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Abstract. General upper tail estimates are given for counting edges
in a random induced subhypergraph of a fixed hypergraph H, with an
easy proof by estimating the moments. As an application we consider the
numbers of arithmetic progressions and Schur triples in random subsets
of integers. In the second part of the paper we return to the subgraph
counts in random graphs and provide upper tail estimates in the rooted
case.

1. Introduction

Consider a finite sum of dependent random variables of the following form.
Let Γ be a finite ground set and let S be a family of its subsets. Let Γp be a
random, binomial subset of Γ which independently includes each element of
Γ with probability p. Finally, for each S ∈ S, let IS be the indicator random
variable of the event {S ⊆ Γp}. Then X = X(Γ,S, p) =

∑
S∈S IS counts

the number of members of the family S contained in a random subset Γp. A
lot of research has been devoted to the study of the asymptotic distribution
of X when the order N = |Γ| grows to ∞ and p = p(N), both in a general
setting and for particular instances, most notably for random graphs, see
[7].

One feature which received a lot of attention is the rate of decay of the
tails of X, the lower tail P(X ≤ tEX) for 0 < t < 1, and the upper tail
P(X ≥ tEX) for t > 1. Good estimates for the lower tail follow from
the FKG inequality (lower bound) and Janson’s inequality (upper bound),
see [7], Section 2.2. Often, these two bounds asymptotically match under
some restrictions on the dependencies among the summands IS . This is, in
particular, the case of subgraph counts in random graphs, see [7], Section
3.1.

The upper tails tend to be harder to analyze. Some ad hoc results can
be found in [7], [10], [5], [6], among others. For the subgraph count problem
a quite satisfactory and complete result has been obtained in [4], where
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the logarithms of the upper and lower bound on P(X ≥ tEX) are of the
same order of magnitude except for a logarithmic term. A generalization to
random hypergraphs can be found in [1].

This paper can be viewed as a follow-up paper to [4]. Using the proof
techniques developed therein, those results are extended in two directions.
First, we return to the more general model of set systems (or hypergraphs)
and obtain some straightforward estimates for the upper tail of X, covering,
in particular, the number of arithmetic progressions of given length in a
random subset of integers. Then, we return to the subgraph counts to study
the rooted version of the problem, only to discover some unexpected features
there.

2. Counting edges of randomly induced subhypergraphs

Let H be a k-uniform hypergraph on a vertex set Γ with |Γ| = N and
with |H| = aN q edges, where a = a(N) > 0 and 0 < q ≤ k. Consider a
random, binomial subset Γp of Γ, where 0 < p = p(N) < 1, and the random
variable X = |H[Γp]| counting the edges of H that are entirely present in
Γp. Note that

µ := EX = |H|pk = aN qpk.

For j = 0, 1, . . . , k, let

∆j = max
S∈(Γ

j)
|{T ∈ H : T ⊇ S}|,

i.e., the maximum number of edges that contain j given vertices.

Theorem 2.1. Let q be an integer, 1 ≤ q ≤ k, and let a0 > 0 and t > 1 be
real numbers. There exists a constant c = c(q, a0, t) such that if H satisfies
the following four conditions:

(i) a(N) = |H|/N q ≥ a0,
(ii) for all j ≤ q we have ∆j = O(N q−j),
(iii) for all j > q we have ∆j = O(1),
(iv) there exists C > 0 and Γ0 ⊆ Γ such that |Γ0| ≤ Cµ1/q and |H[Γ0]| ≥

tµ,
then, with X = |H[Γp]|,

pCµ
1/q

= exp
{
−Cµ1/q log(1/p)

}
≤ P(X ≥ tµ) ≤ exp{−cµ1/q}.

Before giving the proof, we make some comments.
• The two exponents are of the same order of magnitude except for

the logarithmic term log(1/p); this inaccuracy disappears obviously
for p constant.
• Note that P(X ≥ tµ) > 0 ⇐⇒ tµ ≤ |H| ⇐⇒ tpk ≤ 1, so the

theorem is interesting for t ≤ p−k only. (For larger t, P(X ≥ tµ) = 0
so the lower bound fails, while the upper bound is trivial; further,
(iv) fails.)
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• Condition (iii) is redundant, since it follows from (ii) with j = q, but
we prefer to include it explicitly for emphasis, and for comparison
with Theorem 2.2 which allows non-integer values of q (note that for
non-integer q, (iii) does not follow from (ii)).
• As we will see in the proof, the upper bound follows only from con-

ditions (i)–(iii), while the lower bound is a consequence of condition
(iv) alone.

Proof. Take C and Γ0 as in assumption (iv). We have

P(X ≥ tµ) ≥ P(Γp ⊇ Γ0) = p|Γ0|,

which proves the lower bound.
For the upper bound, we use the same approach as in [4]. By Markov’s

inequality, for every m we have

P(X ≥ tµ) ≤ EXm

tmµm
.

It remains to show that for a sufficiently small c1 = c1(q, a0, t) and m =
dc1µ

1/qe we have, say, EXm ≤ tm/2µm.
Having chosen m− 1 (not necessarily distinct) edges E1, . . . , Em−1 of H,

let Nj be the number of edges Em such that
∣∣Em ∩⋃m−1

i=1 Ei
∣∣ = j, and let

N≥j =
∑

k≥j Nk. We estimate these numbers as follows: For j = 0,

N0 ≤ N≥0 = |H|. (2.1)

For 1 ≤ j ≤ q, by (ii),

Nj ≤ N≥j = O(mj∆j) = O(mjN q−j), (2.2)

since if
∣∣Em ∩ ⋃m−1

i=1 Ei
∣∣ ≥ j, then there exists a set A ⊆

⋃m−1
i=1 Ei with

|A| = j and Em ⊇ A, and there are O(mj) such sets A, and at most ∆j

edges Em for each A. For j > q we obtain

Nj ≤ N≥q = O(mq) (2.3)

from (2.2) (with j = q).
Arguing as in [4] we have from (2.1)–(2.3), by induction on m,

EXm ≤ µ

|H|pk +
q∑
j=1

O(mjN q−j)pk−j +
k∑

j=q+1

O(mq)pk−j

m−1

= µm

1 +O(a−1)
q∑
j=1

(
m

Np

)j
+O(1)

mq

µ

m−1

for every m ≥ 1. Now choose m = dc1µ
1/qe ≥ 1, as said above. If m ≥ 2,

then m/(Np) ≤ 2c1µ
1/q/(Np) = 2c1a

1/qpk/q−1 ≤ 2c1a
1/q, and thus, using

(i), the term in parenthesis in the last line can be made arbitrarily close to
1 for all m ≥ 2 by choosing c1 > 0 small enough; in particular, it can be
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made less than t1/2. Hence, for the chosen m, EXm ≤ tm/2µm if m ≥ 2,
and trivially if m = 1 too. This completes the proof. �

In the case of non-integer q, the upper bound gets further away from the
lower bound. Indeed, we then have the following result.

Theorem 2.2. Let q, a0 and t be real numbers, with 0 < q ≤ k, a0 > 0
and t > 1. There exists a constant c = c(q, a0, t) such that under the same
assumptions (i)–(iv) as in Theorem 2.1,

P(X ≥ tµ) ≤ exp
{
−cmax

(
µ1/qpk(1/bqc−1/q), µ1/dqe

)}
and

P(X ≥ tµ) ≥ pCµ1/q
= exp{−Cµ1/q log(1/p)}.

Proof. The only difference in the proof is when we bound Nj to estimate
EXm. Namely, for j ≥ dqe, we either use Nj ≤ N≥bqc = O(mbqcN q−bqc), or
Nj ≤ N≥dqe = O(mdqe). We then choose

m = dc1 max
(
µ1/qpk(1/bqc−1/q), µ1/dqe)e

for a small constant c1. (We may assume µ ≥ 1, since otherwise m = 1 and,
recalling that t > 1, the estimate EX ≤ t1/2µ is trivial.) �

2.1. Integer solutions of linear homogeneous systems. For an l × k
integer matrix A, where l < k, assume that every l × l submatrix B of A
has full rank r(B) = l = r(A). Consider the system of homogeneous linear
equations Ax = 0, where x = (x1, . . . , xk) is a column vector and 0 is a
column vector of dimension l. We assume also that there exists a distinct-
valued positive integer solution of Ax = 0. These assumptions seem to be
quite restrictive, but, in fact, we cover at least one important case: the
arithmetic progressions of length k which can be viewed as distinct-valued
solutions to a system of l = k − 2 equations.

Let Γ = [N ] := {1, 2, . . . , N} and 0 < p = p(N) < 1. Then Γp is a random
subset of the first N integers with density p. Define a k-uniform hypergraph
HA = HA(N) as the family of all solution sets {x1, . . . , xk} of the system
Ax = 0 with xi distinct and in [N ]. Let us check that for some a0, q, and
C the assumptions (i)–(iv) of Theorem 2.1 hold, at least in the interesting
case µ = |HA|pk ≥ 1 and tµ ≤ |HA|, which can be equivalently restated as

µ ≥ 1 and t ≤ p−k. (2.4)

Set q = k − l.
(i), (iv): We will show that there exists a0 > 0 such that for sufficiently

large m ≤ N we have
|HA(m)| ≥ a0m

q. (2.5)
Taking m = N in (2.5) we obtain |HA| ≥ a0N

q, which is (i). Taking
m = min

(
d(ta−1

0 µ)1/qe, N
)

in (2.5) and Γ0 = [m] we obtain (iv) with C =
2(ta−1

0 )1/q, using the assumptions in (2.4).
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Let x0 ∈ Zk be a positive integer solution of Ax = 0. Let M0 by the
largest of its coefficients x01, . . . , x0k. Let x1, . . . ,xq be q linearly indepen-
dent integer solutions of Ax = 0. (There exist q linearly independent rational
solutions, and we may multiply these by their common denominators and
thus assume that they are integer solutions.) Let M be the maximum of the
absolute values of the coefficients in x1, . . . ,xq.

Given m, let d := bm/(M0 + 1)c. For any integers a1, . . . , aq, the sum
dx0 +

∑q
i=1 aixi yields an integer solution of Ax = 0, and these solutions

are all distinct. If further |ai| < d/(2qM) for all i, this solution has all
coefficients positive, less thanm, and distinct. The number of these solutions
is Θ(dq) = Θ(mq). Hence, (2.5) holds.

(ii), (iii): By elementary algebraic properties of systems of linear equa-
tions, every system By = c, where B is an integer l×h matrix, has no more
than Nh−r(B) solutions in [N ]. Thus, ∆0 = |HA| ≤ Nk−l = N q. For every
subset J of the columns of A, define AJ as the submatrix obtained from A
by removing the columns in J . This means that when we fix values of some
j variables, then the obtained system of equations is of the form By = c,
where y consists of the remaining unknowns, B = AJ , and J is the set of
columns of A corresponding to the fixed variables. Hence, the number of
solutions with j given elements corresponding to the given columns J is at
most Nk−j−r(AJ ). Now, for all j ≤ q = k− l, if |J | = j then, by our assump-
tion on A, r(AJ) = l, so (summing over J) ∆j = O(Nk−j−l) = O(N q−l).
On the other hand, if j > k− l then r(AJ) = k− j, so ∆j = O(N0) = O(1).

Hence, given (2.4), Theorem 2.1 applies for such HA with q = k − l and
µ = Θ(Nk−lpk).

Example 2.3. In particular, we obtain quite sharp estimates for the tails
of the numbers of arithmetic progressions of length k in [N ]p. Indeed, they
are given by the system xi − 2xi+1 + xi+2 = 0, i = 1, . . . , k − 2. It is easy
to check that for l = k − 2 every l× l submatrix has full rank, and we have
the following result.

Corollary 2.4. Let X be the number of arithmetic progressions of length
k in [N ]p, k ≥ 3, and let µ, t > 1, and p satisfy (2.4). Then there exist
c, C > 0 such that

pCNp
k/2

= exp{−CNpk/2 log(1/p)} ≤ P(X ≥ tµ) ≤ exp{−cNpk/2}. �

Example 2.5. A Schur triple is a triple {x, y, z} of positive integers such
that x+ y = z, x 6= y. In this case we have k = 3, l = 1 and so, q = 2.

Corollary 2.6. Let X be the number of Schur triples in [N ]p, and let µ,
t > 1, and p satisfy (2.4) with k = 3. Then there exist c, C > 0 such that

pCNp
3/2

= exp{−CNp3/2 log(1/p)} ≤ P(X ≥ tµ) ≤ exp{−cNp3/2}. �

Remark 2.7. Arithmetic progressions are partition regular, a name intro-
duced by Rado for all linear systems the solutions of which satisfy theorems
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similar to the van der Waerden theorem. But, in addition, they are also
density regular, which means that every subset of integers of positive den-
sity contains them (Szemerédi’s theorem). Partition properties of random
subsets of integers with respect to density regular systems were studied in
[9]. Schur triples form an example of partition regular but not density reg-
ular linear system. Partition properties of random subsets of integers with
respect to Schur triples were studied in [3].

Remark 2.8. We have here treated the set of solutions x to Ax = 0 as
a hypergraph, i.e., we have treated the solutions x as k-sets rather than
k-vectors. This is fine for the examples of arithmetic progressions and Schur
triples treated above, but in general it may be more natural to regard the
solutions x as vectors (or, equivalently, sequences) in [N ]k, rather than as
sets. We then define HA as the subset {x : Ax = 0} of [N ]k. In this
way, we distinguish between solutions that are permutations of each other
(for example, (x, y, z) and (y, x, z) in the Schur triple case), and we allow
repeated values.

It is possible to prove a version of Theorem 2.1 for this case, using essen-
tially the same proof, but the possibility of repeated elements of Γ = [N ]
complicates the conditions; we now need bounds on the number of vectors
in HA that have j coordinates fixed, and at most ` distinct values of the
other coordinates. We omit the details.

2.2. Further examples and remarks.

Example 2.9. In the dense case, that is, when q = k, assumption (iv)
holds trivially by averaging over all subsets Γ0 of a suitable size, provided
the necessary condition t ≤ p−k is satisfied, but this result has been known
already (cf. [5] and [6]). In particular, this case covers the number of match-
ings of size k in a random r-uniform hypergraph G(r)(n, p), by considering
a k-uniform hypergraph H where the vertices are the edges of the complete
r-uniform hypergraph K(r)

n and the edges are the matchings of size k in K(r)
n .

Then the assumptions of Theorem 2.1 hold with q = k.

Remark 2.10. It can be very hard to improve upon Theorem 2.2, because
it contains the triangle count problem from [4]. Indeed, with Γ =

(
[n]
2

)
and

H being the family of the edge sets of all triangles in Kn, we have N =
(
n
2

)
and |H| = Θ(n3) = Θ(N3/2), so q = 3/2. To get the result from [4], we
would need to improve the upper bound, but this seems to be impossible
without “seeing” the vertices of the random graph.

3. Rooted subgraphs of random graphs

A rooted graph (R,G) is a graph G with a fixed independent set R; we
also say that the graph is rooted at R. (For simplicity, we sometimes use
G to denote the rooted graph (R,G) when R is clear from the context.)
Counting rooted subgraphs of a random graph G(n, p) with a fixed set R of
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roots plays an important role in studying the so called extension statements
and 0–1 laws in random graphs, see, e.g., [7, Sections 3.4 and 10.2]. Another
application can be found in [8], where a sharp concentration of the number
of paths of given length connecting two given vertices is utilized. Here we
give a quite accurate estimate of the upper tail of the number of rooted
copies of a given rooted graph in G(n, p); the result is similar to our main
result in [4] for unrooted graphs, but somewhat simpler, except for a new
complication for constant p.

A rooted graph (R′, H) is a rooted subgraph of (R,G) if H is a subgraph
of G and R′ = V (H) ∩ R. We let NR(G,H) denote the number of rooted
copies of H in G.

Given a rooted graph (R,G) and a graph F on the vertex set V (F ) =
[n] = {1, 2, . . . , n}, let r = |R| and regard F as rooted on [r] = {1, . . . , r};
we say that a rooted subgraph of ([r], F ) isomorphic to (R,G) is an R-rooted
copy of G in F . Thus NR(F,G) is the number of R-rooted copies of G in F .
In particular, when F is a random graph G(n, p), we let the random variable
X = XR

G = XR
G(n, p) be the number NR(G(n, p), G) of R-rooted copies of

G in G(n, p). We further define

µ = µR(G,n, p) := EXR
G = NR(Kn, G)pe(G). (3.1)

For a subgraph H of G let H − R be the graph obtained from H by
deleting all vertices of R (together with incident edges), and define

ΨR
H = ΨR

H(n, p) := nv(H−R)pe(H). (3.2)

Note that ΨR
H = Θ(EXR′

H ), with R′ = R∩V (H), but as defined, it does not
depend on the actual set R′ of roots of H.

Recall that, for a graph H, the fractional independence number α∗(H) is
defined as the maximum value of

∑
i xi over all assignments (xi)i∈V (H) such

that 0 ≤ xi ≤ 1 for all vertices i ∈ V (H) and xi + xj ≤ 1 for every edge
ij ∈ H. We let

MR,G = MR,G(n, p) = min
H⊆G,e(H)>0

(
ΨR
H

)1/α∗(H−R)
. (3.3)

We further let

mR(G) := max
H⊆G,e(H)>0

e(H)
v(H −R)

> 0, (3.4)

and note that (3.3), (3.2) and (3.4) imply that

MR,G < 1 ⇐⇒ npmR(G) < 1. (3.5)

By the same argument as for the unrooted case in [7, Section 3.1], it is
easy to show that p = n−1/mR(G) is the threshold for the appearance of an
R-rooted copy of G in G(n, p).

Let eR(G) = e(G)− e(G−R) be the number of edges in G incident with
the root set R. We assume below that eR(G) > 0; the case eR(G) = 0
is uninteresting since then XR

G equals the number of copies of the unrooted
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graph G−R in G(n, p)−[r], which we identify with G(n−r, p), so XR
G(n, p) =

XG−R(n− r, p) and we may apply the results of [4].

Theorem 3.1. For every rooted graph (R,G) with eR(G) > 0 and for every
t > 1 there exist constants c = c(t, G) and C = C(t, G) such that for all
n ≥ v(G), with p1 := t−1/eR(G) and p2 := t−1/e(G):

(a) If p ≤ n−1/mR(G), then

pC = exp{−C log(1/p)} ≤ P(XR
G ≥ tµ) ≤ exp{−c}.

(b) If n−1/mR(G) ≤ p ≤ p1, then

pCMR,G = exp{−CMR,G log(1/p)} ≤ P(XR
G ≥ tµ) ≤ exp{−cMR,G}.

(c) If p1 ≤ p ≤ p2, then

exp{−C(n+ (p− p1)2n2)} ≤ P(XR
G ≥ tµ) ≤ exp{−c(n+ (p− p1)2n2)}.

(d) If p2 < p ≤ 1, then

P(XR
G ≥ tµ) = 0.

Note that 0 < p1 ≤ p2 < 1, and that p1 and p2 do not depend on n.
Before giving the proof, we make some comments.

(i) Case (d) is trivial, because p > p2 ⇐⇒ tpe(G) > 1 ⇐⇒ tµ >
NR(Kn, G), see (3.1), so it is impossible to get at least tµ rooted
copies of G on n vertices.

(ii) Case (a) is uninteresting and included only to show that the esti-
mates in (b) extend in a continuous way to smaller p. (Note that
MR,G = 1 at the threshold p = n−1/mR(G), cf. (3.5).) Indeed, in case
(a) we are below the threshold, so typically XR

G = 0.
(iii) If eR(G) = e(G), or equivalently e(G − R) = 0, i.e., all edges in G

have a root as one endpoint, then p1 = p2 and case (c) disappears,
so that (b) is valid until the cutoff at p2. For all other G, p1 < p2

and case (c) appears, so there is a phase transition at p1.
(iv) In the unrooted case in [4] there is also a phase transition at p =

n−1/∆G . This has no counterpart in the rooted case.
(v) Since eR(G) > 0, G has a rooted subgraph H0 which is just a single

edge with one endpoint in R; we have ΨR
H0

= np and α∗(H0 −R) =
α∗(K1) = 1, so

MR,G ≤
(
ΨR
H0

)1/α∗(H0−R)
= np ≤ n. (3.6)

Hence, the upper bound in (b) is never stronger than exp{−Θ(n)}.
(vi) In (b) the exponents in the lower and upper bound are of the same

order of magnitude except for the logarithmic term log(1/p); this
inaccuracy disappears obviously for p constant.

(vii) For any fixed p > 0 (or p = p(n) ∈ [p0, 1] for some constant p0 > 0),
ΨR
H = Θ(nv(H−R)). Since α∗(H−R) ≤ v(H−R) for all H ⊆ G, with

equality for at least one H with e(H) > 0, viz. a single rooted edge,
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(3.3) shows that then MR,G = Θ(n). Consequently, the result in (b)
can be written for constant p ≤ p1 as P(XR

G ≥ tµ) = exp{−Θ(n)}.
This shows that the bounds in (b) and (c) agree at p = p1. Moreover,
we obtain the following corollary.

Corollary 3.2. With assumptions and notations as in Theorem 3.1, assume
further that p is fixed.

(a) If 0 < p ≤ p1, then

P(XR
G ≥ tµ) = exp{−Θ(n)}.

(b) If p1 < p ≤ p2, then

P(XR
G ≥ tµ) = exp{−Θ(n2)}.

(c) If p2 < p ≤ 1, then

P(XR
G ≥ tµ) = 0.

The sudden jump in the exponent from n to n2 at p = p1 (for G with
e(G − R) > 0, so p1 < p2) may be surprising, and has no counterpart in
the unrooted case in [4]. It may roughly be explained as follows (see the
proof): If p < p1, then it suffices (typically) to have all Θ(n) edges from
the roots present in G(n, p) in order to have more than tµ rooted copies
of G. However, if p > p1, this is not enough, and we need also (typically)
a larger proportion than p of the

(
n−r

2

)
other possible edges, which by the

usual Chernoff bound has probability only exp{−Θ(n2)}.

Proof of Theorem 3.1. We mostly follow closely the proof for the unrooted
case from [4], and therefore omit some details. As remarked above, (d) is
trivial. Part (a) can be proved by a modification of the argument below,
replacing MR,G by 1; we omit the details and refer to the corresponding
argument in [4]. Hence we consider only (b) and (c). We let C1, C2 . . . and
c1, c2, . . . denote constants that may depend on G and t, but not on n or p.

Upper bounds: If (R,H) is a rooted graph, let NR(n,m,H) be the max-
imum of NR(F,H) over all rooted graphs F with v(F ) ≤ n and e(F ) ≤ m
and with a set of roots of size |R|. In other words, NR(n,m,H) is the max-
imum number of copies of (R,H) that can be packed in n vertices and m
edges with a given set of |R| roots.

Let us start with the observation that if the minimum degree δ(H) > 0
then

NR(n,m,H) ≤ NR(2m,m,H) = O(N(2m,m,H −R)). (3.7)
Indeed, for any F with v(F ) ≤ n, e(F ) ≤ m, and δ(F ) > 0, we have
v(F ) ≤ 2m, so the left hand side inequality follows. To prove the right hand
side inequality, assume that F and H have the same set of roots R. Then

NR(F,H) ≤ N(F −R,H −R)× 2|R|(v(H)−|R|) = O(N(2m,m,H −R)).

Now, to prove the upper bound on P(XR
G ≥ tµ), as before, we want to

show that, say, EXm ≤ tm/2µm, where X = XR
G , µ = EX, and m is suitably
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large. Similarly as in [4] and, as a matter of fact, similarly to the proof of
Theorem 2.1 here, an inductive argument yields, for all m ≥ 1,

EXm ≤ µm
(

1 + C1

∑
H⊆G

NR′
(
n, (m− 1)e(G), H

)
ΨR
H

)m−1

, (3.8)

where the sum extends over all rooted subgraphs (R′, H) of (R,G) with
δ(H) > 0. (H corresponds to the subgraph spanned by the edges in the
intersection of the mth copy of G and the union of the m − 1 previous
copies, and as such has δ(H) > 0.)

We take m := dc1MR,Ge for a suitable small constant c1 ∈ (0, 1) to be
fixed later. By (3.7), [4, Theorem 1.3] and (3.3), for every H ⊆ G with
δ(H) > 0, assuming m ≥ 2,

NR′
(
n, (m− 1)e(G), H

)
≤ C2N

(
2(m− 1)e(G), (m− 1)e(G), H −R

)
= Θ(mα∗(H−R)) = Θ

(
(c1MR,G)α

∗(H−R)
)

≤ C3c1ΨR
H .

Hence, (3.8) yields (the case m = 1 being trivial), EXm ≤ µm(1+C4c1)m−1.
We choose c1 so small that 1 + C4c1 ≤ t1/2, and then Markov’s inequality
yields

P(X ≥ tµ) ≤ EXm

tmµm
≤ t−m/2 ≤ exp{−c2MR,G}. (3.9)

In particular, this yields the upper bound in (b).
For the upper bound in (c), we note that each rooted copy of G in Kn

yields a copy of G − R in Kn − R = Kn−r; conversely each copy of G − R
in Kn −R can be extended to exactly g rooted copies of G in Kn, for some
integer g ≥ 1 depending on G. Hence, XR

G(n, p) ≤ gXG−R(n−r, p). Further,
NR(Kn, G) = gN(Kn−r, G−R) so

µ = NR(Kn, G)pe(G) = gN(Kn−r, G−R)pe(G−R)+eR(G)

= gµ(G−R,n− r, p)peR(G). (3.10)

Consequently,

P(XR
G ≥ tµ) ≤ P

(
gXG−R(n− r, p) ≥ tgµ(G−R,n− r, p)peR(G)

)
= P

(
XG−R(n− r, p) ≥ tpeR(G)µ(G−R,n− r, p)

)
. (3.11)

Let t̃ := tpeR(G), and note that, for (c), 1 ≤ t̃ ≤ t. By [4, Theorems 1.2 and
1.5, and Remark 8.2], recalling that t is fixed and p ≥ p1,

P
(
XG−R(n− r, p) ≥ t̃µ(G−R,n− r, p)

)
≤ exp{−c3(t̃− 1)2n2}. (3.12)

Further,

t̃− 1 = tpeR(G) − 1 = (p/p1)eR(G) − 1 ≥ p/p1 − 1 ≥ p− p1,

so (3.11)–(3.12) yield

P(XR
G ≥ tµ) ≤ exp{−c3(p− p1)2n2}. (3.13)
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The upper bound in (c) now follows by taking the geometric mean of (3.9)
and (3.13), noting that in this range of p, MR,G = Θ(n) as remarked in (vii)
above.

Lower bounds: Let H be a subgraph of G such that e(H) > 0 and

M := MR,G =
(
ΨR
H

)1/α∗(H−R)
.

Since we consider parts (b) and (c) only, M ≥ 1 by (3.5).
Set p0 = (3vGt)−1 and assume first that p ≤ p0. (Note that p0 < t−1 ≤

p1.) We construct, as in [4], a graph F with

v(F ) ≤ 3(vG − r)tM, e(F ) = O(M), and N(F,H −R) ≥ 2tΨR
H .

(3.14)
This is done as follows. Let (xi)i∈V (H−R) be an optimal assignment for the
fractional independence problem, that is, 0 ≤ xi ≤ 1, xi + xj ≤ 1 for every
edge ij ∈ H − R, and

∑
i xi = α∗(H − R). Construct F by blowing up

each vertex of H−R to a set of d2tMxie vertices and replacing each edge of
H − R by the complete bipartite graph. This yields (3.14), where we have
put 3 rather than 2 because of the ceiling. Now, by (3.6),

v(F ) ≤ 3(vG − r)tM ≤ 3(vG − r)tnp ≤ (1− r/vG)n ≤ n− r.

We may thus fix a copy F1 of F with V (F1) ⊆ [n] \ [r]; we further let F2

be F1 enlarged by adding all roots 1, . . . , r together with all rv(F1) = O(M)
edges between the roots and V (F1). Now, exactly as in [4], it follows from
[4, Lemma 3.3] that

P(XR
G ≥ tµ) ≥ 1

4
pe(G) P(G(n, p) ⊇ F2) =

1
4
pe(G)+e(F2) = pΘ(M).

This proves the lower bound in (b) when p ≤ p0.
Assume now that p0 ≤ p ≤ p2 and note that the lower bound we want to

prove can be written as exp{−Θ(n)}, see (vii) above or Corollary 3.2.
Consider first the case e(G−R) = 0 and observe that then the maximum

number of copies of G are obtained as soon as all edges from the roots
appear, so, denoting this event by ER,

P(XR
G ≥ tµ) ≥ P

(
ER
)

= pr(n−r) ≥ e−C5n,

which proves the lower bound in (b) in this case. (Since e(G−R) = 0 implies
p1 = p2, (c) is trivial.)

Thus, it remains to consider the case when p0 ≤ p ≤ p2 and e(G−R) > 0.
We note first the trivial bound

P(XR
G ≥ tµ) ≥ P

(
G(n, p) = Kn

)
= p(

n
2) ≥ e−C6n2

. (3.15)

Let Z be the number of edges in G(n− r, p). Since Z has binomial distribu-
tion Bin

((
n−r

2

)
, p
)

with mean p
(
n−r

2

)
, it is easily seen that if (1 + 3δ)p ≤ 1,

and Eδ is the event {Z ≥ (1 + 3δ)p
(
n−r

2

)
}, then

P(Eδ) ≥ c4 exp{−C7n
2δ2}. (3.16)
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(The Chernoff bounds are essentially sharp, as is easily seen using Stirling’s
formula.) The number XG−R(n− r, p) of copies of G−R in G(n− r, p) is a
sum of N(Kn−r, G−R) indicator variables Iα. Conditioned on Z = z, each
of them has the expectation

P(Iα = 1 | Z = z) =
(z)e(G−R)((
n−r

2

))
e(G−R)

=
(

z(
n−r

2

))e(G−R)(
1−O(z−1)

)
.

(3.17)
Let Nδ := (1 + 3δ)p

(
n−r

2

)
. If δ ≥ n−1, z ≥ Nδ and n is large enough, then

(3.17) yields

P(Iα = 1 | Z = z) ≥ (1 + 3δ)e(G−R)pe(G−R)
(

1−O(n−2)
)

≥ (1 + 2δ)pe(G−R).

Consequently, if δ ≥ n−1 and n is large enough, then P(Iα = 1 | Eδ) ≥
(1 + 2δ)pe(G−R), and summing over α we find

E(XG−R(n− r, p) | Eδ) ≥ (1 + 2δ) EXG−R(n− r, p) = (1 + 2δ)µ(G−R).

Hence, by Lemma 3.2 of [4], as in the proof of Lemma 3.3 therein, with 1/2
replaced by 1+δ

1+2δ , we obtain

P
(
XG−R ≥ (1 + δ)µ(G−R) | Eδ

)
≥
( δ

1 + 2δ

)2 µ(G−R)
N(Kn−r, G−R)

≥ c5δ
2.

Assuming also the presence of all edges from the roots, i.e., the event ER,
we have XR

G = gXG−R (where g is as in the proof of the upper bound);
further, by (3.10), µ = gµ(G − R)peR(G); hence the inequality XG−R ≥
(1 + δ)µ(G−R) is equivalent to

XR
G ≥ (1 + δ)p−eR(G)µ. (3.18)

Consequently,

P
(
XR
G ≥ (1 + δ)p−eR(G)µ | ER, Eδ

)
≥ P

(
XG−R ≥ (1 + δ)µ(G−R) | Eδ

)
≥ c5δ

2

and thus, by (3.16),

P
(
XR
G ≥ (1 + δ)p−eR(G)µ

)
≥ c5δ

2 P(Eδ and ER) = c5δ
2 P(Eδ) P(ER)

≥ c6n
−2 exp{−C7δ

2n2}prn = exp{−Θ(δ2n2 + n)},

provided 1/n ≤ δ ≤ 1
3(p−1 − 1) and n is large enough.

For p0 ≤ p ≤ p1, we choose δ = n−1; then the right hand side of (3.18) is
greater than p

−eR(G)
1 µ = tµ, so we obtain

P(XR
G ≥ tµ) ≥ exp{−Θ(n)},

which as remarked above is equivalent to the lower bound in (b) for this
range of p.
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Finally, if p1 ≤ p ≤ p2, we take

δ := max
{
tpeR(G) − 1, 1/n

}
= max

{
(p/p1)eR(G) − 1, 1/n

}
= Θ(p−p1+1/n),

so that the right hand side of (3.18) is again at least tµ. This yields the
lower bound in (c) when n is large enough and p ≥ p1 is small enough to
guarantee that δ ≤ 1

3(p−1−1). For larger p, as well as for small n, we simply
use (3.15). This completes the proof of the lower bound in (c). �

3.1. Examples and remarks. It is easy to see that the minimum defining
M = MR,G in (3.3) is achieved by a subgraph H of G such that H − R is
connected and, for every vertex v ∈ H, H contains all edges leading from v
to R. These observations simplify computations of the bounds in Theorem
3.1.

Example 3.3. Cliques rooted at a vertex. Let G = Kk, k ≥ 2, and
r = |R| = 1. Then mR(G) = k/2 and eR(G) = k − 1. To find M , consider
first the candidates H = K2 (with the root contained in H) and H =
G = Kk. For H = K2, we have, as shown in general in comment (v)
above,

(
ΨR
H

)1/α∗(H−R) = np. For H = Kk we have ΨKk
= nk−1p(

k
2) and

α∗(Kk − R) = α∗(Kk−1) = (k − 1)/2, and thus
(
ΨR
Kk

)1/α∗(Kk−R) = n2pk.
Hence,

M ≤ min
{
np, n2pk

}
; (3.19)

we will show that equality holds.
To this end, consider a general H ⊆ G with e(H − R) > 0 and let

F := H −R. Then e(H) ≤ e(F ) + v(F ) and so, see (3.2),

ΨR
H

(np)α∗(H−R)
≥ nv(F )pe(F )+v(F )

(np)α∗(F )

=
(
npk−1

)v(F )−α∗(F )
pe(F )−(k−2)(v(F )−α∗(F )) (3.20)

and, dividing (3.20) by
(
npk−1

)α∗(H−R),

ΨR
H

(n2pk)α∗(H−R)
≥
(
npk−1

)v(F )−2α∗(F )
pe(F )−(k−2)(v(F )−α∗(F )). (3.21)

Since 1
2v(F ) ≤ α∗(F ) ≤ v(F ), we have v(F ) − α∗(F ) ≥ 0 while v(F ) −

2α∗(F ) ≤ 0, so
(
npk−1

)v(F )−α∗(F ) ≥ 1 if npk−1 ≥ 1 and
(
npk−1

)v(F )−2α∗(F ) ≥
1 if npk−1 ≤ 1. Further, by [4, Lemma 6.1], since F ⊆ G − R = Kk−1, we
have e(F ) ≤ (k− 2)(v(F )−α∗(F )), and thus pe(F )−(k−2)(v(F )−α∗(F )) ≥ 1 for
all p ∈ (0, 1]. Consequently, at least one of the right hand sides of (3.20)
and (3.21) is ≥ 1, so

ΨR
H ≥ min

{
(np)α

∗(H−R), (n2pk)α
∗(H−R)

}
,
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or (ΨR
H)1/α∗(H−R) ≥ min

{
np, n2pk

}
. Finally, by (3.3) and (3.19),

M = min
{
np, n2pk

}
=

{
n2pk, p ≤ n−1/(k−1),

np, p ≥ n−1/(k−1).

Example 3.4. Bipartite graphs rooted at one whole side. These are
exactly the graphs with e(G−R) = 0, and so p1 = p2 (see comment (iii) after
Theorem 3.1). The two classes of the bipartition are R and S = V (G) \ R.
Since the only connected subgraph of G−R is K1, and α∗(K1) = 1, we have
from (3.3) and the comments above that M = np∆S(G), where ∆S(G) :=
maxv∈S dG(v) is the maximum degree in G among all the vertices of S.
Consequently, the upper bound in part (b) of Theorem 3.1 is of the form

P(XR
G ≥ tµ) ≤ exp{−Θ(np∆S(G))}.

It follows from the above example that the bounds on P(XR
G ≥ tµ) for Ks,2

with r = 2 and for even cycles C2s with r = s are the same, since in both
cases ∆S(G) = 2 . This is a special case of a more general phenomenon that
the bounds depend only on the structure of G−R and the degree sequence
|NG(v) ∩ R|, v ∈ V (G) \ R. Our next example provides one more instance
of that.

Example 3.5. Paths rooted at the endpoints and cycles rooted at
a vertex. Let G = Pk be a path with k vertices, k ≥ 3, and let R be the
set of its two endpoints. Then mR(G) = k−1

k−2 , and so p ≥ n−1/mR(G) implies
that np → ∞ as n → ∞. The minimum in M can be achieved only on a
subpath H on at most k − 2 vertices containing one root, or H = Pk. So,

M = min
{

min
1≤l≤k−3

(
nlpl

)1/dl/2e
,
(
nk−2pk−1

)1/d(k−2)/2e
}
.

The terms with even l are all equal to (np)2 while for odd l they are equal
to (np)2l/(l+1), which means that the smallest among them is np, the term
corresponding to a single rooted edge. Hence, for even k, M = np if p ≥
n−(k−2)/k, and otherwise M = n2p2(k−1)/(k−2), the term corresponding to
H = G. A similar cutoff for odd k occurs at n−(k−3)/(k−1) with M taking
the values of n2(k−2)/(k−1)p2 and np, in turn.

Finally, note that if R′ is a single vertex in a cycle Ck−1, k ≥ 4, then
mR′(Ck−1) = mR(Pk), ΨR′

Ck−1
= ΨR

Pk
, α∗(Ck−1 −R′) = α∗(Pk −R), and the

same is true for all other candidates for the minimum in M , that is, paths
with a root at one end. Thus, MR′,Ck−1

= MR,Pk
and the upper tail bounds

provided by Theorem 3.1 are the same for these two rooted graphs.

Remark 3.6. In the unrooted case, the lower tails are typically much
smaller than the upper tails (see Remark 8.3 in [4]), and at best they can
be of the same order of magnitude, e.g., when p is fixed. Here, we encounter
an opposite situation. Namely, for every (R,G) with eR(G) > 0 and a fixed
p, by the FKG inequality, we have for any t > 1

P(XR
G ≤ tµ) ≥ P(XR

G = 0) ≥ P(eR(G(n, p)) = 0) = exp{−Θ(n)}
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while for t > 1 and p1 < p ≤ p2, by Corollary 3.2,

P(XR
G ≥ tµ) = exp{−Θ(n2)}.

Remark 3.7. If there are no isolated vertices in H − R and n ≥ v(H),
m ≥ e(H), then (3.7) may be improved to

NR(n,m,H) = Θ(N(n,m,H−R)) = Θ(N(min(n, 2m),m,H−R)). (3.22)

Note, however, that this fails if H contains a vertex whose all neighbors
are among the roots; for example if H is a rooted edge and n > m, then
NR(n,m,H) = m and N(n,m,H −R) = n.

For the lower bound in (3.22), take a graph F0 (with V (F0)∩R = ∅) which
achieves the maximum in N(n − r,m/3r,H − R); we may assume that F0

has no isolated vertices, and thus at most 2m/(3r) vertices. Then join all
vertices of R to all vertices of F0, obtaining a graph F1 which contains
R, has at most n vertices, at most m/(3r) + r2m/(3r) ≤ m edges, and
is such that NR(F1, H) ≥ N(F0, H − R). Hence, NR(n,m,H) ≥ N(n −
r,m/(3r), H − R). Finally, provided m ≥ 3re(H − R), we use the fact
proved in [4] that if n′ = Θ(n), m′ = Θ(m) and n, n′ ≥ v(H), m,m′ ≥ e(H),
then N(n′,m′, H) = Θ(N(n,m,H)) (this follows directly from [4, Theorem
1.3]). The case e(H) ≤ m < 3re(H − R) is trivial, since then both sides of
(3.22) are Θ(1).
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