider only n such that Tn exists, i.e., such that P(|T | = n) > 0.
The span of ξ is defined to be the largest integer d such that ξ ∈ dZ a.s. If
the span of ξ is d, then Tn exists only for n ≡ 1 (mod d), and it exists for
all large such n.

For our main theorem, we assume that we are given a further random
variable η. Given a rooted tree τ , we take an independent copy ηe of η for
every edge e ∈ τ . We give each vertex v the label Lv obtained by summing
ηe for all e in the path from the root o to v. (Thus, Lo = 0.) We assume
that

E η = 0 and 0 < σ2
η := Var η <∞. (1.2)

We further assume that

η is integer valued and with span 1; (1.3)

thus all labels are integers, and all integers are possible labels.
We let X(j; τ) be the number of vertices in τ with label j; the sequence

(X(j; τ))∞j=−∞ is the vertical profile of the labelled tree.
For the random tree Tn, we assume that the variables ηe are independent

of Tn. The vertical profile (X(j;Tn)) then is a random function defined for
j ∈ Z. We write Xn(j) := X(j;Tn), and extend the domain of Xn to R by
linear interpolation between the integer points; thus Xn is a random contin-
uous function on R. Our main theorem says that this function Xn, suitable
normalized, converges in distribution in the space C0(R) of continuous func-
tions on R that tend to 0 at ±∞; we equip C0(R) with the usual uniform
topology defined by the supremum norm. Let, further, fise denote the den-
sity of the random measure ISE introduced by Aldous [3]; fise is a random
continuous function with (random) compact support, see Bousquet–Mélou
and Janson [5, Theorem 2.1].

Theorem 1.1. With the assumptions (1.1), (1.2), and (1.3), let γ :=
σ−1
η σ1/2. Then, as n→∞,

1
n
γ−1n1/4Xn

(
γ−1n1/4·

) d−→ fise(·), (1.4)

in the space C0(R) with the usual uniform topology. Equivalently,

n−3/4Xn

(
n1/4·

) d−→ γfise(γ ·). (1.5)

Hence, if n→∞ and jn/n1/4 → x, where −∞ < x <∞, then

n−3/4X(jn;Tn) d−→ γfise(γx). (1.6)

Note that the random functions on the left and right hand sides of (1.4)
and (1.5) are density functions, i.e., non-negative functions with integral 1.
The limit law in (1.6) is characterized in [4] by a formula for its Laplace
transform.

Theorem 1.1 was conjectured in [5], and proved there in two special cases,
viz. when ξ has the Geometric distribution Ge(1/2) and thus Tn is a random
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ordered tree, and η is uniformly distributed on either {−1, 1} or {−1, 0, 1}.
Moreover, it was shown there [5, Remark 3.7] that the proof given in [5] ap-
plies generally under the assumptions above, provided the following estimate
holds. (We let in this paper C1, C2, . . . and c1, c2, . . . denote various positive
constants that may depend on (the distribution of) ξ, and sometimes on η,
but not on n, k and other variables unless explicitly stated.)

Lemma 1.2. Under the assumptions above, there exists a constant C1 such
that for all n ≥ 1 and t ∈ [−π, π],

E
∣∣∣∣ 1n∑

j

X(j;Tn)eijt
∣∣∣∣2 ≤ C1

1 + nt4
. (1.7)

We prove Lemma 1.2, and thus Theorem 1.1, in Section 3, using The-
orem 1.6 below. Before presenting that theorem, we consider a simpler
version, and further results that we prove by the same method.

For an arbitrary rooted tree τ , let Pk(τ), k ≥ 1, be the number of (un-
ordered) pairs of vertices {v, w} in τ such that the distance d(v, w) = k;
equivalently, Pk(τ) is the number of paths of length k in τ . Our next result
is an estimate, uniform in all k and n, of the expectation of this number
Pk(Tn) for a conditioned Galton–Watson tree Tn.

Recall that we tacitly assume (1.1). (But no stronger moment condition.)

Theorem 1.3. There exists a constant C2 such that for all k ≥ 1 and n ≥ 1,
EPk(Tn) ≤ C2nk.

One way to interpret this result is that the expected number of vertices of
distance k from a randomly chosen vertex in Tn is O(k). In other words, if
T ∗n is Tn randomly rerooted, and Zk(τ) is the number of vertices of distance
k from the root in a rooted tree τ , then the following holds.

Corollary 1.4. EZk(T ∗n) = O(k), uniformly in all k ≥ 1 and n ≥ 1.

This can be compared to [10, Theorem 1.13], which shows that

EZk(Tn) = O(k), (1.8)

again uniformly in k and n. Note that in the special case when Tn is a
random (unordered) labelled tree, T ∗n has the same distribution, so Corol-
lary 1.4 reduces to (1.8). However, in general, a randomly rerooted condi-
tioned Galton–Watson tree is not a conditioned Galton–Watson tree.

Remark. The emphasis is on uniformity in both k and n. If we, on the
contrary, fix k and consider limits as n→∞, we have EZk(Tn)→ 1 + kσ2,
see Meir and Moon [13] and Janson [10; 11]. It is shown in [11] that the
sequence EZk(Tn) is not always monotone in n.

We give a probabilistic proof of Theorem 1.3, and thus of Corollary 1.4
too, in Section 4.

We also give another proof by first proving a corresponding estimate for
the generating function. (We present two different proofs, since we find both
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methods interesting, and both methods yield as intermediary steps in the
proofs other results that we find interesting.) Let fn(z) be the generating
function defined by

fn(z) :=
∞∑
k=1

EPk(Tn) zk.

We will use standard singularity analysis, see e.g. Flajolet and Sedgewick
[9], and define the domain, for 0 < β < π/2 and δ > 0,

∆(β, δ) := {z ∈ C : |z| < 1 + δ, z 6= 1, | arg(z − 1)| > π/2− β}.

Note that | arg(z − 1)| > π/2− β is equivalent to | arg(1− z)| < π/2 + β.

Theorem 1.5. For every ξ there exist positive constants C3, β, δ such that
for all n ≥ 1, fn extends to an analytic function in ∆(β, δ) with

|fn(z)| ≤ C3n|1− z|−2, z ∈ ∆(β, δ). (1.9)

By standard singularity analysis (i.e., estimate of the Taylor coefficients
of fn(z) using Cauchy’s formula and a suitable contour in ∆(β, δ)), (1.9)
implies EPk(Tn) = O(nk), see Flajolet and Sedgewick [9], Theorem VI.3
and (for the uniformity in n) Lemma IX.2 (applied to the family {fn(z)/n}).
Hence, Theorem 1.3 follows from Theorem 1.5.

For each pair of vertices v, w in a rooted tree, the path from v to w
consists of two (possibly empty) parts, one going from v towards the root,
ending at the last common ancestor v∧w of v and w, and another part going
from v ∧ w to w in the direction away from the root. We will also prove
extensions of the results above for Pk(Tn), where we consider separately the
lengths of these two parts. Define the corresponding bivariate generating
function (now considering ordered pairs v, w)

hn(x, y) := E
∑

v,w∈Tn

xd(v,v∧w)yd(w,v∧w). (1.10)

Theorem 1.6. For every ξ there exist positive constants C4, β, δ such that
for all n ≥ 1,

|hn(x, y)| ≤ C4n|1− x|−1|1− y|−1, x, y ∈ ∆(β, δ).

Note that, by (1.10) and (1.9)

hn(z, z) = E
∑

v,w∈Tn

zd(v,w) = n+ 2fn(z).

Hence Theorem 1.5 follows from Theorem 1.6, and thus Theorem 1.3 follows
too from it. We prove Theorem 1.6 in Section 2.

If we define P̃`,m(τ) := #{(v, w) ∈ τ : d(v, v ∧ w) = `, d(w, v ∧ w) = m},
then singularity analysis as above (but twice) shows that Theorem 1.6
implies the following. (Since Pk = 1

2

∑k
`=0 P̃`,k−`, this too implies Theo-

rem 1.3.)
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Theorem 1.7. There exists a constant C5 such that for all `,m ≥ 0 and
n ≥ 1, E P̃`,m(Tn) ≤ C5n.

Acknowledgement. This research was mainly done during a workshop at
Bellairs Research Institute in Barbados, March 2006, and completed during
a visit of SJ to Centre de recherches mathématiques, Université de Montréal,
October 2008. We thank two anonymous referees for helpful suggestions.

2. Proof of Theorem 1.6

We use some further generating functions. Recall that T is the (uncon-
ditioned) Galton–Watson tree with offspring distribution ξ, and define

Φ(z) := E zξ,

F (z) := E z|T |,

G(z, x) := E
(
z|T |

∑
v∈T

xd(v,o)
)
,

H(z, x, y) := E
(
z|T |

∑
v,w∈T

xd(v,v∧w)yd(w,v∧w)
)

=
∞∑
n=1

P(|T | = n)hn(x, y)zn.

These functions are defined and analytic at least for |z|, |x|, |y| < 1.
Let us condition on the degree do of the root of T , recalling that do

d= ξ.
If do = `, then T has ` subtrees T1, . . . , T` at the root o, and conditioned
on do = `, these are independent and with the same distribution as T ; we
denote their roots (the neighbours of o), by o1, . . . , o`.

Assume do = `, and let |z|, |x|, |y| < 1. First, |T | = 1+
∑`

i=1 |Ti| and thus
z|T | = z

∏`
i=1 z

|Ti|. Taking the expectation, we obtain, as is well-known,
first

E
(
z|T | | do = `

)
= z E

∏̀
i=1

z|Ti| = zF (z)`,

and then

F (z) = E
(
z|T |

)
= z

∞∑
`=0

P(ξ = `)F (z)` = zΦ(F (z)).

Similarly, separating the cases v ∈ Ti, i = 1, . . . , `, and v = o,∑
v∈T

xd(v,o) =
∑̀
i=1

∑
v∈Ti

xd(v,oi)+1 + 1.

Hence,

E
(
z|T |

∑
v∈T

xd(v,o) | do = `
)

= E
∑̀
i=1

zz|Ti|
∑
v∈Ti

xd(v,oi)+1
∏
j 6=i

z|Tj | + E
(
z
∏̀
i=1

z|Ti|
)

= `zxG(z, x)F (z)`−1 + zF (z)`
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and

G(z, x) =
∞∑
`=0

P(ξ = `)`zxG(z, x)F (z)`−1+F (z) = zxΦ′(F (z))G(z, x)+F (z)

which gives

G(z, x) =
F (z)

1− zxΦ′(F (z))
. (2.1)

Similarly,

E
(
z|T |

∑
v,w∈T

xd(v,v∧w)yd(w,v∧w) | do = `
)

=

E
∑̀
i=1

zz|Ti|
∑
v,w∈Ti

xd(v,v∧w)yd(w,v∧w)
∏
j 6=i

z|Tj |

+ E
∑
i 6=j

zz|Ti|
∑
v∈Ti

xd(v,oi)+1z|Tj |
∑
w∈Tj

yd(w,oj)+1
∏
k 6=i,j

z|Tk|

+ E
∑̀
i=1

zz|Ti|
∑
v∈Ti

xd(v,oi)+1
∏
k 6=i

z|Tk|

+ E
∑̀
j=1

zz|Tj |
∑
w∈Tj

yd(w,oj)+1
∏
k 6=j

z|Tk| + E
(
z
∏̀
i=1

z|Ti|
)

leading to

H(z, x, y) = zΦ′(F (z))H(z, x, y) + zxyΦ′′(F (z))G(z, x)G(z, y)

+ zxΦ′(F (z))G(z, x) + zyΦ′(F (z))G(z, y) + F (z)

which gives

H(z, x, y) =

zxyΦ′′(F (z))G(z, x)G(z, y) + zΦ′(F (z))
(
xG(z, x) + yG(z, y)

)
+ F (z)

1− zΦ′(F (z))
(2.2)

Assume now for simplicity that ξ has span 1. (The case when the span
is d > 1 is treated similarly with the standard modification that we have to
give special treatment to neighbourhoods of the d:th unit roots.) Then, by
[10, Lemma A.2], for some δ > 0 and β ≤ π/4, F extends to an analytic
function in ∆(β, δ) with |F (z)| < 1 for z ∈ ∆(β, δ) and

F (z) = 1−
√

2σ−1
√

1− z + o
(
|z − 1|1/2

)
, as z → 1 with z ∈ ∆(β, δ).

(2.3)
We will prove the following companion results.
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Lemma 2.1. If ξ has span 1, then there exists β, δ > 0 such that F extends
to an analytic function in ∆(β, δ) and, for some c1, c2 > 0, if x, z ∈ ∆(β, δ),
then

|1− zΦ′(F (z))| ≥ c1|1− z|1/2, (2.4)

|1− xzΦ′(F (z))| ≥ c2|1− x|. (2.5)

Consequently, G(z, x) and H(z, x, y) extend to analytic functions of x, y, z ∈
∆(β, δ), and, for all x, y, z ∈ ∆(β, δ),

|G(z, x)| ≤ C6|1− x|−1, (2.6)

|H(z, x, y)| ≤ C7|1− z|−1/2|1− x|−1|1− y|−1. (2.7)

Standard singularity analysis [9, Lemma IX.2] applied to (2.7) yields

|P(|T | = n)hn(x, y)| ≤ C8n
−1/2|1− x|−1|1− y|−1, x, y ∈ ∆(β, δ),

which proves Theorem 1.6 because, as is well known, a singularity analysis
of (2.3) yields

P(|T | = n) ∼ c3n−3/2.

It thus remains only to prove Lemma 2.1.

Proof of Lemma 2.1. Since E ξ2 <∞, Φ′ and Φ′′ extend to continuous func-
tions on the closed unit disc with Φ′(1) = E ξ = 1 and Φ′′(1) = E ξ(ξ − 1) =
σ2. Hence, (2.3) yields, for z ∈ ∆(β, δ),

Φ′(F (z)) = Φ′(1) + Φ′′(1)
(
F (z)− 1

)
+ o(|F (z)− 1|)

= 1−
√

2σ
√

1− z + o
(
|z − 1|1/2

)
and

zΦ′(F (z)) = Φ′(F (z)) +O(|z − 1|) = 1−
√

2σ
√

1− z + o
(
|z − 1|1/2

)
. (2.8)

Let B(1, ε) := {z : |z − 1| < ε}, and take β < π/4. Since z ∈ ∆(β, δ) \ {1}
entails | arg(1− z)| ≤ π/2 + β and thus | arg

√
1− z| ≤ π/4 + β/2, it follows

from (2.8) that, for some small ε > 0, if z ∈ ∆(β, δ) ∩B(1, ε) with z 6= 1,
then (2.4) holds,

∣∣zΦ′(F (z))− 1
∣∣ = O(ε1/2),∣∣arg

(
zΦ′(F (z))− 1

)∣∣ > | arg(−
√

1− z)| − β/2
≥ π − (π/4 + β/2)− β/2 = 3π/4− β, (2.9)

and consequently, since 3π/4− β > π/2, if ε is small enough,

|zΦ′(F (z))| < 1. (2.10)

Similarly, if x ∈ ∆(β, δ), then | arg(1− x)| < π/2 + β and

x−1 =
(
1− (1− x)

)−1 = 1 + (1− x) + o(|1− x|), x→ 1,

so if ε > 0 is small enough, then, for x ∈ ∆(β, δ) ∩B(1, ε),

| arg(x−1 − 1)| < π/2 + 2β. (2.11)
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If we choose β ≤ π/16, it follows from (2.9) and (2.11) that the triangle with
vertices in 1, x−1 and zΦ′(F (z)) has an angle at least π/4 − 3β ≥ π/16 at
1, and thus by elementary trigonometry (the sine theorem),

|x−1 − zΦ′(F (z))| ≥ c4|x−1 − 1|,

and so (2.5) holds, when z, x ∈ ∆(β, δ) ∩ B(1, ε), provided β, δ, ε are small
enough.

It remains to treat the case when x or z does not belong to B(1, ε), i.e.,
|x− 1| ≥ ε or |z − 1| ≥ ε. We do this by compactness arguments.

First, let

A := {zΦ′(F (z)) : z ∈ ∆(β, δ) ∩B(1, ε)}

Bρ := {x−1 : x ∈ ∆(β, ρ) \B(1, ε), |x| ≥ 1/2}.

Then B :=
⋂
ρ>0Bρ ⊂ {ζ : |ζ| ≥ 1} \ {1}, and it follows from (2.10) that

A ∩ B = ∅. Since A and all Bρ are compact, it follows that A ∩ Bρ = ∅ for
some ρ > 0, and thus, if z ∈ ∆(β, δ)∩B(1, ε) and x ∈ ∆(β, ρ) \B(1, ε) with
|x| ≥ 1/2, then |x−1 − zΦ′(F (z))| ≥ c5 for some c5 > 0, which implies (2.5)
for such z and x. Moreover, if z ∈ ∆(β, δ) ∩ B(1, ε) and |x| < 1/2, (2.10)
shows that |1− xzΦ′(F (z))| ≥ 1− |x| ≥ 1/2, so (2.5) then holds if c2 ≤ 1/3.

Finally, if z ∈ ∆(β, δ), then |F (z)| < 1 [10, Lemma A.2] as stated above,
and thus |Φ′(F (z))| < 1. If 0 < β1 < β and 0 < δ1 < δ, then ∆(β1, δ1) ⊂
∆(β, δ) ∪ {1}, and thus by compactness

Cε := sup
{
|Φ′(F (z))| : z ∈ ∆(β1, δ1) \B(1, ε)

}
< 1.

Consequently, if δ2 ≤ δ1 is small enough and x, z ∈ ∆(β1, δ2) with |z−1| ≥ ε,
then

|xzΦ′(F (z))| ≤ (1 + δ2)2Cε < 1.

Hence (2.5) holds in this case too for some c2 > 0, and similarly (2.4) holds
for z ∈ ∆(β1, δ2) \B(1, ε).

This completes the proof of (2.4) and (2.5), for some new β, δ > 0 (viz.,
β1 and min(δ2, ρ)). G(z, x) now can be defined for all x, z ∈ ∆(β, δ) by (2.1),
and (2.6) holds by (2.5). Similarly, H(z, x, y) can be defined for all x, y, z ∈
∆(β, δ) by (2.2), and (2.7) holds by (2.4), (2.6), and the fact that Φ′ and
Φ′′ are bounded on the unit disc. (Recall that |F (z)| < 1 for z ∈ ∆(β, δ).)

This completes the proof of Lemma 2.1, and thus of Theorem 1.6. As
said above, Theorems 1.5 and 1.3 follows. �

3. Proof of Lemma 1.2 and Theorem 1.1

Denote the left hand side of (1.7) by Ψ(n, t). Since
∑

j X(j;Tn)eijt =∑
v∈Tn

eitLv , we have

Ψ(n, t) = n−2 E
∣∣∣∣∑
v∈Tn

eitLv

∣∣∣∣2 = n−2 E
∑

v,w∈Tn

eit(Lv−Lw). (3.1)
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Condition on Tn and consider two vertices v and w in Tn. If v ∧ w is
the last common ancestor of v and w, then Lv − Lv∧w and Lw − Lv∧w
are (conditionally, given Tn) independent sums of d(v, v ∧ w) and d(w, v ∧
w) copies of η, respectively. Consequently, letting ϕη(t) := E eitη be the
characteristic function of η,

E
(
eit(Lv−Lw) | Tn

)
= E

(
eit(Lv−Lv∧w) | Tn

)
E
(
e−it(Lw−Lv∧w) | Tn

)
= ϕη(t)d(v,v∧w) ϕη(t)

d(w,v∧w)
.

Hence, by (3.1) and (1.10),

Ψ(n, t) = n−2 E
∑

v,w∈Tn

ϕη(t)d(v,v∧w)ϕη(t)
d(w,v∧w)

= n−2hn
(
ϕη(t), ϕη(t)

)
and Theorem 1.6 yields

Ψ(n, t) ≤ C4n
−1|1− ϕη(t)|−2. (3.2)

Since E η = 0 and E η2 = σ2
η <∞, we have ϕη(t) = exp

(
−1

2σ
2
ηt

2 + o(t2)
)

for small |t|; moreover, since η has span 1, ϕη(t) 6= 1 for 0 < |t| ≤ π. It
follows that ψ(t) := (1 − ϕη(t))/t2 is a continuous non-zero function on
[−π, π] (with ψ(0) := 1

2σ
2
η); hence, by compactness, |ψ(t)| ≥ c6 for some

c7 > 0, and thus
|1− ϕη(t)| ≥ c7t2, |t| ≤ π.

It now follows from (3.2), and the obvious fact that Ψ(n, t) ≤ 1, that

(1 + nt4)Ψ(n, t) ≤ 1 + nt4Ψ(n, t) ≤ 1 + C4
t4

|1− ϕη(t)|2
≤ C9.

This proves Lemma 1.2, which as remarked in Section 1 implies Theo-
rem 1.1 by [5, Remark 3.7].

4. Probabilistic proof of Theorem 1.3

In a rooted tree τ , let Qk(τ), k ≥ 1, denote the number of (unordered)
pairs of vertices at path distance k from each other such that the path
between them visits the root, and let Q′k(τ) be the number of such pairs
where the root cannot be one of the two vertices in the pair; thus Qk(τ) =
Q′k(τ) + Zk(τ). Then, in the Galton–Watson tree T , if ξ is the number of
children of the root, and the subtrees rooted at these children are denoted
T1, . . . , Tξ,

Q′k(T ) =
∑

(r,s):1≤r<s≤ξ

k−2∑
j=0

Zj(Tr)Zk−2−j(Ts) (4.1)

and thus, since we assume T to be critical, i.e., E ξ = 1, so EZk(T ) = 1 for
every k,

EQk(T ) = EZk(T )+EQ′k(T ) = 1+E
ξ(ξ − 1)

2
(k−1) = 1+(k−1)

σ2

2
. (4.2)
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Let T̂n denote the random subtree of Tn rooted at a uniformly selected
random vertex. (Note the difference from T ∗n in Corollary 1.4; in T ∗n we
keep all n vertices, but in T̂n we keep only the vertices below the new root.)
Then, clearly,

E{Pk(Tn)} = nE{Qk(T̂n)}.
Consequently, Theorem 1.3 is equivalent to:

Theorem 4.1. There exists a constant C10 such that for all k ≥ 1 and
n ≥ 1, EQk(T̂n) ≤ C10k.

In order to prove this, we will need a related, but different, estimate for
the conditioned Galton–Watson tree Tn.

Theorem 4.2. There exists a constant C11 such that for all k ≥ 1 and
n ≥ 1, EQk(Tn) ≤ C11k

√
n.

It is easy to see EQk(Tn) ≥ c8n3/2 when k ∼
√
n, so the estimate in Theo-

rem 4.2 then is of the right order; in particular, the estimate in Theorem 4.1
for T̂n does not hold for Tn.

To prove these theorems we use a few more or less standard estimates.

Lemma 4.3. Assume, as above, (1.1), and let d be the span of ξ. Let
Sn :=

∑n
i=1 ξi, where ξi are independent copies of ξ. Then, for n ≡ 1

(mod d),

P(|T | = n) =
1
n

P(Sn = n− 1) ∼ d

σ
√

2π n3/2
as n→∞. (4.3)

More generally, let W` :=
∑`

i=1 |Ti| be the size of the union of ` inde-
pendent copies of T , or equivalently, the total progeny of a Galton–Watson
process started with ` individuals, with offspring distribution ξ. Then, for
all ` ≥ 1 and n ≥ 1,

P(W` = n) =
`

n
P(Sn = n− `) ≤ C12`n

−3/2 exp(−c9`2/n). (4.4)

In particular,
P(W` = n) ≤ C13n

−1. (4.5)

Proof. The identity in (4.4) is well-known, see e.g., Dwass [8], Kolchin [12,
Lemma 2.1.3, p. 105] and Pitman [14]. The identity in (4.3) is the special
case ` = 1, and the well-known tail estimate in (4.3) then follows by the
local central limit theorem, see, e.g., Kolchin [12, Lemma 2.1.4, p. 105].

Similarly, the inequality in (4.4) follows by the estimate P(Sn = n− `) ≤
C12n

−1/2 exp(−c9`2/n) from [10, Lemma 2.1]. The inequality e−x ≤ x−1/2

yields (4.5). �

Lemma 4.4. For every r > 0 there is a constant C14(r) such that for all
k ≥ 0 and n ≥ 1, EZk(Tn)r ≤ C14(r)nr/2.
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Proof. For any rooted tree T , let T (k) be the tree pruned at height k, i.e.,
the subtree consisting of all vertices of distance at most k from the root.
Let τ be a given rooted tree of height k, and let m := Zk(τ), the number
of leaves at maximal depth. Note that if τ = T (k) for some tree T , then
|T | = n if and only if T has n − |τ | vertices at greater depth than k, and
thus N := n − |τ | + m vertices at depth k or greater. Hence, with Wm as
in Lemma 4.3 and using (4.3) and (4.4), for any r > 0 and assuming N > 0
(otherwise the probability is 0),

P
(
T (k)
n = τ

)
=

P
(
T (k) = τ, |T | = n

)
P(|T | = n)

=
P(T (k) = τ) P(Wm = N)

P(|T | = n)

≤ C15n
3/2 P(T (k) = τ)mN−3/2e−c9m

2/N

≤ C16(r)n3/2 P(T (k) = τ)mN−3/2(m2/N)−r/2

= C16(r)n3/2N r/2−3/2m1−r P(T (k) = τ).

If r ≥ 3, this yields, since N ≤ n, the estimate

P(T (k)
n = τ) ≤ C16(r)nr/2m1−r P(T (k) = τ),

and summing over all τ of height k with Zk(τ) = m we obtain

P(Zk(Tn) = m) ≤ C16(r)nr/2m1−r P(Zk(T ) = m).

Consequently,

EZk(Tn)r =
∞∑
m=1

mr P(Zk(Tn) = m)

≤ C16(r)nr/2
∞∑
m=1

mP(Zk(T ) = m)

= C16(r)nr/2 EZk(T ) = C16(r)nr/2.

This proves the result for r ≥ 3, and the result for 0 < r < 3 follows by
Lyapounov’s (or Hölder’s) inequality. �

Lemma 4.5. For all k ≥ 1 and n ≥ 1, EZk(Tn) ≤ C17(k ∧
√
n). Equiva-

lently, for all k ≥ 0 and n ≥ 1, EZk(Tn) ≤ C18((k + 1) ∧
√
n).

Proof. The estimate EZk(Tn) ≤ C19k is (1.8), which is proved in [10, The-
orem 1.13]. The estimate EZk(Tn) ≤ C20

√
n is proved in Lemma 4.4. �

Remark. The estimate EZk(Tn) ≤ C21
√
n was proved by Drmota and Git-

tenberger [7], assuming that ξ has an exponential moment; in fact, they then
prove the stronger bound EZk(Tn) ≤ C22

√
n exp(−c10k/

√
n). The bound

in Lemma 4.5 can be further improved to EZk(Tn) ≤ C23k exp(−c11k
2/n),

but we do not know a reference for this estimate. (Details may appear
elsewhere.)
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Remark. Note that Lemma 4.4 yields an estimate O(nr/2) of the rth mo-
ment of Zk(Tn) for an arbitrary r assuming only a second moment of ξ.
This is in contrast to the estimate (1.8), where the corresponding estimate
EZk(Tn)r = O(kr) is valid (for integer r ≥ 1 at least) if ξ has a finite r+1:th
moment, but not otherwise (not even for a fixed k ≥ 2); one direction is by
Theorem 1.13 in [10], and the converse follows from the discussion after
Lemma 2.1 in [10].

Proof of Theorem 4.2. We have Qk(Tn) = Q′k(Tn)+Zk(Tn), and EZk(Tn) ≤
C17k by Lemma 4.5, so it suffices to show that EQ′k(Tn) ≤ C24k

√
n.

We use (4.1), condition on |T | = n and take expectations. Using the
symmetry and recalling that T1, . . . , Tξ are independent and (Ti | |Ti| =

ni)
d= (T | |T | = ni)

d= Tni for any ni, we obtain, with p` := P(ξ = `) and
qm := P(|T | = m),

E
{
Q′k(Tn)

}
=

E
{
1[ξ≥2,|T |=n]

∑
1≤r<s≤ξ

∑k−2
j=0 Zj(Tr)Zk−2−j(Ts)

}
P{|T | = n}

=
E
{
1[|T |=n]

(
ξ
2

)∑k−2
j=0 Zj(T1)Zk−2−j(T2)

}
P{|T | = n}

= q−1
n

∞∑
`=2

p`

(
`

2

) ∑
n1,n2≥1

qn1qn2 P

(∑̀
i=3

|Ti| = n− 1− n1 − n2

)

×
k−2∑
j=0

E {Zj(Tn1)}E {Zk−2−j(Tn2)} .

We begin with the inner sum over j, Σ1(n1, n2) say. By symmetry, we
consider only n1 ≤ n2, and then we obtain from Lemma 4.5 the estimates
EZk−2−j(Tn2) ≤ C18((k − 1− j) ∧ n1/2

2 ) ≤ C18(k ∧ n1/2
2 ) and

k−2∑
j=0

E {Zj(Tn1)} ≤

{∑k−2
j=0 C18(j + 1) ≤ C18k

2,

E
∑∞

j=0 Zj(Tn1) = n1.

Hence

Σ1(n1, n2) ≤ C25(k2 ∧ n1)(k ∧ n1/2
2 ). (4.6)
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Let m := n1 + n2 and sum over n1, n2 with a given sum m. We have by
(4.6) and (4.3),

Σ2(m) :=
∑

n1+n2=m

qn1qn2Σ1(n1, n2)

≤ 2
m/2∑
n1=1

qn1qm−n1C25(k2 ∧ n1)(k ∧ (m− n1)1/2)

≤ C26

m/2∑
n1=1

n
−3/2
1 (m− n1)−3/2(k2 ∧ n1)(k ∧ (m− n1)1/2)

≤ C27
k ∧m1/2

m3/2

m/2∑
n1=1

k2 ∧ n1

n
3/2
1

≤ C28
k ∧m1/2

m3/2
(k ∧m1/2) = C28

k2 ∧m
m3/2

. (4.7)

We define further

Σ3(`) :=
n−1∑
m=2

Σ2(m) P
(∑̀
i=3

|Ti| = n− 1−m
)

; (4.8)

thus

EQ′k(Tn) = q−1
n

∞∑
`=2

p`

(
`

2

)
Σ3(`) ≤ C29n

3/2
∞∑
`=2

p``
2Σ3(`). (4.9)

We will show that Σ3(`) ≤ C30k/n, uniformly in ` ≥ 2, and the result follows
by (4.9), recalling that

∑
` p``

2 = E ξ2 < ∞. (The proof can be simplified
in the case E ξ3 <∞, when it suffices to show that Σ3(`) ≤ C31k`/n.)

First, if ` = 2, the only non-zero term in (4.8) is for m = n − 1, which
yields, by (4.7),

Σ3(2) = Σ2(n− 1) ≤ C32
k2 ∧ n
n3/2

≤ C32
k
√
n

n3/2
.

For ` > 2, we split the sum in (4.8) into two parts, with m ≤ n/2 and
m > n/2. We have, by (4.7),

n−1∑
m=n/2

Σ2(m) P
(∑̀
i=3

|Ti| = n− 1−m
)
≤ C33

k2 ∧ n
n3/2

P
(∑̀
i=3

|Ti| ≤ n/2
)

≤ C33
k2 ∧ n
n3/2

≤ C33
k

n
.
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Similarly, using (4.7) and (4.5) (with ` replaced by `− 2),

n/2∑
m=1

Σ2(m) P
(∑̀
i=3

|Ti| = n− 1−m
)
≤ C34

n/2∑
m=1

k2 ∧m
m3/2

· 1
n

≤ C34

n

∞∑
m=1

k2 ∧m
m3/2

≤ C35
k

n
.

Thus Σ3(`) ≤ C36k/n, and the theorem follows by (4.9). �

Proof of Theorems 4.1 and 1.3. Aldous [2] has studied the behavior of a ran-
dom subtree T̂n in a conditional Galton–Watson tree Tn. In particular, he
has the following identity [2, p. 242], for any fixed ordered tree τ of order at
most n (provided that the probabilities in the denominators are nonzero):

P{T̂n = τ}
P{T = τ}

=
(n− |τ |+ 1) P{|T | = n− |τ |+ 1}

nP{|T | = n}
· γ
p0
,

where γ is the expected proportion of leaves in T̂n−|τ |+1 and p0 = P{ξ = 0}.
We will simply bound γ ≤ 1, but it is well-known that as n− |τ |+ 1→∞,
γ → p0, see e.g. Kolchin [12, Theorem 2.3.1, p. 113]. Thus, using the well-
known tail estimate (4.3), for all (permitted) n and τ

P{T̂n = τ}
P{T = τ}

≤ C37
(n− |τ |+ 1) P{|T | = n− |τ |+ 1}

nP{|T | = n}
≤ C38

√
n

n− |τ |+ 1
.

Hence,

E{Qk(T̂n)} =
∑
τ

Qk(τ) P{T̂n = τ}

≤ C38

∑
τ

Qk(τ)
√

n

n− |τ |+ 1
P{T = τ}

= C38 E
(
Qk(T )

√
n

n− |T |+ 1

)
≤ C39 E{Qk(T )}+ C38

∑
n≥`>n/2

√
n

n− `+ 1
E
{
1[|T |=`]Qk(T )

}
.

We have E{Qk(T )} ≤ C40k by (4.2), and, using (4.3) and Theorem 4.2,

E
{
1[|T |=`]Qk(T )

}
= P{|T | = `}E {Qk(T`)} ≤ C41`

−3/2k`1/2 = C41k/`.
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Consequently,

E{Qk(T̂n)} ≤ C40k + C42

∑
n≥`>n/2

k

`

√
n

n− `+ 1

≤ C40k + C43
k

n

n∑
j=1

√
n

j

≤ C44k.

This proves Theorem 4.1, which by the argument at the beginning of the
section yields Theorem 1.3. �

References

[1] D. Aldous, The continuum random tree II: an overview. Stochastic Anal-
ysis (Proc., Durham, 1990), 23–70, London Math. Soc. Lecture Note
Ser. 167, Cambridge Univ. Press, Cambridge, 1991.

[2] D. Aldous, Asymptotic fringe distributions for general families of ran-
dom trees. Ann. Appl. Probab. 1, no. 2, 228–266 (1991).

[3] D. Aldous, Tree-based models for random distribution of mass. J.
Statist. Phys. 73, 625–641 (1993).

[4] M. Bousquet-Mélou, Limit laws for embedded trees. Applications to
the integrated superBrownian excursion. Random Struct. Alg. 29, no.
4, 475–523 (2006).

[5] M. Bousquet-Mélou & S. Janson, The density of the ISE and local
limit laws for embedded trees. Ann. Appl. Probab. 16, no. 3, 1597–1632
(2006).

[6] L. Devroye, Branching processes and their applications in the analysis of
tree structures and tree algorithms. Probabilistic Methods for Algorith-
mic Discrete Mathematics, 249–314, eds. M. Habib et al., Algorithms
Combin. 16, Springer-Verlag, Berlin, 1998.

[7] M. Drmota & B. Gittenberger, The width of Galton–Watson trees con-
ditioned by the size. Discrete Mathematics and Theoretical Computer
Science, 6, 387–400 (2004).

[8] M. Dwass, The total progeny in a branching process and a related
random walk. J. Appl. Probab. 6 (1969), 682–686.

[9] P. Flajolet & R. Sedgewick, Analytic Combinatorics. Cambridge Univ.
Press, Cambridge, 2008.

[10] S. Janson, Random cutting and records in deterministic and random
trees. Random Struct. Alg. 29, no. 2, 139–179 (2006).

[11] S. Janson, Conditioned Galton–Watson trees do not grow. Proceedings,
Fourth Colloquium on Mathematics and Computer Science Algorithms,
Trees, Combinatorics and Probabilities (Nancy, 2006), DMTCS Pro-
ceedings AG, 331–334 (2006).

[12] V.F. Kolchin, Random Mappings. Optimization Software, New York,
1986.



16 LUC DEVROYE AND SVANTE JANSON

[13] A. Meir & J.W. Moon, On the altitude of nodes in random trees. Canad.
J. Math. 30, 997–1015 (1978).

[14] J. Pitman, Enumerations of trees and forests related to branching pro-
cesses and random walks. Microsurveys in Discrete Probability (Prince-
ton, NJ, 1997), 163–180, DIMACS Ser. Discrete Math. Theoret. Com-
put. Sci., 41, Amer. Math. Soc., Providence, RI, 1998.

School of Computer Science, McGill University, 3480 University Street,
Montreal, Canada H3A 2K6

E-mail address: lucdevroye@gmail.com

URL: http://cg.scs.carleton.ca/~luc/

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06
Uppsala, Sweden

E-mail address: svante.janson@math.uu.se

URL: http://www.math.uu.se/~svante/


