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Abstract

Let G = (V, E) be an undirected graph without loops and multiple
edges. A subset C ⊆ V is called identifying if for every vertex x ∈ V
the intersection of C and the closed neighbourhood of x is nonempty, and
these intersections are different for different vertices x.

Let k be a positive integer. We will consider graphs where every k-
subset is identifying. We prove that for every k > 1 the maximal order
of such a graph is at most 2k − 2. Constructions attaining the maximal
order are given for infinitely many values of k.

The corresponding problem of k-subsets identifying any at most ` ver-
tices is considered as well.

1 Introduction
Karpovsky et al. introduced identifying sets in [9] for locating faulty procesors
in multiprocessor systems. Since then identifying sets have been considered
in many different graphs (see numerous references in [14]) and they find their
motivations, for example, in sensor networks and enviromental monitoring [10].
For recent developments see for instance [1, 2].

Let G = (V,E) be a simple undirected graph where V is the set of vertices
and E is the set of edges. The adjacency between vertices x and y is denoted
by x ∼ y, and an edge between x and y is denoted by {x, y} or xy. Suppose
x, y ∈ V . The (graphical) distance between x and y is the shortest path between
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these vertices and it is denoted by d(x, y). If there is no such path, then d(x, y) =
∞. We denote by N(x) the set of vertices adjacent to x (neighbourhood) and
the closed neighbourhood of a vertex x is N [x] = {x} ∪ N(x). The closed
neighbourhood within radius r centered at x is denoted by Nr[x] = {y ∈ V |
d(x, y) ≤ r}. We denote further Sr(x) = {y ∈ V | d(x, y) = r}. Moreover, for
X ⊆ V , Nr[X] = ∪x∈XNr[x]. For C ⊆ V , X ⊆ V , and x ∈ V we denote

Ir(C;x) = Ir(x) = Nr[x] ∩ C,

Ir(C;X) = Ir(X) = Nr[X] ∩ C =
⋃
x∈X

Ir(C;x).

If r = 1, we drop it from the notations. When necessary, we add a subscript G.
We also write, for example, N [x, y] and I(C;x, y) for N [{x, y}] and I(C; {x, y}).
The symmetric difference of two sets is

A4B = (A \B) ∪ (B \A).

The cardinality of a set X is denoted by |X|; we will also write |G| for the
order |V | of a graph G = (V,E). The degree of a vertex x is deg(x) = |N(x)|.
Moreover, δG = δ = minx∈V deg(x) and ∆G = ∆ = maxx∈V deg(x). The
diameter of a graph G = (V,E) is diam(G) = max{d(x, y) | x, y ∈ V }.

We say that a vertex x ∈ V dominates a vertex y ∈ V if and only if y ∈ N [x].
As well we can say that a vertex y is dominated by x (or vice versa). A subset
C of vertices V is called a dominating set (or dominating) if ∪c∈CN [c] = V .

Definition 1. A subset C of vertices of a graph G = (V,E) is called (r,≤ `)-
identifying (or an (r,≤ `)-identifying set) if for all X,Y ⊆ V with |X| ≤ `,
|Y | ≤ `, X 6= Y we have

Ir(C;X) 6= Ir(C;Y ).

If r = 1 and ` = 1, then we speak about an identifying set.

The idea behind identification is that we can uniquely determine the subset
X of vertices of a graph G = (V,E) by knowing only Ir(C;X) — provided that
|X| ≤ ` and C ⊆ V is an (r,≤ `)-identifying set.

Definition 2. Let, for n ≥ k ≥ 1 and ` ≥ 1, Gr(n, k, `) be the set of graphs
on n vertices such that every k-element set of vertices is (1,≤ `)-identifying.
Moreover, we denote Gr(n, k, 1) = Gr(n, k) and Gr(k) =

⋃
n≥k Gr(n, k).

Example 3. (i) For every ` ≥ 1, an empty graph En = ({1, . . . , n}, ∅) be-
longs to Gr(n, k, `) if and only if k = n.

(ii) A cycle Cn (n ≥ 4) belongs to Gr(n, k) if and only if n − 1 ≤ k ≤ n. A
cycle Cn with n ≥ 7 is in Gr(n, n, 2).

(iii) A path Pn of n vertices (n ≥ 3) belongs to Gr(n, k) if and only if k = n.

(iv) A complete bipartite graph Kn,m (n + m ≥ 4) is in Gr(n + m, k) if and
only n+m− 1 ≤ k ≤ n+m.
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(v) In particular, a star Sn = K1,n−1 (n ≥ 4) is in Gr(n, k) if and only if
n− 1 ≤ k ≤ n.

(vi) The complete graph Kn (n ≥ 2) is not in Gr(n, k) for any k.

We are interested in the maximum number n of vertices which can be reached
by a given k. We study mainly the case ` = 1 and define

Ξ(k) = max{n : Gr(n, k) 6= ∅}. (1)

Conversely, the question is for a given graph on n vertices what is the smallest
number k such that every k-subset of vertices is an identifying set (or a (1,≤ `)-
identifying set). (Note that even if we take k = n, there are graphs on n vertices
that do not belong to Gr(n, n), for example the complete graph Kn, n ≥ 2.)
The relation n/k is called the rate.

In particular, we are interested in the asymptotics as k → ∞. Combining
Theorem 19 and Corollary 28, we obtain the following, which in particular shows
that the rate is always less than 2.

Theorem 4. Ξ(k) ≤ 2k − 2 for all k ≥ 2, and limk→∞
Ξ(k)
k = 2.

We will see in Section 5 that Ξ(k) = 2k − 2 for infinitely many k.

Remark. We consider in this paper the set Gr(n, k, `) only for (1,≤ `)-identifying
sets, i.e. with radius r = 1, because increasing the radius does not increase the
maximum number of vertices for given k and `. Namely, if G is a graph such
that every k-subset of vertices is (r,≤ `)-identifying for a fixed r ≥ 2, then
the power graph of G, where every pair of vertices with distance at most r in
G are joined by an edge, belongs to Gr(n, k, `). (However, the existence of a
graph G in Gr(n, k, `) does not imply that every k-subset of vertices in G is
(r,≤ `)-identifying for r ≥ 2.)

Remark. The similar question about graphs where every k-subset of vertices
would be a dominating set is easy. Namely, every vertex of a complete graph
with n vertices forms alone a dominating set for all n, so for this problem, n
can be arbitrary, even for k = 1.

We give some basic results in Section 2, including our first upper bound
on Ξ(k). A better bound, based on a relation with error-correcting codes, is
given in Section 4, but we first study small k in Section 3, where we give a
complete description of the sets Gr(k) for k ≤ 4 and find Ξ(k) for k ≤ 6. We
consider strongly regular graphs and some modifications of them in Section 5;
this provides us with examples (e.g., Paley graphs) that attain or almost attain
the upper bound in Theorem 4. In Section 6 we consider the probability that a
random subset of s vertices in a graph G ∈ Gr(n, k) is identifying (for s < k);
in particular, this yields results on the size of the smallest identifying set. In
Section 7 we give some results for the case ` ≥ 2.
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2 Some basic results
We begin with some simple consequences of the definition.

Lemma 5. (i) If G ∈ Gr(n, k, `), then G ∈ Gr(n, k′, `′) whenever k ≤ k′ ≤ n
and 1 ≤ `′ ≤ `.

(ii) If G = (V,E) ∈ Gr(n, k, `), then every induced subgraph G[A], where
A ⊆ V , of order |A| = m ≥ k belongs to Gr(m, k, `).

(iii) If Gr(n, k) = ∅, then Gr(n′, k) = ∅ for all n′ ≥ n.

Proof. Parts (i) and (ii) are straightforward to verify. For (iii), note that any
subset of n vertices of a graph in Gr(n′, k) would induce a graph in Gr(n, k) by
(ii).

Lemma 6. If G has connected components Gi, i = 1, . . . ,m, with |G| = n and
|Gi| = ni, then G ∈ Gr(n, k, `) if and only if Gi ∈ Gr(ni, k+ni−n, `) for every
i. In other words, Gi ∈ Gr(ni, ki, `) with ni − ki = n− k.

Proof. Every k-set of vertices contains at least ki = k − (n − ni) vertices from
Gi. Conversely, every ki-set of vertices of Gi can be extended to a k-set of
vertices of G by adding all vertices in the other components. The result follows
easily.

A graph G belongs to Gr(n, k, `) if and only if every k-subset intersects every
symmetric difference of the neighbourhoods of two sets that are of size at most
`. Equivalently, G ∈ Gr(n, k, `) if and only if the complement of every such
symmetric difference of two neighbourhoods contains less than k vertices. We
state this as a theorem.

Theorem 7. Let G = (V,E) and |V | = n. G belongs to Gr(n, k, `) if and only
if

n− min
X,Y⊆V
X 6=Y
|X|,|Y |≤`

{|N [X]4N [Y ]|} ≤ k − 1. (2)

Now take ` = 1, and consider Gr(n, k). The characterization in Theorem 7
can be written as follows, since X and Y either are empty or singletons.

Corollary 8. Let G = (V,E) and |V | = n. G belongs to Gr(n, k) if and only if

(i) δG ≥ n− k, and

(ii) maxx,y∈V, x6=y{|N [x] ∩N [y]|+ |V \ (N [x] ∪N [y])|} ≤ k − 1.

In particular, if G ∈ Gr(n, k) then every vertex is dominated by every choice
of a k-subset, and for all distinct x, y ∈ V we have |N [x] ∩N [y]| ≤ k − 1.

Example 9. Let G be the 3-dimensional cube, with 8 vertices. Then |N [x]| = 4
for every vertex x, and |N [x]4N [y]| is 4 when d(x, y) = 1, 4 when d(x, y) = 2,
and 8 when d(x, y) = 3. Hence, Theorem 7 shows that G ∈ Gr(8, 5).
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Lemma 10. Let G0 = (V0, E0) ∈ Gr(n0, k0) and let G = (V0∪{a}, E0∪{{a, x} |
x ∈ V0}) for a new vertex a /∈ V0. In words, we add a vertex and connect it to
all other vertices. Then G ∈ Gr(n0 +1, k0 +1) if (and only if) |NG0 [x]| ≤ k0−1
for every x ∈ V0, or, equivalently, ∆G0 ≤ k0 − 2.

Proof. An immediate consequence of Theorem 7 (or Corollary 8).

Example 11. If G0 is the 3-dimensional cube in Example 9, which belongs to
Gr(8, 5) and is regular with degree 3 = 5 − 2, then Lemma 10 yields a graph
G ∈ Gr(9, 6). G can be regarded as a cube with centre.

Suppose G = (V,E) belongs to Gr(n, k). Corollary 8(i) implies that for all
x ∈ V , n−|N [x]| ≤ k−1. On the other hand, Lemma 10 shows that there is not
a positive lower bound for n − |N [x]|, since the graph G = (V,E) constructed
there has a vertex a such that N [a] = V . Arbitrarily large graphs G0 satisfying
the conditions in Lemma 10 are, for example, given by the Paley graphs P (q),
see Section 5.

We now easily obtain our first upper bound (which will be improved later)
on the order of a graph such that every k-vertex set is identifying.

Theorem 12. If k ≥ 2 and n > 3k − 3, then there is no graph in Gr(n, k). In
other words, Ξ(k) ≤ 3k − 3 when k ≥ 2.

Proof. Suppose G ∈ Gr(n, k) with n ≥ 2. Pick two distinct vertices x and y.
By Corollary 8(i), |N [x]|, |N [y]| ≥ n− k + 1 and thus

|N [x]4N [y]| ≤ |V \N [x]|+ |V \N [y]| ≤ k − 1 + k − 1 = 2k − 2.

Consequently, Theorem 7 yields n ≤ 2k − 2 + k − 1 = 3k − 3.

As a corollary, Gr(k) is a finite set of graphs for every k.

3 Small k

Example 13. For k = 1, it is easily seen that Gr(n, 1) = ∅ for n ≥ 2, and thus
Gr(1) = {K1} and Ξ(1) = 1.

Example 14. Let k = 2. If G ∈ Gr(2), then G cannot contain any edge xy,
since then N [x] ∩ {x, y} = {x, y} = N [y] ∩ {x, y}, so {x, y} does not separate
{x} and {y}. Consequently, G has to be an empty graph En, and then δG = 0
and Corollary 8(i) (or Example 3(i)) shows that n = k = 2. Thus Gr(2) = {E2}
and Ξ(2) = 2.

Example 15. Let k = 3. First, assume n = |G| = 3. There are only four
graphs G with |G| = 3, and it is easily checked that E3, P3 ∈ Gr(3, 3) (Exam-
ple 3(i)(iii)), while C3 = K3 /∈ Gr(3, 3) (Example 3(vi)) and a disjoint union
K1 ∪ K2 /∈ Gr(3, 3), for example by Lemma 6 since K2 /∈ Gr(2, 2). Hence
Gr(3, 3) = {E3, P3}.
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Next, assume n ≥ 4. Since there are no graphs in Gr(n1, k1) if n1 > k1

and k1 ≤ 2, it follows from Lemma 6 that there are no disconnected graphs in
Gr(n, 3) for n ≥ 4. Furthermore, if G ∈ Gr(n, 3), then every induced subgraph
with 3 vertices is in Gr(3, 3) and is thus E3 or P3; in particular, G contains no
triangle.

If G ∈ Gr(4, 3), it follows easily that G must be C4 or S4, and indeed these
belong to Gr(4, 3) by Example 3(ii)(v). Hence Gr(4, 3) = {C4, S4}.

Next, assume G ∈ Gr(5, 3). Then every induced subgraph with 4 vertices is
in Gr(4, 3) and is thus C4 or S4. Moreover, by Corollary 8, δG ≥ 5 − 3 = 2.
However, if we add a vertex to C4 or S4 such that the degree condition δG ≥ 2
is satisfied and we do not create a triangle we get K2,3 – a complete bipartite
graph, and we know already K2,3 6∈ Gr(5, 3) (Example 3(iv)). Consequently
Gr(5, 3) = ∅, and thus Gr(n, 3) = ∅ for all n ≥ 5 by Lemma 5(iii).

Consequently, Gr(3) = Gr(3, 3) ∪Gr(4, 3) = {E3, P3, S4, C4} and Ξ(3) = 4.

Example 16. Let k = 4. First, it follows easily from Lemma 6 and the descrip-
tions of Gr(j) for j ≤ 3 above that the only disconnected graphs in Gr(4) are
E4 and the disjoint union P3 ∪K1; in particular, every graph in Gr(n, 4) with
n ≥ 5 is connected.

Next, if G ∈ Gr(n, 4), there cannot be a triangle in G because otherwise if
a 4-subset includes the vertices of a triangle, one more vertex cannot separate
the vertices of the triangle from each other. (Cf. Lemma 21.)

For n = 4, the only connected graphs of order 4 that do not contain a triangle
are C4, P4 and S4, and these belong to Gr(4, 4) by Example 3(ii)(iii)(v). Hence
Gr(4, 4) = {C4, P4, S4, E4, P3 ∪K1}.

Now assume that G ∈ Gr(n, 4) with n ≥ 5.
(i) Suppose first that a graph K1 ∪K2 = ({x, y, z}, {{x, y}}) is an induced

subgraph of G. Then all the other vertices of G are adjacent to either x or y
but not both, since otherwise there would be an induced triangle or an induced
E2 ∪K2 or K2 ∪K2, and these do not belong to Gr(4, 4). Let A = N(x) \ {y}
and B = N(y)\{x}, so we have a partition of the vertex set as {x, y, z}∪A∪B.
There can be further edges between A and B, z and A, z and B but not inside
A and B. Let A = A0 ∪ A1 and B = B0 ∪ B1, where A1 = {a ∈ A | a ∼ z},
A0 = A \A1 and B1 = {b ∈ B | b ∼ z}, B0 = B \B1. If a ∈ A0 and b ∈ B, then
the 4-subset {a, b, x, z} does not distinguish a and x unless a ∼ b. Similarly, if
a ∈ A and b ∈ B0, then a ∼ b. On the other hand, if a ∈ A1 and b ∈ B1, then
a 6∼ b, since otherwise abz would be a triangle. Thus, we have, where one or
more of the sets A0, A1, B0, B1 might be empty,

=

where an edge is a complete bipartite graph on sets incident to it, and there are
no edges inside these sets.
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Figure 1: All the different graphs in Gr(5, 4).

a) b) c) d)

If n ≥ 6, then there are at least two elements in one of the sets {x} ∪ B0,
{y} ∪A0, A1 or B1. However, these two vertices have the same neighbourhood
and hence they cannot be separated by the other n − 2 ≥ 4 vertices. Thus,
n = 5.

If n = 5, and both A1 and B1 are non-empty, we must have A0 = B0 = ∅
and G = C5, which is in Gr(5, 4) by Example 3(ii).

Finally, assume n = 5 and A1 = ∅ (the case B1 = ∅ is the same after
relabelling). Then B1 is non-empty, since G is connected. If B0 is non-empty,
let b0 ∈ B0 and b1 ∈ B1, and observe that {x, b0, b1, z} does not separate z and
b1. Hence B0 = ∅. We thus have either |A0| = 1 and |B1| = 1, or |A1| = 0 and
|B1| = 2, and both cases yield the graph (d) in Figure 1, which easily is seen to
be in Gr(5, 4).

(ii) Suppose that there is no induced subgraphK1∪K2. SinceG is connected,
we can find an edge x ∼ y. Let, as above, A = N(x) \ {y} and B = N(y) \ {x}.
If a ∈ A and b ∈ B and a 6∼ b, then ({a, x, b}, {{a, x}}) is an induced subgraph
and we are back in case (i). Hence, all edges between sets A and B exist and
thus, recalling that G has no triangles, G is the complete bipartite graph with
bipartition (A ∪ {y}, B ∪ {x}). By Example 3(iv), then n ≤ 5. If n = 5, we get
G = K2,3 or G = K1,4 = S4, which both belong to Gr(5, 4) by Example 3(iv).

We summarize the result in a theorem.

Theorem 17. Ξ(4) = 5. More precisely, Gr(4) = Gr(4, 4) ∪ Gr(5, 4), where
Gr(4, 4) = {C4, P4, S4, E4, P3 ∪K1} and Gr(5, 4) consists of the four graphs in
Figure 1.

For k = 5 and 6, we do not describe Gr(k) completely, but we find Ξ(k),
using some results that will be proved in Section 4. Upper and lower bounds
for some other values of k are given in Table 1.

Theorem 18. Ξ(5) = 8, Ξ(6) = 9 and 11 ≤ Ξ(7) ≤ 12.

Proof. First observe that Ξ(5) ≥ 8 since the 3-dimensional cube belongs to
Gr(8, 5) by Example 9. The upper bound follows from Theorem 19.

Example 11 gives an example (a centred cube) showing that Ξ(6) ≥ 9.
(Another example is given by the Paley graph P (9), see Theorem 27.) The
upper bound is given by Theorem 22 in Section 4.
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Figure 2: A graph in Gr(11, 7) found by a computer search.

The construction of a graph in Gr(11, 7) is given in Figure 2. The upper
bound follows both from Theorem 22 and Theorem 19.

4 Upper estimates on the order
In the next theorem we give an upper on bound on Ξ(k), which is obtained
using knowledge on error-correcting codes.

Theorem 19. If k ≥ 2, then Ξ(k) ≤ 2k − 2.

Proof. We begin by giving a construction from a graph in Gr(n, k) to error-
correcting codes. A non-existence result of error-correcting codes then yields
the non-existence of Gr(n, k) graphs of certain parameters. Let G = (V,E) ∈
Gr(n, k), where V = {x1, x2, . . . , xn}. We construct n + 1 binary strings yi =
(yi1, . . . , yin) of length n, for i = 0, . . . , n, from the sets ∅ = N [∅] and N [xi] for
i = 1, . . . , n by defining y0j = 0 for all j and

yij =

{
0 if xj 6∈ N [xi]
1 if xj ∈ N [xi]

, 1 ≤ i ≤ n.

Let C denote the code which consists of these binary strings as codewords.
Because G ∈ Gr(n, k), the symmetric difference of two closed neighbourhoods
N [xi] and N [xj ], or of one neigbourhood N [xi] and ∅, is at least n − k + 1 by
(2); in other words, the minimum Hamming distance d(C) of the code C is at
least n− k + 1.

We first give a simple proof that Ξ(k) ≤ 2k− 1. Thus, suppose that there is
a G ∈ Gr(n, k) such that n = 2k. In the corresponding error-correcting code C,
the minimum distance is at least d = n−k+1 = k+1 > n/2. Let the maximum
cardinality of the error-correcting codes of length n and minimum distance at
least d be denoted by A(n, d). We can apply the Plotkin bound (see for example
[15, Chapter 2, §2]), which says A(n, d) ≤ 2bd/(2d − n)c, when 2d > n. Thus,
we have

A(n, d) ≤ 2
⌊
k + 1

2

⌋
≤ k + 1.
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Because k+ 1 < 2k = n < |C|, this contradicts the existence of C. Hence, there
cannot exist a graph G ∈ Gr(2k, k), and thus Gr(n, k) = ∅ when n ≥ 2k.

The Plotkin bound is not strong enough to imply Ξ(k) ≤ 2k − 2 in general,
but we obtain this from the proof of the Plotkin bound as follows. (In fact,
for odd k, Ξ(k) ≤ 2k − 2 follows from the Plotkin bound for an odd minimum
distance. We leave this to the reader since the argument below is more general.)

Suppose that G = (V,E) ∈ Gr(n, k) with n = 2k − 1. We thus have a
corresponding error-correcting code C with |C| = n + 1 = 2k and minimum
Hamming distance at least n−k+ 1 = k. Hence, letting d denote the Hamming
distance, ∑

0≤i<j≤n

d(yi, yj) ≥
(
n+ 1

2

)
k =

2k(2k − 1)
2

k = (2k − 1)k2. (3)

On the other hand, if there are sm strings yi with yim = 1, and thus |C|− sm =
2k − sm strings with yim = 0, then the number of ordered pairs (i, j) such that
yim 6= yjm is 2sm(2k− sm) ≤ 2k2. Hence each bit contributes at most k2 to the
sum in (3), and summing over m we find∑

0≤i<j≤n

d(yi, yj) ≤ nk2 = (2k − 1)k2. (4)

Consequently, we have equality in (3) and (4), and thus d(yi, yj) = k for all
pairs (i, j) with i 6= j.

In particular, |N [xi]| = d(yi, y0) = k for i = 1, . . . , n, and thus every vertex
in G has degree k − 1, i.e., G is (k − 1)-regular. Hence, 2|E| = n(k − 1) =
(2k − 1)(k − 1), and k must be odd.

Further, if i 6= j, then |N [xi]4N [xj ]| = d(yi, yj) = k, and since N [xi]\N [xj ]
and N [xj ] \ N [xi] have the same size k − |N [xi] ∩ N [xj ]|, they have both the
size k/2 and k must be even.

This contradiction shows that Gr(2k−1, k) = ∅, and thus Ξ(k) ≤ 2k−2.

The next theorem (which does not use Theorem 19) will lead to another
upper bound in Theorem 22. It can be seen as an improvement for the extreme
case Gr(2k− 2, k) of Mantel’s [16] theorem on existence of triangles in a graph.
Note that this result fails for k = 5 by Example 9.

Theorem 20. Suppose G ∈ Gr(n, k) and k ≥ 6. If n ≥ 2k − 2, then there is a
triangle in G.

Proof. Let G = (V,E) ∈ Gr(n, k). Suppose to the contrary that there are no
triangles in G. If there is a vertex x ∈ V such that deg(x) ≥ k + 1, then we
select in N(x) a k-set X and a vertex y outside it; since X has to dominate y,
it is clear that there exists a triangle xyz. Hence deg(x) ≤ k for every x. On
the other hand, we know that for all x ∈ V deg(x) ≥ n− k ≥ k − 2.

Let x ∈ V be a vertex whose degree is minimal. We denote V \ N [x] = B
and we use the fact that |B| ≤ k − 1.
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1) Suppose first deg(x) = k. Because deg(x) is minimal we know that for
all a ∈ N(x), deg(a) = k. This is possible if and only if |B| = k − 1 and for all
a ∈ N(x) we have B ∩ N(a) = B. But then in the k-subset C = {x} ∪ B we
have I(C; a) = I(C; b) for all a, b ∈ N(x). This is impossible.

2) Suppose then deg(x) = k − 1. If now |B| ≤ k − 2 the graph is impossible
as in the first case. Hence, |B| = k − 1. For every a ∈ N(x) there are at least
k − 2 adjacent vertices in B, and thus at most 1 non-adjacent. This implies
that for all a, b ∈ N(x), a 6= b, we have |N(a) ∩ N(b) ∩ B| ≥ k − 3 ≥ 2,
when k ≥ 5. Hence, by choosing a, b ∈ N(x), a 6= b, we have the k-subset
C = {x} ∪ (N(x) \ {a, b}) ∪ {c1, c2}, where c1, c2 ∈ N(a) ∩ N(b) ∩ B. In this
k-subset I(C; a) = I(C; b), which is impossible.

3) Suppose finally deg(x) = k − 2. Now |B| = k − 1, otherwise we cannot
have n ≥ 2k−2. If there is b ∈ B such that |N(b)∩N(x)| = k−2, then because
deg(b) ≤ k we have |B \ (N [b] ∩ B)| ≥ k − 4 ≥ 2, when k ≥ 6. Hence, there
are c1, c2 ∈ B \N [b], c1 6= c2, and in the k-subset C = N(x) ∪ {c1, c2} we have
I(C;x) = I(C; b) which is impossible.

Thus, for all b ∈ B we have |N(b)∩N(x)| ≤ k−3. On the other hand, each of
the k−2 vertices in N(x) has at least k−3 adjacent vertices in B, so the vertices
in B have on the average at least (k−2)(k−3)/(k−1) > k−4 adjacent vertices in
the set N(x). Hence, we can find b ∈ B such that |N(b)∩N(x)| = k−3. Because
deg(b) ≥ k−2 we have at least one b0 ∈ B such that d(b, b0) = 1. Because there
are no triangles, each of the k−3 neighbours of b in N(x) is not adjacent with b0,
and therefore adjacent to at least k− 3 of the k− 2 vertices in B \ {b0}. Hence,
for all a1, a2 ∈ N(x) ∩N(b), a1 6= a2, we have |N(a1) ∩N(a2) ∩B| ≥ k − 4 ≥ 2
when k ≥ 6. In the k-subset C = {x, b0, c1, c2} ∪ (N(x) \ {a1, a2}), where
c1, c2 ∈ N(a1)∩N(a2)∩B, we have I(C; a1) = I(C; a2), which is impossible.

Lemma 21. If there is a graph G ∈ Gr(n, k) that contains a triangle, then
n ≤ 3k − 9. (In particular, k ≥ 5.)

Proof. Suppose that G = (V,E) ∈ Gr(n, k) and that there is a triangle {x, y, z}
in G. Let, for v, w ∈ V , Jw(v) denote the indicator function given by Jw(v) = 1
if v ∈ N [w] and Jw(v) = 0 if v /∈ N [w]. Define the set Mxy = {v ∈ V : Jx(v) =
Jy(v)}, and M ′xy = Mxy \ {x, y, z}. Since Mxy does not separate x and y, we
have |Mxy| ≤ k − 1. Further, {x, y, z} ⊆ Mxy, and thus |M ′xy| ≤ k − 4. Define
similarly Mxz, Myz, M ′xz, M ′yz; the same conclusion holds for these.

Since the indicator functions take only two values, Mxy, Mxz and Myz cover
V , and thus

n = |V | = |M ′xy ∪M ′xz ∪M ′yz ∪ {x, y, z}| ≤ 3(k − 4) + 3 = 3k − 9.

Since n ≥ k, this entails 3k − 9 ≥ k and thus k ≥ 5.

The following upper bound is generally weaker than Theorem 19, but it gives
the optimal result for k = 6. (Note that the result fails for k ≥ 5, see Section 3.)

Theorem 22. Suppose k ≥ 6. Then Ξ(k) ≤ 3k − 9.

10



Proof. Suppose that G ∈ Gr(n, k). If G does not contain any triangle, then
Theorem 20 yields n ≤ 2k − 3 ≤ 3k − 9. If G does contain a triangle, then
Lemma 21 yields n ≤ 3k − 9.

5 Strongly regular graphs
A graph G = (V,E) is called strongly regular with parameters (n, t, λ, µ) if
|V | = n, deg(x) = t for all x ∈ V , any two adjacent vertices have exactly λ
common neighbours, and any two nonadjacent vertices have exactly µ common
neighbours; we then say that G is a (n, t, λ, µ)-SRG. See [3] for more infor-
mation. By [3, Proposition 1.4.1] we know that if G is a (n, t, λ, µ)-SRG, then
n = t+ 1 + t(t− 1− λ)/µ.

We give two examples of strongly regular graphs that will be used below.

Example 23. The well-known Paley graph P (q), where q is a prime power with
q ≡ 1 (mod 4), is a (q, (q− 1)/2, (q− 5)/4, (q− 1)/4)-SRG, see for example [3].
The vertices of P (q) are the elements of the finite field Fq, with an edge ij if
and only if i− j is a non-zero square in the field; when q is a prime, this means
that the vertices are {1, . . . , q} with edges ij when i − j is a quadratic residue
mod q.

Example 24. Another construction of strongly regular graphs uses a regu-
lar symmetric Hadamard matrix with constant diagonal (RSHCD) [6], [4], [5].
In particular, in the case (denoted RSHCD+) of a regular symmetric n × n
Hadamard matrix H = (hij) with diagonal entries +1 and constant positive
row sums 2m (necessarily even when n > 1), then n = (2m)2 = 4m2 and the
graph G with vertex set {1, . . . , n} and an edge ij (for i 6= j) if and only if
hij = +1 is a (4m2, 2m2 +m− 1, m2 +m− 2, m2 +m)-SRG [4, §8D].

It is not known for which m such RSHCD+ exist (it has been conjectured
that any m ≥ 1 is possible) but constructions for many m are known, see [6],
[17, V.3] and [5, IV.24.2]. For example, starting with the 4× 4 RSHCD+

H4 =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1


its tensor power H⊗r4 is an RSHCD+ with n = 4r, and thus m = 2r−1, for
any r ≥ 1. This yields a (22r, 22r−1 + 2r−1 − 1, 22r−2 + 2r−1 − 2, 22r−2 +
2r−1)-SRG with vertex set {1, 2, 3, 4}r, where two different vertices (i1, . . . , ir)
and (j1, . . . , jr) are adjacent if and only if the number of coordinates ν such
that iν + jν = 5 is even.

Theorem 25. A strongly regular graph G = (V,E) with parameters (n, t, λ, µ)
belongs to Gr(n, k) if and only if

k ≥ max
{
n− t, n− 2t+ 2λ+ 3, n− 2t+ 2µ− 1

}
,

or, equivalently, t ≥ n− k and 2 max{λ+ 1, µ− 1} ≤ k + 2t− n− 1.

11



Proof. An immediate consequence of Theorem 7, since |N [x]| = t+ 1 for every
vertex x and |N [x]4N [y]| equals 2(t−λ−1) when x ∼ y and 2(t+1−µ) when
x 6∼ y, x 6= y.

We can extend this construction to other values of n by modifying the
strongly regular graph.

Theorem 26. If there exists a strongly regular graph with parameters (n0, t, λ, µ),
then for every i = 0, . . . , n0 + 1 there exists a graph in Gr(n0 + i, k0 + i), where

k0 = max
{
n0− t, t, n0− 2t+ 2λ+ 3, n0− 2t+ 2µ− 1, 2t− 2λ− 1, 2t− 2µ+ 2

}
,

provided k0 ≤ n0.

Proof. For i = 0, this is a weaker form of Theorem 25. For i ≥ 1, we suppose
that G0 = (V0, E0) is (n0, t, λ, µ)-SRG and build a graph Gi in Gr(n0 + i, k0 + i)
from G0 by adding suitable new vertices and edges.

If 1 ≤ i ≤ n0, choose i different vertices x1, x2, . . . , xi in V0. Construct a new
graph Gi = (Vi, Ei) by taking G0 and adding to it new vertices x′1, x′2, . . . , x′i
and new edges x′jy for j ≤ i and all y /∈ NG0(xj).

First, degGi
(x) ≥ degG0

(x) = t for x ∈ V0 and degGi
(x′) = n0 − t for

x′ ∈ V ′i = Vi \ V0. We proceed to investigate N [x]4N [y], and separate several
cases.

(i) If x, y ∈ V0, with x 6= y, then∣∣N [x]4N [y]
∣∣ ≥ ∣∣(N [x]4N [y]) ∩ V0

∣∣ =
∣∣(NG0 [x]4NG0 [y])

∣∣,
which equals 2(t− λ− 1) if x ∼ y and 2(t− µ+ 1) if x 6∼ y.

(ii) If x ∈ V0, y′ ∈ V ′i , then, since 4 is associative and commutative,∣∣(N [x]4N [y′])∩V0

∣∣ =
∣∣(NG0 [x]4 (V04NG0(y))

∣∣ = n0−
∣∣(NG0 [x]4NG0(y))

∣∣,
which equals n0 − 1 if x = y, n0 − (2t− 2λ− 1) if x ∼ y, and n0 − (2t− 2µ+ 1)
if x 6∼ y and x 6= y. If x ∼ y, further,

∣∣(N [x]4N [y′])∩V ′i
∣∣ ≥ 1, since y′ 6∈ N [x].

(iii) If x′, y′ ∈ V ′i , with x′ 6= y′, then∣∣(N [x′]4N [y′])∩V0

∣∣ =
∣∣(V0 \NG0(x))4 (V0 \NG0(y))

∣∣ =
∣∣(NG0(x)4NG0(y))

∣∣,
which equals 2(t− λ) if x ∼ y and 2(t−µ) if x 6∼ y. Further,

∣∣(N [x′]4N [y′])∩
V ′i
∣∣ = |{x′, y′}| = 2.
Collecting these estimates, we see that Gi ∈ Gr(n0 + i, k0 + i) by Theorem 7

(or Corollary 8) with our choice of k0. Note that 2k0 ≥ (n0 − 2t + 2λ + 3) +
(2t− 2λ− 1) = n0 + 2 ≥ 3, so k0 ≥ 2.

Finally, for i = n0 + 1, we construct Gn0+1 by adding a new vertex to Gn0

and connecting it to all other vertices. The graph Gn0 has by construction
maximum degree ∆Gn0

= n0 ≤ k0 + n0 − 2. Hence, Lemma 10 shows that
Gn0+1 ∈ Gr(n0 + 1, k0 + n0 + 1).

12



We specialize to the Paley graphs, and obtain from Example 23 and Theo-
rems 25–26 the following.

Theorem 27. Let q be an odd prime power such that q ≡ 1 (mod 4).

(i) The Paley graph P (q) ∈ Gr(q, (q + 3)/2).

(ii) There exists a graph in Gr(q + i, (q + 3)/2 + i) for all i = 0, 1, . . . , q + 1.

Note that the rate 2q/(q + 3) for the Paley graphs approaches 2 as q →∞;
in fact, with n = q and k = (q + 3)/2 we have n = 2k − 3, almost attaining the
bound 2k − 2 in Theorem 19. (The Paley graphs thus almost attain the bound
in Theorem 19, but never attain it exactly.)

Corollary 28. Ξ(k) ≥ 2k − o(k) as k →∞.

Proof. Let q = p2 where (for k ≥ 6) p is the largest prime such that p ≤
√

2k − 3.
It follows from the prime number theorem that p/

√
2k − 3 → 1 as k → ∞,

and thus q = 2k − o(k). Hence, if k is large enough, then k ≤ q ≤ 2k − 3,
and Theorem 27 shows that P (q) ∈ Gr(q, (q + 3)/2) ⊆ Gr(q, k), so Ξ(k) ≥
q = 2k − o(k). (Alternatively, we may let q be the largest prime such that
q ≤ 2k−3 and q ≡ 1 (mod 4) and use the prime number theorem for arithmetic
progressions [8, Chapter 17] to see that then q = 2k − o(k).)

We turn to the strongly regular graphs constructed in Example 24 and find
from Theorem 25 that they are in Gr(4m2, 2m2 + 1), thus attaining the bound
in Theorem 19. We state that as a theorem.

Theorem 29. The strongly regular graph constructed in Example 24 from an
n× n RSHCD+ belongs to Gr(n, n/2 + 1).

Corollary 30. There exist infinitely many integers k such that Ξ(k) = 2k − 2.

Proof. If k = n/2 + 1 for an even n such that there exists an n× n RSHCD+,
then Ξ(k) ≥ n = 2k − 2 by Theorem 29. The opposite inequality is given by
Theorem 19. By Example 24, this holds at least for k = 22r−1 + 1 for any
r ≥ 1.

6 Smaller identifying sets
The fact that all sets of k vertices in a given graph are identifying implies
typically that there exist many identifying sets of smaller size s too, as is shown
by the following result.

Theorem 31. Let G = (V,E) ∈ Gr(n, k). Then, for a random subset S of V
of size s

P(S is identifying in G) ≥ 1−
(
n+ 1

2

)(k−1
s

)(
n
s

) .
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Figure 3: The bound in Theorem 31 for the graphs in Gr(29, 16).

Proof. Let G = (V,E) ∈ Gr(n, k) and S be the set of all s-subsets of V . Clearly,
|S| =

(
n
s

)
. Denote by F2(S), S ∈ S, the number of unordered pairs {u, v} ∈

(
V
2

)
such that u and v are not separated by S, that is, I(S;u)4 I(S; v) = ∅, and by
F1(S) the number of vertices w ∈ V such that I(S;w) = ∅.

We count∑
S∈S

F2(S) +
∑
S∈S

F1(S) =
∑
S∈S

∑
{u,v}∈(V

2)
I(u)4I(v)=∅

1 +
∑
S∈S

∑
w∈V
I(w)=∅

1

=
∑

{u,v}∈(V
2)

∑
S∈S

I(u)4I(v)=∅

1 +
∑
w∈V

∑
S∈S
I(w)=∅

1

≤
((

n

2

)
+ n

)(
k − 1
s

)
=
(
n+ 1

2

)(
k − 1
s

)
.

This bounds from above the number of sets S ∈ S that have an unidentified
pair or a vertex with empty I-set. Thus

P(S ∈ S is identifying) ≥ 1−
(
n+1

2

)(
k−1
s

)(
n
s

) .

It follows that for many graphs, for example Paley graphs, almost all s-
subsets are identifying even when s is not too far away from the smallest value
where there exists any identifying subset. We illustrate this for P (29) in Fig-
ure 3, and state the following consequences.

Theorem 32. If G ∈ Gr(n, k) with k ≥ 2 and s is an integer with log
(
n+1

2

)
/ log(n/(k−

1)) < s ≤ n, then there exists an identifying s-set of vertices of G.

Proof. If s ≥ k, then every s-set will do, so suppose s ≤ k − 1. Then(
k−1
s

)(
n
s

) ≤ (k − 1
n

)s
< e− log (n+1

2 ),
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and Theorem 31 shows that there is a positive probability that a random s-set
is identifying.

Theorem 33. For the Paley graphs,

min{|S| : S is identifying in P (q)} = Θ(log q).

Proof. Theorems 27 and 32 show that there is an identifying s-set in P (q) when
s > log2((q2 + q)/2)/ log2(2q/(q + 1)) = 2 log2(q)− 1 + o(1). The lower bound
log2(q + 1) is clear since all the sets I(v), v ∈ V , must be nonempty and
distinct.

7 On Gr(n, k, `)

In this section we consider Gr(n, k, `) for ` ≥ 2. Let us denote

Ξ(k, `) = max{n : Gr(n, k, `) 6= ∅}.

Trivially, the empty graph Ek ∈ Gr(k, k, `) for any ` ≥ 1; thus Ξ(k, `) ≥k.
Note that a graph G = (V,E) with |V | = n admits a (1,≤ `)-identifying set

⇐⇒ V is (1,≤ `)-identifying ⇐⇒ G ∈ Gr(n, n, `).

Theorem 34. Suppose that G = (V,E) ∈ Gr(n, k, `), where n > k and ` ≥ 2.
Then the following conditions hold:

(i) For all x ∈ V we have ` + 1 < n − k + ` + 1 ≤ |N [x]| ≤ k − `. In other
words, δG ≥ n− k + ` and ∆G ≤ k − `− 1.

(ii) For all x, y ∈ V , x 6= y, |N [x] ∩N [y]| ≤ k − 2`+ 1.

(iii) n ≤ 2k − 2`− 1 and k ≥ 2`+ 2.

Proof. (i) Suppose first that there is a vertex x ∈ V such that |N [x]| ≤ n−k+`.
By removing n− k vertices from V , starting in N [x], we find a k-subset C with
I(C;x) = {c1, . . . , cm} for some m ≤ `. If m = 0, then I(C;x) = I(C; ∅), which
is impossible. If 1 ≤ m < `, we can arrange (by removing x first) so that x /∈ C,
and thus x /∈ Y = {c1, . . . , cm}. Then I(C; {x}∪Y ) = I(C;Y ), a contradiction.
If m = ` ≥ 2, we can conversely arrange so that x ∈ C, and thus x ∈ I(C;x),
say c1 = x. Then I(C; c2, . . . , cm) = I(C; c1, . . . , cm), another contradiction.
Consequently, |N [x]| ≥ n− k + `+ 1.

Suppose then |N [x]| ≥ k − ` + 1. If |N [x]| ≥ k, we can choose a k-subset
C of N [x]; then I(C;x) = C = I(C;x, y) for any y, which is impossible. If
k > |N [x]| ≥ k − `+ 1, we can choose a k-subset C = N [x] ∪ {c1, . . . ck−|N [x]|}.
Choose also a ∈ N(c1) (which is possible because deg(c1) ≥ 1 by (i)). Now
I(C;x, c1, . . . , ck−|N [x]|) = C = I(C;x, a, c2, . . . , ck−|N [x]|), which is impossible.

(ii) Suppose to the contrary that there are x, y ∈ V , x 6= y, such that
|N [x] ∩ N [y]| ≥ k − 2` + 2. Let A = N(y) \ N [x]. Then, according to (i),
|A| ≤ |N [y] \ N [x]| = |N [y]| − |N [x] ∩ N [y]| ≤ k − ` − (k − 2` + 2) = ` − 2.
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Since k > `− 2 by (i), there is a k-subset C ⊆ V \ {y} such that A ⊂ C. Then
I(C;A ∪ {x, y}) = I(C;A ∪ {x}), a contradiction.

(iii) An immediate consequence of (i), which implies n − k + ` + 1 ≤ k − `
and `+ 1 < k − `.

Theorem 35. For ` ≥ 2, Ξ(k, `) ≤ max
{

`
`−1 (k − 2), k

}
.

Proof. If Ξ(k, `) = k, there is nothing to prove. Assume then that there exists a
graph G = (V,E) ∈ Gr(n, k, `), where n > k. By Theorem 34(iii), ` < k/2 < n.
Let us consider any set of vertices Z = {z1, z2, . . . , z`} of size `. We will estimate
|N [Z]| as follows. By Theorem 34(i) we know |N [z1]| ≥ n − k + ` + 1. Now
N [z1, z2] must contain at least n− k+ 1 vertices, which do not belong to N [z1]
due to Theorem 7 which says that |N [X]4N [Y ]| ≥ n − k + 1, where we take
X = {z1} and Y = {z1, z2}. Analogously, each set N [z1, . . . , zi] (i = 2, . . . , `)
must contain at least n−k+ 1 vertices which are not in N [z1, . . . , zi−1]. Hence,
for the set Z we have |N [Z]| ≥ n− k+ `+ 1 + (`− 1)(n− k+ 1) = `(n− k+ 2).
Since trivially |N [Z]| ≤ n, we have (`−1)n ≤ `(k−2), and the claim follows.

Corollary 36. For ` ≥ 2, we have Ξ(k,`)
k ≤ 1 + 1

`−1 .

The next results improve the result of Theorem 35 for ` = 2.

Lemma 37. Assume that n > k. Let G = (V,E) belong to Gr(n, k, 2). Then

n+
n− k + 2
n− 1

(n− k + 3) ≤ 2k − 3

Proof. Suppose x ∈ V . Let

f(n, k) =
n− k + 2
n− 1

(n− k + 3).

Our aim is first to show that there exists a vertex in N(x) or in S2(x) which
dominates at least f(n, k) vertices of N [x]. Let

λx = max{|N [x] ∩N [a]| | a ∈ N(x)}.

If λx ≥ f(n, k), we are already done. But if λx < f(n, k), then we show that
there is a vertex in S2(x) that dominates at least f(n, k) vertices of N [x]. Let
us estimate the number of edges between the vertices in N(x) and in S2(x) —
we denote this number by M . By Theorem 34(i), every vertex y ∈ N(x) yields
at least |N [y]| − λx ≥ n− k+ 3− λx such edges and there are at least n− k+ 2
vertices in N(x). Consequently, M ≥ (n − k + 2)(n − k + 3 − λx). On the
other hand, again by Theorem 34(i), |S2(x)| ≤ n− |N [x]| ≤ k− 3. Hence, there
must exist a vertex in S2(x) incident with at least M/(k− 3) edges whose other
endpoint is in N(x). Now, if λx < f(n, k), then

M

k − 3
>

(n− k + 2)(n− k + 3− f(n, k))
k − 3

= f(n, k).
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Hence there exists in this case a vertex in S2(x) that is incident to at least
f(n, k) such edges, i.e., it dominates at least f(n, k) vertices in N(x).

In any case there thus exists z 6= x such that |N [x] ∩ N [z]| ≥ f(n, k). Let
C = (N [x] ∩N [z]) ∪ (V \N [x]). Then I(C;x, z) = I(C; z), so C is not (1,≤ 2)-
identifying and thus |C| < k. Hence, using Theorem 34(i),

k − 1 ≥ |C| ≥ f(n, k) + n− |N [x]| ≥ f(n, k) + n− (k − 2),

and thus n+ f(n, k) ≤ 2k − 3 as asserted.

Theorem 38. If k ≤ 5, then Ξ(k, 2) = k. If k ≥ 6, then

Ξ(k, 2) <
(

1 +
1√
2

)
(k − 2) +

1
4
.

Proof. Let n = Ξ(k, 2), and let m = k − 2. If n > k, then k ≥ 6 by Theo-
rem 34(iii); hence n = k when k ≤ 5. Further, still assuming n > k, Lemma 37
yields

n+
(n−m)(n−m+ 1)

n− 1
≤ 2m+ 1

or

0 ≥ n(n− 1) + (n−m)2 +n−m− (2m+ 1)(n− 1) = 2
(
n− (m+ 1

4 )
)2−m2 + 7

8 .

Hence, n− (m+ 1
4 ) < m/

√
2.

Corollary 39. For ` = 2, we have Ξ(k, 2)/k ≤ 1 + 1√
2
.

Problem 40. What is lim supk→∞ Ξ(k, `)/k for ` ≥ 2? In particular, is
lim supk→∞ Ξ(k, `)/k > 1?

The following theorem implies that for any ` ≥ 2 there exist graphs in
Gr(n, k, `) for n ≈ k + log2 k. In particular, we have such graphs with n > k.

Theorem 41. Let ` ≥ 2 and m ≥ max{2` − 2, 4}. A binary hypercube of
dimension m belongs to Gr(2m, 2m −m+ 2`− 2, `)

Proof. Suppose first ` ≥ 3. By [11] we know that then a set in a binary hy-
percube is (1,≤ `)-identifying if and only if every vertex is dominated by at
least 2` − 1 different vertices belonging to the set. Hence, we can remove any
m + 1 − (2` − 1) vertices from the graph, and there will still be a big enough
multiple domination to assure that the remaining set is (1,≤ `)-identifying.

Suppose then that ` = 2 and G = (V,E) is the binary m-dimensional hy-
percube. Let us denote by C ⊆ V a (2m − m + 2)−subset. Every vertex is
dominated by at least m + 1 − (m − 2) = 3 vertices of C. For all x, y ∈ V ,
x 6= y we have |N [x] ∩ N [y]| = 2 if and only if 1 ≤ d(x, y) ≤ 2 and otherwise
|N [x] ∩ N [y]| = 0. Hence, for all x, y, z ∈ V with x 6= y, I(y) = N [y] ∩ C
contains at least 3 vertices, and these cannot all be dominated by x; thus, we
have I(x) 6= I(y) and I(x) 6= I(y, z).
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We still need to show that I(x, y) 6= I(z, w) for all x, y, z, w ∈ V , x 6= y,
z 6= w, {x, y} 6= {z, w}. By symmetry we may assume that x 6∈ {z, w}. Suppose
I(x, y) = I(z, w).

If |I(x)| ≥ 5, then any two vertices z, w 6= x cannot dominate I(x), a con-
tradiction.

If |I(x)| = 4, then |I(z)∩I(x)| = |I(w)∩I(x)| = 2 and I(x)∩I(z)∩I(w) = ∅.
It follows that 3 ≤ d(z, w) ≤ 4 which implies I(z)∩I(w) = ∅. Since |N [x]\C| =
|N [x]| − |I(x)| = m − 3, all except one vertex, say v, of V \ C belong to N [x],
so V \ N [x] ⊆ C ∪ {v}; the vertex v cannot belong to both N [z] and N [w]
since these are disjoint, so we may (w.l.o.g.) assume that v /∈ N [z], and thus
N [z] \ N [x] ⊆ C, whence N [z] \ N [x] ⊆ I(z) \ I(x). Hence, |I(z) ∩ I(y)| ≥
|I(z) \ I(x)| ≥ |N [z] \ N [x]| = |N [z]| − |N [z] ∩ N [x]| = m + 1 − 2 ≥ 3. Thus
y = z; however, then I(y) ∩ I(w) = I(z) ∩ I(w) = ∅ and since I(w) 6⊆ I(x), we
have I(w) 6⊆ I(x, y).

Suppose finally that |I(x)| = 3; w.l.o.g. we may assume |I(z) ∩ I(x)| = 2.
Now |N [x]\C| = |N [x]|−|I(x)| = m−2 = |V \C|, and thus V \C = N [x]\C ⊆
N [x]; hence, V \ N [x] ⊆ C and thus N [z] \ N [x] ⊆ I(z) \ I(x). Consequently,
|I(z) ∩ I(y)| ≥ |I(z) \ I(x)| ≥ |N [z] \ N [x]| ≥ m + 1 − 2 ≥ 3, and thus z = y.
But similarly N [w] \N [x] ⊆ I(w) \ I(x) and the same argument shows w = y,
and thus w = z, a contradiction.

We finally consider graphs without isolated vertices (i.e., no vertices with
degree zero), and in particular connected graphs.

By [13, Theorem 8] a graph with no isolated vertices admitting a (1,≤ `)-
identifying set has minimum degree at least `. Hence, always n ≥ `+ 1.

In [7] and [12] it has been proven that there exist connected graphs which
admit (1,≤ `)-identifying set. For example, the smallest known connected graph
admitting a (1,≤ 3)-identifying set has 16 vertices [12]. It is unknown whether
there are such graphs with smaller order. In the next theorem we solve the case
of graphs admitting (1,≤ 2)-identifying sets.

Theorem 42. The smallest n ≥ 2 such that there exists a connected graph (or
a graph without isolated vertices) in Gr(n, n, 2) is n = 7.

(If we allow isolated vertices, we can trivially take the empty graph En for
any n ≥ 2.)

Proof. The cycle Cn ∈ Gr(n, n, 2) for n ≥ 7 by Example 3(ii) (see also [12]).
Assume that G = (V,E) ∈ Gr(n, n, 2) is a graph of order n ≤ 6 without

isolated vertices; we will show that this leads to a contradiction. By [13], we
know that deg(v) ≥ 2 for all v ∈ V . We will use this fact frequently in the
sequel.

If G is disconnected, the only possibility is that n = 6 and that G consists
of two disjoint triangles, but this graph is not even in Gr(n, n, 1).

Hence, G is connected. Let x, y ∈ V be such that d(x, y) = diam(G).
(i) Suppose that diam(G) = 1, or more generally that there exists a domi-

nating vertex x. Then N [x, y] = N [x] for any y ∈ V , which is a contradiction.
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(ii) Suppose next diam(G) = 2. Moreover, by the previous case we can
assume that for any v ∈ V there is w ∈ V such that d(v, w) = 2.

Assume first |N(x)| = 4. Then S2(x) = {y}. Since deg(y) ≥ 2, there exist
two vertices w1, w2 ∈ N(y) ∩N(x), but then N [x,w1] = N [x,w2].

Assume next |N(x)| = 3, say N(x) = {u1, u2, u3}. Then |S2(x)| = n −
|N [x]| ≤ 2. Since the four sets N [x] and N [x, ui], i = 1, 2, 3, must be distinct,
we can assume without loss of generality that |S2(x)| = 2, say S2(x) = {y, w},
and that the only edges between the elements in S2(x) and N(x) are u1y, u2w,
u3y and u3w. Then N [x, u3] = N [y, u2].

Assume finally that |N(x)| = 2. By the previous discussion we may assume
that |N(v)| = 2 for all v ∈ V . Then G must be a cycle Cn, but it can easily be
seen that Cn /∈ Gr(n, n, 2) for 3 ≤ n ≤ 6.

(iii) Suppose that diam(G) = 3. Clearly |N(x)| ≥ 2 and |S2(x)| ≥ 1. If
|S2(x)| = 1, say S2(x) = {w}, then N [w, y] = N [w], which is not allowed. Since
n ≤ 6, we thus have |N(x)| = 2 and |S2(x)| = 2, say N(x) = {u1, u2} and
S2(x) = {w1, w2}. We can assume without loss of generality that u1w1 ∈ E. If
w2u2 ∈ E, then N [w1, u2] = N [x, y]. If w2u2 /∈ E, then N [w1, w2] = N [w1].

(iv) Suppose that diam(x, y) ≥ 4. Then G contains an induced path P5.
There is at most one additional vertex, but it is impossible to add it to P5 and
obtain δG ≥ 2 and diam(G) ≥ 4.

This completes the proof.
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