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Abstract. We use the theory of graph limits to study several quasi-
random properties, mainly dealing with various versions of hereditary
subgraph counts. The main idea is to transfer the properties of (se-
quences of) graphs to properties of graphons, and to show that the
resulting graphon properties only can be satisfied by constant graphons.
These quasi-random properties have been studied before by other au-
thors, but our approach gives proofs that we find cleaner, and which
avoid the error terms and ε in the traditional arguments using the Sze-
merédi regularity lemma. On the other hand, other technical problems
sometimes arise in analysing the graphon properties; in particular, a
measure-theoretic problem on elimination of null sets that arises in this
way is treated in an appendix.

1. Introduction

A quasi-random graph is a graph that ’looks like’ a random graph. For-
mally, this is best defined for a sequence of graphs (Gn) with |Gn| → ∞.
Thomason [22, 23] and Chung, Graham and Wilson [7] showed that a num-
ber of different ’random-like’ conditions on such a sequence are equivalent,
and we say that (Gn) is p-quasi-random if it satisfies these conditions. (Here
p ∈ [0, 1] is a parameter.) We give one of these conditions, which is based on
subgraph counts, in (2.1) below. Other characterizations have been added
by various authors. The present paper studies in particular hereditarily
extended subgraph count properties found by Simonovits and Sós [19, 20],
Shapira [16], Shapira and Yuster [17] and Yuster [24]; see Section 3. See also
Sections 8 and 9 for further related equivalent properties (on sizes of cuts)
found by Chung, Graham and Wilson [7] and Chung and Graham [6].

The theory of graph limits also concern the asymptotic behaviour of se-
quences (Gn) of graphs with |Gn| → ∞. A notion of convergence of such
sequences was introduced by Lovász and Szegedy [14] and further devel-
oped by Borgs, Chayes, Lovász, Sós and Vesztergombi [4, 5]. This may
be seen as giving the space of (unlabelled) graphs a suitable metric; the
convergent sequences are the Cauchy sequences in this metric, and the com-
pletion of the space of unlabelled graphs in this metric is the space of (graphs
and) graph limits. The graph limits are thus defined in a rather abstract
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way, but there are also more concrete representations of them. One impor-
tant representation [14; 4] uses a symmetric (Lebesgue) measurable function
W : [0, 1]2 → [0, 1]; such a function is called a graphon, and defines a unique
graph limit, see Section 2 for details. Note, however, that the representation
is not unique; different graphons may be equivalent in the sense of defining
the same graph limit. See further [3; 8].

We write, with a minor abuse of notation, Gn → W , if (Gn) is a sequence
of graphs and W is a graphon such that (Gn) converges to the graph limit
defined by W . It is well-known that quasi-random graphs provide the sim-
plest example of this: (Gn) is p-quasi-random if and only if Gn → p, where
p is the graphon that is constant p [14].

A central tool to study large dense graphs is Szemerédi’s regularity lemma,
and it is not surprising that this is closely connected to the theory of graph
limits, see, e.g., [4; 15]. The Szemerédi regularity lemma is also important
for the study of quasi-random graphs. For example, Simonovits and Sós
[18] gave a characterization of quasi-random graphs in terms of Szemerédi
partitions. Moreover, the proofs in [19; 20; 16; 17] that various properties
characterize quasi-random graphs (see Section 3) use the Szemerédi regu-
larity lemma. Roughly speaking, the idea is to take a Szemerédi partition
of the graph and use the property to show that the Szemerédi partition has
almost constant densities.

The main purpose of this paper is to point out that these, and other sim-
ilar, characterizations of quasi-random graphs alternatively can be proved
by replacing the Szemerédi regularity lemma and Szemerédi partitions by
graph limit theory. The idea is to first take a graph limit of the sequence (or,
in general, of a subsequence) and a representing graphon, then the property
we assume of the graphs is translated into a property of the graphon, and
finally it is proved that this graphon then has to be (a.e.) constant. We do
this for several different related characterizations below. Our proofs will all
have the same structure and consist of three parts, considering a sequence
of graphs (Gn) and a graphon W with Gn → W :

(i) An equivalence between a condition on subgraph counts in Gn and
a corresponding condition for integrals of a functional Ψ of W . (Ψ is
a function on [0, 1]m for some m, and is a polynomial in W (xi, xj),
1 ≤ i < j ≤ m.)

(ii) An equivalence between this integral condition on Ψ and a pointwise
condition on Ψ.

(iii) An equivalence between this pointwise condition on Ψ and W = p.

In all cases that we consider, (i) is rather straightforward, and performed
in essentially the same way for all versions. Step (ii) follows from some ver-
sion of the Lebesgue differentiation theorem, although some cases are more
complicated than others. The arguments used in (iii) are similar to the ar-
guments in earlier proofs that the Szemerédi partition has almost constant
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densities (under the corresponding condition on the graphs) and the alge-
braic problems that arise in some cases will be the same. However, the use of
graph limits eliminates the many error terms and ε inherent in arguments us-
ing the Szemerédi regularity lemma, and provides at least sometimes proofs
that are simpler and cleaner. With some simplification, we can say that we
split the proofs into three parts (i)–(iii) which are combinatorial, analytic
and algebraic, respectively. This has the advantage of isolating different
types of technical difficulties; moreover, it allows us to reuse some steps
that are the same for several different cases. (See for example Section 6
where we prove several variants of the characterizations by modifying step
(i) or (ii).) On the other hand, it has to be admitted that there can be
technical problems with the analysis of the graphons too, especially in (ii),
and that our approach does not simplify the algebraic problems in (iii). (In
particular, we have not been able to improve the results in [20], where it is
this algebraic part that has not yet been done for general graphs.) Some-
what disappointingly, it seems that the graph limit method offers greatest
simplifications in the simplest cases. At the end, it is partly a matter of taste
if one prefers the finite arguments using the Szemerédi regularity lemma or
the infinitesimal arguments using graphons; we invite the reader to make
comparisons.

Acknowledgement. This work was begun during the workshop on Graph
Limits, Homomorphisms and Structures in Hraničńı Zámeček, Czech Repub-
lic, 2009. We thank Asaf Shapira, Miki Simonovits, Vera Sós and Balázs
Szegedy for interesting discussions.

2. Preliminaries and notation

All graphs in this paper are finite, undirected and simple. The vertex
and edge sets of a graph G are denoted by V (G) and E(G). We write
|G| := |V (G)| for the number of vertices of G, and e(G) := |E(G)| for the
number of edges. G is the complement of G. As usual, [n] := {1, . . . , n}.

2.1. Subgraph counts. Let F and G be graphs. It is convenient to as-
sume that the graphs are labelled, with V (F ) = [|F |] := {1, . . . , |F |}, but
the labelling does not affect our results. We define N(F,G) as the number
of labelled (not necessarily induced) copies of F in G; equivalently, N(F,G)
is the number of injective maps ϕ : V (F ) → V (G) that are graph homomor-
phisms (i.e., if i and j are adjacent in F , then ϕ(i) and ϕ(j) are adjacent in
G). If U is a subset of V (G), we further define N(F,G;U) as the number of
such copies with all vertices in U ; thus N(F,G;U) = N(F,G|U ). More gen-
erally, if U1, . . . , U|F | are subsets of V (G), we define N(F,G;U1, . . . , U|F |)
to be the number of labelled copies of F in G with the ith vertex in Ui;
equivalently, N(F,G;U1, . . . , U|F |) is the number of injective graph homo-
morphisms ϕ : F → G such that ϕ(i) ∈ Ui for every i ∈ V (F ).
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2.2. Quasi-random graphs. One of the several equivalent definitions of
quasi-random graphs by Chung, Graham and Wilson [7] is: (Gn) (with
|Gn| → ∞) is p-quasi-random if and only if, for every graph F ,

N(F,Gn) = (pe(F ) + o(1))|Gn|
|F |. (2.1)

(All unspecified limits in this paper are as n → ∞, and o(1) denotes a quan-
tity that tends to 0 as n → ∞. We will often use o(1) for quantities that
depend on some subset(s) of a vertex set V (G) or of [0, 1]; we then always im-
plicitly assume that the convergence is uniform for all choices of the subsets.
We interpret o(an) for a given sequence an similarly.)

It turns out that it is not necessary to require (2.1) for all graphs F ; in
particular, it suffices to use the graphs K2 and C4 [7]. However, it is not
enough to require (2.1) for just one graph F . As a substitute, Simonovits
and Sós [19] showed that a hereditary version of (2.1) for a single F is
sufficient; see Section 3.

2.3. Graph limits. The graph limit theory is also based on the subgraph
counts N(F,G) (or the asymptotically equivalent number counting not nec-
essarily injective graph homomorphisms F → G, see [14; 4]). A sequence
(Gn) of graphs, with |Gn| → ∞, converges, if the numbers tinj(F,Gn) :=
N(F,Gn)/(|Gn|)|F | converge as n → ∞, for every fixed graph F . (Here,
(|Gn|)|F | denotes the falling factorial, which is the total number of injective
maps V (F ) → V (Gn), so tinj(F,Gn) is the proportion of injective maps that
are homomorphisms. Since we consider limits as |Gn| → ∞ only, we could as
well instead consider t(F,Gn), the proportion of all maps V (F ) → V (Gn)

that are homomorphisms, or the hybrid version N(F,Gn)/|Gn|
|F |.) Note

that the numbers tinj(F,Gn) ∈ [0, 1], which implies the compactness prop-
erty that every sequence (Gn) of graphs with |Gn| → ∞ has a convergent
subsequence. For details and several other equivalent properties, see Lovász
and Szegedy [14] and Borgs, Chayes, Lovász, Sós and Vesztergombi [4, 5];
see also Diaconis and Janson [8].

The graph limits that arise in this way may be thought of as elements
of a completion of the space of (unlabelled) graphs with a suitable metric.
One useful representation [14; 4] uses a symmetric measurable function W :
[0, 1]2 → [0, 1]; such a function is called a graphon, and defines a graph limit
in the following way. If F is a graph and W a graphon, we define

ΨF,W (x1, . . . , x|F |) :=
∏

ij∈E(F )

W (xi, xj) (2.2)

and

t(F,W ) :=

∫

[0,1]|F |

ΨF,W . (2.3)

(All integrals in this paper are with respect to the Lebesgue measure in one
or several dimensions, unless, in the appendix, we specify another measure.)
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A sequence (Gn) converges to the graph limit defined by W if |Gn| → ∞
and

lim
n→∞

tinj(F,Gn) = t(F,W ) (2.4)

(or, equivalently, t(F,Gn) → t(F,W )) for every F ; as said above, in this
case we write Gn → W , although it should be remembered that the repre-
sentation of the limit by a graphon W is not unique. (See [4; 3; 8; 2] for
details on the non-uniqueness. Note that, trivially, we may change W on a
null set without affecting the corresponding graph limit; moreover, we may,
for example, rearrange W as in (2.11) below.)

For example, the condition (2.1) can be written tinj(F,Gn) → pe(F ). Since

the constant graphon W = p has t(F,W ) = pe(F ) for every F by (2.2)–(2.3),
this shows that, as said in Section 1, (Gn) is p-quasi-random if and only if
Gn → p.

2.4. Graphons from graphs. If G is a graph, we define a corresponding
graphon WG by partitioning [0, 1] into |G| intervals Ii of equal lengths 1/|G|;
we then define WG to be 1 on every Ii × Ij such that ij ∈ E(G), and 0
otherwise. It is easily seen that if G is a graph, then

N(F,G) = |G||F |

∫

[0,1]|F |

ΨF,WG
+ O

(
|G||F |−1

)
. (2.5)

(The error term is because we have chosen to count injective homomorphisms
only, cf. [14; 4].) More generally, if U1, . . . , U|F | are subsets of V (G) and
U ′

1, . . . , U
′
|F | are the corresponding subsets of [0, 1] given by U ′

i :=
⋃

j∈Ui
Ij,

then

N(F,G;U1, . . . , U|F |) = |G||F |

∫

U ′
1×···×U ′

|F |

ΨF,WG
+ O

(
|G||F |−1

)
. (2.6)

2.5. Induced subgraph counts. In analogy with Subsection 2.1 we define,
for labelled graphs F and G, N∗(F,G) as the number of induced labelled
copies of F in G; equivalently, N∗(F,G) is the number of injective maps
ϕ : V (F ) → V (G) such that i and j are adjacent in F ⇐⇒ ϕ(i) and ϕ(j) are
adjacent in G. We further define N∗(F,G;U) as the number of such copies
with all vertices in U and N(F,G;U1, . . . , U|F |) as the number of induced
labelled copies of F in G with the ith vertex in Ui. (Here U,U1, . . . , U|F | ⊆
V (G).)

For a graphon W we make the corresponding definitions, cf. Subsec-
tion 2.3,

Ψ∗
F,W (x1, . . . , x|F |) :=

∏

ij∈E(F )

W (xi, xj)
∏

ij 6∈E(F )

(
1 − W (xi, xj)

)
(2.7)

and

tind(F,W ) :=

∫

[0,1]|F |

Ψ∗
F,W . (2.8)
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Then, for any graph G, in analogy with (2.6) and using the notation there,

N∗(F,G;U1, . . . , U|F |) = |G||F |

∫

U ′
1×···×U ′

|F |

Ψ∗
F,WG

+ O
(
|G||F |−1

)
. (2.9)

Remark 2.1. If we define tind(F,G) := N∗(F,G)/(|G|)|F |, then the conver-
gence criterion (2.4) (for every F ) is equivalent to tind(F,Gn) → tind(F,W )
(for every F ) by inclusion-exclusion [14; 4].

2.6. Cut norm and cut metric. The cut norm ‖W‖� of W ∈ L1([0, 1]2)
is defined by

‖W‖� := sup
S,T⊆[0,1]

∣∣∣∣
∫

S×T
W (x, y) dxdy

∣∣∣∣ . (2.10)

A rearrangement of the graphon W is any graphon W ϕ defined by

W ϕ(x, y) = W (ϕ(x), ϕ(y)), (2.11)

where ϕ : [0, 1] → [0, 1] is a measure-preserving bijection. The cut metric δ
by Borgs, Chayes, Lovász, Sós and Vesztergombi [4] may be defined by, for
two graphons W1,W2,

δ�(W1,W2) = inf
ϕ

‖W1 − W ϕ
2 ‖�, (2.12)

where the infimum is over all rearrangements of W2. (It makes no difference
if we rearrange W1 instead, or both W1 and W2.)

A major result of Borgs, Chayes, Lovász, Sós and Vesztergombi [4] is that
if |Gn| → ∞, then Gn → W ⇐⇒ δ�(WGn ,W ) → 0, so convergence of a
sequence of graphs as defined above is the same as convergence in the metric
δ�.

3. Subgraph counts in induced subgraphs

Simonovits and Sós [19] gave the following characterization of p-quasi-
random graphs using the numbers of subgraphs of a given type in induced
subgraphs. (The case F = K2, when N(K2, Gn;U) is twice the number of
edges with both endpoints in U , is one of the original quasi-random proper-
ties in [7].)

Theorem 3.1 (Simonovits and Sós [19]). Suppose that (Gn) is a sequence
of graphs with |Gn| → ∞. Let F be any fixed graph with e(F ) > 0 and let
0 < p ≤ 1. Then (Gn) is p-quasi-random if and only if, for all subsets U of
V (Gn),

N(F,Gn;U) = pe(F )|U ||F | + o
(
|Gn|

|F |
)
. (3.1)

For our discussion of graph limit method, it is also interesting to consider
the following weaker version (with a stronger hypothesis), patterned after
Theorem 3.11 below.
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Theorem 3.2. Suppose that (Gn) is a sequence of graphs with |Gn| → ∞.
Let F be any fixed graph with e(F ) > 0 and let 0 < p ≤ 1. Then (Gn) is
p-quasi-random if and only if, for all subsets U1, . . . , U|F | of V (Gn),

N(F,Gn;U1, . . . , U|F |) = pe(F )

|F |∏

i=1

|Ui| + o
(
|Gn|

|F |
)
. (3.2)

Remark 3.3. Since (3.1) is the special case of (3.2) with U1 = · · · = U|F |,
the ’if’ direction of Theorem 3.2 is a corollary of Theorem 3.1. The ’only if’
direction does not follow immediately from Theorem 3.1, but it is straight-
forward to prove, either by the methods of [19] or by our methods with
graph limits, see Section 4; hence the main interest is in the ’if’ direction.
(The same is true for the results below for the induced case.)

Remark 3.4. Theorems 3.1 and 3.2 obviously fail when e(F ) = 0, since
then (3.1) and (3.2) hold trivially and the assumptions give no information
on Gn. They fail also if p = 0; for example, if F = K3 and Gn is the
complete bipartite graph Kn,n.

Shapira [16] and Shapira and Yuster [17] consider also an intermediate
version where a symmetric form of (3.2) is used, summing over all permuta-
tions of (U1, . . . , U|F |) (or, equivalently, over all labellings of F ); moreover,
U1, . . . , U|F | are supposed to be disjoint and of the same size. It is shown
directly in [16] that this is equivalent to (3.1). See also Subsections 6.1
and 6.2.

The main result of Shapira [16] is that Theorem 3.1 remains valid even if
we only require (3.1) for U of size α|Gn| with α = 1/(|F |+1). (It is a simple
consequence that any smaller positive α will also do.) This was improved
by Yuster [24], who proved this for any α ∈ (0, 1). We state this, and the
corresponding result for a sequence of (disjoint) subsets.

Theorem 3.5 (Yuster [24]). Let (Gn), F and p be as in Theorem 3.1, and
let 0 < α < 1. Then (Gn) is p-quasi-random if and only if (3.1) holds for
all subsets U of V (Gn) with |U | = ⌊α|Gn|⌋.

Theorem 3.6. Let (Gn), F and p be as in Theorem 3.2, and let 0 < α <
1. Then (Gn) is p-quasi-random if and only if (3.2) holds for all subsets
U1, . . . , U|F | of V (Gn) with |Ui| = ⌊α|Gn|⌋.

If α < 1/|F |, it is enough to assume (3.2) for U1, . . . , U|F | that further
are disjoint.

For F = K2, Theorem 3.5 with α = 1/2 is another of the original char-
acterizations by Chung, Graham and Wilson [7], and the generalization to
arbitrary α ∈ (0, 1) is stated in Chung and Graham [6]. Another related
characterization from [6] is discussed in Section 8.

Turning to induced copies of F , the situation is much more complicated, as
discussed in Simonovits and Sós [20]. First, the expected number of induced
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labelled copies of F in a random graph G(n, p) is βF (p)n|F | + o(n|F |), with

βF (p) := pe(F )(1 − p)e(F ) = pe(F )(1 − p)(
|F |
2 )−e(F ). (3.3)

Hence, the condition corresponding to (3.1) for induced subgraphs is: For
all subsets U of V (Gn),

N∗(F,Gn;U) = βF (p)|U ||F | + o
(
|Gn|

|F |
)
. (3.4)

Indeed, as observed in [19; 20], this holds for every p-quasi-random (Gn),
but the converse is generally false. One reason is that, provided F is neither

empty nor complete, then βF (0) = βF (1) = 0, and if pF := e(F )/
(
|F |
2

)

(the edge density in F ), then βF (p) increases on [0, pF ] and decreases on
[pF , 1]. Hence, for every p 6= pF , there is another p̄ such that βF (p) =
βF (p); we call p and p̄ conjugate. (For completeness, we let p̄ := p when
p = pF or when F is empty or complete. Note also that p̄ depends on
F as well as p.) Obviously, a p̄-quasi-random sequence (Gn) also satisfies
(3.4). Moreover, any combination of a p-quasi-random sequence and a p̄-
quasi-random sequence will satisfy (3.4). Hence the best we can hope for is
the following. We say that (Gn) is mixed (p, p̄)-quasi-random if it is p-quasi-
random, p̄-quasi-random, or a combination of two such sequences.

Definition 3.7. Let 0 ≤ p ≤ 1. We say that a graph F is hereditary
induced-forcing (HI(p)) if every (Gn) that satisfies (3.4) for all subsets U of
V (Gn) is mixed (p, p̄)-quasi-random. In this case we also write F ∈ HI(p)
(thus regarding HI(p) as a set of graphs).

We say that F is HI (and write F ∈ HI) if F is HI(p) for every p ∈ (0, 1)
(thus excluding the rather exceptional cases p = 0 and p = 1).

Remark 3.8. The definition of mixed (p, p̄)-quasi-random is perhaps better
stated in terms of graph limits. Just as (Gn) is p-quasi-random if and only
if Gn → p, where p stands for the graphon that is constant p, (Gn) is mixed
(p, p̄)-quasi-random if and only if the limit points of (Gn) are contained in
{p, p̄}, i.e., if every convergent subsequence of (Gn) converges to either the
graphon p or the graphon p̄.

In general we say that a sequence (Gn), with |Gn| → ∞ as always, is mixed
quasi-random if the set of limit points is contained in {p : p ∈ [0, 1]}, i.e.,
if every convergent subsequence converges to a constant graphon. (Equiva-
lently, if every convergent subsequence is quasi-random).

Remark 3.9. Just as one talks about quasi-random properties of graphs,
or more properly of sequences (Gn) of graphs, we say that a property of
graphons W is p-quasi-random if it is satisfied only by W = p a.e., that it is
quasi-random if it is p-quasi-random for some p ∈ [0, 1], and that it is mixed
quasi-random if it is satisfied only by graphons that are a.e. constant (for
some set of accepted constants).

Simonovits and Sós [20] gave a counter-example showing that the path
P3 with 3 vertices is not HI. They also showed that every regular F (with
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|F | ≥ 2) is HI, and conjectured that P3 and its complement P 3 are the
only graphs not in HI. This conjecture remains open. (The methods of the
present paper do not seem to help.)

Remark 3.10. The cases F empty or complete are exceptional and rather
trivial. If F is complete graph Km (m ≥ 2), then N∗(F,Gn;U) = N(F,Gn;U),
and thus (3.4) implies that (Gn) is p-quasi-random by Theorem 3.1 (but not
for p = 0 unless m = 2, see Remark 3.4). By taking complements we see
that the same holds for for an empty graph Em (m ≥ 2) and 0 ≤ p < 1.

In particular, Em,Km ∈ HI when m ≥ 2.

In view of the fact that not all graphs are HI, Shapira and Yuster [17]
gave the following substitute, which is an induced version of Theorem 3.2.

Theorem 3.11 (Shapira and Yuster [17]). Suppose that (Gn) is a sequence
of graphs with |Gn| → ∞. Let F be any fixed graph with |F | > 1 and let
0 < p < 1. Then (Gn) is mixed (p, p̄)-quasi-random if and only if, for all
subsets U1, . . . , U|F | of V (Gn),

N∗(F,Gn;U1, . . . , U|F |) = pe(F )(1 − p)(
|F |
2 )−e(F )

|F |∏

i=1

|Ui| + o
(
|Gn|

|F |
)
. (3.5)

Moreover, it suffices that (3.5) holds for all sequences U1, . . . , U|F | of disjoint
subsets of V (Gn) with the same size, |U1| = · · · = |U|F ||.

To show the flexibility with which our method combines different condi-
tions, we also show that it suffices to consider subsets of a given size for
induced subgraph counts too, in analogy with Theorems 3.5 and 3.6.

Theorem 3.12. In Theorem 3.11, it suffices that (3.5) holds for all se-
quences U1, . . . , U|F | of subsets of V (Gn) with |Ui| = ⌊α|Gn|⌋, for any fixed
α with 0 < α < 1. Alternatively, if 0 < α < 1/|F |, it suffices that (3.5)
holds for all such sequences of disjoint U1, . . . , U|F |.

Theorem 3.13. Let 0 < α < 1 and 0 ≤ p ≤ 1, and let F be a fixed graph
with F ∈ HI(p). Then every sequence (Gn) with |Gn| → ∞ such that (3.4)
holds for all subsets U of V (Gn) with |U | = ⌊α|Gn|⌋ is mixed (p, p̄)-quasi-
random.

Remark 3.14. Theorems 3.6 and 3.12 fail for disjoint sets U1, . . . , U|F | in the
limiting case α = 1/|F |, at least for F = K2, see Section 8 and Remark 6.4.
We leave it as an open problem to investigate this case for other graphs F .

4. Graph limit proof of Theorem 3.2

We give proofs of the theorems above using graph limits; the reader should
compare these to the combinatorial proofs in [19; 20; 16; 17; 24] using the
Szemerédi regularity lemma. In order to exhibit the main ideas clearly, we
begin in this section with the simplest case and give a detailed proof of
Theorem 3.2. In the following sections we will give the minor modifications
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needed for the other results, treating the additional complications one by
one.

The first step is to recall that the space of graphs and graph limits is
compact; thus, every sequence has a convergent subsequence [4]. Hence,
if (Gn) is not p-quasi-random, we can select a subsequence (which we also
denote by (Gn)), such that Gn → W for some graphon W that is not
equivalent to the constant graphon p, which simply means that W 6= p on a
set of positive measure.

Hence, in order to prove Theorem 3.2, it suffices to assume that further
Gn → W for some graphon W , and then prove that W = p a.e.

4.1. Translating to graphons. In this subsection we use the graph limit
theory in [4] to translate the property (3.2) to graph limits.

We begin with an easy consequences of Lebesgue’s differentiation theorem;
for future reference we state it as a (well-known) lemma. (See Lemma 6.3
below for a stronger version.) We let λ denote Lebesgue measure (in one or
several dimensions).

Lemma 4.1. Suppose that f : [0, 1]m → R is an integrable function such
that

∫
A1×···×Am

f = 0 for all sequences A1, . . . , Am of disjoint measurable

subsets of [0, 1]. Then f = 0 a.e.
Moreover, it is enough to consider A1, . . . , Am with λ(A1) = · · · = λ(Am);

we may even further impose that λ(Ak) ∈ {ε1, ε2, . . . } for any given sequence
εn → 0.

Proof. For any distinct x1, . . . , xm ∈ (0, 1) and any sufficiently small ε > 0
we take Ai = (xi − ε, xi + ε) and find

(2ε)−m

∫

|yi−xi|<ε, i=1,...,m
f(y1, . . . , ym) = (2ε)−m

∫

A1×···×Am

f = 0.

By Lebesgue’s differentiation theorem, see e.g. Stein [21], §1.8, the left-hand
side converges to f(x1, . . . , xm) as ε → 0 for a.e. x1, . . . , xm. �

We can now easily translate the condition (3.2) in Theorem 3.2 to a
corresponding condition for the limiting graphon (which we may assume
exists, as discussed above).

Lemma 4.2. Suppose that Gn → W for some graphon W and let F be a
fixed graph and γ ≥ 0 a fixed number. Then the following are equivalent:

(i) For all subsets U1, . . . , U|F | of V (Gn),

N(F,Gn;U1, . . . , U|F |) = γ

|F |∏

i=1

|Ui| + o
(
|Gn|

|F |
)
. (4.1)

(ii) For all subsets A1, . . . , A|F | of [0, 1],

∫

A1×···×A|F |

ΨF,W (x1, . . . , x|F |) = γ

|F |∏

i=1

λ(Ai). (4.2)
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(iii) ΨF,W (x1, . . . , x|F |) = γ for a.e. x1, . . . , x|F | ∈ [0, 1]|F |.

Proof. (iii) =⇒ (ii) is trivial, and (ii) =⇒ (iii) is immediate by Lemma 4.1
applied to ΨF,W − γ.

(i) ⇐⇒ (ii). The convergence Gn → W is equivalent to δ�(WGn ,W ) →
0. By the definition of δ�, there thus exist measure preserving bijections
ϕn : [0, 1] → [0, 1] such that if Wn := W ϕn

Gn
, then ‖Wn − W‖� → 0. Fix

n, and let Inj (1 ≤ j ≤ n) be the intervals of length |Gn|
−1 used to define

WGn , and let as in (2.6) U ′ :=
⋃

j∈U Inj for a subset U of V (Gn); further,

let I ′′nj := ϕ−1
n (Inj) and U ′′ := ϕ−1

n (U ′) =
⋃

j∈U I ′′nj. Then, for any subsets

U1, . . . , U|F | of V (Gn), by (2.6) and a change of variables,

N(F,Gn;U1, . . . , U|F |) = |Gn|
|F |

∫

U ′′
1 ×···×U ′′

|F |

ΨF,Wn + o
(
|Gn|

|F |
)
.

Hence, (i) is equivalent to

∫

U ′′
1 ×···×U ′′

|F |

ΨF,Wn = γ

|F |∏

i=1

|Ui|

|Gn|
+ o(1) = γ

|F |∏

i=1

λ(U ′′
i ) + o(1), (4.3)

for all subsets U ′′
i that are unions of sets I ′′nj.

We next extend (4.3) from the special sets U ′′
i (in a family that depends

on n) to arbitrary (measurable) sets. Thus, assume that (4.3) holds, and
let A1, . . . , A|F | be arbitrary subsets of [0,1]. Fix n and let aij := λ(Ai ∩
I ′′nj)/λ(I ′′nj). Further, let Bi be a random subset of [0,1] obtained by taking

an independent family Jij of independent 0–1 random variables with P(Jij =
1) = aij , and then taking Bi :=

⋃
j:Jij=1 I ′′nj. Then the sets Bi are of the

form U ′′
i , so (4.3) applies to them, and, noting that Wn is constant on every

set I ′′ni × I ′′nj, and hence ΨF,Wn is constant on every set I ′′nj1
× · · · × I ′′nj|F |

,

∫

A1×···×A|F |

(ΨF,Wn − γ) =

|Gn|∑

j1,...,j|F |=1

|F |∏

i=1

aiji

∫

I′′nj1
×···×I′′nj|F |

(ΨF,Wn − γ)

= E

|Gn|∑

j1,...,j|F |=1

|F |∏

i=1

Jiji

∫

I′′nj1
×···×I′′nj|F |

(ΨF,Wn − γ)

= E

∫

B1×···×B|F |

(ΨF,Wn − γ) = o(1), (4.4)

where the final estimate uses (4.3). Consequently, (4.3), for all special sets
U ′′

i , is equivalent to the same estimate

∫

A1×···×A|F |

ΨF,Wn = γ

|F |∏

i=1

λ(Ai) + o(1), (4.5)
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for any measurable sets A1, . . . , A|F | in [0, 1]. Consequently, (i) is equivalent
to (4.5). (Recall that estimates such as (4.5) are supposed to be uniform
over all choices of A1, . . . , A|F |.)

It is well-known that for two graphons W and W ′,
∣∣∣∣
∫

[0,1]m

(
ΨF,W − ΨF,W ′

)∣∣∣∣ = O(‖W − W ′‖�),

see [4]; moreover, the proof in [4] (or the version of the proof in [2]) shows
that the same holds, uniformly, also if we integrate over a subset A1 ×
· · · × Am. (In other words, extending the cut norm to functions of several
variables as in [1], ‖ΨF,W −ΨF,W ′‖� = O(‖W −W ′‖�).) Consequently, the
assumption Gn → W , which as said yields ‖Wn − W‖� → 0, implies that∫
A1×···×A|F |

ΨF,Wn =
∫
A1×···×A|F |

ΨF,W + o(1), and thus (4.5), and hence (i),

is equivalent to

∫

A1×···×A|F |

ΨF,W = γ

|F |∏

i=1

λ(Ai) + o(1). (4.6)

Consequently, (ii) =⇒ (i). Conversely, none of the terms in (4.6) depends
on n, so if (4.6) holds, then the o(1) error term vanishes and (4.2) holds.
Hence (i) =⇒ (ii). �

4.2. An optional measure theoretic interlude. To prove Theorem 3.2,
it thus remains only to show that if W is a graphon such that ΨF,W = pe(F )

a.e., then W = p a.e. (In the terminology of Remark 3.9, “ΨF,W = pe(F )” is
a p-quasi-random property.)

We know several ways to do this. One, direct, is given in Subsection 4.4.
However, as will be seen in Subsection 4.3, it is much simpler to argue if
we can assume that ΨF,W = pe(F ) everywhere, and not just a.e. (The main
reason is that we then can choose x1 = x2 = · · · = x|F |.) Hence, somewhat
surprisingly, the qualification ’a.e.’ here forms a significant technical prob-
lem. Usually, ’a.e.’ is just a technical formality in arguments in integration
and measure theory, but here it is an obstacle and we would like to get rid
of it. We do not see any trivial way to do this, but we can do it as follows.
(To say that W ′ is a version of W means that W ′ = W a.e.; this implies that
all integrals considered here are equal for W and W ′, and thus Gn → W ′ as
well.) See Subsection 4.5 and Appendix A for an alternative.

Lemma 4.3. Let F be a graph with e(F ) > 0, and let W be a graphon. If

ΨF,W = γ > 0 a.e. on [0, 1]|F |, then there exists a version W ′ of W such

that ΨF,W ′(x1, . . . , x|F |) = γ for all (x1, . . . , x|F |) ∈ [0, 1]|F |.

Proof. By symmetry, we may assume 12 ∈ E(F ); hence ΨF,W (x1, . . . , x|F |),
defined in (2.2), contains a factor W (x1, x2). We let x′ := (x3, . . . , x|F |)

and collect the other factors in (2.2) into a product f(x1, x
′) of the factors
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corresponding to edges 1j ∈ E(F ) with j ≥ 3, and another product g(x2, x
′)

of the remaining factors. Thus

ΨF,W (x1, . . . , x|F |) = W (x1, x2)f(x1, x
′)g(x2, x

′).

By assumption, thus

W (x1, x2)f(x1, x
′)g(x2, x

′) = γ (4.7)

for a.e. (x1, x2, x
′). We may thus choose x′ (a.e. choice will do) such that

(4.7) holds for a.e. (x1, x2). We fix one such x′ and write f(x) := f(x, x′),
g(y) := g(y, x′); we then have W (x, y)f(x)g(y) = γ for a.e. (x, y).

We define W1(x, y) := max
(
1, γ/(f(x)g(y))

)
; thus W1 = W a.e.

Let |(x1, . . . , xm)|∞ := max |xi|. Recall that if f is an integrable function
on R

m for some m (or on a subset such as [0, 1]m), then a point x is a
Lebesgue point of f if (2ε)−m

∫
|y−x|∞<ε |f(y) − f(x)|dy = o(1) as ε → 0.

In probabilistic terms, this says that if Xε
x is a random point in the cube

{y : |y − x|∞ < ε}, then f(Xε
x)

L1

−→ f(x). For bounded functions, which is

the case here, this is equivalent to f(Xε
x)

p
−→ f(x) as ε → 0, which shows,

for example, that if x is a Lebesgue point of both f and g, then it is also a
Lebesgue point of f±g, fg, and, provided g(x) 6= 0, of f/g. It is well-known,
see e.g. Stein [21], §1.8, that if f is integrable, then a.e. point is a Lebesgue
point of f .

We can thus find a null set N ⊂ [0, 1] such that every x ∈ S := [0, 1]\N is
a Lebesgue point of both f and g. Since W (x, y) ≤ 1 and thus f(x)g(y) ≥ γ
a.e., it then follows that if (x1, x2) ∈ S2, then (x1, x2) is a Lebesgue point of

W1. This implies, by the definition (2.2), that if (x1, . . . , x|F |) ∈ S |F |, then
(x1, . . . , x|F |) is a Lebesgue point of ΨF,W ; hence, using ΨF,W1 = ΨF,W a.e.

and ΨF,W = γ a.e., ΨF,W1(x1, . . . , x|F |) = γ for (x1, . . . , x|F |) ∈ S |F |.
This would really be enough for our purposes, but to obtain the conclusion

as stated, we choose x0 ∈ S and define ϕ : [0, 1] → [0, 1] by ϕ(x) = x for
x ∈ S and ϕ(x) = x0 for x ∈ N ; then W ′ := W ϕ

1 satisfies ΨF,W ′ = γ
everywhere. �

Remark 4.4. Although we do not need it, we note that Lemma 4.3 is valid
for the trivial case e(F ) = 0 too, since then ΨF,W = 1 for every W and there
is nothing to prove. We do not know whether Lemma 4.3 is also valid for
γ = 0; consider for example F = K3. (In this case it suffices to consider
0/1-valued W and W ′.)

4.3. The first algebraic argument. The proof of Theorem 3.2 is now
completed, by Lemmas 4.2 and 4.3 and the remarks above, by the following
lemma:

Lemma 4.5. Let F be a graph with e(F ) > 0 and let W be a graphon. If

p > 0 and ΨF,W (x1, . . . , x|F |) = pe(F ) for every (x1, . . . , x|F |) ∈ [0, 1]|F |, then
W = p.
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Proof. First take x1 = x2 = · · · = x|F | = x. Then ΨF,W (x1, . . . , x|F |) =

W (x, x)e(F ), and thus W (x, x) = p, for every x ∈ [0, 1]. Next, we may
assume by symmetry that the degree d1 of vertex 1 in F is non-zero. Let
x, y ∈ [0, 1] and take x1 = x and x2 = · · · = x|F | = y. Then

pe(F ) = ΨF,W (x1, . . . , x|F |) = W (x, y)d1W (y, y)e(F )−d1 = W (x, y)d1pe(F )−d1 .

Hence W (x, y) = p. �

This completes the first version of our graph limit proof of Theorem 3.2.

4.4. The second algebraic argument. As said above, we can alterna-
tively avoid Lemma 4.3 and instead use the following stronger version of
Lemma 4.5, which together with Lemma 4.2 yields another proof of Theo-
rem 3.2.

Lemma 4.6. Let F be a graph with e(F ) > 0 and let W be a graphon. If
ΨF,W (x1, . . . , x|F |) = pe(F ) for a.e. (x1, . . . , x|F |) ∈ [0, 1]|F |, then W = p a.e.

Proof. We first symmetrize. If σ ∈ S|F |, the symmetric group of all permu-
tations of {1, . . . , |F |}, let σ(F ) be the image of F , with edges σ(i)σ(j) for
ij ∈ E(F ), and consider

∏

σ∈S|F |

Ψσ(F ),W (x1, . . . , x|F |) =
∏

1≤i<j≤|F |

W (xi, xj)
e(F )k!/(k

2),

where the equality follows because, by symmetry, each ij is an edge in σ(F )

for e(F )k!/
(
k
2

)
permutations σ. By the assumption, this equals pe(F )k! a.e.,

so taking logarithms and dividing by e(F )k! we obtain
(

k

2

)−1 ∑

1≤i<j≤|F |

log W (xi, xj) = log p, a.e.

For a.e. (x1, . . . , x|F |+2), this holds for every subsequence of |F | elements xi;
it then follows by Lemma 4.7 below, with d = 2, h = |F | and a({i, j}) =
log W (xi, xj) − log p, that in this case W (x1, x2) = p. Hence W (x1, x2) = p
for a.e. (x1, x2). �

Lemma 4.7. Suppose that 1 ≤ d ≤ h, and let a(I) be an array defined for
all d-subsets I of [h+d]. Suppose further that for every h-subset J of [h+d],

∑

I⊆J

a(I) = 0, (4.8)

summing over the
(h
d

)
subsets of size d. Then a(I) = 0 for every I.

Proof. This is a form of a result by Gottlieb [11]. (It is easily proved by
fixing a d-subset I0 and then summing (4.8) for all J with |J ∩ I0| = k, for
k = 0, . . . , d; we omit the details.) �
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4.5. Further proofs. Instead of Lemma 4.3 we may use the weaker but
more general Lemma A.3 in Appendix A; this lemma, with Φ((wij)i<j) :=∏

ij∈E(F ) wij , yields a version of W such that ΨF,W (x1, . . . , x|F |) = pe(F )

at enough points so that the proof of Lemma 4.5 applies for a.e. (x, y).
(Although Lemma A.3 does not guarantee ΨF,W = pe(F ) everywhere as
Lemma 4.3 does.) This and Lemma 4.2 yield another proof of Theorem 3.2.

Alternatively, we may use Theorem A.5 and argue as in the proof of
Lemma 4.5, with only notational changes, to show that Theorem A.5(iii)
does not hold for this Φ, and hence by (i) ⇐⇒ (iii) in Theorem A.5, W is
a.e. constant and thus W = p a.e., yielding another proof of Lemma 4.6,
and thus of Theorem 3.2.

A modification of this argument is to use Lemma 4.5 as stated together
with Corollary A.6 to conclude that Lemma 4.6 holds.

Any of these proofs of Theorem 3.2 thus uses only the simple algebraic
argument in Lemma 4.5 but combines it with results from Appendix A. The
latter results have rather long and technical proofs, which is the reason why
we have postponed them to an appendix. If the objective is only to prove
Theorem 3.2, the direct proof of Lemma 4.3 is much simpler than using
Lemma A.3 or one of its consequences Theorem A.5 or Corollary A.6. How-
ever, we have here started with the simplest case, and for other cases it seems
much more complicated to prove analogues of Lemma 4.3 or Lemma 4.6 di-
rectly. Hence, our main method in the sequel will be to use the results of
Appendix A, which once proven and available do not have to be modified.

Nevertheless, we have chosen to present also the direct proofs in Subsec-
tions 4.2–4.3 and Subsection 4.4 in order to show alternative ways that in
the present case are simpler. We furthermore want to inspire readers to
investigate whether there are similar direct proofs (that we have failed to
find) in some of the cases treated later too.

5. One subset: proof of Theorem 3.1

We next give a proof of Theorem 3.1 along the lines of Section 4. We begin
with a lemma giving an analogue of Lemma 4.1 for the case A1 = · · · = Am.

If f is a function on [0, 1]m for some m, we let f̃ denote its symmetrization
defined by

f̃(x1, . . . , xm) :=
1

m!

∑

σ∈Sm

f
(
xσ(1), . . . , xσ(m)

)
, (5.1)

where Sm is the symmetric group of all m! permutations of {1, . . . ,m}. Note
that for any integrable f and any subset A of [0,1],

∫

Am

f̃ =

∫

Am

f. (5.2)

Lemma 5.1. Suppose that f : [0, 1]m → R is an integrable function such

that
∫
Am f = 0 for all measurable subsets A of [0, 1]. Then f̃ = 0 a.e.
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Proof. Let A1, . . . , Am be disjoint subsets of [0, 1]. For any sequence ξ1, . . . , ξm ∈
{0, 1}m, take A :=

⋃
i:ξi=1 Ai. Then 1A =

∑m
i=1 ξi1Ai

and

0 =

∫

Am

f =

∫

[0,1]m
f1Am =

m∑

i1,...,im=1

ξi1 · · · ξim

∫

Ai1
×···×Aim

f. (5.3)

The monomials ξi1 · · · ξik with i1 < · · · < ik, 0 ≤ k ≤ m, form a basis of
the 2m-dimensional space of functions on {0, 1}m. Hence, collecting terms
in (5.3), the coefficient of each such monomial vanishes. In particular, for
the coefficient of ξ1 · · · ξm we obtain a contribution only when i1, . . . , im is a
permutation of 1, . . . ,m, and we obtain

0 =
∑

σ∈Sm

∫

Aσ(1)×···×Aσ(m)

f = m!

∫

A1×···×Am

f̃ .

The result follows by Lemma 4.1, applied to f̃ . �

We can now translate the property (3.1) to graphons, cf. Lemma 4.2.

Lemma 5.2. Suppose that Gn → W for some graphon W and let F be a
fixed graph and γ ≥ 0 a fixed number. Then the following are equivalent:

(i) For all subsets U of V (Gn),

N(F,Gn;U) = γ|U ||F | + o
(
|Gn|

|F |
)
.

(ii) For all subsets A of [0, 1],
∫

A|F |

ΨF,W (x1, . . . , x|F |) = γλ(A)|F |.

(iii) Ψ̃F,W (x1, . . . , x|F |) = γ for a.e. x1, . . . , x|F | ∈ [0, 1]|F |.

Proof. This is proved almost exactly as Lemma 4.2, with obvious notational
changes and with Lemma 4.1 replaced by Lemma 5.1, which together with
(5.2) implies (ii) ⇐⇒ (iii). The main difference is that we now use a single
random set B :=

⋃
j:Jj=1 I ′′nj , where {Jj} is a family of independent indicator

variables. Hence, the analogue of (4.4) is not exact; we have

E

|F |∏

i=1

Jji
=

|F |∏

i=1

aji
(5.4)

when j1, . . . , j|F | are distinct, but in general not when two or more are

equal. However, there are only O(|Gn|
|F |−1) choices of indices with at least

two coinciding, and each such choice introduces an error that is at most
λ(I ′′nj1

× · · · × I ′′nj|F |
) = |Gn|

−|F |. Hence, we now have
∫

An

(ΨF,Wn − γ) = E

∫

Bn

(ΨF,Wn − γ) + o(1). (5.5)

The error o(1) is unimportant, and, assuming (i), the conclusion of (4.4) is
valid in the form

∫
An(ΨF,Wn−γ) = o(1), which yields (ii) as in Section 4. �
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We do not know any direct proof of the analogue of Lemma 4.3 for

Ψ̃F,W . (This result follows by Lemma 5.2 and Theorem 3.1 once the lat-
ter is proven.) However, as in Subsection 4.5 we nevertheless can use the
following lemma, which is a strengthening of Lemma 4.5.

Lemma 5.3. Let F be a graph with e(F ) > 0 and let W be a graphon. If

Ψ̃F,W (x1, . . . , x|F |) = pe(F ) for every (x1, . . . , x|F |) ∈ [0, 1]|F |, then W = p.

Proof. As in the proof of Lemma 4.5, first take x1 = · · · = x|F | = x. Then

Ψ̃F,W (x1, . . . , x|F |) = ΨF,W (x1, . . . , x|F |) = W (x, x)e(F ), and thus W (x, x) =
p. Using this, it is easy to see that if we take x1 = x and x2 = · · · = x|F | = y,
and di is the degree of vertex i, then

pe(F ) = Ψ̃F,W (x1, . . . , x|F |) =
1

|F |

∑

i∈V (F )

(
W (x, y)

p

)di

pe(F ).

Since the right-hand side is a strictly increasing function of W (x, y), this
equation has only the solution W (x, y) = p. �

As in Section 4 there is a companion result where we allow exceptional
null sets.

Lemma 5.4. Let F be a graph with e(F ) > 0 and let W be a graphon. If

Ψ̃F,W (x1, . . . , x|F |) = pe(F ) for a.e. (x1, . . . , x|F |) ∈ [0, 1]|F |, then W = p a.e.

Proof. We have not tried to find a direct proof, since this follows directly
from Lemma 5.3 and Corollary A.6. �

Theorem 3.1 now follows from Lemmas 5.2 and 5.4. (Alternatively, we
may use Lemma A.3 or Theorem A.5(iii) and argue as in the proof of
Lemma 5.3.)

6. Further variations

6.1. Disjoint subsets. In Section 4 the sets U1, . . . , U|F | of vertices were
arbitrary and in Section 5 they were assumed to coincide. The opposite
extreme is to require that they are disjoint. We can translate this version too
to graphons as follows. Note that (iii) in the following lemma is that same as
Lemma 4.2(iii); hence the two lemmas together show that it is equivalent to
assume (4.1) (or (3.2)) for disjoint U1, . . . , U|F | only; this implies the general
case.

Lemma 6.1. Suppose that Gn → W for some graphon W and let F be a
fixed graph and γ ≥ 0 a fixed number. Then the following are equivalent:

(i) For all disjoint subsets U1, . . . , U|F | of V (Gn),

N(F,Gn;U1, . . . , U|F |) = γ

|F |∏

i=1

|Ui| + o
(
|Gn|

|F |
)
.
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(ii) For all disjoint subsets A1, . . . , A|F | of [0, 1],

∫

A1×···×A|F |

ΨF,W (x1, . . . , x|F |) = γ

|F |∏

i=1

λ(Ai).

(iii) ΨF,W (x1, . . . , x|F |) = γ for a.e. x1, . . . , x|F | ∈ [0, 1]|F |.

Proof. Again we follow the proof of Lemma 4.2. The only difference is
that we consider only disjoint sets U1, . . . , U|F |, etc. In particular, given
disjoint subsets A1, . . . , A|F | of [0, 1], we want to construct the random sets
Bi so that they too are disjoint. We do this by taking, for each j, the
0–1 random variables Jij dependent, so that

∑
i Jij ≤ 1. (This is possible

because
∑

i aij ≤ 1 when A1, . . . , A|F | are disjoint.) The vectors (Jij)
|F |
i=1

for different j are chosen independent as before. Just as in the proof of
Lemma 5.2, the dependency among the Jij means that (4.4) is not exact:

in analogy with (5.4), E
∏|F |

i=1 Jiji
=

∏|F |
i=1 aiji

when j1, . . . , j|F | are distinct,
but not in general. However, again as in the proof of Lemma 5.2, the
total error is o(1), so the analogue of (5.5) holds, and thus the conclusion∫
A1×···×A|F |

(ΨF,Wn−γ) = o(1) of (4.4) holds for all disjoint sets A1, . . . , A|F |.

Finally, for (ii) =⇒ (iii), note that Lemma 4.1 already is stated so that it
suffices to consider disjoint A1, . . . , A|F |. �

Lemma 6.1, combined with the remainder of the proof of Theorem 3.2
in Section 4, shows that in Theorem 3.2, it is sufficient to assume (3.2) for
disjoint U1, . . . , U|F |.

6.2. Sets of the same size. Another variation of Theorem 3.2 is to con-
sider only subsets U1, . . . , U|F | of the same size. (We may combine this with
the preceding variation and require that the sets are disjoint too.) This can
be translated to considering only subsets A1, . . . , A|F | of the same measure
by the same method as in the next subsection, when we further let the com-
mon size be a given number. Since we obtain stronger results in the next
subsection, we leave the details to the reader.

6.3. Sets of a given size. Another variation of Theorem 3.2 is Theorem 3.6
where we consider only subsets U1, . . . , U|F | of a given size, which we assume
is a fixed fraction α of |Gn| (rounded to an integer). This is translated to
graphons as follows.

Lemma 6.2. Suppose that Gn → W for some graphon W and let F be a
fixed graph and γ ≥ 0 and α ∈ (0, 1) be fixed numbers. Then the following
are equivalent:

(i) For all subsets U1, . . . , U|F | of V (Gn) with |Ui| = ⌊α|Gn|⌋,

N(F,Gn;U1, . . . , U|F |) = γ

|F |∏

i=1

|Ui| + o
(
|Gn|

|F |
)
. (6.1)
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(ii) For all subsets A1, . . . , A|F | of [0, 1] with λ(Ai) = α,

∫

A1×···×A|F |

ΨF,W (x1, . . . , x|F |) = γ

|F |∏

i=1

λ(Ai). (6.2)

(iii) ΨF,W (x1, . . . , x|F |) = γ for a.e. x1, . . . , x|F | ∈ [0, 1]|F |.

If α < 1/|F |, we may further, as in Lemma 6.1, in (i) and (ii) add the
requirement that the sets be disjoint.

Proof. The equivalence (i) ⇐⇒ (ii) is proved as in the proof of Lemma 4.2,
but some care has to be taken with the sizes and measures of the sets. We
note that for any sets A1, . . . , A|F | and A′

1, . . . , A
′
|F |,

∣∣∣∣
∫

A1×···×A|F |

ΨF,Wn −

∫

A′
1×···×A′

|F |

ΨF,Wn

∣∣∣∣ ≤
|F |∑

i=1

λ(Ai △ A′
i). (6.3)

Hence, we can modify the sets without affecting the results as long as the
difference has measure o(1). We argue as follows.

We obtain as in Section 4 that (i) is equivalent to (4.3), now for all
subsets U ′′

i of [0, 1] that are unions of sets I ′′nj and have measures λ(U ′′
i ) =

⌊α|Gn|⌋/|Gn|. If (ii) holds, we may for any such U ′′
i find Ai ⊇ U ′′

i with
λ(Ai) = α; then (6.2) implies first (4.5) and then (4.3) by (6.3).

Conversely, given A1, . . . , A|F | with measures λ(Ai) = α, the random sets
Bi constructed above (either as in Section 4 or as in Subsection 6.1 in the
disjoint case) have measures that are random but well concentrated:

E λ(Bi) =
∑

j

EJijλ(I ′′nj) =
∑

j

aijλ(I ′′nj) = λ(Ai) = α

Var λ(Bi) =
∑

j

Var(Jij)λ(I ′′nj)
2 ≤ |Gn|

−1 → 0.

Hence, if δn := |Gn|
−1/3, say, then by Chebyshev’s inequality

P(|λ(Bi) − α| > δn) ≤ δ−2
n Var(λ(Bi)) ≤ δn → 0.

If |λ(Bi) − α| ≤ δn for all i, we adjust Bi to a set U ′′
i with λ(U ′′

i ) =
⌊α|Gn|⌋/|Gn| so that λ(Bi △ U ′′

i ) ≤ δn + |Gn|
−1 ≤ 2δn, and thus

∫

B1×···×B|F |

ΨF,Wn =

∫

U ′′
1 ×···×U ′′

|F |

ΨF,Wn + O(δn).

Consequently, if (4.3) holds, then
∫
B1×···×B|F |

ΨF,Wn = γα|F | + O(δn) + o(1)

whenever |λ(Bi) − α| ≤ δn for all i, and thus

E

∫

B1×···×B|F |

ΨF,Wn = γα|F | + O(δn) + o(1) + O
( |F |∑

i=1

P
(
|λ(Bi) − α| > δn

))

= γα|F | + o(1).
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Hence, (4.5) holds, for A1, . . . , A|F | with measures λ(Ai) = α, and thus (ii)
holds by the argument in Section 4.

This proves (i) ⇐⇒ (ii); we may add the requirement that the sets be
disjoint by the argument in the proof of Lemma 6.1.

To see that (ii) ⇐⇒ (iii), we use the following analysis lemma. (This
seems to be less well-known that Lemma 4.1; we guess that it is known, but
we have been unable to find a reference.) �

Lemma 6.3. Let α ∈ (0, 1). Suppose that f : [0, 1]m → R is an integrable
function such that

∫
A1×···×Am

f = 0 for all sequences A1, . . . , Am of mea-

surable subsets of [0, 1] such that λ(A1) = · · · = λ(Am) = α. Then f = 0
a.e.

Moreover, if α < m−1, it is enough to consider disjoint A1, . . . , Am.

Proof. For f ∈ L1([0, 1]m) and A1, . . . , Am ⊆ [0, 1], let

f(A1, . . . , Am) :=

∫

A1×···×Am

f,

and define further the functions

fA1(x2, . . . , xm) :=

∫

A1

f(x1, x2, . . . , xm) dx1

and

fA2,...,Am(x1) :=

∫

A2×···×Am

f(x1, x2, . . . , xm) dx2 · · · dxm.

By Fubini’s theorem,

f(A1, . . . , Am) = fA1(A2, . . . , Am) = fA2,...,Am(A1). (6.4)

We will derive the lemma from the following claims, which we will prove
by induction in m.

Let B be a measurable subset of [0, 1], let 0 < α < 1 and let f be an
integrable function on Bm.

(i) If α < λ(B) and f(A1, . . . , Am) = 0 for all A1, . . . , Am ⊂ B with
λ(A1) = · · · = λ(Am) = α, then f(A1, . . . , Am) = 0 for all A1, . . . , Am

⊆ B.
(ii) If mα < λ(B) and f(A1, . . . , Am) = 0 for all disjoint A1, . . . , Am ⊂

B with λ(A1) = · · · = λ(Am) = α, then f(A1, . . . , Am) = 0 for all
disjoint A1, . . . , Am ⊂ B with λ(A1), . . . , λ(Am) ≤ α.

Consider first the case m = 1, in which case (i) and (ii) have the same
hypotheses: α < λ(B) and f(A) = 0 if λ(A) = α. Suppose that A1, A2 ⊂
B with λ(A1) = λ(A2) ≤ δ := 1

2(λ(B) − α). Then λ(B \ (A1 ∪ A2)) ≥
λ(B) − 2δ = α, and we may thus find a set A0 ⊆ B \ (A1 ∪ A2) with
λ(A0) = α − λ(A1). The assumption yields f(A1 ∪ A0) = 0 = f(A2 ∪ A0),
and thus

f(A1) = −f(A0) = f(A2). (6.5)

If A ⊂ B is given with λ(A) ≤ δ and λ(A) = α/N for some integer N , let
A1 = A and choose further sets A2, . . . , AN ⊂ B of the same measure α/N
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and with A1, . . . , AN disjoint. By (6.5), then f(Ak) = f(A1) = f(A) for
every k ≤ N , and thus, by the assumption,

0 = f
( N⋃

k=1

Ak

)
=

N∑

k=1

f(Ak) = Nf(A).

Consequently, f(A) = 0 for every A ⊂ B with λ(A) ≤ δ and λ(A) = α/N . If
x0 is a density point of B (i.e., a point in B that is a Lebesgue point of 1B),
then there is a sequence εn → 0 such that λ(B ∩ (x0 − εn, x0 + εn)) = α/n,

and thus by we just have shown,
∫ x0+εn

x0−εn
f1B = f(B∩ (x0− εn, x0 + εn)) = 0

for every n. If further x0 is a Lebesgue point of f1B, then this implies
f(x0) = f(x0)1B(x0) = 0. Since a.e. x0 ∈ B satisfies these conditions,
f = 0 a.e. on B, which of course is equivalent to f(A) = 0 for every A ⊆ B.
This proves both (i) and (ii) for m = 1.

For m > 1, we use, as already said, induction, and assume that the claims
are true for smaller m. To prove (i), we fix A1 ⊂ B with λ(A1) = α, and
see by (6.4) that fA1 satisfies the assumptions of (i) on Bm−1. Thus, by the
induction hypothesis, fA1(A2, . . . , Am) = 0 for all A2, . . . , Am ⊆ B. Fixing
now instead such A2, . . . , Am, (6.4) shows that fA2,...,Am(A1) = 0 for all
λ(A1) ⊂ B with λ(A1) = α, and thus by the case m = 1, fA2,...,Am(A1) = 0
for all λ(A1) ⊂ B. By (6.4) again, this proves the induction hypothesis.
Thus (i) is proved in general.

To prove (ii), we again fix A1, and see by (6.4) that fA1 satisfies the
assumptions of (ii) on (B \ A1)

m−1, noting that (m − 1)α < λ(B \ A1).
Thus, by the induction hypothesis, fA1(A2, . . . , Am) = 0 for all disjoint
A2, . . . , Am ⊆ B \ A1 with λ(Ak) ≤ α for every k. Hence, if we instead fix
disjoint sets A2, . . . , Am ⊂ B with λ(Ak) ≤ α for every k, then (6.4) shows
that fA2,...,Am(A1) = 0 for every A1 ⊂ B\(A2∪· · ·∪Am) with λ(A1) = α, and
thus by the case m = 1, fA2,...,Am(A1) = 0 for every A1 ⊂ B \(A2∪· · ·∪Am)
with λ(A1) ≤ α. By (6.4) again, this proves the induction hypothesis, and
(ii) is proved.

We have proved the claims above. We now take B = [0, 1] and the lemma
follows immediately by Lemma 4.1. �

Remark 6.4. When α = m−1, it is not enough to consider disjoint sets
A1, . . . , Am in Lemma 6.3. In fact, any f of the type

∑m
i=1 g(xi) where∫ 1

0 g = 0 satisfies the assumption for such A1, . . . , Am. (We do not know
whether these are the only possible f .) Taking W of this type and F =
K2, so that ΨF,W = W , we get a counter-example to Lemma 6.2, and to
Theorem 3.6, for disjoint sets and α = 1/|F |; see also Section 8 where this
example reappears in a different formulation. We do not know whether there
are such counter-examples for other graphs F .

Proof of Theorem 3.6. Theorem 3.6 follows by using Lemma 6.2 instead of
Lemma 4.2 in (any version of) the proof of Theorem 3.2 in Section 4. �
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6.4. A single subset of a given size. The corresponding variation of
Theorem 3.1 is Theorem 3.5 where we consider a single subset U with a
given fraction α of the vertices. Again, there is a straightforward translation
to graphons.

Lemma 6.5. Suppose that Gn → W for some graphon W and let F be a
fixed graph and γ ≥ 0 and α ∈ (0, 1) be fixed numbers. Then the following
are equivalent:

(i) For every subset U of V (Gn) with |U | = ⌊α|Gn|⌋,

N(F,Gn;U) = γ|U ||F | + o
(
|Gn|

|F |
)
.

(ii) For every subset A of [0, 1] with λ(A) = α,
∫

A|F |
ΨF,W (x1, . . . , x|F |) = γλ(A)|F |.

(iii) Ψ̃F,W (x1, . . . , x|F |) = γ for a.e. x1, . . . , x|F | ∈ [0, 1]|F |.

Proof. The equivalence (i) ⇐⇒ (ii) is proved as for Lemma 6.2, using single
sets U , A and B as in the proof of Lemma 5.2.

The equivalence (ii) ⇐⇒ (iii) follows by the following lemma, which stren-
thens Lemma 5.1 by considering subsets of a given size only. �

Lemma 6.6. Let α ∈ (0, 1). Suppose that f : [0, 1]m → R is an integrable
function such that

∫
Am f = 0 for all measurable subsets A of [0, 1] with

λ(A) = α. Then f̃ = 0 a.e.

Proof. We begin by showing that the vanishing property extends to sets A
with measure greater than α as follows:

If A ⊆ [0, 1] with λ(A) = rα for some rational r ≥ 1, then

∫

Am

f = 0.

(6.6)
(The restriction to rational r may easily be removed by continuity, but it
will suffice for us.) To see this, let N be an integer such that M := rN
is an integer, and partition A into M subsets A1, . . . , AM of equal measure
λ(Ai) = λ(A)/M = rα/M = α/N . Pick N of the sets Ai at random

(uniformly over all
(M

N

)
possibilities), and let B be their union. Thus B

is a random subset of [0, 1] with λ(B) = α, and thus by the assumption∫
Bm f = 0. Taking the expectation we find

0 = E

∫

Bm

f =

M∑

i1,...,im=1

P(Ai1 , . . . , Aim ⊆ B)

∫

Ai1
×···×Aim

f. (6.7)

If i1, . . . , im are distinct, then, letting (N)m denote the falling factorial,

P(Ai1 , . . . , Aim ⊆ B) =
(N)m
(M)m

=

(
N

M

)m

+ O

(
1

N

)
= r−m + O

(
1

N

)
.

This fails if two or more of i1, . . . , im coincide (in fact, the probability
is (N)ν/(M)ν ≈ r−ν , where ν is the number of distinct indices among
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i1, . . . , im), so we let UN ⊆ [0, 1]m be the union of all Ai1 × · · · × Aim with
at least two coinciding indices. By (6.7),

(N)m
(M)m

∫

Am

f =

M∑

i1,...,im=1

(N)m
(M)m

∫

Ai1
×···×Aim

f

=

M∑

i1,...,im=1

(
(N)m
(M)m

− P(Ai1 × · · · × Aim ⊆ B)

)∫

Ai1
×···×Aim

f,

and thus ∣∣∣∣
(N)m
(M)m

∫

Am

f

∣∣∣∣ ≤
∫

UN

|f |. (6.8)

Now let N → ∞ (with rN integer). Note that λ(UN ) ≤
(m

2

)
Nm−1(α/N)m ≤(

m
2

)
/N . Thus λ(UN ) → 0 and hence, since f is integrable,

∫
UN

|f | → 0. It

follows from (6.8) and (N)m/(M)m → r−m that r−m
∫
Am f = 0, which

proves (6.6).
Next, let A1, . . . , Am be arbitrary disjoint subsets of [0, 1] with equal

measure λ(A1) = · · · = λ(Am) = qα, for some rational q such that (1 +
mq)α ≤ 1. Choose A0 ⊆ [0, 1] \

⋃m
1 Ai with λ(A0) = α. For any sequence

ξ1, . . . , ξm ∈ {0, 1}m, let ξ0 := 1 and take A :=
⋃

i≥0:ξi=1 Ai. Then 1A =∑m
i=0 ξi1Ai

and we argue as in the proof of Lemma 5.1 with an extra set A0:
we have

0 =

∫

Am

f =

∫

[0,1]m
f1Am =

m∑

i1,...,im=0

ξi1 · · · ξim

∫

Ai1
×···×Aim

f. (6.9)

As in the proof of Lemma 5.1, it follows that the coefficient of ξ1 · · · ξm in
(6.9) must vanish, and this coefficient comes from the terms where i1, . . . , im
is a permutation of 1, . . . ,m. We thus obtain

0 =
∑

σ∈Sm

∫

Aσ(1)×···×Aσ(m)

f = m!

∫

A1×···×Am

f̃ .

The result follows by Lemma 4.1 or 6.3, applied to f̃ . �

Proof of Theorem 3.5. Theorem 3.5 follows by combining Lemma 6.5 and
Lemma 5.4, cf. Section 5. �

7. Induced subgraph counts

When considering counts of induced subgraphs, we translate the condi-
tions to graphons similarly as above.

Lemma 7.1. Suppose that Gn → W for some graphon W and let F be a
fixed graph and γ ≥ 0 a fixed number. Then the following are equivalent:
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(i) For all subsets U1, . . . , U|F | of V (Gn),

N∗(F,Gn;U1, . . . , U|F |) = γ

|F |∏

i=1

|Ui| + o
(
|Gn|

|F |
)
.

(ii) For all subsets A1, . . . , A|F | of [0, 1],

∫

A1×···×A|F |

Ψ∗
F,W (x1, . . . , x|F |) = γ

|F |∏

i=1

λ(Ai).

(iii) Ψ∗
F,W (x1, . . . , x|F |) = γ for a.e. x1, . . . , x|F | ∈ [0, 1]|F |.

We may further in (i) and (ii) add the conditions that, as in Lemma 6.1,
the sets be disjoint, or that, as in Lemma 6.2, |Ui| = ⌊α|Gn|⌋ and λ(Ai) = α
for a fixed α ∈ (0, 1), or, provided α < 1/|F |, both.

Proof. As for Lemma 4.2, using (2.9) instead of (2.6), and with the extra
conditions treated as for Lemmas 6.1 and 6.2. �

Lemma 7.2. Suppose that Gn → W for some graphon W and let F be a
fixed graph and γ ≥ 0 a fixed number. Then the following are equivalent:

(i) For all subsets U of V (Gn),

N∗(F,Gn;U) = γ|U ||F | + o
(
|Gn|

|F |
)
.

(ii) For all subsets A of [0, 1],
∫

A|F |

Ψ∗
F,W (x1, . . . , x|F |) = γλ(A)|F |.

(iii) Ψ̃∗
F,W (x1, . . . , x|F |) = γ for a.e. x1, . . . , x|F | ∈ [0, 1]|F |.

We may further in (i) and (ii) add the conditions that, as in Lemma 6.5,
|U | = ⌊α|Gn|⌋ and λ(A) = α for a fixed α ∈ (0, 1).

Proof. As for Lemma 5.2, using (2.9) instead of (2.6), and with the extra
size conditions treated as for Lemma 6.5, using Lemma 6.6. �

However, it is now more complicated to do the algebraic step, i.e., to solve

the equations in (iii) in these lemmas; the reason is that Ψ∗
F,W and Ψ̃∗

F,W

are not monotone in W . For Ψ∗
F,W , we can argue as follows. (See also the

somewhat different argument in [17].)

Lemma 7.3. Let F be a graph with |F | > 1, let W be a graphon and let p ∈

(0, 1). If Ψ∗
F,W (x1, . . . , x|F |) = pe(F )(1 − p)(

|F |
2 )−e(F ) for every x1, . . . , x|F | ∈

[0, 1]|F |, then either W = p or W = p̄.

Proof. First, take all xi equal. Recalling the definitions (2.7) and (3.3), we
see that

Ψ∗
F,W (x, . . . , x) = W (x, x)e(F )(1 − W (x, x))e(F ) = βF (W (x, x)).
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Thus, βF (W (x, x)) = βF (p), and hence, cf. Section 3, W (x, x) ∈ {p, p̄} for
every x.

Next, if vertex i has degree di and we choose xi = y and xj = x for j 6= i,
then

Ψ∗
F,W (x1, . . . , x|F |) =

(
W (x, y)

W (x, x)

)di
(

1 − W (x, y)

1 − W (x, x)

)|F |−1−di

Ψ∗
F,W (x, . . . , x),

and thus
(

W (x, y)

W (x, x)

)di
(

1 − W (x, y)

1 − W (x, x)

)|F |−1−di

= 1, i ∈ V (F ). (7.1)

If F is not regular, we may choose vertices i and j with di 6= dj . Taking
logarithms of (7.1) and the same equation with i replaced by j, we obtain a
non-singular homogeneous system of linear equations in log(W (x, y)/W (x, x))
and log((1 − W (x, y))/(1 − W (x, x))), and thus these logarithms vanish, so
W (x, y) = W (x, x) for every x and y in [0, 1]. Hence, if x, y ∈ [0, 1], then
W (x, x) = W (x, y) = W (y, x) = W (y, y), and it follows that W is constant,
and thus either W = p or W = p̄.

It remains to treat the case when F is regular, di = d for all i. Note first
that if F is a complete graph, then Ψ∗

F,W = ΨF,W , and the result follows by
Lemma 4.5. Further, if F is empty, the result follows by taking complements,
replacing F by F , which is complete, W by 1−W , and p by 1− p. We may
thus assume that 1 ≤ d ≤ |F | − 2.

We now choose two vertices i, j ∈ V (F ) and let xi = xj = y and xk = x,
k 6= i, j. If there is an edge ij ∈ E(F ), then

Ψ∗
F,W (x1, . . . , x|F |) =

(
W (x, y)

W (x, x)

)2d−2 (
1 − W (x, y)

1 − W (x, x)

)2(|F |−1−d)

×

(
W (y, y)

W (x, x)

)
Ψ∗

F,W (x, . . . , x),

and thus, using (7.1),

W (y, y)

W (x, x)
=

(
W (x, y)

W (x, x)

)2

or
W (x, x)W (y, y) = W (x, y)2. (7.2)

Choosing instead i, j ∈ V (F ) with ij /∈ E(F ), we similarly obtain

(1 − W (x, x))(1 − W (y, y)) = (1 − W (x, y))2. (7.3)

Subtracting (7.3) from (7.2) we find

W (x, x) + W (y, y) = 2W (x, y)

and thus, also using (7.2) again,
(
W (x, x) − W (y, y)

)2
=

(
W (x, x) + W (y, y)

)2
− 4W (x, x)W (y, y)

= 4W (x, y)2 − 4W (x, y)2 = 0.
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Hence W (x, x) = W (y, y) for all x, y ∈ [0, 1], which by (7.2) implies that W
is a constant, which must be p or p̄. �

As above, the results in the appendix imply that we can relax the as-
sumption to hold only almost everywhere.

Lemma 7.4. Let F be a graph with |F | > 1, let W be a graphon and let p ∈

(0, 1). If Ψ∗
F,W (x1, . . . , x|F |) = pe(F )(1 − p)(

|F |
2 )−e(F ) for a.e. x1, . . . , x|F | ∈

[0, 1]|F |, then either W = p a.e. or W = p̄ a.e.

Proof. By Corollary A.6 and Lemma 7.3, W has to be a constant c a.e.
Then Ψ∗

F,W (x1, . . . , x|F |) = βF (c) a.e., and thus βF (c) = βF (p); hence c = p
or c = p̄. �

Proof of Theorems 3.11 and 3.12. As in Section 4, we may assume that Gn →
W for some graphon W . By the assumption and Lemma 7.1, then

Ψ∗
F,W (x1, . . . , x|F |) = βF (p) := pe(F )(1 − p)(

|F |
2 )−e(F )

for a.e. x1, . . . , x|F | ∈ [0, 1]|F |, which by Lemma 7.4 implies either W = p
a.e. or W = p̄ a.e. �

For Ψ̃∗
F,W , the situation is even more complicated. In fact, Simonovits

and Sós [20] showed that the path P3 = K1,2 and its complement P 3 are

not HI (recall Definition 3.7). Thus, the analogue of Lemma 7.3 for Ψ̃∗
F,W

cannot hold in general.
We can, however, easily obtain the partial results of [20] by our methods.

We note that by Theorem A.5, it suffices to study 2-type graphons; equiva-

lently, it suffices to study Ψ̃∗
F,W (x1, . . . , x|F |) for sequences x1, . . . , x|F | with

at most two distinct values. For any sequence x1, . . . , x|F | with xi = x for k
values of i, and xi = y for the |F | − k remaining values, we have

Ψ̃∗
F,W (x1, . . . , x|F |) =

(
|F |

k

)−1

Qk

(
W (x, x),W (y, y),W (x, y)

)
, (7.4)

where Qk(u, v, s) is the polynomial, defined for a given graph F and k =
0, . . . , |F |, by

Qk(u, v, s) =
∑

A⊆V (F )
|A|=k

ue(A)(1−u)(
k

2)−e(A)ve(A)(1−v)(
|F |−k

2 )−e(A)se(A,A)(1−s)k(|F |−k)−e(A,A),

where A := V (F ) \ A, e(A) is the number of edges with both endpoints in
A, and e(A,A) is the number of edges with one endpoint in A and one in A.

By symmetry, Q|F |−k(u, v, s) = Qk(v, u, s). Note that Q0(u, v, s) = βF (v)
and Q|F |(u, v, s) = βF (u). In particular, Q0(u, v, s) = βF (p) ⇐⇒ v ∈ {p, p̄}
and Q|F |(u, v, s) = βF (p) ⇐⇒ u ∈ {p, p̄}
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Remark 7.5. These polynomials are essentially the same as the polynomials
P

k
u,v(s) defined by Simonovits and Sós [20]. More precisely,

P
k
u,v(s) :=

(
|F |

k

)
ue(F )(1 − u)e(F ) − Qk(u, v, s).

Hence, the condition in Theorem 7.6(iv) below is equivalent to P
k
u,v(s) = 0,

with u, v ∈ {p, p̄}.

Theorem 7.6. Let F be a graph with |F | > 1 and let 0 < p < 1. Then the
following are equivalent:

(i) F is HI(p).

(ii) If Ψ∗
F,W (x1, . . . , x|F |) = βF (p) for a.e. x1, . . . , x|F | ∈ [0, 1]|F |, then

either W = p a.e. or W = p̄ a.e.
(iii) If Ψ∗

F,W (x1, . . . , x|F |) = βF (p) for all x1, . . . , x|F | ∈ [0, 1]|F |, then
either W = p or W = p̄

(iv) If Qk(u, v, s) =
(|F |

k

)
βF (p) for k = 1, . . . , |F | − 1, and u, v ∈ {p, p̄},

then u = v = s.

Proof. (i) ⇐⇒ (ii) follows by Lemma 7.2 and our general method.
(ii) ⇐⇒ (iii) follows by Corollary A.6 (and the comment after it).
(ii) ⇐⇒ (iv) follows by Theorem A.5, together with the remarks on Q0

and Q|F | above. �

Proof of Theorem 3.13. Again we may assume that Gn → W . It then fol-
lows by Lemma 7.2(i)⇐⇒(iii) and Theorem 7.6(i)=⇒(ii) that either W = p
a.e. or W = p̄ a.e. �

For F = P3, it suffices by symmetry to check Q1 in (iv); we find Q1(u, v, s) =
2vs(1 − s) + (1 − v)s2, and it is easy to find solutions with u = v = p 6= s,
see [20] for details. On the other hand, Simonovits and Sós [20] have shown
that every regular graph (and a few others) satisfies (iv), and thus is HI(p).

The algebraic problem of determining if there are any other cases where
the overdetermined system in Theorem 7.6(iv) has a non-trivial root is still
unsolved.

8. Cuts

Chung and Graham [6] considered also eG(U,U ), the number of edges in
the graph G across a cut (U,U ), where U := V (G) \ U . They proved the
following results:

Theorem 8.1 (Chung and Graham [6]). Suppose that (Gn) is a sequence
of graphs with |Gn| → ∞ and let 0 ≤ p ≤ 1. Then (Gn) is p-quasi-random
if and only if, for all subsets U of V (Gn),

eGn(U,U ) = p|U ||U | + o
(
|Gn|

2
)
. (8.1)
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Theorem 8.2 (Chung and Graham [6]). Let α ∈ (0, 1) with α 6= 1/2.
Suppose that (Gn) is a sequence of graphs with |Gn| → ∞ and let 0 ≤ p ≤ 1.
Then (Gn) is p-quasi-random if and only if (8.1) holds for all subsets U of
V (Gn) with |U | = ⌊α|Gn|⌋.

However, as shown in [7; 6], Theorem 8.2 does not hold for α = 1/2.
Note that in our notation,

eG(U,U) = N(K2, G;U,U ), (8.2)

so these results are closely connected to Theorem 3.2 and its variants. We
may use the methods above to show these results too, and to see why α = 1/2
is an exception in Theorem 8.2.

We thus assume that Gn → W for some graphon W , and translate the
properties above to properties of W . We state this as a lemma in the
same style as earlier, and note that Theorems 8.1 and 8.2 are immediate
consequences.

Lemma 8.3. Suppose that Gn → W for some graphon W and let p ∈ [0, 1].
Then the following are equivalent:

(i) For all subsets U of V (Gn),

eGn(U,U ) = p|U ||U | + o
(
|Gn|

2
)
.

(ii) For all subsets A of [0, 1],
∫

A×A
W (x, y) = pλ(A)λ(A). (8.3)

(iii) W = p a.e.

For any fixed α ∈ (0, 1) \ {1
2}, we may further add the condition that |U | =

⌊α|Gn|⌋ in (i) and λ(A) = α in (ii). (If we add these conditions with
α = 1/2, the equivalence (i) ⇐⇒ (ii) still holds, but these do not imply
(iii).)

Proof. The equivalence (i) ⇐⇒ (ii) follows as in Lemmas 4.2 and 6.1, arguing
as in Lemma 6.2 in the case of a fixed size α ∈ (0, 1).

The implication (iii) =⇒ (ii) is trivial, and (ii) =⇒ (iii) follows by the
following lemma, applied to W − p. �

Lemma 8.4. Let α ∈ (0, 1) \ {1
2}. If f : [0, 1]2 → R is a symmetric mea-

surable function such that
∫
A×([0,1]\A) f = 0 for every subset A of [0, 1] with

λ(A) = α, then f = 0 a.e.

Proof. Let f1(x) :=
∫ 1
0 f(x, y) dy be the marginal of f . Then

0 =

∫

A×([0,1]\A)
f =

∫

A
f1(x) dx −

∫

A×A
f(x, y) dxdy

=

∫

A×A

( 1

α
f1(x) − f(x, y)

)
dxdy. (8.4)
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Lemma 6.6 now shows that the symmetrization 1
2αf1(x)+ 1

2αf1(y)−f(x, y) =
0 a.e., i.e.,

f(x, y) =
1

2α

(
f1(x) + f1(y)

)
. (8.5)

Integrating (8.5) with respect to both variables we find
∫

f = 2
2α

∫
f , and

thus, because α < 1,
∫

f = 0. Integrating (8.5) with respect to one variables

we then find f1(x) = 1
2αf1(x) a.e., and thus f1(x) = 0 a.e. because α 6= 1/2.

A final appeal to (8.5) yields f(x, y) = 0 a.e. �

This proof also shows what goes wrong with Theorem 8.2 when α = 1/2.
In this case, the condition of Lemma 8.4 still implies (8.5), but this is satisfied
if (and only if) f(x, y) = g(x)+g(y) for any integrable g with

∫
g = 0, and as

a result we see that (8.1) is satisfied for all U with |U | = ⌊|Gn|/2⌋ whenever
Gn → W where W is a graphon of the form W (x, y) = h(x) + h(y) with∫ 1
0 h = p/2. (One such example of (Gn), with p = 1/2 and h(x) = 1

21[x ≥
1/2] is given in [7; 6].) Cf. Remark 6.4.

Remark 8.5. The condition that f is symmetric is essential in Lemma 8.4.
If f is anti-symmetric, then (8.4) implies that f satisfies the condition if and

only if
∫ 1
0 f(x, y) dy = 0 for a.e. x. One example is sin(2π(x − y)).

Chung, Graham and Wilson [7] remarked that Theorem 8.2 holds in the
case α = 1/2 too, if we further assume that (Gn) is almost regular (see below
for definition). We discuss and show this in the next section.

9. The degree distribution

If G is a graph, let DG denote the random variable defined as the degree
dv of a randomly chosen vertex v (with the uniform distribution on V (G)).
Thus 0 ≤ DG ≤ |G|−1, and we normalize DG by considering DG/|G|, which
is a random variable in [0,1]. If (Gn) is a sequence of graphs, with |Gn| → ∞
as usual, we say that (Gn) has asymptotic (normalized) degree distribution µ
if DG tends to µ in distribution. (Here µ is a distribution, i.e., a probability
measure, on [0, 1].) In the special case when µ is concentrated at a point
p ∈ [0, 1], we say that (Gn) is almost p-regular (or almost regular if we do

not want to specify p); this thus is the case if and only if DGn

p
−→ p, with

convergence in probability, which means that all but o(|Gn|) vertices in Gn

have degrees p|Gn|+o(|Gn|). Since the random variables DGn are uniformly
bounded (by 1), this is further equivalent to convergence in mean, and thus
a sequence (Gn) is almost p-regular if and only if E |DGn − p| → 0, or, more
explicitly, cf. [7], ∑

v∈V (G)

∣∣dv − p|Gn|
∣∣ = o(|Gn|

2). (9.1)

The normalized degree distribution behaves continuously under graph
limits, and a corresponding “normalized degree distribution” may be defined
for every graph limit too. (See further [9].) For a graphon W we define the
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marginal w(x) :=
∫ 1
0 W (x, y) dy and the random variable DW := w(U) =∫ 1

0 W (U, y) dy, where U ∼ U [0, 1] is uniformly distributed on [0, 1].

Theorem 9.1. If Gn are graphs with |Gn| → ∞ and Gn → W for some

graphon W , then DGn/|Gn|
d

−→ DW . Hence, (Gn) has an asymptotically
degree distribution, and this equals the distribution of the random variable

DW :=
∫ 1
0 W (U, y) dy.

Proof. It is easily seen that, for every k ≥ 1, the moment E(DG/|G|)k equals
t(Sk, G), where Sk = K1,k is a star with k + 1 vertices, and similarly the

moment E W k
G = t(Sk,W ). Consequently, E(DGn/|Gn|)

k = t(Sk, Gn) →

t(Sk,W ) = EDW for every k ≥ 1, and thus DGn

d
−→ DW by the method of

moments. �

Corollary 9.2. Let (Gn) be a sequence of graphs and W a graphon such

that Gn → W . Then Gn is almost p-regular if and only if
∫ 1
0 W (x, y) dy = p

for a.e. x ∈ [0, 1]. �

In particular, a quasi-random sequence of graphs is almost regular, but
the converse does not hold.

Motivated by Corollary 9.2, we say that a graphon W is p-regular if

its marginal
∫ 1
0 W (x, y) dy = p a.e. This is evidently not a quasi-random

property of graphons, but it can be used in conjuction with the failed case
α = 1/2 in Section 8. We find the following lemmas.

Lemma 9.3. Let α ∈ (0, 1). If f : [0, 1]2 → R is a symmetric measurable
function such that

∫
A×([0,1]\A) f = 0 for every subset A of [0, 1] with λ(A) =

α, and
∫ 1
0 f(x, y) dy = 0 for a.e. x, then f = 0 a.e.

Proof. The proof of Lemma 8.4 shows that (8.5) holds, where now by as-
sumption f1 = 0. �

Lemma 9.4. Let p ∈ [0, 1] and α ∈ (0, 1). Suppose that (Gn) is an almost
p-regular sequence of graphs and that Gn → W for some graphon W . Then
the following are equivalent:

(i) For all subsets U of V (Gn) with |U | = ⌊α|Gn|⌋,

eGn(U,U) = pα(1 − α)|Gn|
2 + o

(
|Gn|

2
)
. (9.2)

(ii) For all subsets A of [0, 1] with λ(A) = α,
∫

A×A
W (x, y) = pα(1 − α).

(iii) W = p a.e.

Proof. By Lemma 8.3, it remains only to show that (ii) =⇒ (iii) in the case
α = 1/2. However, by Corollary 9.2, W is p-regular, so (ii) =⇒ (iii) follows
by Lemma 9.3 applied to W − p. �
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Lemma 9.4 yields, by our general machinery, immediately the following
theorem by Chung, Graham and Wilson [7], which supplements Theorem 8.2
in the case α = 1/2 (and otherwise is a trivial consequence of Theorem 8.2).

Theorem 9.5 (Chung, Graham and Wilson [7]). Let 0 ≤ p ≤ 1 and α ∈
(0, 1). Suppose that (Gn) is a sequence of graphs with |Gn| → ∞. Then (Gn)
is p-quasi-random if and only if (Gn) is almost p-regular and (9.2) holds for
all subsets U of V (Gn) with |U | = ⌊α|Gn|⌋.

Appendix A. A measure-theoretic lemma

A multiaffine polynomial is a polynomial in several variables {xν}ν∈I , for
some (finite) index set I, such that each variable has degree at most 1; it can

thus be written as a linear combination of the 2|I| monomials
∏

ν∈J xν for
subsets J ⊆ I. We are interested in the case when the index set I consists
of the

(
m
2

)
pairs {i, j} with 1 ≤ i < j ≤ m, for some m ≥ 2. In this case we

define, for any symmetric function W : [0, 1]2 → R and x1, . . . , xm ∈ [0, 1],

ΦW (x1, . . . , xm) := Φ
(
(W (xi, xj))i<j

)
. (A.1)

The functions ΨF,W and Ψ∗
F,W considered above are of this type, see (2.2)

and (2.7), as well as their symmetrizations Ψ̃F,W and Ψ̃∗
F,W . As we have seen

above, in all our proofs we derive as an intermediate result an equation of
the type ΦW (x1, . . . , xm) = γ a.e. for some multiaffine Φ, and it would
simplify the analysis of this equation if we were able to strengthen this to
ΦW (x1, . . . , xm) = γ for every x1, . . . , xm ∈ [0, 1], possibly after modifying
W on a null set. We thus are led to the following measure-theoretic problem,
with applications to quasi-random graphs:

Problem A.1. Suppose that Φ
(
(wij)i<j

)
is a multiaffine polynomial in the(m

2

)
variables wij , 1 ≤ i < j ≤ m, for some m ≥ 2. Suppose further that

W : [0, 1]2 → [0, 1] is a graphon such that ΦW (x1, . . . , xm) = γ a.e. for some
γ ∈ R. Does there always exist a graphon W ′ with W ′ = W a.e. such that
ΦW ′(x1, . . . , xm) = γ for every x1, . . . , xm ∈ [0, 1]?

We were able to prove such a result for a special class of Φ in Lemma 4.3
(but see Remark 4.4). In general, we do not know the answer, but we can
prove the following weaker result that suffices for us; the important feature is
that the set E below contains the diagonal; hence we can make the equation
ΦW ′(x1, . . . , xm) = γ hold (typically, at least) also when several, or all, xi

coincide.

Remark A.2. The elimination of a null set in Problem A.1 seems related
to the infinite version of the (hypergraph) removal lemma [10], where the
objective, in a different but related context, also is to replace a null set by
an empty set.

Lemma A.3. Suppose that Φ
(
(wij)i<j

)
is a multiaffine polynomial in the(m

2

)
variables wij , 1 ≤ i < j ≤ m, for some m ≥ 2. Suppose further that
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W : [0, 1]2 → [0, 1] is a graphon, i.e., a symmetric measurable function, and
suppose that ΦW (x1, . . . , xm) = γ for a.e. x1, . . . , xm ∈ [0, 1] and some γ ∈
R. Then there is a version W ′ of W and a symmetric set E ⊆ [0, 1]2 such
that λ([0, 1]2 \E) = 0, E ⊇ {(x, x) : x ∈ [0, 1]}, and ΦW ′(x1, . . . , xm) = γ for
all x1, . . . , xm such that (xi, xj) ∈ E for every pair (i, j) with 1 ≤ i < j ≤ m.

The proof is rather technical, and is postponed until the end of the ap-
pendix.

As a consequence, we obtain a convenient criterion (patterned after [20]).
We say that a graphon W is finite-type, or more specifically k-type, if there
exists a partition of [0, 1] into k sets S1, . . . , Sk such that W is constant on
each rectangle Si × Sj. Making a rearrangement, we can without loss of
generality assume that the sets Si are intervals. (See [13] for a study of
finite-type graph limits and the corresponding sequences of graphs, which
generalize quasi-random graphs.)

Remark A.4. In this paper, we consider for convenience only graphons
defined on [0, 1], but the definition extends to any probability space. Using
this, we can equivalently, and more naturally, say that W is finite-type if it
is equivalent to a graphon defined on a finite probability space.

Theorem A.5. Suppose that Φ
(
(wij)i<j

)
is a multiaffine polynomial in the(m

2

)
variables wij , 1 ≤ i < j ≤ m, for some m ≥ 2, and that γ ∈ R. Then

the following are equivalent.

(i) There exists a graphon W such that ΦW (x1, . . . , xm) = γ for a.e.
x1, . . . , xm ∈ [0, 1], but W is not a.e. constant.

(ii) There exists a 2-type graphon W such that ΦW (x1, . . . , xm) = γ for
all x1, . . . , xm, but W is not (a.e.) constant.

(iii) There exist numbers u, v, s ∈ [0, 1], not all equal, such that for every
subset A ⊆ [m], if we choose

wij :=





u, i, j ∈ A,

v, i, j /∈ A,

s, i ∈ A, j /∈ A or conversely,

(A.2)

then Φ((wij)i<j) = γ.

In (ii), we may further require that the two parts of [0, 1] are the intervals
[0, 1

2 ] and (1
2 , 1].

The equivalence of (i) and (ii) shows that if a property of the type ΦW = γ
a.e. does not imply that W is a.e. constant (i.e., it is not a (mixed) quasi-
random property for graphons), then there exists a counter-example that is
a 2-type graphon. This generalizes one of the results for induced subgraph
counts by Simonovits and Sós [20].

Proof. (ii) ⇐⇒ (iii): A 2-type graphon W is defined by a partition (S1, S2)
of [0, 1] and three numbers u, v, s ∈ [0, 1] such that W = u on S1 × S1,
W = v on S2 × S2, and W = s on (S1 × S2) ∪ (S2 × S1). It is easy to see
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that, for any S1 and S2 with λ(S1), λ(S2) > 0, such a graphon W satisfies
ΦW = γ if and only if Φ((wij)i<j) = γ with wij as in (A.2), for every choice
of A ⊆ [m]. (Consider xi such that xi ∈ S1 ⇐⇒ i ∈ A.) Moreover, W is
constant ⇐⇒ u = v = s.

(ii) =⇒ (i): Trivial.
(i) =⇒ (iii): Suppose that W is a graphon as in (i) but that (iii) does not

hold; we will show that this leads to a contradiction. Let W ′ and E be as in
Lemma A.3; for notational simplicity we replace W by W ′ and assume thus
W ′ = W .

Suppose that (x, y) ∈ E. Given A ⊆ [m], let xi := x for i ∈ A and xi := y
for i /∈ A. Then W (xi, xj) = wij as given by (A.2) with u = W (x, x),
v = W (y, y), s = W (x, y). Further, Lemma A.3 shows that Φ((wij)i<j) =
ΦW (x1, . . . , xm) = γ. Since (iii) does not hold, no such u, v, s exist except
with u = v = s. Consequently, we have shown the following property of W :

If (x, y) ∈ E, then W (x, x) = W (y, y) = W (x, y). (A.3)

Now suppose, more strongly, that (x0, y0) is a Lebesgue point of E, and
that U is an open interval with W (x0, y0) ∈ U . It follows from the definition
of Lebesgue points, that in a sufficiently small square Q centered at (x0, y0),
the set B := {(x, y) ∈ Q : W (x, y) ∈ U} has measure at least λ(Q)/2. Since
λ(E) = 1, the same holds for B∩E, and we may thus, by the regularity of the
Lebesgue measure, find a compact set K ⊆ B∩E with λ(K) > 0. If (x, y) ∈
K, then (x, y) ∈ E, so by (A.3), W (x, x) = W (x, y) ∈ U . Consequently, if
K ′ is the projection of K onto the first coordinate, then W (x, x) ∈ U for
x ∈ K ′; furthermore, K ′ is a compact, and thus measurable, subset of [0, 1],
and λ(K ′) > 0.

By assumption, our W is not a.e. constant. Thus there exist two disjoint
open intervals U1 and U2 such that W−1(Uℓ) := {(x, y) : W (x, y) ∈ Uℓ} ⊆
[0, 1]2 has positive measure, ℓ = 1, 2. Then also, for each ℓ = 1, 2, Dℓ :=
E∩W−1(Uℓ) has positive measure, so we may pick a Lebesgue point (xℓ, yℓ)
in Dℓ. By what we just have shown, this implies that there exists a compact
set Kℓ ⊆ [0, 1] with λ(Kℓ) > 0 and W (x, x) ∈ Uℓ for x ∈ Kℓ.

However, this means that if (x, y) ∈ K1×K2, then W (x, x) 6= W (y, y), and
thus by (A.3), (x, y) /∈ E. Hence E ∩ (K1 ×K2) = ∅. Since λ(K1 ×K2) > 0
and λ(E) = 1, this is a contradiction. �

Corollary A.6. Suppose that Φ
(
(wij)i<j

)
is a multiaffine polynomial in the(m

2

)
variables wij , 1 ≤ i < j ≤ m, for some m ≥ 2, and that γ ∈ R. If

every graphon W such that ΦW (x1, . . . , xm) = γ for every x1, . . . , xm ∈ [0, 1]
is constant, then every graphon W such that ΦW (x1, . . . , xm) = γ for a.e.
x1, . . . , xm ∈ [0, 1] is a.e. constant.

In the terminology of Remark 3.9, if “ΦW (x1, . . . , xm) = γ everywhere”
is a (mixed) quasi-random property, then so is “ΦW (x1, . . . , xm) = γ a.e.”.
It is easily seen that the converse holds too; if W is a non-constant graphon
such that ΦW (x1, . . . , xm) = γ for every x1, . . . , xm ∈ [0, 1], then there exists
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a non-constant m-type graphon with this property, and this graphon is not
a.e. constant.

Proof. The assumption implies that there is no 2-type graphon W as in
Theorem A.5(ii), and thus there is no graphon W as in Theorem A.5(i). �

It remains to prove Lemma A.3. In order to do this, we first prove the
following lemma, which is a (weak) substitute for the Lebesgue differentia-
tion theorem when we consider points on the diagonal only. (The Lebesgue
differentiation theorem says nothing about such points, since the diagonal is
a null set. A simple counter-example is W (x, y) = 1[x < y].) We introduce
some further notation.

If A ⊆ [0, 1] with λ(A) > 0, let λA be the normalized Lebesgue measure
on A given by λA(B) := λ(A ∩ B)/λ(A), B ⊆ [0, 1]. (In other words, λA is
the distribution of a uniform random point in A.)

The definition (2.10) of the cut norm generalizes to arbitrary measure
spaces. In particular, if A ⊆ [0, 1] with λ(A) > 0, we let ‖W‖�,A denote
the cut norm on A × A with respect to the normalized measure λA. More
generally, if A and B ⊆ [0, 1] have positive measures, then

‖W‖�,A×B := sup
S⊆A, T⊆B

∫

S×T
W (x, y) dλA(x) dλB(y)

denotes the (normalized) cut norm on A × B.

Lemma A.7. For every ε > 0 there exists δ = δ(ε) > 0 such that if W :
[0, 1]2 → [0, 1] is a symmetric and measurable function and A ⊆ [0, 1] with
λ(A) > 0, then there exists B ⊆ A with λ(B) ≥ δλ(A) and a real number
w ∈ [0, 1] such that ‖W − w‖�,B < ε.

Remark A.8. The example W (x, y) = 1[x < y] shows that Lemma A.7 in
general fails for non-symmetric functions.

Remark A.9. Lemma A.7 is not true with the stronger conclusion obtained
by replacing cut norm by L1 norm. An example is (whp) given, for any
ε < 1/2, by the 0/1-valued function W corresponding to a random graph
G(n, 1/2), for a large n.

Although Lemma A.7 is a purely analytic statement, we prove it using
combinatorial methods; in fact, the proof is an adaption of the relevant
parts of the proof of one of the main theorems in Simonovits and Sós [20]
to graphons (instead of graphs).

Proof. By considering the restriction of W to A×A and a measure preserving
bijection of (A,λA) onto ([0, 1], λ), it suffices to consider the case A = [0, 1].

Let r = ⌈3/ε⌉ and let M be the Ramsey number R(r; r) = R(r, . . . , r)
(with r repeated r times); in other words, every colouring of the edges of
the complete graph KM with at most r colours contains a monochromatic
Kr. (See e.g. [12].)
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By the (strong) analytic Szemerédi regularity lemma by Lovász and Szegedy
[15], Lemma 3.2, there is an integer K = k(ε/(4M2)) (depending on ε only,
since M is a function of ε) and, for some k ≤ K, a partition P = {S1, . . . , Sk}
of [0, 1] into k sets of equal measure 1/k with the property that for every
set R ⊆ [0, 1]2 that is a union of at most k2 rectangles, we have

∣∣∣∣
∫

R
(W − WP)

∣∣∣∣ ≤
ε

4M2
, (A.4)

where WP is the function that is constant on each set Si × Sj and equal to
the average k2

∫
Si×Sj

W there. (I.e., WP is the conditional expectation of

W given the σ-field generated by {Si × Sj}
k
i,j=1.) Let wij be this average

k2
∫
Si×Sj

W . We consider two cases separately:

(i): k ≥ 2M . Let, for i, j = 1, . . . , k,

dij := ‖W − WP‖�,Si×Sj
= ‖W − wij‖�,Si×Sj

= max
(
d+

ij , d
−
ij

)
, (A.5)

where

d±ij := sup
S⊆Si, T⊆Sj

±k2

∫

S×T
(W − WP).

It follows from (A.4) that

k∑

i,j=1

d+
ij ≤ k2 ε

4M2
,

and thus the number of pairs (i, j) with d+
ij > ε/3 is less than k2/M2, and

similarly for d−ij .

Say that a pair (i, j) is bad if dij > ε/3 or i = j, and good otherwise. By
(A.5), the number of bad pairs is thus less than 2k2/M2 + k ≤ k2/M , using
our assumption that k ≥ 2M and assuming, as we may, that M ≥ 4.

Consider the graph H on [k] where there is an edge ij whenever (i, j) is a
good pair. Further, give every edge ij in H the colour cij := max(⌈rwij⌉, 1) ∈

[r]. Since H has more than 1
2 (k2 − 1

M k2) = (1 − 1
M )k2

2 edges, Turán’s the-
orem shows that H contains a complete subgraph KM , and the choice of
M implies that this complete subgraph contains a complete monochromatic
subgraph Kr.

In other words, there is a c ∈ [r] such that, after renumbering the sets
Si in P, for all i, j ∈ [r] with i 6= j, (i, j) is a good pair and cij = c.
Let w := c/r ∈ [0, 1]. Then, for 1 ≤ i < j ≤ r, c − 1 ≤ rwij ≤ c, so
|wij − w| ≤ 1/r ≤ ε/3. Since (i, j) is good, this further implies

‖W − w‖�,Si×Sj
≤ dij + |wij − w| ≤ 2ε/3, 1 ≤ i < j ≤ r.

On the other hand, trivially, for every i,

‖W − w‖�,Si×Si
≤ sup |W − w| ≤ 1.
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Let B :=
⋃r

i=1 Si. Then λ(B) = r/k ≥ r/K and, recalling that the sets Si

have the same measure,

‖W − w‖�,B ≤ r−2
r∑

i,j=1

‖W − w‖�,Si×Sj
≤ r−2

(
r(r − 1)

2ε

3
+ r · 1

)

<
2ε

3
+

1

r
≤ ε.

(ii): k < 2M . We simple take B = S1 and W = w11. Then λ(B) = 1/k >
1/(2M), and (A.4) implies

‖W − w‖�,B ≤ λ(B)−2‖W − w‖� ≤ λ(B)−2 ε

4M2
< ε.

This completes the proof of Lemma A.7. �

Proof of Lemma A.3. We may assume that γ = 0.
For ε > 0 and η > 0, let

Eε,η :=
{
(x, y) ∈ (0, 1)2 : (2ε)−2

∫

|x′−x|,|y′−y|<ε
|W (x′, y′) − W (x, y)|dx′ dy′ < η

}
.

(A.6)

The Lebesgue differentiation theorem says that a.e. (x, y) ∈
⋂

η

⋃
ε Eε,η; in

other words, a.e. (x, y) ∈ Eε,η for every η > 0 and all sufficiently small
ε > 0 (depending on x, y and η). For η > 0 and n ≥ 1, we can thus find
ε1 = ε1(η, n) ∈ (0, 1/n) such that λ

(
Eε1(η,n),η

)
> 1 − 2−n.

For n ≥ 1, let δn := δ(1/n) be as in Lemma A.7 with ε = 1/n, and let
ηn := δ2

n/n, ε2(n) := ε1(ηn, n) and En := Eε2(n),ηn
. Then λ

(
En

)
> 1 − 2−n,

so if Ẽ :=
⋃∞

n=1

⋂∞
ℓ=n Eℓ, then λ(Ẽ) = 1. Let E := Ẽ ∪ {(x, x) : x ∈ [0, 1]}.

For x ∈ (0, 1) and n so large that An(x) := (x− ε2(n), x+ ε2(n)) ⊂ (0, 1),
use Lemma A.7 to find wn(x) and a set Bn(x) ⊆ An(x) with λ(Bn(x)) ≥
δnλ(An(x)) = 2δnε2(n) such that

‖W − wn(x)‖�,Bn(x) ≤ 1/n. (A.7)

If (x, y) ∈ E and x 6= y, then (x, y) ∈ Ẽ so for all large n, (x, y) ∈ En =
Eε2(n),ηn

, and thus, by (A.6),

∫

Bn(x)×Bn(y)
|W (x′, y′) − W (x, y)|dλBn(x)(x

′) dλBn(y)(y
′)

≤ (2δnε2(n))−2

∫

An(x)×An(y)
|W (x′, y′) − W (x, y)|dx′ dy′

< δ−2
n ηn = 1/n. (A.8)
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Let χ be a Banach limit, i.e., a multiplicative linear functional on ℓ∞ such
that χ((an)∞1 ) = limn→∞ an if the limit exists. Now define

W ′(x, y) :=

{
χ
(
(wn(x))n

)
, y = x,

W (x, y), y 6= x.
(A.9)

Note that W ′ is a graphon and a version of W . (Lebesgue measurability is
immediate, since the diagonal is a null set.)

Assume for the rest of the proof that x1, . . . , xm ∈ (0, 1)m with (xi, xj) ∈
E for all i and j. For sufficiently large n, (A.7) holds for all xi and (A.8)
holds for all pairs (xi, xj) with xi 6= xj . Thus, if xi = xj, by (A.7),

‖W − wn(xi)‖�,Bn(xi)×Bn(xj) ≤ 1/n, (A.10)

and if xi 6= xj , by (A.8), since the cut norm is at most the L1 norm,

‖W − W (xi, xj)‖�,Bn(xi)×Bn(xj) ≤ 1/n. (A.11)

For notational convenience, we define the constants

wij,n :=

{
wn(xi), xi = xj,

W (xi, xj), xi 6= xj,
(A.12)

and let Bni := Bn(xi). Thus, (A.10) and (A.11) say that for all i, j ∈ [m],

‖W − wij,n‖�,Bni×Bnj
≤ 1/n. (A.13)

We extend the definition of ΦW in (A.1) to families (Wij)1≤i<j≤m of
functions and write

Φ[(Wij)](y1, . . . , ym) := Φ
(
(Wij(xi, xj))i<j

)
.

A standard argument shows that, for |Wij| ≤ 1, say, for all i and j, and
any sets B1, . . . , Bm ⊆ [0, 1] with positive measures, the mapping

(Wij) 7→ Φ[(Wij);B1, . . . , Bm]

:=

∫

B1×···×Bm

Φ[(Wij)](y1, . . . , ym) dλB1(y1) · · · dλBm(ym)

is Lipschitz in cut norm, in each variable separately; by linearity it suffices
to consider the case when Φ is a monomial (and thus ΦW = ΨF,W for some
graph F ), and this result then is explicit in [2, Proof of Lemma 2.2], see also
[4]. Thus, by (A.13), recalling that each wij,n here is a constant,

Φ[(W );Bn1, . . . , Bnm] − Φ((wij,n)i<j) = O(1/n). (A.14)

On the other hand, Φ[(W )](y1, . . . , ym) = ΦW (y1, . . . , ym) = γ = 0 a.e., by
assumtion, and thus Φ[(W );Bn1, . . . , Bnm] = 0. Consequently, (A.14) yields

Φ((wij,n)i<j) = O(1/n). (A.15)

Apply the Banach limit χ to (A.15). With zij := χ((wij,n)i<j) we obtain,
recalling that Φ is a polynomial,

Φ((zij)i<j) = 0. (A.16)
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If xi 6= xj , then, by (A.12), wij,n = W (xi, xj) for all n, and thus zij =
W (xi, xj) = W ′(xi, xj), see (A.9). If xi = xj , then (A.12) shows that
wij,n = wn(xi), and thus, using (A.9), zij = χ((wn(xi))n) = W ′(xi, xj).
Consequently, zij = W ′(xi, xj) for all (i, j), and (A.16) can be written
ΦW ′(x1, . . . , xm) = 0, as asserted. (In order to avoid any worry of edge
effects, we have considered xi ∈ (0, 1) only. For completeness, we, trivially,
may define W ′(0, 0) := W ′(1, 1) := W ′(1

2 , 1
2 ).) �

Finally, we mention another technical problem, which might be of interest
in some applications:

Problem A.10. The version W ′ in Lemma A.3 is Lebesgue measurable.
Can W ′ always be chosen to be Borel measurable?

(The construction in the proof above, using a Banach limit, does not seem
to guarantee Borel measurability.)
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