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Abstract. We study the limit theory of large threshold graphs and
apply this to a variety of models for random threshold graphs. The
results give a nice set of examples for the emerging theory of graph
limits.

1. Introduction

Threshold Graphs. Graphs have important applications in modern sys-
tems biology and social sciences. Edges are created between interacting
genes or people who know each other. However graphs are not objects
which are naturally amenable to simple statistical analyses, there is no nat-
ural average graph for instance. Being able to predict or replace a graph by
hidden (statisticians call them latent) real variables has many advantages.
This paper studies such a class of graphs, that sits within the larger class of
interval graphs [27], itself a subset of intersection graphs [11]; see also [6].

Consider the following properties of a simple graphG on [n] := {1, 2, . . . , n}.
(1.1) There are real weights wi and a threshold value t such that there is

an edge from i to j if and only if wi +wj > t. Thus “the rich people
always know each other”.

(1.2) G can be built sequentially from the empty graph by adding vertices
one at a time, where each new vertex, is either isolated (non-adjacent
to all the previous) or dominating (connected to all the previous).

(1.3) The graph is uniquely determined (as a labeled graph) by its degree
sequence.

(1.4) Any induced subgraph has either an isolated or a dominating vertex.
(1.5) There is no induced subgraph 2K2, P4 or C4. (Equivalently, there is

no alternating 4-cycle, i.e., four distinct vertices x, y, z, w with edges
xy and zw but no edges yz and xw; the diagonals xz and yw may
or may not exist.)

These properties are equivalent and define the class of threshold graphs. The
book by Mahadev and Peled [25] contains proofs and several other seemingly
different characterizations. Note that the complement of a threshold graph
is a threshold graph (by any of (1.1)–(1.5)). By (1.2), a threshold graph is
either connected (if the last vertex is dominating) or has an isolated vertex
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(if the last vertex is isolated); clearly these two possibilities exclude each
other when n > 1.

1 2

3

5

4

Figure 1. A threshold graph

Example 1.1. The graph in Figure 1 is a threshold graph, from (1.1) by
taking weights 1,5,2,3,2 on vertices 1–5 with t = 4.5, or from (1.2) by adding
vertices 3, 5 (isolated), 4 (dominating), 1 (isolated) and 2 (dominating).

While many familiar graphs are threshold graphs (stars or complete graphs
for example), many are not (e.g. paths or cycles of length 4 or more). For
example, of the 64 labeled graphs on 4 vertices, 46 are threshold graphs;
the other 18 are paths P4, cycles C4, and pairs of edges 2K2 (which is the
complement of C4). Considering unlabeled graphs, there are 11 graphs on
4 vertices, and 8 of them are threshold graphs.

Random Threshold Graphs. It is natural to study random threshold
graphs. There are several different natural random constructions; we will in
particular consider the following three:

(1.6) From (1.1) by choosing {wi}1≤i≤n as independent and identically
distributed (i.i.d.) random variables from some probability distribu-
tion. (We also choose some fixed t; we may assume t = 0 by replacing
wi by wi − t/2.)

(1.7) From (1.2) by ordering the vertices randomly and adding the vertices
one by one, each time choosing at random between the qualifiers
‘dominating’ or ‘isolated’ with probabilities pi and 1−pi, respectively,
1 ≤ i ≤ n. This is a simple random attachment model in a similar
vein as those in [30]. We mainly consider the case when all pi are
equal to a single parameter p ∈ [0, 1].

(1.8) The uniform distribution on the set of threshold graphs.

Example 1.2. Figure 2 shows a random threshold graph constructed by
(1.6) with wi chosen independently from the standardized Normal distribu-
tion and t = 3. About half of the vertices are isolated, most of those with
negative weights.
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Figure 2. A whole threshold graph with isolates (left) and
with only the connected part expanded (right); the labels are
the rounded weights wi.

Example 1.3. Figure 3 shows a random threshold graph constructed by
(1.6) with wi chosen as i.i.d. uniform random variables on [0, 1] and t = 1.
This instance is connected; this happens if and only if the maximum and
minimum of the wi’s add to more than 1 (then there is a dominating vertex);
in this example this has probability 1/2.

We show below (Corollaries 6.5 and 6.6) that this uniform weight model
is equivalent to adding isolated or dominating nodes as in (1.7) with prob-
ability p = 1/2, independently and in random order. It follows that this
same distribution appears as the stationary distribution of a Markov chain
on threshold graphs which picks a vertex at random and changes it to dom-
inating or isolated with probability 1/2 (this walk is analysed in [7]). Fur-
thermore, it follows from Subsection 2.1 that these models yield a uniform
distribution on the set of unlabeled threshold graphs of order n.
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Figure 3. A threshold graph with n = 20 and uniform wi.
It turns out that this instance had no isolates. The labels
are the rounded weights wi.

Bipartite Threshold Graphs. We also study the parallel case of bipartite
threshold graphs (difference graphs), both for its own sake and because one
of the main theorems is proved by first considering the bipartite case.

By a bipartite graph, we mean a graph with an explicit bipartition of the
vertex set; it can thus be written as (V1, V2, E) where the edge set E ⊆ V1×
V2. These following properties of a bipartite graph are equivalent and define
the class of bipartite threshold graphs. (See [25] for further characterizations.)

(1.9) There are real weights w′i, i ∈ V1 and w′′j , j ∈ V2, and a threshold
value t such that there is an edge from i to j if and only if w′i+w

′′
j > t.

(1.10) G can be built sequentially starting from n1 white vertices and n2

black vertices in some fixed total order. Proceeding in this order,
make each white vertex dominate or isolated from all the black ver-
tices that precede it and each black vertex dominate or isolated from
all earlier white vertices.
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(1.11) Any induced subgraph has either an isolated vertex or a vertex dom-
inating every vertex in the other part.

(1.12) There is no induced subgraph 2K2.

Remarks. 1. Threshold graphs were defined by Chvátal and Hammer [8].
Bipartite threshold graphs were studied by Hammer, Peled and Sun [17]
under the name difference graphs because they can equivalently be charac-
terized as the graphs (V,E) for which there exist weights wv, v ∈ V , and a
real number t such that |wv| < t for every v and uv ∈ E ⇐⇒ |wu−wv| > t;
it is easily seen that every such graph is bipartite with V1 = {v : wv ≥ 0}
and V2 = {v : wv < 0} and that is satisfies the definition above (e.g., with
w′v = wv and w′′v = −wv), and conversely. We will use the name bipartite
threshold graph to emphasize that we consider these graphs equipped with a
given bipartition. The same graphs were called chain graphs by Yannakakis
[33] because each partition can be linearly ordered for the inclusion of the
neighborhoods of its elements.

2. A suite of programs for working with threshold graphs appears in [15]
with further developments in [21, 26].

3. The most natural class of graphs built from a coordinate system
are commonly called geometric graphs [31] or geographical graphs [21, 26].
Threshold graphs are a special case of these. Their recognition and manip-
ulation in a statistical context relies on useful measures on such graphs. We
will start by defining such measures and developing a limit theory.

Overview of the Paper. The purpose of this paper is to study the limiting
properties of large threshold graphs in the spirit of the theory of graph
limits developed by Lovász and Szegedy [22] and Borgs, Chayes, Lovász,
Sós, Vesztergombi [5] (and in further papers by these authors and others).
As explained below, the limiting objects are not graphs, but can rather
be represented by symmetric functions W (x, y) from [0, 1]2 to [0, 1]; any
sequence of graphs that converges in the appropriate way has such a limit.
Conversely, such a function W may be used to form a random graph Gn by
choosing independent random points Ui in [0, 1], and then for each pair (i, j)
with 1 ≤ i < j ≤ n flipping a biased coin with heads probability W (Ui, Uj),
putting an edge from i to j if the coin comes up heads. The resulting
sequence of random graphs is (almost surely) an example of a sequence of
graphs converging to W . For Example 1.3, letting n→∞, there is (as we
show in greater generality in Section 6) a limit W that may be pictured as
in Figure 4.

One of our main results (Theorems 5.3) shows that graph limits of thresh-
old graphs have unique representations by increasing symmetric zero-one
valued functions W . Furthermore, there is a one-to-one correspondence be-
tween these limiting objects and a certain type of ‘symmetric’ probability
distributions PW on [0, 1]. A threshold graphs is characterized by its degree
sequence; normalizing this to be a probability distribution, say ν(Gn), we
show (Theorem 5.5) that a sequence of threshold graphs converges to W
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Figure 4. The function W (x, y) for Example 1.3. Hashed
values have W (x, y) = 1, unhashed W (x, y) = 0.

when n → ∞ if and only if ν(Gn) converges to PW . (Hence, PW can be
regarded as the degree distribution of the limit. The result that a limit of
threshold graphs is determined by its degree distribution is a natural ana-
logue for the limit objects of the fact that an unlabeled threshold graph is
uniquely determined by its degree distribution.)

Figure 5 and Figure 7 show simulations of these results. In Figure 5,
10,000 graphs with n = 50 were generated from (1.6) with uniform weights
as in Example 1.3.

In the bipartite case, there is a similar 1–1 correspondence between the
limit objects and probability distributions on [0,1]; now all probability dis-
tributions on [0,1] appear in the representation of the limits (Theorem 5.1).

Section 2 discusses uniform random threshold graphs (both labeled and
unlabeled) and methods to generate them. Section 3 gives a succint review
of notation and graph limits. Section 4 develops the limit theory of degree
sequences; this is not restricted to threshold graphs. Section 5 develops the
limit theory for threshold graphs both deterministic and random. Section 6
treats examples of random threshold graphs and their limits, and Section 8
gives corresponding examples and results for random bipartite threshold
graphs. Section 9 treats the spectrum of the Laplacian of threshold graphs.

We denote the vertex and edge sets of a graph G by V (G) and E(G), and
the numbers of vertices and edges by v(G) := |V (G)| and e(G) := |E(G)|.
For a bipartite graph we similarly use Vj(G) and vj(G), j = 1, 2.

Throughout the paper, ‘increasing’ and ‘decreasing’ should be interpreted
in the weak sense (non-decreasing and non-increasing). Unspecified limits
are as n→∞.
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Figure 5. Threshold graphs were generated with n = 50 as
in Example 1.3 with uniform wi and t = 1; this is the degree
histogram for a sample of 10,000 random graphs.

2. Generating threshold graphs uniformly

This section gives algorithms for generating uniformly distributed thresh-
old graphs. Both in the labeled case and in the unlabeled case. The algo-
rithms are used here for simulation and in Sections 6 and 7 to prove limit
theorems.

Let Tn and LT n be the sets of unlabeled and labeled threshold graphs on
n vertices. These are different objects, Tn is a quotient of LT n, and we treat
counting and uniform generation separately for the two cases. We assume
in this section that n ≥ 2.

2.1. Unlabeled threshold graphs. We can code an unlabeled threshold
graph on n vertices by a binary code α2 · · ·αn of length n− 1: Given a code
α2 · · ·αn, we construct G by (1.2) adding vertex i as a dominating vertex if
and only if αi = 1 (i ≥ 2). Conversely, given G of order n ≥ 2, let αn = 1
if there is a dominating vertex (G is connected) and αn = 0 if there is an
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Figure 6. The four graphs in T3 and their codes.

isolated vertex (G is disconnected); we then remove one such dominating or
isolated vertex and continue recursively to define αn−1, . . . , α2.

Since all dominating (isolated) vertices are equivalent to each other, this
coding gives a bijection between Tn and {0, 1}n−1. In particular,

|Tn| = 2n−1, n ≥ 1.

See Figure 6 for an example.
This leads to a simple algorithm to generate a uniformly distributed ran-

dom unlabeled threshold graph: we construct a random code by making
n− 1 coin flips. In other words:

Algorithm 2.1. Algorithm for generating uniform random unlabeled thresh-
old graphs of a given order n.

Step 1: Add n vertices by (1.2), each time randomly choosing ‘iso-
lated’ or ‘dominating’ with probability 1/2.

This is thus the same as the second method in Example 1.3, so Corol-
lary 6.5 shows that the first method in Example 1.3 also yields uniform
random unlabeled threshold graphs (if we forget the labels).

The following notation is used to define two further algorithms (Subsec-
tion 2.3) and for proof of the limiting results in Section 7.

Define the extended binary code of a threshold graph to be the binary code
with the first binary digit repeated; it is thus α1α2α3 · · ·αn with α1 := α2.
The runs of 0’s and 1’s in the extended binary code then correspond to
blocks of vertices that can be added together in (1.2) as either isolated or
dominating vertices, with the blocks alternating between isolated and dom-
inating. The vertices in each block are equivalent and have, in particular,
the same vertex degrees, while vertices in different blocks can be seen to
have different degrees. (The degree increases strictly from one dominating
block to the next and decreases strictly from one isolated block to the next,
with every dominating block having higher degree than every isolated block;
cf. Example 2.3 below.) The number of different vertex degrees thus equals
the number of blocks.
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If the lengths of the blocks are b1, b2, . . . , bτ , then the number of auto-
morphisms of G is thus

∏τ
j=1 bj !, since the vertices in each block may be

permuted arbitrarily.
Note that if b1, . . . , bτ are the lengths of the blocks then

b1 ≥ 2, bk ≥ 1 (k ≥ 2),
τ∑
k=1

bk = n. (2.1)

Since the blocks are alternatingly dominating or isolated, and the first block
may be either, each sequence b1, . . . , bτ satisfying (2.1) corresponds to ex-
actly 2 unlabeled threshold graphs of order n. (These graphs are the comple-
ments of each other. One has isolated blocks where the other has dominating
blocks.)

2.2. Labeled threshold graphs. The situation is different for labeled
threshold graphs. For example, all of the 2(3

2) = 8 labeled graphs with
n = 3 turn out to be threshold graphs and for instance

1 2

3

1

2

3 12

3

,,

are distinguished. Hence the distribution of a uniform random labeled
threshold graph differs from the distribution of a uniform unlabeled thresh-
old graph (even if we forget the labels). In particular, Example 1.3 does not
produce uniform random labeled threshold graphs.

Let G be an unlabeled threshold graph with an extended code having
block lengths (runs) b1, . . . , bτ . Then the number of labeled threshold graphs
corresponding to G is n!/

∏τ
1 bj !, since every such graph corresponds to a

unique assignment of the labels 1, . . . , n to the τ blocks, with bi labels to
block i. (Alternatively and equivalently, this follows from the number

∏τ
1 bj !

of automorphisms given above.)
The number t(n) := |LT n| of labeled threshold graphs [32, A005840] has

been studied by Beissinger and Peled [2]. Among other things, they show
that

∞∑
n=0

t(n)
xn

n!
=

(1− x)ex

2− ex
(2.2)

so, by Taylor expansion,

n 1 2 3 4 5 6 7 8 9 10
t(n) 1 2 8 46 332 2874 29024 334982 4349492 62749906
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and by expanding the singularities (cf. [12, Chapter IV]) the exact formula

t(n)
n!

=
∞∑

k=−∞

( 1
log 2 + 2πik

− 1
)( 1

log 2 + 2πik

)n
, n ≥ 2, (2.3)

where the leading term is the one with k = 0, and thus the asymptotics

t(n)
n!

=
( 1

log 2
− 1
)( 1

log 2

)n
+ ε(n), |ε(n)| ≤ 2ζ(n)

(2π)n
, (2.4)

where ζ(n) is the zeta function and thus ζ(n)→ 1; furthermore,

t(n) = 2Rn − 2nRn−1, n ≥ 2, with Rn =
n∑
k=1

k!S(n, k) =
∞∑
`=0

`n

2`+1
, (2.5)

where S(n, k) are Stirling numbers; Rn is the number of preferential arrange-
ments of n labeled elements, or number of weak orders on n labeled elements
[32, A000670], also called surjection numbers [12, II.3]. (This is easily seen
using the blocks above; the number of labeled threshold graphs with a given
sequence of blocks is twice (since the first block may be either isolated or
dominating) the number of preferential arrangements with the same block
sizes; if we did not require b1 ≥ 2, this would yield 2Rn, but we have to
subtract twice the number of preferential arrangements with b1 = 1, which
is 2nRn−1.) We note for future use the generating function [12, (II.15)]

∞∑
n=0

Rn
xn

n!
=

1
2− ex

. (2.6)

Let t(n, j) be the number of labeled threshold graphs with j isolated
points. Then, as also shown in [2] (and easily seen), for n ≥ 2,

t(n, 0) = t(n)/2,

t(n, j) =


(
n
j

)
t(n− j, 0) = 1

2

(
n
j

)
t(n− j), 0 ≤ j ≤ n− 2,

0, j = n− 1,
1, j = n.

(2.7)

Thus knowledge of t(n) provides t(n, j).
These ingredients allow us to give an algorithm for choosing uniformly in

LT n.

Algorithm 2.2. Algorithm for generating uniform random labeled threshold
graphs of a given order n.

Step 0: Make a list of t(k) for k between 1 and n. Make lists of t(k, j)
for k = 1, . . . , n and j = 0, . . . , k.

Step 1: Choose an integer j0 in {0, . . . , n} with probability that j0 =
j given by t(n, j)/t(n). Choose (at random) a subset of j0 points
in {1, . . . , n}. These are the isolated vertices in the graph. Let
n′ := n− j0 be the number of remaining points. If n′ = 0 then stop.
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Step 2: Choose an integer j1 in {1, . . . , n′} with probability that j1 =
j given by t(n′, j)/(t(n′) − t(n′, 0)) = 2t(n′, j)/t(n′) and choose (at
random) j1 points of those remaining; these will dominate all further
points, so add edges between these vertices and from them to all
remaining points. Update n′ to n′ − j1, the number of remaining
points. If n′ = 0 then stop.

Step 3: Choose an integer j2 in {1, . . . , n′} with probability that j2 =
j given by 2t(n′, j)/t(n′) and choose (at random) j2 points of those
remaining; these will be isolated among the remaining points, so
no further edges are added. Update n′ to n′ − j1, the number of
remaining points. If n′ = 0 then stop.

Step 4: Repeat from Step 2 with the remaining n′ points.

Alternatively, instead of selecting the subsets in Steps 1 and 2 at random,
we may choose them in any way, provided the algorithm begins or ends with
a random permutation of the points.

The algorithm works because of a characterization of threshold graphs
by Chvátal and Hammer [8], cf. (1.4): A graph is a threshold graph iff any
subset S of vertices contains at least one isolate or one dominating vertex
(within the graph induced by S). Thus in step 2, since there are no isolates
among the n′ vertices left there must be at least one dominating vertex.
(Note that j0 may be zero, but not j1, j2 . . . .) The probability distribution
for the number of dominating vertices follows the same law as that of the
isolates because the complement of a threshold graph is a threshold graph
(or because of the interchangeability of 0’s and 1’s in the binary coding given
earlier in this section).

Note that this algorithm treats vertices in the reverse of the order in (1.2)
where we add vertices instead of peeling them off as here. It follows that we
obtain the extended binary code of the graph by taking runs of j0 0’s, j1 1’s,
j2 0’s, and so on, and then reversing the order. Hence, in the notation used
above, the sequence (bk) equals (jk) in reverse order, ignoring j0 if j0 = 0.
(In particular note that the last jk ≥ 2, since t(n′, n′ − 1) = 0 for n′ ≥ 2,
which corresponds to the first block b1 ≥ 2.)

Example 2.3. A sequence of js generated for a threshold graph of size 20 is
0 2 3 1 1 1 3 1 1 3 1 1 2, which yields the sequence d d i i i d i d
i i i d i d d d i d i i of dominating and isolated vertices. A random
permutation of {1, . . . , 20} was generated and we obtain

13 2 11 15 8 20 6 12 16 4 18 7 10 9 14 17 1 19 5 3
d d i i i d i d i i i d i d d d i d i i

where d signifies that the vertex is connected to all later vertices in this list.
The degree sequence is thus, taking the vertices in this order: 19, 19, 2, 2,
2, 16, 3, 15, 4, 4, 4, 12, 5, 11, 11, 11, 8, 10, 9, 9. The extended binary code
00101110100010100011 is obtained by translating i to 0 and d to 1, and
reversing the order.
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Figure 7. Threshold graphs were generated according to
the algorithm of this section, this is the degree histogram.

In Figure 7, 10,000 graphs were generated with n = 100 according to
the uniform distribution over all labeled threshold graphs. We discuss the
central ‘bump’ and other features of Figure 7 in Theorem 7.4.

2.3. The distribution of block lengths. We have seen in Subsection 2.1
that if b1, . . . , bτ are the lengths of the blocks of isolated or dominating
vertices added to the graph when building it as in (1.2), then (2.1) holds.
Consider now a sequence of independent integer random variables B1, B2, . . .

with B1 ≥ 2 and Bj ≥ 1 for j ≥ 2, and let Sk :=
∑k

j=1Bj be the partial
sums. If some Sτ = n, then stop and output the sequence (B1, . . . , Bτ ).
Conditioning on the event that Sτ = n for some τ , this yields a random
sequence b1, . . . , bτ satisfying (2.1), and the probability that we obtain a
given sequence (bj)τ1 equals c

∏τ
j=1 P(Bj = bj) for some normalizing constant

c. We now specialize to the case when B1
d= (B∗ | B∗ ≥ 2) and Bj

d=
(B∗ | B∗ ≥ 1) for j ≥ 2, for some given random variable B∗. Then the
(conditional) probability of obtaining a given b1, . . . , bτ satisfying (2.1) can
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be written

c′
τ∏
j=1

P(B∗ = bj)
P(B∗ ≥ 1)

(2.8)

(with c′ = cP(B∗ ≥ 1)/P(B∗ ≥ 2)).
There are two important cases. First, if we take B∗ ∼ Ge(1/2), then

P(B∗ = bj)/P(B∗ ≥ 1) = 2−bj , and thus (2.8) yields c′2−
P
j bj = c′2−n, so

the probability is the same for all allowed sequences. Hence, in this case the
distribution of the constructed sequence is uniform on the set of sequences
satisfying (2.1), so it equals the distribution of block lengths for a random
unlabeled threshold graph of size n.

The other case is B∗ ∼ Po(log 2). Then P(B∗ ≥ 1) = 1 − e− log 2 = 1/2,
and P(B∗ = bj)/P(B∗ ≥ 1) = (log 2)bj/bj !. Thus, (2.8) yields the proba-
bility c′(log 2)n/

∏
j bj !, which is proportional to the number 2 ·n!/

∏
j bj ! of

labeled threshold graphs with the block lengths b1, . . . , bτ . Hence, in this
case the distribution of the constructed sequence equals the distribution of
block lengths for a random labeled threshold graph of size n.

We have shown the following result.

Theorem 2.4. Construct a random sequence B1, . . . , Bτ as above, based
on a random variable B∗, stopping when

∑τ
1 Bj ≥ n and conditioning on∑τ

1 Bj = n.
(i) If B∗ ∼ Ge(1/2), then (B1, . . . , Bτ ) has the same distribution as the

block lengths in a random unlabeled threshold graph of order n.
(ii) If B∗ ∼ Po(log 2), then (B1, . . . , Bτ ) has the same distribution as

the block lengths in a random labeled threshold graph of order n.

It follows that the length of a typical (for example a random) block con-
verges in distribution to (B∗ | B∗ ≥ 1). Theorem 2.4 also leads to another
algorithm to construct uniform random threshold graphs.

Algorithm 2.5. Algorithm for generating uniform unlabeled or labeled thresh-
old graphs of a given order n.

Step 1: In the unlabeled case, let B∗ ∼ Ge(1/2). In the labeled case,
let B∗ ∼ Po(log 2).

Step 2: Choose independent random numbers B1, B2, . . . , Bτ , with
B1

d= (B∗ | B∗ ≥ 2) and Bj
d= (B∗ | B∗ ≥ 1), j ≥ 2, until the

sum
∑τ

1 Bj ≥ n.
Step 3: If

∑τ
1 Bj > n, start again with Step 2.

Step 4: We have found B1, . . . , Bτ with
∑τ

1 Bj = n. Toss a coin to
decide whether the first block is isolated or dominating; the following
blocks alternate. Construct a threshold graph by adding vertices as
in (1.2), block by block.

Step 5: In the labeled case, make a random labeling of the graph.

By standard renewal theory, the probability that
∑τ

1 Bj is exactly n is
asymptotically 1/E(B∗ | B∗ ≥ 1) = P(B∗ ≥ 1)/EB∗, which is 1/2 in the
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unlabeled case and 1/(2 log 2) ≈ 0.72 in the labeled case, so we do not have
to do very many restarts in Step 3.

3. Graph limits

This section reviews needed tools from the emerging field of graph limits.

3.1. Graph limits. Here we review briefly the theory of graph limits as de-
scribed in Lovász and Szegedy [22], Borgs, Chayes, Lovász, Sós and Veszter-
gombi [5] and Diaconis and Janson [10].

If F and G are two graphs, let t(F,G) be the probability that a ran-
dom mapping φ : V (F ) → V (G) defines a graph homomorphism, i.e., that
φ(v)φ(w) ∈ E(G) when vw ∈ E(F ). (By a random mapping we mean a
mapping uniformly chosen among all v(G)v(F ) possible ones; the images of
the vertices in F are thus independent and uniformly distributed over V (G),
i.e., they are obtained by random sampling with replacement.)

The basic definition is that a sequence Gn of (generally unlabeled) graphs
converges if t(F,Gn) converges for every graph F ; as in [10] we will further
assume v(Gn)→∞. More precisely, the (countable and discrete) set U of all
unlabeled graphs can be embedded in a compact metric space U such that
a sequence Gn ∈ U of graphs with v(Gn)→∞ converges in U to some limit
Γ ∈ U if and only if t(F,Gn) converges for every graph F (see [22], [5], [10]).
Let U∞ := U \ U be the set of proper limit elements; we call the elements of
U∞ graph limits. The functionals t(F, ·) extend to continuous functions on
U , so Gn → Γ ∈ U∞ if and only if v(Gn) → ∞ and t(F,Gn) → t(F,Γ) for
every graph F .

Let W be the set of all measurable functions W : [0, 1]2 → [0, 1] and
let Ws be the subset of symmetric functions. The main result of Lovász
and Szegedy [22] is that every element of U∞ can be represented by a (non-
unique) function W ∈ Ws. We let ΓW ∈ U∞ denote the graph limit defined
by W . (We sometimes use the notation Γ(W ) for readability.) Then, for
every graph F ,

t(F,ΓW ) =
∫

[0,1]v(F )

∏
ij∈E(F )

W (xi, xj) dx1 · · · dxv(F ). (3.1)

Moreover, define, for every n ≥ 1, a random graph G(n,W ) as follows:
first choose a sequence X1, X2, . . . , Xn of i.i.d. random variables uniformly
distributed on [0, 1], and then, given this sequence, for each pair (i, j) with
i < j draw an edge ij with probability W (Xi, Xj), independently for all
pairs (i, j) with i < j. Then the random graph G(n,W ) converges to ΓW
a.s. as n→∞.

If G is a graph, with V (G) = {1, . . . , v(G)} for simplicity, we define a func-
tion WG ∈ Ws by partitioning [0, 1] into v(G) intervals Ii, i = 1, . . . , v(G),
and letting WG be the indicator 1[ij ∈ E(G)] on Ii × Ij . (In other words,
WG is a step function corresponding to the adjacency matrix of G.) We let
π(G) := Γ(WG) denote the corresponding object in U∞. It follows easily
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from (3.1) that t(F, π(G)) = t(F,G) for every graph F . In particular, if Gn
is a sequence of graphs with v(Gn)→∞, then Gn converges to some graph
limit Γ if and only if π(Gn)→ Γ in U∞. (Unlike [22] and [5] we distinguish
between graphs and limit objects and we do not identify G and π(G), see
[10].)

3.2. Bipartite graphs and their limits. In the bipartite case, there are
analoguous definitions and results (see [10] for further details). We define
a bipartite graph to be a graph G with an explicit bipartition V (G) =
V1(G)∪V2(G) of the vertex set, such that the edge set E(G) ⊆ V1(G)×V2(G).
Then we define t(F,G) in the same way as above but now for bipartite graphs
F , by letting φ = (φ1, φ2) be a pair of random mappings φj : Vj(F ) →
Vj(G). We let B be the set of all unlabeled bipartite graphs and embed
B in a compact metric space B. A sequence (Gn) of bipartite graphs with
v1(Gn), v2(Gn) → ∞ converges in B if and only if t(F,Gn) converges for
every bipartite graph F . Let B∞∞ be the (compact) set of all such limits;
we call the elements of B∞∞ bipartite graph limits. Every element of B∞∞
can be represented by a (non-unique) function W ∈ W. We let Γ′′W ∈ B∞∞
denote the element represented by W and have, for every bipartite F

t(F,Γ′′W ) =
∫

[0,1]v1(F )+v2(F )

∏
ij∈E(F )

W (xi, yj) dx1 · · · dxv1(F ) dy1 · · · dyv2(F ).

(3.2)
Given W ∈ W and n1, n2 ≥ 1, we define a random bipartite graph

G(n1, n2,W ) by an analogue of the construction in Subsection 3.1: first
choose two sequences X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 of i.i.d. random
variables uniformly distributed on [0, 1], and then, given thess sequences,
for each pair (i, j) draw an edge ij with probability W (Xi, Yj), indepen-
dently for all pairs (i, j) ∈ [n1 × [n2].

If G is a bipartite graph we define WG ∈ W similarly as above (in general
with different numbers of steps in the two variables; note that WG now
in general is not symmetric) and let π(G) := Γ′′(WG). Then, by (3.2),
t(F, π(G)) = t(F,G) for every bipartite graph F . Hence, if Gn is a sequence
of bipartite graphs with v1(Gn), v2(Gn) → ∞, then Gn converges to some
bipartite graph limit Γ if and only if π(Gn)→ Γ in B∞∞.

3.3. Cut-distance. Borgs, Chayes, Lovász, Sós and Vesztergombi [5, Sec-
tion 3.4] define a (pseudo-)metric δ� on Ws called the cut-distance. This
is only a pseudo-metric since two different functions in Ws may have cut-
distance 0 (for example, if one is obtained by a measure preserving transfor-
mation of the other, see further [4] and [10]), and it is shown in [5] that, in
fact, δ�(W1,W2) = 0 if and only if t(F,W1) = t(F,W2) for every graph F ,
i.e., if and only if ΓW1 = ΓW2 in U∞. Moreover, the quotient space Ws/δ�,
where we identify elements of Ws with cut-distance 0, is a compact metric
space and the mapping W 7→ ΓW is a homeomorphism of Ws/δ� onto U∞.
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This extends to the bipartite case. In this case, we define δ′′� on W as
δ� is defined in [5, Section 3.4], but allowing different measure preserving
mappings for the two coordinates. Then, if we identify elements in W with
cut-distance 0, W 7→ Γ′′W becomes a homeomorphism of W/δ′′� onto B∞∞.
Instead of repeating and modifying the complicated proofs from [5], one can
use their result in the symmetric case and define an embedding W 7→ W̃ of
W into Ws by

W̃ (x, y) =


0, x < 1/2, y < 1/2;
1, x > 1/2, y > 1/2;
1
4 + 1

2W (2x− 1, 2y), x > 1/2, y < 1/2;
1
4 + 1

2W (2y − 1, 2x), x < 1/2, y > 1/2.

It is easily seen that δ′′�(W1,W2) and δ�(W̃1, W̃2) are equal within some
constant factors, for W1,W2 ∈ W, and that for each graph F , t(F, W̃ ) is a
linear combination of t(Fi,W ) for a family of bipartite graphs F (obtained
by partitioning V (F ) and erasing edges within the two parts). This and the
results in [5], together with the simple fact that W 7→ t(F,W ) is continuous
for δ′′� for every bipartite graph F , imply easily the result claimed.

3.4. A reflection involution. If G is a bipartite graph, let G† be the
graph obtained by interchanging the order of the two vertex sets; thus,
Vj(G†) = V3−j(G) and E(G†) = {uv : vu ∈ E(G)}. We say that G† is the
reflection of G. Obviously, t(F,G†) = t(F †, G) for any bipartite graphs F
and G. It follows that if Gn → Γ ∈ B, then G†n → Γ† for some Γ† ∈ B, and
this defines a continuous map of B onto itself which extends the map just
defined for bipartite graphs. We have, by continuity,

t(F,Γ†) = t(F †,Γ), F ∈ B, G ∈ B. (3.3)

Furthermore, Γ†† = Γ, so the map is an involution, and it maps B∞∞ onto
itself.

For a function W on [0, 1]2, let W †(x, y) := W (y, x) be its reflection in
the main diagonal. It follows from (3.2) and (3.3) that Γ′′(W †) = Γ′′(W )†.

3.5. Threshold graph limits. Let T :=
⋃∞
n=1 Tn be the family of all (un-

labeled) threshold graphs. Thus T is a subset of the family U of all unlabeled
graphs, and we define T as the closure of T in U , and T∞ := T \T = T ∩U∞,
i.e., the set of proper limits of sequences of threshold graphs; we call these
threshold graph limits.

In the bipartite case, we similarly consider the set T ′′ :=
⋃
n1,n2≥1 Tn1,n2 ⊂

B of all bipartite threshold graphs, and let T ′′ ⊂ B be its closure in B and
T ′′∞,∞ := T ′′∩B∞∞ the set of proper limits of sequences of bipartite threshold
graphs; we call these bipartite threshold graph limits.

Note that T , T∞, T ′′, T ′′∞,∞ are compact metric spaces, since they are
closed subsets of U or B.
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We will give concrete representations of the threshold graph limits in
Section 5. Here we only give a more abstract characterization.

Recall that t(F,G) is defined as the proportion of maps V (F ) → V (G)
that are graph homomorphisms. Since we only are interested in limits with
v(G) → ∞, it is equivalent to consider injective maps only. By inclusion-
exclusion, it is further equivalent to consider tind(F,G), defined as the prob-
ability that a random injective map V (F ) → V (G) maps F isomorphically
onto an induced copy of F in G; in other words, tind(F,G) equals the num-
ber of labeled induced copies of F in G divided by the falling factorial
v(G) · · · (v(G)− v(F ) + 1). Then tind(F, ·) extends by continuity to U , and
by inclusion-exclusion, for graph limits Γ ∈ U∞, tind(F,Γ) can be written as
a linear combination of t(Fi,Γ) for subgraphs Fi ⊆ F . We can define tind

for bipartite graphs in the same way; further details are in [5] and [10].

Theorem 3.1. (i) Let Γ ∈ U∞; i.e., Γ is a graph limit. Then Γ ∈ T∞ if
and only if tind(P4,Γ) = tind(C4,Γ) = tind(2K2,Γ) = 0.

(ii) Let Γ ∈ B∞∞; i.e., Γ is a bipartite graph limit. Then Γ ∈ T ′′∞,∞ if
and only if tind(2K2,Γ) = 0.

In view of (1.5) and (1.12), this is a special case of the following simple
general statement.

Theorem 3.2. Let F = {F1, F2, . . . } be a finite or infinite family of graphs,
and let UF ⊆ U be the set of all graphs that do not contain any graph from
F as an induced subgraph, i.e.,

UF := {G ∈ U : tind(F,G) = 0 for F ∈ F}.
Let UF be the closure of UF in U . Then

UF := {Γ ∈ U : tind(F,Γ) = 0 for F ∈ F}.
In other words, if Γ ∈ U∞ is a graph limit, then Γ is a limit of a sequence
of graphs in UF if and only if tind(F,Γ) = 0 for F ∈ F .

Conversely, if Γ ∈ UF ∩ U∞ is represented by a function W , then the
random graph G(n,W ) ∈ UF (almost surely).

The same results hold in the bipartite case.

Proof. If Gn → Γ with G ∈ UF , then t(F,Γ) = limn→∞ t(F,Gn) = 0 for
every F ∈ F , by the continuity of t(F, ·).

Conversely, suppose that Γ ∈ U∞ and t(F,Γ) = 0 for F ∈ F , and let Γ
be represented by a function W . It follows from (3.1) that if F ∈ F then
E t(F,G(n,W )) = t(F,Γ) = 0, and thus t(F,G(n,W )) = 0 a.s.; consequently
G(n,W ) ∈ UF a.s. This proves the second statement. Since G(n,W ) → Γ
a.s., it also shows that Γ is the limit of a sequence in UF , and thus Γ ∈ UF ,
which completes the proof of the first part. �

4. Degree distributions

The results in this section hold for general graphs, they are applied to
threshold graphs in section Section 5.
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Let P be the set of probability measures on [0, 1], equipped with the
standard topology of weak convergence, which makes P a compact metric
space (see e.g. Billingsley [3]).

If G is a graph, let d(v) = dG(v) denote the degree of vertex v ∈ V (G), and
let DG denote the random variable defined as the degree dG(v) of a randomly
chosen vertex v (with the uniform distribution on V (G)). Thus 0 ≤ DG ≤
v(G)−1. For a bipartite graph we similarly define DG;j as the degree dG(v)
of a randomly chosen vertex v ∈ Vj(G), j = 1, 2. Note that 0 ≤ DG;1 ≤
v2(G) and 0 ≤ DG;2 ≤ v1(G). Since we are interested in dense graphs,
we will normalize these random degrees to DG/v(G) and, in the bipartite
case, DG;1/v2(G) and DG;2/v1(G); these are random variables in [0,1]. The
distribution of DG/v(G) will be called the (normalized) degree distribution
of G and denoted by ν(G) ∈ P; in other words, ν(G) is the empirical
distribution function of {dG(v)/v(G) : v ∈ V (G)}. In the bipartite case we
similarly have two (normalized) degree distributions: ν1(G) for V1(G) and
ν2(G) for V2(G).

The moments of the degree distribution(s) are given by the functional
t(F, ·) for stars F , as stated in the following lemma. We omit the proof,
which is a straightforward consequence of the definitions.

Lemma 4.1. The moments of ν(G) are given by∫ 1

0
tk dν(G)(t) = t(K1,k, G), k ≥ 1, (4.1)

where K1,k is a star with k edges.
In the bipartite case, similarly, for k ≥ 1,∫ 1

0
tk dν1(G)(t) = t(K1,k, G),

∫ 1

0
tk dν2(G)(t) = t(Kk,1, G). (4.2)

This enables us to extend the definition of the (normalized) degree distri-
bution to the limit objects by continuity.

Theorem 4.2. If Gn are graphs with v(Gn) → ∞ and Gn → Γ for some
Γ ∈ U as n→∞, then ν(Gn) → ν(Γ) for some distribution ν(Γ) ∈ P.
This defines the ‘degree distribution’ ν(Γ) (uniquely) for every graph limit
Γ ∈ U∞, and Γ 7→ ν(Γ) is a continuous map U∞ → P. Furthermore, (4.1)
holds for all G ∈ U .

Similarly, in the bipartite case, ν1 and ν2 extend to continuous maps
B → P such that (4.2) holds for all G ∈ B. Furthermore, ν2(Γ) = ν1(Γ†)
for Γ ∈ B.

Proof. An immediate consequence of Lemma 4.1 and the method of mo-
ments. The last sentence follows from (4.2) and (3.3). �

Remark. Theorem 4.2 says that the degree distribution ν is a testable graph
parameter in the sense of Borgs, Chayes, Lovász, Sós and Vesztergombi [5],
see in particular [5, Section 6]. (Except that ν takes values in P instead of
R.)
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If Γ is represented by a function W on [0, 1]2, we can easily find its degree
distribution from W .

Theorem 4.3. If W ∈ Ws, then ν(ΓW ) equals the distribution of
∫ 1
0 W (U, y) dy,

where U ∼ U(0, 1).
Similarly, in the bipartite case, if W ∈ W, then ν1(Γ′′W ) equals the distri-

bution of
∫ 1
0 W (U, y) dy and ν2(Γ′′W ) equals the distribution of

∫ 1
0 W (x, U) dx.

Proof. By (4.1) and (3.1),∫ 1

0
tk dν(ΓW )(t) = t(K1,k,ΓW ) =

∫
[0,1]

(∫
[0,1]

W (x, y) dy

)k
dx

= E

(∫
[0,1]

W (U, y) dy

)k
for every k ≥ 1, and the result follows. The bipartite case is similar, using
(3.2). �

If a graph G has n vertices, its number of edges is

|E(G)| = 1
2

∑
v∈V (G)

d(v) =
n

2
EDG =

n2

2
E(DG/n) =

n2

2

∫ 1

0
tdν(G)(t).

Hence, the edge density of G is

|E(G)|/
(
n

2

)
=

n

n− 1

∫ 1

0
tdν(G)(t). (4.3)

If (Gn) is a sequence of graphs with v(Gn) → ∞ and Gn → Γ ∈ U∞,
we see from (4.3) and Theorem 4.2 that the graph densities converge to∫ 1
0 tdν(Γ)(t), the mean of the distribution ν(Γ), which thus may be called

the (edge) density of Γ ∈ U∞.
If Γ is represented by a function W on [0, 1]2, Theorem 4.3 yields the

following.

Corollary 4.4. ΓW has edge density
∫∫

[0,1]2 W (x, y) dx dy for every W ∈
Ws.

Proof. By Theorem 4.3, the mean of µ(ΓW ) equals

E
∫ 1

0
W (U, y) dy =

∫ 1

0

∫ 1

0
W (x, y) dx dy. �

5. Limits of threshold graphs

Recall from Subsection 3.5 that T∞ is the set of limits of threshold graphs,
and T ′′∞,∞ is the set of limits of bipartite threshold graphs. Our purpose in
this section is to characterize the threshold graph limits, i.e. the elements of
T∞ and T ′′∞,∞, and give simple criteria for the convergence of a sequence of
threshold graphs to one of these limits. We begin with some definitions.
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A function W : [0, 1]2 → R is increasing if W (x, y) ≤ W (x′, y′) whenever
0 ≤ x ≤ x′ ≤ 1 and 0 ≤ y ≤ y′ ≤ 1. A set S ⊆ [0, 1]2 is increasing if its
indicator 1S is an increasing function on [0, 1]2, i.e., if (x, y) ∈ S implies
(x′, y′) ∈ S whenever 0 ≤ x ≤ x′ ≤ 1 and 0 ≤ y ≤ y′ ≤ 1.

If µ ∈ P, let Fµ be its distribution function Fµ(x) := µ([0, x]), and let
Fµ(x−) := µ([0, x)) be its left-continuous version. Thus Fµ(0−) = 0 ≤ Fµ(0)
and Fµ(1−) ≤ 1 = Fµ(1). Further, let F−1

µ : [0, 1] → [0, 1] be the right-
continuous inverse defined by

F−1
µ (x) := sup{t ≤ 1 : Fµ(t) ≤ x}. (5.1)

Note that F−1
µ (0) ≥ 0 and F−1

µ (1) = 1. Finally, define

Sµ :=
{

(x, y) ∈ [0, 1]2 : x ≥ Fµ
(
(1− y)−

)}
. (5.2)

It is easily seen that Sµ is a closed increasing subset of [0, 1]2 and that it
contains the upper and right edges {(x, 1)} and {(1, y)}. Since x ≥ Fµ

(
(1−

y)−
)
⇐⇒ F−1

µ (x) ≥ 1− y, we also have

Sµ =
{

(x, y) ∈ [0, 1]2 : F−1
µ (x) + y ≥ 1

}
. (5.3)

We further write Wµ := 1Sµ and let Γ′′µ := Γ′′(Wµ) and, when W is
symmetric, Γµ := Γ(Wµ). We denote the interior of a set S by S◦. It is
easily verified from (5.2) that

S◦µ =
{

(x, y) ∈ (0, 1)2 : x > Fµ(1− y)
}
. (5.4)

Recall that the Hausdorff distance between two non-empty compact sub-
sets K1 and K2 of some metric space S is defined by

dH(K1,K2) := max
(
max
x∈K1

d(x,K2), max
y∈K2

d(y,K1)
)
. (5.5)

This defines a metric on the set of all non-empty compact subsets of S. If S
is compact, the resulting topology on the set of compact subsets of S (with
the empty set as an isolated point) is compact and equals the Fell topology
(see e.g. [19, Appendix A.2]) on the set of all closed subsets of S.

Let λd denote the Lebesgue measure in Rd. For measurable subsets S1, S2

of [0, 1]2, we also consider their measure distance λ2(S1∆S2). This equals
the L1-distance of their indicator functions, and is thus a metric modulo
null sets.

For functions in W we also use two different metrics: the L1-distance∫
[0,1]2 |W1(x, y)−W2(x, y)|dx dy and, in the symmetric case, the cut-distance
δ� defined by Borgs, Chayes, Lovász, Sós and Vesztergombi [5], and in the
bipartite case its analogue δ′′�, see Section 3. Note that the cut-distance is
only a pseudo-metric, since the distance of two different functions may be 0.
Note further that the cut-distance is less than or equal to the L1-distance.

We can now prove one of our main results, giving several related charac-
terizations of threshold graph limits. There are two versions, since we treat
the bipartite case in parallel.
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The bipartite case. It is convenient to begin with the bipartite case.

Theorem 5.1. There are bijections between the set T ′′∞,∞ of graph limits of
bipartite threshold graphs and each of the following sets.

(i) The set P of probability distributions on [0, 1].
(ii) The set CB of increasing closed sets S ⊆ [0, 1]2 that contain the upper

and right edges [0, 1]× {1} ∪ {1} × [0, 1].
(iii) The set OB of increasing open sets S ⊆ (0, 1)2.
(iv) The set WB of increasing 0–1 valued functions W : [0, 1]2 → {0, 1}

modulo a.e. equality.
More precisely, there are commuting bijections between these sets given by
the following mappings and their compositions:

ιBP : T ′′∞,∞ → P, ιBP(Γ) := ν1(Γ);

ιPC : P → CB, ιPC(µ) := Sµ;

ιCO : CB → OB, ιCO(S) := S◦;

ιCW : CB →WB, ιCW(S) := 1S ;

ιOW : OB →WB, ιOW(S) := 1S ;

ιWB :WB → T ′′∞,∞, ιWB(W ) := Γ′′W .

(5.6)

T ′′∞,∞
ιBP - P

ιPC - CB

WB �
ιOW

�
ι CW

�

ιW
B

OB

ιCO

?

In particular, a probability distribution µ ∈ P corresponds to Γ′′µ ∈ T ′′∞,∞ and
to Sµ ∈ CB, S◦µ ∈ OB, and Wµ ∈ WB. Conversely, Γ ∈ T ′′∞,∞ corresponds to
ν1(Γ) ∈ P. Thus, the mappings Γ 7→ ν1(Γ) and µ 7→ Γ′′µ are the inverses of
each other.

Moreover, these bijections are homeomorphisms, with any of the following
topologies or metrics: the standard (weak) topology on P; the Hausdorff
metric, or the Fell topology, or the measure distance on CB; the measure
distance on OB; the L1-distance or the cut-distance on the set WB.

Proof. The mappings in (5.6) are all well-defined, except that we do not
yet know that ιWB maps WB into T ′′∞,∞. We thus regard ιWB as a map
WB → B∞∞ and let B̃ := ιWB(WB) be its image; we will identify this as
T ′′∞,∞ later. For the time being we also regard ιBP as defined on B̃ (or on
all of B∞∞).

Consider first ιPC : P → CB. By (5.2), Sµ determines Fµ at all continuity
points, and thus it determines µ. Consequently, ιPC is injective.
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If S ∈ CB and y ∈ [0, 1], then {x : (x, y) ∈ S} is a closed subinterval of [0, 1]
that contains 1, and thus S = {(x, y) ∈ [0, 1]2 : x ≥ g(y)} for some function
g : [0, 1] → [0, 1]. Moreover, g(1) = 0, g is decreasing, i.e. g(y2) ≤ g(y1)
if y1 ≤ y2, and, since S is closed, g is right-continuous. Thus g(1 − x) is
increasing and left-continuous, and hence there exists a probability measure
µ ∈ P such that Fµ(x−) = g(1− x), x ∈ [0, 1]. By (5.2), then

ιPC(µ) = Sµ = {(x, y) ∈ [0, 1]2 : x ≥ g(y)} = S.

Hence ιPC is onto. Consequently, ιPC is a bijection of P onto CB.
If S1 and S2 are two different sets in CB, then there exists a point (x, y) ∈

S1 \ S2, say. There is a small open disc with center in (x, y) that does
not intersect S2, and since S1 is increasing, at least a quarter of the disc is
contained in S1 \ S2. Hence, λ2(S1∆S2) > 0. Similarly, if S1 and S2 are
two different sets in OB and (x, y) ∈ S1 \ S2, then there is a small open disc
with center in (x, y) that is contained in S1, and since S2 is increasing, at
least a quarter of the disc is contained in S1 \ S2, whence λ2(S1∆S2) > 0.
This shows that the measure distance is a metric on CB and on OB, and that
the mappings ιCW and ιOW into WB are injective (remember that a.e. equal
functions are identified in WB).

Next, let S ⊆ [0, 1]2 be increasing. If (x, y) ∈ S with x < 1 and y < 1, it is
easily seen that (x, x+δ)× (y, y+δ) ⊆ S for δ = min{1−x, 1−y}, and thus
(x, x+ δ)× (y, y+ δ) ⊆ S◦. It follows that, for any real a, the intersection of
the boundary ∂S := S \S◦ with the diagonal line La := {(x, x+ a) : x ∈ R}
consists of at most two points (of which one is on the boundary of [0, 1]2).
In particular, λ1(∂S ∩ La) = 0 and thus

λ2(∂S) = 2−1/2

∫ 1

−1
λ1(∂S ∩ La) da = 0. (5.7)

Consequently, ∂S is a null set for every increasing S. Among other things,
this shows that if S ∈ CB, then ιOW ιCO(S) = 1S◦ = 1S a.e. Since elements
of WB are defined modulo a.e. equality, this shows that ιOWιCO = ιCW :
CB →WB.

If W ∈ WB, and thus W = 1S for some increasing S ⊆ [0, 1]2, let

S̃ := S ∪ [0, 1]× {1} ∪ {1} × [0, 1]. (5.8)

Then S̃ ∈ CB and (5.7) implies that ιCW(S̃) = 1eS = 1S = W a.e. Similarly,
S◦ ∈ OB and ιOW(S◦) = 1S = W a.e. Consequently, ιCW and ιOW are onto,
and thus bijections. Similarly (or as a consequence), ιCO is a bijection of CB
onto OB, with inverse S 7→ S̃ given by (5.8).

Note that the composition ιCW ιPC maps µ 7→ 1Sµ = Wµ, and let ιPB
be the composition ιWBιCW ιPC : µ 7→ Γ′′(Wµ) = Γ′′µ mapping P into B∞∞.
Since ιPC and ιCW are bijections, its image ιBP(P) = ιWB(WB) = B̃ ⊆ B∞∞.
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If µ ∈ P, then the composition ιBP ιPB(µ) = ν1(Γ′′µ) equals by Theorem 4.3
and (5.3) the distribution of∫ 1

0
1Sµ(U, y) dy = F−1

µ (U). (5.9)

As is well-known, and easy to verify using (5.1), this distribution equals µ.
Hence, the composition ιBP ιPB is the identity. It follows that ιPB is injective
and thus a bijection of P onto its image B̃, and that ιBP (restricted to B̃) is
its inverse.

We have shown that all mappings in (5.6) are bijections, except that we
have not yet shown that B̃ = T ′′∞,∞. We next show that the mappings are
homeomorphisms.

Recall that the topology on P can be defined by the Lévy metric defined
by (see e.g. [13, Problem 5.25])

dL(µ1, µ2) := inf{ε > 0 : Fµ1(x− ε)− ε ≤ Fµ2(x) ≤ Fµ1(x+ ε) + ε for all x}.
(5.10)

If µ1, µ2 ∈ P with dL(µ1, µ2) < ε, it follows from (5.2) and (5.10) that if
(x, y) ∈ Sµ1 and x, y < 1− ε, then

Fµ2

(
(1− y − ε)−

)
≤ Fµ1

(
(1− y)−

)
+ ε ≤ x+ ε

and thus (x+ ε, y+ ε) ∈ Sµ2 . Considering also the simple cases x ∈ [1− ε, 1]
and y ∈ [1− ε, 1], it follows that if (x, y) ∈ Sµ1 , then d

(
(x, y), Sµ2

)
≤
√

2 ε.
Consequently, by (5.5) and symmetry,

dH(Sµ1 , Sµ2) ≤
√

2 dL(µ1, µ2),

which shows that ιPC is continuous if CB is given the topology given by the
Hausdorff metric.

The same argument shows that for any (x0, y0), the intersection of the
difference Sµ1∆Sµ2 with the diagonal line La defined above is an interval of
length at most

√
2 dL(µ1, µ2), and thus, by integration over a as in (5.7),

λ2

(
Sµ1∆Sµ2

)
≤ 2dL(µ1, µ2).

Hence, ιPC is continuous also if CB is given the topology given by the measure
distance.

Since P is compact and ιPC is a bijection, it follows that ιPC is a home-
omorphism for both these topologies on CB. In particular, these topologies
coincide on CB. As remarked before the theorem, since [0, 1]2 is compact,
also the Fell topology coincide with these on CB.

The bijections ιCO, ιCW and ιOW are isometries for the measure distance
on CB and OB and the L1-distance on WB, and thus homeomorphisms.
Furthermore, still using the L1-distance on WB, it is easily seen from (3.2),
as for the symmetric case in [22], [5], that for every fixed bipartite graph
F , the mapping W 7→ t(F,Γ′′W ) is continuous, which by definition of the
topology in B∞∞ means that ιWB : W 7→ Γ′′W is continuous. Hence, the
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bijection ιWB is a homeomorphism of the compact space WB onto its image
B̃.

As said above, the cut-distance is only a pseudo-metric on W. But two
functions in W with cut-distance 0 are mapped onto the same element in
B∞∞, and since we have shown that ιWB is injective on WB, it follows that
the restriction of the cut-distance to WB is a metric. Moreover, the identity
map on WB is continuous from the L1-metric to the cut-metric, and since
the space is compact under the former metric, the two metrics are equivalent
on WB.

We have shown that all mappings are homeomorphisms. It remains only
to show that B̃ = T ′′∞,∞. To do this, observe first that if G is a bipartite
threshold graph, and we order its vertices in each of the two vertex sets
with increasing vertex degrees, then the function WG defined in Section 3 is
increasing and belongs thus to WB. Consequently, π(G) = ιWB(WG) ∈ B̃.
If Γ ∈ T ′′∞,∞, then by definition there exists a sequence Gn of bipartite
threshold graphs with v1(Gn), v2(Gn) → ∞ such that Gn → Γ in B. This
implies that π(Gn) → Γ in B∞∞, and since π(Gn) ∈ B̃ and B̃ is compact
and thus a closed subset of B∞∞, we find Γ ∈ B̃.

Conversely, if Γ ∈ B̃, then Γ = ιWBιCW(S) for some set S ∈ CB. For
each n, partition [0, 1]2 into n2 closed squares Qij of side 1/n, and let Sn
be the union of all Qij that intersect S. Then Sn ∈ CB, S ⊆ Sn and
dH(Sn, S) ≤

√
2/n. Let Wn := 1Sn = ιCW(Sn) and let Γn := ιWB(Wn) ∈ B̃.

Since ιCW and ιWB are continuous, Wn → W := 1S in WB and Γn →
ιWB(W ) = Γ in B̃ ⊂ B∞∞. However, Wn is a step function of the form
W (Gn) for some bipartite graph Gn with v1(Gn) = v2(Gn) = n, and thus
π(Gn) = Γ′′Wn

= Γn. Moreover, each Sn and thus each Wn is increasing, and
hence Gn is a bipartite threshold graph. Since π(Gn) = Γn → Γ in B∞∞, it
follows that Gn → Γ in B, and thus Γ ∈ T ′′∞,∞.

Consequently, B̃ = T ′′∞,∞, which completes the proof. �

Remark 5.1. Another unique representation by increasing closed sets is
given by the family C′B of closed increasing subsets S of [0, 1]2 that satisfy
S = S◦; there are bijections C′B → OB and OB → C′B given by S 7→ S◦

and S 7→ S. We can, again, use the measure distance on C′B, but not the
Hausdorff distance. (For example, [0, 1]× [1− ε, 1]→ ∅ in C′B as ε→ 0.)

Corollary 5.2. The degree distribution yields a homeomorphism Γ 7→ ν1(Γ)
of T ′′∞,∞ onto P.

Of course, Γ 7→ ν2(Γ) = ν1(Γ†) yields another homeomorphism of T ′′∞,∞
onto P. To see the connection between these, and (more importantly) to
prepare for the corresponding result in the non-bipartite case, we investigate
further the reflection involution.

If S ⊆ [0, 1]2, let S† := {(x, y) : (y, x) ∈ S} be the set S reflected in the
main diagonal. Thus 1S† = 1†S . We have defined the reflection map † for
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bipartite graphs and graph limits, and for the sets and functions in Theo-
rem 5.1(ii)(iii)(iv), and it is easily seen that these correspond to each other
by the bijections in Theorem 5.1. Consequently, there is a corresponding
map (involution) µ 7→ µ† of P onto itself too. This map is less intuitive than
the others; to find it explicitly, we find from (5.2), (5.3) and Sµ† = S†µ that

x ≥ Fµ†
(
(1− y)−

)
⇐⇒ (y, x) ∈ Sµ ⇐⇒ F−1

µ (y) + x ≥ 1

and thus Fµ†
(
(1− y)−

)
= 1− F−1

µ (y) and

Fµ†(t) = 1− F−1
µ

(
(1− t)−

)
, 0 ≤ t ≤ 1. (5.11)

This means that the graph of the distribution function is reflected about the
diagonal between (0, 1) and (1, 0) (and adjusted at the jumps).

The map † is continuous on P, by Theorem 5.1 and the obvious fact that
S 7→ S† is continuous on, for example, CB.

We let Ps := {µ ∈ P : µ† = µ} = {µ ∈ P : Sµ = S†µ} be the set of prob-
ability distributions invariant under the involution †. Since † is continuous,
Ps is a closed and thus compact subset of P.

Remark 5.2. If µ ∈ Ps, let x0 := 1− inf{x : (x, x) ∈ Sµ}. Then (5.2) and
(5.4) imply that Fµ(x0−) ≤ 1 − x0 ≤ Fµ(x0), and the restriction of Fµ to
[0, x0) is an increasing right-continuous function with values in [0, 1 − x0]
and this restriction determines Fµ(t) for x ≥ x0 too by (5.11).

Conversely, given any x0 ∈ [0, 1] and increasing right-continuous F :
[0, x0)→ [0, 1− x0], there is a unique µ ∈ Ps with Fµ(x) = F (x) for x < x0

and Fµ(x0) ≥ 1− x0.

Non-bipartite case. We can now state our main theorem for (non-bipartite)
threshold graph limits.

Theorem 5.3. There are bijections between the set T∞ of graph limits of
threshold graphs and each of the following sets.

(i) The set Ps of probability distributions on [0, 1] symmetric with respect
to †.

(ii) The set CT of symmetric increasing closed sets S ⊆ [0, 1]2 that con-
tain the upper and right edges [0, 1]× {1} ∪ {1} × [0, 1].

(iii) The set OT of symmetric increasing open sets S ⊆ (0, 1)2.
(iv) The setWT of symmetric increasing 0–1 valued functions W : [0, 1]2 →

{0, 1} modulo a.e. equality.
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More precisely, there are commuting bijections between these sets given by
the following mappings and their compositions:

ιT P : T∞ → Ps, ιT P(Γ) := ν(Γ);

ιPC : Ps → CT , ιPC(µ) := Sµ;

ιCO : CT → OT , ιCO(S) := S◦;

ιCW : CT →WT , ιCW(S) := 1S ;

ιOW : OT →WT , ιOW(S) := 1S ;

ιWT :WT → T∞, ιWT (W ) := ΓW .

(5.12)

In particular, a probability distribution µ ∈ Ps corresponds to Γµ ∈ T∞ and
to Sµ ∈ CT , S◦µ ∈ OT , and Wµ ∈ WT . Conversely, Γ ∈ T∞ corresponds to
ν(Γ) ∈ Ps. Thus, the mappings Γ 7→ ν(Γ) and µ 7→ Γµ are the inverses of
each other.

T∞
ιT P - Ps

ιPC - CT

WT �
ιOW

�
ι CW

�

ιW
T

OT

ιCO

?

Moreover, these bijections are homeomorphisms, with any of the following
topologies or metrics: the standard (weak) topology on Ps ⊂ P; the Hausdorff
metric, or the Fell topology, or the measure distance on CT ; the measure
distance on OT ; the L1-distance or the cut-distance on the set WT . These
homeomorphic topological spaces are compact metric spaces.

Proof. The mappings ιPC , ιCO, ιCW , ιOW are restrictions of the correspond-
ing mappings in Theorem 5.1, and it follows from Theorem 5.1 and the defini-
tions that these mappings are bijections and homeomorphisms for the given
topologies. The spaces are closed subspaces of the corresponding spaces in
Theorem 5.1, since † is continuous on these spaces, and thus compact metric
spaces.

The rest is as in the proof of Theorem 5.1, and we omit some details. It
follows from Theorem 4.3 that the composition ιWBιCWιPC : µ 7→ Γ(Wµ) =
Γµ is a bijection of Ps onto a subset T ′ of T ′′∞,∞, with ιT P as its inverse.
It follows that these mappings too are homeomorphisms, and that the L1-
distance and cut-distance are equivalent on WT .

To see that T ′ = T∞, we also follow the proof of Theorem 5.1. A minor
complication is that if G ∈ T is a threshold graph, and we order the vertices
with increasing degrees, then WG is not increasing, because WG(x, x) = 0 for
all x since we consider loopless graphs only. However, we can define W ∗(G)
by changing WG to be 1 on some squares on the diagonal so that W ∗(G) is
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increasing and thusW ∗(G) ∈ WT , and the error ‖WG−W ∗(G)‖L1 ≤ 1/v(G).
If we define π∗(G) := Γ(W ∗(G)) ∈ T ′, we see that if (Gn) is a sequence of
threshold graphs with v(Gn) → ∞, then for every graph F , by a simple
estimate, see e.g. [22, Lemma 4.1],

|t(F, π∗(Gn))− t(F,Gn)| ≤ e(F )‖W (Gn)−W ∗(Gn)‖L1 ≤ e(F )/v(Gn)→ 0.
(5.13)

It follows that Gn → Γ in U if and only if π∗(Gn) → Γ in U∞. If Γ ∈ T∞,
then there exists such a sequence Gn → Γ, and thus π∗(Gn) → Γ in U∞,
and since π∗(Gn) ∈ T ′ and T ′ is compact, we find Γ ∈ T ′.

The converse follows in the same way. If Γ ∈ T ′, then Γ = ιWT (W ) for
some function W ∈ WT . The approximating step functions Wn constructed
in the proof of Theorem 5.1 are symmetric, and if we let W ∗n by the modifi-
cation that vanishes on all diagonal squares, W ∗n = WGn for some threshold
graph Gn, and for every graph F ,

t(F,Gn) = t(F,W ∗n) = t(F,Wn) + o(1) = t(F,W ) + o(1).

Hence, Gn → ΓW = Γ in U , and thus Γ ∈ T∞. Consequently, T ′ = T∞. �

Corollary 5.4. The degree distribution yields a homeomorphism Γ 7→ ν(Γ)
of T∞ onto the closed subspace Ps of P.

Remark 5.3. The fact that a graph limit Γ can be represented by a function
W ∈ WT if and only if tind(P4,Γ) = tind(C4,Γ) = tind(2K2,Γ) = 0, which
by Theorem 3.1 is equivalent to the bijection T∞ ↔WT in Theorem 5.3, is
also proved by Lovász and Szegedy [23].

We have described the possible limits of sequences of threshold graphs;
this makes it easy to see when such sequences converge.

Theorem 5.5. Let Gn be a sequence of threshold graphs such that v(Gn)→
∞. Then Gn converges in U as n→∞, if and only if the degree distributions
ν(Gn) converge to some distribution µ. In this case, µ ∈ Ps and Gn → Γµ.

Proof. As in the proof of Theorem 5.3, Gn → Γ if and only if π∗(Gn)→ Γ in
T ′ = T∞, which by Theorem 5.3 holds if and only if ν(π∗(Gn))→ ν(Γ). By
Theorem 4.3, ν(π∗(Gn)) equals the distribution of

∫ 1
0 W

∗(Gn)(U, y) dy, but
this random variable differs by at most 1/v(Gn) = o(1) from the random
variable

∫ 1
0 WGn(U, y) dy, which has degree distribution ν(Gn). The result

follows. �

Theorem 5.6. Let Gn be a sequence of bipartite threshold graphs such that
v1(Gn), v2(Gn)→∞. Then Gn converges in B as n→∞, if and only if the
degree distributions ν1(Gn) converge to some distribution µ. In this case,
ν2(Gn)→ µ† and Gn → Γ′′µ.

Proof. Gn → Γ if and only if π(Gn)→ Γ in B̃ = B∞∞, which by Theorem 5.1
holds if and only if ν1(π(Gn)) → ν1(Γ). It follows from Theorem 4.3 that
ν1(π(Gn)) = ν1(Gn), and the result follows from Theorem 5.1. �
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Remark 5.4. A threshold graph limit Γ is, by Theorem 5.3, determined by
its degree distribution and the fact that it is a threshold graph limit. By
Theorem 3.2 and Lemma 4.1, Γ is thus determined by t(F,Γ) for F in the set
{P4, C4, 2K2,K1,1,K1,2, . . . }. Lovász and Szegedy [23] have shown that in
some special cases, a finite set of F is enough; for example, the limit defined
by the function W (x, y) = 1[x+y ≥ 1] (see Example 1.3 and Figure 4) is the
unique graph limit with t(P4,Γ) = t(C4,Γ) = t(2K2,Γ) = 0, t(K2,Γ) = 1/2,
t(P3,Γ) = 1/3.

6. Random threshold graphs

We consider several ways to define random threshold graphs. We will only
consider constructions with a fixed number n of vertices; in fact, we take
the vertex set to be [n] = {1, . . . , n}, where n ≥ 1 is a given parameter. By
a random threshold graph we thus mean a random element of Tn := {G ∈
T : V (G) = [n]} for some n; we do not imply any particular construction or
distribution unless otherwise stated. (We can regard these graphs as either
labeled or unlabeled.)

This section treats four classes of examples: a canonical example based
on increasing sets, random weights examples, random attachment examples
and uniform random threshold graphs.

6.1. Increasing set. For any symmetric increasing S ⊆ [0, 1]2, we let W =
1S and define Tn;S := G(n,W ) as in Section 3. In other words, we take i.i.d.
random variables U1, . . . , Un ∼ U(0, 1) and draw an edge ij if (Ui, Uj) ∈ S.

As said in Section 3, G(n,W ) a.s.−→ ΓW , which in this case means that
Tn;S

a.s.−→ Γ(1S) ∈ T∞. We denote Γ(1S) by ΓS and have thus the following
result, using also Theorem 4.3.

Theorem 6.1. As n→∞, Tn;S
a.s.−→ ΓS. In particular, the degree distribu-

tion ν(Tn;S) a.s.−→ ν(ΓS), which equals the distribution of

ϕS(U) := |{y : (U, y) ∈ S}| = P
(
(U,U ′) ∈ S | U

)
, (6.1)

with U,U ′ ∼ U(0, 1) independent. �

By Theorem 5.3, this construction gives a canonical representation of the
limit objects in T∞, and we may restrict ourselves to closed or open sets as
in Theorem 5.3(ii)(iii) to get a unique representation. We can obtain any
desired degree distribution µ ∈ Ps for the limit by choosing S = Sµ. This
construction further gives a canonical representation of random threshold
graphs for finite n, provided we make two natural additional assumptions.

Theorem 6.2. Suppose that (Gn)∞1 is a sequence of random threshold graphs
with V (Gn) = [n] such that the distribution of each Gn is invariant under
permutations of [n] and that the restriction (induced subgraph) of Gn+1 to
[n] has the same distribution as Gn, for every n ≥ 1. If further ν(Gn)

p−→ µ

as n→∞, for some µ ∈ P, then µ ∈ Ps and, for every n, Gn
d= Tn;Sµ.
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Proof. It follows from Theorem 5.5 that Gn
p−→ Γµ. (To apply Theorem 5.5

to convergence in probability, we can use the standard trick of considering
subsequences that converge a.e., since every subsequence has such a subsub-
sequence [19, Lemma 4.2].)

If we represent a graph by its edge indicators, the random graph Gn can
be regarded as a family of 0–1-valued random variables indexed by pairs
(i, j), 1 ≤ i < j ≤ n. By assumption, these families for different n are con-
sistent, so by the Kolmogorov extension theorem [19, Theorem 6.16], they
can be defined for all n together, which means that there exists a random
infinite graph G∞ with vertex set N whose restriction to [n] coincides (in
distribution) with Gn. Moreover, since each Gn is invariant under permu-
tations of the vertices, so is G∞, i.e., G∞ is exchangeable. By Aldous and
Hoover [1], see also [20] and [10], every exchangeable random infinite graph
can be obtained as a mixture of G(∞,W ); in other words, as G(∞,W ) for
some random function W ∈ Ws. In this case, the subgraphs Gn converge
in probability to the corresponding random ΓW , see Diaconis and Janson
[10]. Since we have shown that Gn converge to a deterministic graph limit
Γµ, we can take W deterministic so it follows that G∞

d= G(∞,W ) for some
W ∈ Ws; moreover, Γµ = ΓW , and thus we can by Theorem 5.3 choose
W = Wµ. (Recall that in general, W is not unique.) Consequently,

Gn
d= G(n,Wµ) = Tn;Sµ . �

6.2. Random weights. Definition (1.1) suggests immediately the construc-
tion (1.6):

Let X1, X2, . . . , be i.i.d. copies of a random variable X, let t ∈ R, and let
Tn;X,t be the threshold graph with vertex set [n] and edges ij for all pairs
ij such that Xi + Xj > t. (We can without loss of generality let t = 0, by
replacing X by X − t/2.)

Examples 1.2 and 1.3 are in this mode.
Let F (x) := P(X ≤ x) be the distribution function of X, and let F−1 be

its right-continuous inverse defined by

F−1(u) := sup{x ∈ R : F (x) ≤ u}. (6.2)

(Cf. (5.1), where we consider distributions on [0, 1] only.) Thus −∞ <
F−1(u) < ∞ if 0 < u < 1, while F−1(1) = ∞. It is well-known that the
random variables Xi can be constructed as F−1(Ui) with Ui independent
uniformly distributed random variables on (0, 1), which leads to the fol-
lowing theorem, showing that this construction is equivalent to the one in
Subsection 6.1 for a suitable set S. Parts of this theorem were found earlier
by Masuda, Konno and co-authors [21, 26].

Theorem 6.3. Let S be the symmetric increasing set

S := {(x, y) ∈ (0, 1]2 : F−1(x) + F−1(y) > t}. (6.3)

Then Tn;X,t
d= Tn;S for every n.
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Furthermore, as n→∞, the degree distribution ν(Tn;X,t)
a.s.−→ µ and thus

Tn;X,t
a.s.−→ Γµ, where µ ∈ Ps is the distribution of the random variable

1− F (t−X), i.e.

µ[0, s] = P
(
1− F (t−X) ≤ s

)
, s ∈ [0, 1]. (6.4)

Proof. Taking Xi = F−1(Ui), we see that

there is an edge ij ⇐⇒ F−1(Ui) + F−1(Uj) > t ⇐⇒ (Ui, Uj) ∈ S,

which shows that Tn;X,t = Tn;S .
The remaining assertions now follow from Theorem 6.1 together with

the calculation, with U,U ′ ∼ U(0, 1) independent and X = F−1(U), X ′ =
F−1(U ′),

ϕS(U) = P
(
(U,U ′) ∈ S | U

)
= P

(
F−1(U) + F−1(U ′) > t | U

)
= P

(
X +X ′ > t | X

)
= P

(
X ′ > t−X | X

)
= 1− F (t−X).

�

The set S defined in (6.3) is in general neither open nor closed; the cor-
responding open set is

S◦ =
{

(x, y) ∈ (0, 1)2 : F−1(x−) + F−1(y−) > t
}
,

and the corresponding closed set Sµ in Theorem 5.3 can be found as S̃◦ from
(5.8). If we assume for simplicity that the distribution of X is continuous,
then, as is easily verified,

Sµ =
{

(x, y) ∈ [0, 1]2 : F−1(x) + F−1(y) ≥ t
}
,

where we define F−1(1) = ∞ (and interpret ∞ + (−∞) = ∞ in case
F−1(0) = −∞). We can use these sets instead of S in (6.3) since they
differ by null sets only.

6.3. Random addition of vertices. Preferential attachment graphs are
a rich topic of research in modern graph theory. See the monograph [24],
along with the survey [30]. The versions in this section are natural because
of (1.2) and the construction (1.7).

Let Tn,p be the random threshold graph with n vertices obtained by adding
vertices one by one with the new vertices chosen as isolated or dominating at
random, independently of each other and with a given probability p ∈ [0, 1]
of being dominating. (Starting with a single vertex, there are thus n − 1
vertex additions.)

The vertices are not equivalent (for example, note that the edges 1i, i 6=
1, appear independently, but not the edges ni, i 6= n), so we also define
the random threshold graph T̂n,p obtained by a random permutation of the
vertices in Tn,p. (When considering unlabeled graphs, there is no difference
between Tn,p and T̂n,p.)
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Remark 6.1. We may, as stated in (1.7), use different probabilities pi for
different vertices. We leave it to the reader to explore this case, for example
with pi = f(i/n) for some given continuous function f : [0, 1]→ [0, 1].

Theorem 6.4. The degree distribution ν(Tn,p) converges a.s. as n→∞ to
a distribution µp that, for 0 < p < 1, has constant density (1−p)/p on (0, p)
and p/(1− p) on (p, 1); µ0 is a point mass at 0 and µ1 is a point mass at 1.
In particular, µ1/2 is the uniform distribution on [0, 1].

Consequently, Tn,p
a.s.−→ Γµp ∈ T∞.

Proof. Let Zn(t) be the number of vertices in {1, . . . , bntc} that are added as
dominating. It follows from the law of large numbers that n−1Zn(t) a.s.−→ pt,
uniformly on [0, 1], and we assume this in the sequel of the proof.

If vertex k was added as isolated, it has degree Zn(1)−Zn(k/n), since its
neighbours are the vertices that later are added as dominating. Similarly, if
vertex k was added as dominating, it has degree k − 1 + Zn(1) − Zn(k/n).
Consequently, if µn is the (normalized) degree distribution of Tn,p, and φ is
any continuous function on [0, 1], then

∫ 1

0
φ(t) dµn(t) =

1
n

n∑
k=1

φ(d(k)/n)

=
1
n

n∑
k=1

(
φ
(
n−1Zn(1)− n−1Zn(k/n)

)
1[∆Zn(k/n) = 0]

+ φ
(
n−1Zn(1)− n−1Zn(k/n) + (k − 1)/n

)
1[∆Zn(k/n) = 1]

)
.

Since n−1Zn(t) → pt uniformly, and φ is uniformly continuous, it follows
that, as n→∞,

∫ 1

0
φ(t) dµn(t) =

1
n

n∑
k=1

(
φ
(
p(1− k/n)

)
1[∆Zn(k/n) = 0]

+ φ
(
p(1− k/n) + k/n

)
1[∆Zn(k/n) = 1]

)
+ o(1)

=
∫ 1

0
φ
(
p(1− t)

)
d
(
n−1bntc − n−1Zn(t)

)
+
∫ 1

0
φ
(
p(1− t) + t

)
d
(
n−1Zn(t)

)
+ o(1).
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Since the convergence n−1Zn(t) → pt implies (weak) convergence of the
corresponding measures, we finally obtain, as n→∞,∫ 1

0
φ(t) dµn(t)→

∫ 1

0
φ
(
p(1− t)

)
(1− p) dt+

∫ 1

0
φ
(
p(1− t) + t

)
pdt

=
1− p
p

∫ p

0
φ(x) dx+

p

1− p

∫ 1

p
φ(x) dx

=
∫ 1

0
φ(x) dµp(x),

with obvious modifications if p = 0 or p = 1. �

1

10

1

10

Figure 8. Two examples of the sets Sp; the one on the right
shows the special case where p = 0.5.

Let Sp := Sµp be the corresponding subset of [0, 1]2. If 0 < p < 1, µp has
the distribution function

Fµp(x) =

{
1−p
p x, 0 ≤ x ≤ p,

1− p
1−p(1− x), p ≤ x ≤ 1,

(6.5)

and it follows from (5.2) that Sp is the quadrilateral with vertices (0, 1),
(1− p, 1− p), (1, 0) and (1, 1), see Figure 8. In the special case p = 1/2, µp
is the uniform distribution on [0, 1], and Sp is the triangle {(x, y) ∈ [0, 1]2 :
x+y ≥ 1} pictured in Figure 4 with vertices (0, 1), (1, 0) and (1, 1). Finally,
S0 consists of the upper and right edges only, and S1 = [0, 1]2.

Removing any vertex from Tn,p (and relabeling the remaining ones) yields
Tn−1,p. It follows that the same property holds for T̂n,p, so T̂n,p satisfies the
assumptions of Theorem 6.2. Since T̂n,p has the same degree distribution as
Tn,p, Theorems 6.2 and 6.4 show the following equality.
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Corollary 6.5. If 0 ≤ p ≤ 1 and n ≥ 1, then T̂n,p
d= Tn;Sp.

Hence the random threshold graphs in this subsection are special cases
of the general construction in Subsection 6.1. We can also construct them
using random weights as in Subsection 6.2.

Corollary 6.6. If 0 ≤ p ≤ 1 and n ≥ 1, then T̂n,p
d= Tn;X,0, where X has

the density 1− p on (−1, 0) and p on (0, 1).

Proof. A simple calculation shows that the set S given by (6.3) is the quadri-
lateral Sp. �

We may transform X by a linear map; for example, we may equivalently
take X with density 2(1−p) on (0, 1/2) and 2p on (1/2, 1), with the threshold
t = 1. In particular, T̂n,1/2

d= Tn;U,1, where U ∼ U(0, 1) as in Example 1.3.

6.4. Uniform random threshold graphs. Let Tn be a random unlabeled
threshold graph of order n with the uniform distribution studied in Section 2.
Similarly, let TLn be a random labeled threshold graph of order n with the
uniform distribution. Although Tn and TLn have different distributions, see
Section 2, the next theorem shows that they have the same limit as n→∞.

Theorem 6.7. The degree distributions ν(Tn) and ν(TLn ) both converge in
probability to the uniform distribution λ on [0, 1]. Hence, Tn

p−→ Γλ and
TLn

p−→ Γλ.

By Subsection 2.1, Tn
d= Tn,1/2; hence the result for unlabeled graphs

follows from Theorem 6.4.

Proof. We use Theorem 2.4; in fact, the proof works for random threshold
graphs generated by Algorithm 2.5 for any i.i.d. random variables B2, B3, . . .
with finite mean, and any B1. (In the case when B2 is always a multiple of
some d > 1, there is a trivial modification.) Let β := EB2.

The algorithm starts by choosing (random) block lengths B1, B2, . . . until
their sum is at least n, and then rejects them and restarts (Step 3) unless
the sums is exactly n. It is simpler to ignore this check, so we consider the
following modified algorithm: Take B1, B2, . . . as above. Let Sk :=

∑k
j=1Bj

be their partial sums and let τ(n) := min{k : Sk ≥ n}. Toss a coin to
determine whether the first block is isolated or dominating, and construct a
random threshold graph by adding τ(n) blocks of vertices with B1, . . . , Bτ(n)

elements, alternatingly isolated and dominant.
This gives a random graph G̃n with Sτ(n) vertices, but conditioned on

Sτ(n) = n, we obtain the desired random threshold graph. (Cf. Theo-
rem 2.4.) Since P(Sτ(n) = n) converges to 1/β > 0 by renewal theory,
it suffices to prove that ν(G̃n)

p−→ λ as n→∞. In fact, we will show that
ν(G̃n) a.s.−→ λ if we first choose an infinite sequence B1, B2, . . . and then let
n→∞.
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Let SOm :=
∑

2k+1≤mB2k+1 and SEm :=
∑

2k≤mB2k be the partial sums
of the odd and even terms. By the law of large numbers, a.s. Sn/n → β
and SOn /n → 1

2β, SEn /n → 1
2β. We now consider a fixed sequence (Bj)∞1

such that these limits hold. Since Sτ(n)−1 < n ≤ Sτ(n), it follows, as is
well-known, that n/τ(n)→ β, so τ(n) = n/β + o(n).

Suppose for definiteness that the first block is chosen to be isolated; then
every odd block is isolated and every even block is dominating. (In the
opposite case, interchange even and odd below.) If i ∈ (S2k, S2k+1], then i
belongs to block 2k+ 1, so i is added as isolated, and the neighbors of i will
be only the vertices added after i as dominating, i.e.

⋃
k<`≤τ(n)/2(S2`−1, S2`],

and
d(i) =

∑
2k<2`≤τ(n)

B2` = SEτ(n) − S
E
τ(i).

If instead i ∈ (S2k−1, S2k], then i is also joined to all vertices up to S2k, and
thus

d(i) =
∑

2`≤τ(n)

B2` +
∑

2`+1≤τ(i)

B2`+1 = SEτ(n) + SOτ(i).

Hence, if i is in an odd block,

d(i)
n

=
1
n

(
τ(n)

β

2
− τ(i)

β

2
+ o(n)

)
=
n− i+ o(n)

2n
=

1
2
− i

2n
+ o(1),

and if i is in an even block, similarly,

d(i)
n

=
1
2

+
i

2n
+ o(1).

Now fix t ∈ (0, 1/2) and let ε > 0. Then the following holds if n is large
enough: If i is in an even block, then d(i)/n ≥ 1/2 + o(1) > t. If i is in an
odd block and i ≤ i1 := (1 − 2t − 2ε)n, then d(i)/n = 1

2(n − i)/n + o(1) ≥
t + ε + o(1) > t. If i is in an odd block and i ≥ i2 := (1 − 2t + 2ε)n,
then d(i)/n = 1

2(n − i)/n + o(1) ≤ t − ε + o(1) < t. Consequently, for
large n, d(i)/n ≤ t only if i is in an odd block (S2k, S2k+1], and in this case
2k + 1 > τ(i1) is necessary and 2k + 1 > τ(i2) is sufficient. Hence,

SOτ(n) − S
O
τ(i2) ≤ |{i : d(i)/n ≤ t}| ≤ SOτ(n) − S

O
τ(i1).

Since ν(G̃n)[0, t] = 1
n |{i : d(i)/n ≤ t}| and

1
n

(
SOτ(n) − S

O
τ(ij)

)
=
β(τ(n)− τ(ij)) + o(n)

2n
=
n− ij + o(n)

2n
= t± ε+ o(1),

it follows that

t− ε+ o(1) ≤ ν(G̃n)[0, t] ≤ t+ ε+ o(1).

Since ε is arbitrary, this shows that ν(G̃n)[0, t]→ t, for every t ∈ (0, 1
2). We

clearly obtain the same result if the first block is dominating.
For t ∈ (1

2 , 1) we can argue similarly, now analysing the dominant blocks.
Alternatively, we may apply the result just obtained to the complement of
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G̃n, which is obtained from the same Bj by switching the types of the blocks.
This shows that ν(G̃n)[0, t]→ t for t ∈ (1

2 , 1) too.
Hence, ν(G̃n)[0, t]→ t for every t ∈ (0, 1) except possibly 1

2 , which shows
that ν(G̃n)→ λ. �

7. Vertex degrees in uniform random threshold graphs

We have seen in Theorem 6.7 that the normalized degree distributions
ν(Tn) and ν(TLn ) for uniform unlabeled and labeled random threshold graphs
both converge to the uniform distribution on [0, 1]. This is for weak conver-
gence of distributions in P, which is equivalent to averaging over degrees in
intervals (an, bn); we here refine this by studying individual degrees.

LetNd(G) be the number of vertices of degree d in the graphG. Thus, DG,
the degree of a random vertex in G has distribution P(DG = d) = Nd/v(G).
(Recall that ν(G) is the distribution of DG/v(G), see Section 4.)

We will study the random variables Nd(Tn) and Nd(TLn ) describing the
numbers of vertices of a given degree d in a uniform random unlabeled or
labeled threshold graph, and in particular their expectations ENd(Tn) and
ENd(TLn ); note that ENd(Tn)/n and ENd(TLn )/n are the probabilities that
a given (or random) vertex in the random graph Tn or TLn has degree d. By
symmetry under complementation,

Nd(Tn) d= Nn−1−d(Tn) and Nd(TLn ) d= Nn−1−d(TLn ).

Let us first look at N0, the number of isolated vertices. (By symmetry, we
have the same results for Nn−1, the number of dominating vertices). Note
that, for every n ≥ 2, P(N0(Tn) = 0) = P(N0(TLn ) = 0) = 1/2 by symmetry.

Theorem 7.1. (i) For any n ≥ 1,

P
(
N0(Tn) = j

)
=


2−j−1, 0 ≤ j ≤ n− 2,
0, j = n− 1,
2−n+1, j = n.

(7.1)

In other words, if X ∼ Ge(1/2), then N0(Tn) d= X ′n, where X ′n := Xn if
x < n − 1 and X ′n := n if Xn ≥ n − 1. Furthermore, EN0(Tn) = 1, and
N0(Tn) d−→ Ge(1/2) as n→∞, with convergence of all moments.

(ii) P
(
N0(TLn ) = j

)
= t(n, j)/t(n), where t(n, j) is given by (2.7); in

particular, if 0 ≤ j ≤ n− 2, then

P
(
N0(TLn ) = j

)
=

1
2j!

t(n− j)/(n− j)!
t(n)/n!

=
1

2j!
(log 2)j

(
1 +O(ρn−j)

)
with ρ = log 2/(2π) ≈ 0.11. Hence, N0(TLn ) d−→ Po(log 2) as n→∞ with
convergence of all moments; in particular, EN0(TLn )→ log 2.

Proof. (i): A threshold graph has j isolated vertices if and only if the ex-
tended binary code α1 · · ·αn in Section 2 ends with exactly j 0’s. For a
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random unlabeled threshold graph Tn, the binary code α2 · · ·αn is uniformly
distributed, and thus (7.1) follows. The remaining assertions follow directly.

(ii): In the labeled case, the exact distribution is given by (2.7), and the
asymptotics follow by (2.4). Uniform integrabilit of any power N0(TLn )m

follows by the same estimates, and thus moment convergence holds. �

For higher degrees, we begin with an exact result for the unlabeled case.

Theorem 7.2. ENd(Tn) = 1 for every d = 0, . . . , n− 1.

Actually, this is the special case p = 1/2 of a more general theorem for the
random threshold graph Tn,p defined in Subsection 6.3: (Cf. Theorem 6.4,
which is for weak convergence, but on the other hand yields an a.s. limit
while we here study the expectations.)

Theorem 7.3. Let 0 < p < 1. If q = 1 − p and X ∼ Bin(n, p), then, for
0 ≤ d ≤ n− 1,

ENd(Tn,p) =
q

p
+
(p
q
− q

p

)
P(X ≤ d).

Proof. We use the definition in Subsection 6.3. (For the uniform case p =
1/2, this is Algorithm 2.1.) Let di be the degree of vertex i. Then, if α1 · · ·αn
is the extended binary code of the graph, we have

di = (i− 1)αi +
n∑

j=i+1

αj .

Since the αi are i.i.d. Be(p) for i = 2, . . . , n, the probability generating
function of di is

Exdi = Ex(i−1)αi

n∏
j=i+1

Exαj = (pxi−1 + q)(px+ q)n−i.

Consequently,∑
d

ENd(Tn,p)xd =
n∑
i=1

Exdi =
n∑
i=1

pxi−1(px+ q)n−i +
n∑
i=1

q(px+ q)n−i

= p
xn − (px+ q)n

x− (px+ q)
+ q

1− (px+ q)n

1− (px+ q)

=
(q/p) + (p/q − q/p)(px+ q)n − (p/q)xn

1− x
.

In the special case p = 1/2, this is (1−xn)/(1−x) =
∑n−1

d=0 x
d, which shows

Theorem 7.2 by identifying coefficients. For general p, Theorem 7.3 follows
in the same way. �

Recall that Rd denotes the number of preferential arrangements, or sur-
jection numbers, given in (2.5).
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Theorem 7.4. (i) In the unlabeled case, for any sequence d = d(n) with
0 ≤ d ≤ n− 1, Nd(Tn) d−→ Ge(1/2) with convergence of all moments.

(ii) In the labeled case, let Xd, 0 ≤ d ≤ ∞, have the modified Poisson
distribution given by

P(Xd = `) =

{
γd

log 2 P
(
Po(log 2) = `

)
= γd

(log 2)`−1

2·`! , ` ≥ 1,
1− γd

2 log 2 , ` = 0,

where γ0 := log 2, γd := 2Rd(log 2)d+1/d! for d ≥ 1, and γ∞ := 1. Then, for
every fixed d ≥ 0, Nd(TLn ) d= Nn−1−d(TLn ) d−→ Xd, and for every sequence
d = d(n)→∞ with n−d→∞, Nd(TLn ) d= Nn−1−d(TLn ) d−→ X∞ as n→∞,
in both cases with convergence of all moments.

In particular, ENd(TLn ) = ENn−1−d(TLn ) converges to γd for every fixed
d, and to γ∞ = 1 if d→∞ and n− d→∞.

In the labeled case we thus have, in particular, EN0(TLn ) → log 2 ≈
0.69315, EN1(TLn )→ 2(log 2)2 ≈ 0.96091, EN2(TLn )→ 3(log 2)3 ≈ 0.99907,
EN3(TLn ) → 13

3 (log 2)4 ≈ 1.00028. The values for degrees 0 and 1 (and
symmetrically n− 1 and n− 2) are thus substantially smaller than 1, which
is clearly seen in Figure 7. (We can regard this as an edge effect; the vertices
with degrees close to 0 or n − 1 are the ones added last in Algorithm 2.5.
Figure 7 also shows an edge effect at the other side; there is a small bump
for degrees arond n/2, which correspond to the vertices added very early in
the algorithm; this bump vanishes asymptotically, as shown by Theorem 7.4;
we believe that it has height of order n−1/2 and width of order n1/2, but we
have not analyzed it in detail.)

Proof. The cases d = 0 and d = n − 1 follow from Theorem 7.1. We may
thus suppose 1 ≤ d ≤ n− 2. We use Algorithm 2.5. We know that vertices
in each block have the same degree, while different blocks have different
degrees; thus there is at most one block with degrees d.

Let pd(`) be the probability that there is such a block of length ` ≥ 1,
and that this block is added as isolated. By symmetry, the probability that
there is a dominating block of length ` with degrees d is pn−1−d and thus

P(Nd = `) = pd(`) + pn−1−d(`), ` ≥ 1. (7.2)

If block j is an isolated block, then the degree of the vertices in it equals
the number of vertices added as dominating after it, i.e., Bj+1 +Bj+3 + · · ·+
Bj+2k−1, if the total number τ of blocks is j+2k−1 or j+2k. Consequently,
there is an isolated block of length ` with vertices of degree d if and only if
there exist j ≥ 1 and k ≥ 1 with

• Bj = `,
• block j is isolated,
•
∑k

i=1Bj+2i−1 = d,
•
∑j+2k−1

i=1 Bi = n or
∑j+2k

i=1 Bi = n.
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Recall that B1, B2, . . . are independent and that B2, B3, . . . have the same
distribution while B1 has a different one. (The distributions differ between
the unlabeled and labeled cases.) Let

Ŝn :=
m∑
i=1

Bi and Sn :=
m∑
i=1

Bi+1.

Further, let

û(n) =
∞∑
m=0

P(Ŝm = n) = P(Bτ = n) = P
( τ∑
i=1

Bi = n
)
,

u(n) =
∞∑
m=0

P(Sm = n),

and recall that u(n), û(n)→ 1/µ := 1/EB2 (exponentially fast) by standard
renewal theory (for example by considering generating functions). For any
m ≥ j + 2k − 1,

m∑
i=1

Bi −Bj −
k∑
i=1

Bj+2i−1
d=

{
Sm−1−k, j = 1,
Ŝm−1−k, j ≥ 2,

and it follows that, since B1, B2, . . . are independent and we condition on
Ŝτ = n,

pd(`) =
1

2û(n)

{ ∞∑
k=1

P(B1 = `) P(Sk = d)

·
(
P(Sk−1 = n− `− d) + P(Sk = n− `− d)

)
+
∞∑
j=2

∞∑
k=1

P(Bj = `) P(Sk = d)

·
(
P(Ŝj+k−2 = n− `− d) + P(Ŝj+k−1 = n− `− d)

)}
(7.3)

In the double sum, P(Bj = `) = P(B2 = `) does not depend on j, so the
sum is at most

P(B2 = `)
∑
k

P(Sk = d)2û(n− `− d) = 2 P(B2 = `)u(d)û(n− `− d)

= O(P(B2 = `)).

Similarly, the first sum is O(P(B1 = `)) = O(P(B2 = `)), and it follows that
pd(`) = O(P(B2 = `)) and thus, by (7.2),

P(Nd = `) = O(P(B2 = `)), (7.4)

uniformly in n, d and `. This shows tightness, so convergence P(Nd = `)→
P(X = `) for some non-negative integer valued random variable X and each
fixed ` ≥ 1 implies convergence in distribution (i.e., for ` = 0 too). Further,
since all moments of B2 are finite, (7.4) implies that all moments ENm

d are
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bounded, uniformly in d and n; hence convergence in distribution implies
that all moments converge too. In the rest of the proof we thus let ` ≥ 1 be
fixed.

If d ≤ n/2 it is easy to see that P(Sk−1 = n− `−d) + P(Sk = n− `−d) =
O
(
(n − ` − d)−1/2

)
= O(n−1/2), uniformly in k, so the first sum in (7.3)

is O
(
n−1/2u(d)

)
= O

(
n−1/2

)
. If d > n/2, we similarly have P(Sk = d) =

O
(
d−1/2

)
= O

(
n−1/2

)
and thus the sum is O

(
n−1/2u(n−`−d)

)
= O

(
n−1/2

)
.

Hence (7.3) yields

pd(`) = O
(
n−1/2

)
+

P(B2 = `)
2û(n)

∞∑
k=1

P(Sk = d)

·
(∑
i=k

P(Ŝi = n− `− d) +
∑
i=k+1

P(Ŝi = n− `− d)
)
. (7.5)

The term with i = k can be taken twice, just as the ones with i > k, since∑
k P(Sk = d) P(Ŝk = n − ` − d) = O

(
n−1/2

)
by the same argument as for

the first sum in (7.3). Further, for i ≥ k, Ŝi− Ŝk
d= Si−k and is independent

of Ŝk; thus

P(Ŝi = n−`−d) = P(Si−k = n−`−d−Ŝk) = E P
(
Si−k = n−`−d−Ŝk | Ŝk

)
and

∑∞
i=k P(Ŝi = n− `− d) = Eu(n− `− d− Ŝk). Hence, (7.5) yields

pd(`) =
P(B2 = `)
û(n)

∞∑
k=1

P(Sk = d) Eu(n− `− d− Ŝk) +O
(
n−1/2

)
. (7.6)

If d is fixed, then Eu(n− `−d− Ŝk)→ µ−1 by dominated convergence as
n→∞ for each k, and thus (7.6) yields, by dominated convergence again,

pd(`)→ P(B2 = `)
∞∑
k=1

P(Sk = d) = u(d) P(B2 = `). (7.7)

If d→∞, we use the fact that u(m)− 1[m ≥ 0]µ−1 is summable over Z
to see that

Eu(n− `− d− Ŝk)− µ−1 P(n− `− d− Ŝk ≥ 0) = O
(
max
m

P(Ŝk = m)
)
,

which tends to 0 as k → ∞; on the other hand, P(Sk = d) → 0 for every
fixed k. It follows that (7.6) yields

pd(`) = P(B2 = `)
∞∑
k=1

P(Sk = d) P(Ŝk ≤ n− `− d) + o(1).

If τd := min{k : Sk ≥ d}, and Ŝ′k denotes a copy of Ŝk independent of {Sj}∞1 ,
then

∞∑
k=1

P(Sk = d) P(Ŝk ≤ n− `− d) = u(d) P
(
Ŝ′τd ≤ n− `− d | Sτd = d

)
.
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It is easy to see that, with σ2 := Var(B2), as d→∞,(
(Ŝ′τd − d)/

√
d | Sτd = d

)
=
(
(Ŝ′τd − Sτd)/

√
d | Sτd = d

) d−→ N(0, 2σ2/µ),

cf. [14] (the extra conditioning on Sτd = d makes no difference). Hence,
when d→∞,

pd(`) = P(B2 = `)u(d)Φ
(
(n− `− 2d)/

√
d
)

+ o(1).

(By (7.7), this holds for fixed d too.) We next observe that Φ
(
(n − ` −

2d)/
√
d
)

= Φ
(
(n − 2d)/

√
n/2

)
+ o(1); this is easily seen by considering

separately the three cases d/n → a ∈ [0, 1/2), d/n → a ∈ (1/2, 1], and
d/n→ 1/2 and (n− 2d)/

√
n/2→ b ∈ [−∞,∞] (the general case follows by

considering suitable subsequences). Hence, we have when d→∞, recalling
that then u(d)→ µ−1,

pd(`) = µ−1 P(B2 = `)Φ
(
(n− 2d)/

√
n/2

)
+ o(1).

For fixed d, this implies that pn−d−1(`) → 0, and thus (7.2) and (7.7)
yield

P(Nd = `) = pd(`) + pn−1−d(`) = u(d) P(B2 = `) + o(1).

Similarly, if d→∞ and n− d→∞,

P(Nd = `) = pd(`) + pn−1−d(`)

= µ−1 P(B2 = `)
(
Φ
(
(n− 2d)/

√
n/2

)
+ Φ

(
(2d+ 2− n)/

√
n/2

))
+ o(1)

= µ−1 P(B2 = `) + o(1).

We have thus proven convergence as n→∞, with all moments, Nd
d−→

Xd for fixed d and Nd
d−→ X∞ for d = d(n)→∞ with n− d→∞, where

P(Xd = `) = u(d) P(B2 = `) = 2u(d) P(B∗ = `), ` ≥ 1, (7.8)

P(Xd = 0) = 1− P(Xd ≥ 1) = 1− u(d), (7.9)

for 1 ≤ d ≤ ∞, with u(∞) := µ−1.
In the unlabeled case, B2 = (B∗ | B∗ ≥ 1) d= B∗ + 1 with B∗ ∼ Ge(1/2).

Consider a random infinite string α1α2 · · · of i.i.d. Be(1/2) binary digits, and
define a block as a string of m ≥ 0 0’s followed by a single 1. Then Bj+1,
j ≥ 1, can be interpreted as the successive block lengths in α1α2 · · · , and thus
u(d) is the probability that some block ends at d, i.e., u(d) = P(αd = 1) =
1/2, for every d ≥ 1. It follows from (7.8)–(7.9) that Xd

d= B∗ ∼ Ge(1/2)
for every d ≥ 1, and (i) follows.
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In the labeled case, when B∗ ∼ Po(log 2), we use generating functions:
∞∑
d=0

u(d)xd =
∞∑
k=0

ExSk =
∞∑
k=0

(
ExB2

)k =
1

1− ExB2
=

P(B∗ ≥ 1)
1− ExB∗

=
1/2

1− e(x−1) log 2
=

1
2− ex log 2

=
∞∑
d=0

Rd
d!

(x log 2)d,

where we recognize the gererating function (2.6). Thus, u(d) = Rd(log 2)d/d!.
(A direct combinatorial proof of this is also easy.)

We let, using µ := EB2 = EB∗/P(B∗ ≥ 1) = 2 log 2,

γd := EXd = u(d) EB2 = µu(d) = 2 log 2u(d) = 2Rd(log 2)d+1/d!

and note that γd → γ∞ = 1 as d → ∞ since u(d) → µ−1, or by the known
asymptotics of Rd [12, (II.16)]. The description of Xd in the statement now
follows from (7.8)–(7.9). �

8. Random bipartite threshold graphs

The constructions and results in Section 6 have analogues for bipartite
threshold graphs. The proofs are simple modifications of the ones above and
are omitted.

8.1. Increasing set. For any increasing S ⊆ [0, 1]2, define Tn1,n2;S :=
G(n1, n2,1S). In other words, take i.i.d. random variables U ′1, . . . , U

′
n1
,

U ′′1 , . . . , U
′′
n2
∼ U(0, 1) and draw an edge ij if (U ′i , U

′′
j ) ∈ S.

Theorem 8.1. As n1, n2 →∞, Tn1,n2;S
a.s.−→ Γ′′S. In particular, the degree

distribution ν1(Tn;S) a.s.−→ ν1(Γ′′S), which equals the distribution of ϕS(U)
defined by (6.1). �

As in Section 6, this gives a canonical representation of random bipartite
threshold graphs under natural assumptions.

Theorem 8.2. Suppose that (Gn1,n2)n1,n2≥1 are random bipartite threshold
graphs with V1(Gn1,n2) = [n1] and V2(Gn1,n2) = [n2] such that the distri-
bution of each Gn1,n2 is invariant under permutations of V1 and V2 and
that the restrictions (induced subgraphs) of Gn1+1,n2 and Gn1,n2+1 to V (G)
both have the same distribution as Gn1,n2, for every n1, n2 ≥ 1. If further
ν1(Gn1,n2)

p−→ µ as n1, n2 →∞, for some µ ∈ P, then, for every n1, n2,

Gn1,n2

d= Tn1,n2;Sµ. �

8.2. Random weights. Definition (1.9) suggests the following construc-
tion:

(8.1) Let X and Y be two random variables and let t ∈ R. Let X1, X2, . . . ,
be copies of X and Y1, Y2, . . . , copies of Y , all independent, and let
Tn1,n2;X,Y,t be the bipartite threshold graph with vertex sets [n1] and
[n2] and edges ij for all pairs ij such that Xi + Yj > t.
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Theorem 8.3. Let S be the increasing set

S := {(x, y) ∈ (0, 1]2 : F−1
X (x) + F−1

Y (y) > t}. (8.2)

Then Tn1,n2;X,Y,t
d= Tn1,n2;S for every n1, n2 ≥ 1.

Furthermore, as n1, n2 →∞, the degree distribution ν1(Tn1,n2;X,Y,t)
a.s.−→ µ

and thus Tn1,n2;X,Y,t
a.s.−→ Γ′′µ, where µ ∈ P is the distribution of the random

variable 1− FY (t−X), i.e.

µ[0, s] = P
(
1− FY (t−X) ≤ s

)
, s ∈ [0, 1]. (8.3)

�

In the special case when P(X ∈ [0, 1]) = 1, Y ∼ U(0, 1) and t = 1, (8.3)
yields µ[0, s] = P(X ≤ s), so µ is the distribution of X; further, the set S in
(8.2) is a.e. equal to Sµ in (5.3).

Corollary 8.4. If µ ∈ Ps, let X have distribution µ and let Y ∼ U(0, 1).
Then Tn1,n2;X,Y,t

d= Tn1,n2;Sµ for every n1, n2 ≥ 1. Furthermore, as n1, n2 →∞,
ν1(Tn1,n2;X,Y,t)

p−→ µ and Tn1,n2;X,Y,t
p−→ Γ′′µ.

This yields another canonical construction for every µ ∈ P. (We claim
only convergence in probability in Corollary 8.4; convergence a.s. holds at
least along every increasing subsequence (n1(m), n2(m)), see [10, Remark
8.2].)

8.3. Random addition of vertices. Definition (1.10) suggests the follow-
ing construction:

(8.4) Let Tn1,n2;p1,p2 be the random bipartite threshold graph with n1 +n2

vertices obtained as follows: Take n1 ‘white’ vertices and n2 ‘black’
vertices, and arrange them in random order. Then, join each white
vertex with probability p1 to all earlier black vertices, and join each
black vertex with probability p2 to all earlier white vertices (other-
wise, the vertex is joined to no earlier vertex), the decisions being
made independently by tossing a biased coin once for each white
vertex, and another biased coin once for each black vertex.

Let, for p1, p2 ∈ [0, 1], µp1,p2 be the probability measure in P with distri-
bution function

Fµp1,p2 (x) =

{
1−p1
p2

x, 0 ≤ x < p2,

1− p1
1−p2 (1− x), p2 ≤ x < 1.

(8.5)

Hence, µp1,p2 has density (1 − p1)/p2 on (0, p2) and p1/(1 − p2) on (p2, 1);
if p2 = 0 there is also a point mass 1 − p1 at 0, and if p2 = 1 there is
also a point mass p1 at 1. It follows from (5.2) that the corresponding
subset Sp1,p2 := Sµp1,p2 of [0, 1]2 is the quadrilateral with vertices (0, 1),
(1 − p1, 1 − p2), (1, 0) and (1, 1) (including degenerate cases when p1 or p2

is 0 or 1).
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This is an extension of the definitions in Subsection 6.3; we have µp,p = µp
and Sp,p = Sp. Note also that µ†p1,p2 = µp2,p1 . In particular, µp1,p2 ∈ Ps only
if p1 = p2.

Theorem 8.5. As n1, n2 →∞, the degree distributions ν1(Tn1,n2;p1,p2)
p−→

µp1,p2 and ν2(Tn1,n2;p1,p2)
p−→ µp2,p1; consequently, Tn1,n2;p1,p2

p−→ Γ′′p1,p2 :=
Γ′′µp1,p2 ∈ T

′′
∞,∞.

Corollary 8.6. If p1, p2 ∈ [0, 1] and n1, n2 ≥ 1, then

Tn1,n2;p1,p2
d= Tn1,n2;Sp1,p2

d= Tn1,n2;X1,X2,0,

where Xj has the density 1− pj on (−1, 0) and pj on (0, 1), j = 1, 2.

Note that if p1 + p2 = 1, then Sp1,p2 is the upper triangle S1/2 := {(x, y) :
x + y ≥ 1}. Hence the distribution of Tn1,n2;p1,p2 does not depend on p1 as
long as p2 = 1 − p1. In particular, we may then choose p1 = 1 and p2 = 0.
In this case, Definition (8.4) simplifies as follows.

(8.6) Let Tn1,n2 be the random bipartite threshold graph with n1 + n2

vertices obtained as follows: Take n1 ‘white’ vertices and n2 ‘black’
vertices, and arrange them in random order. Join every white vertex
to every earlier black vertex.

If p1 = 1 and p2 = 0, then further X1
d= U ∼ U(0, 1) and X2

d= U − 1
in Corollary 8.6. Hence, we have found a number of natural constructions
that yield the same random bipartite threshold graph.

Corollary 8.7. If p1 ∈ [0, 1] and n1, n2 ≥ 1, then

Tn1,n2;p1,1−p1
d= Tn1,n2;1,0 = Tn1,n2

d= Tn1,n2;S1/2

d= Tn1,n2;U,U,1,

with U ∼ U(0, 1). �

We will see in the next subsection that this random bipartite threshold
graph is uniformly distributed as an unlabeled bipartite threshold graph.

8.4. Uniform random bipartite threshold graphs. It is easy to see that
for every bipartite threshold graph, if we color the vertices in V1 white and
the vertices in V2 black, then there is an ordering of the vertices such that
a white vertex is joined to every earlier black vertex but not to any later.
(For example, if there are weights as in (1.9), order the vertices according to
w′i and w′′j , taking the white vertices first in case of a tie.) This yields a 1–
1 correspondence between unlabeled bipartite threshold graphs on n1 + n2

vertices and sequences of n1 white and n2 black balls. Consequently, the
number of unlabeled bipartite threshold graphs is

|Tn1,n2 | =
(
n1 + n2

n1

)
, n1, n2 ≥ 1.

Moreover, it follows that Tn1,n2 is uniformly distributed in Tn1,n2 ; hence
Corollary 8.7 yields the following:
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Theorem 8.8. The random bipartite threshold graphs Tn1,n2, Tn1,n2;p1,1−p1
(0 ≤ p1 ≤ 1), Tn1,n2;S1/2

, Tn1,n2;U,U,1 are all uniformly distributed, regarded
as unlabeled bipartite threshold graphs. �

We have not studied uniform random labeled bipartite threshold graphs.

9. Spectrum of Threshold Graphs

There is a healthy literature on the eigenvalue distribution of the adja-
cency matrix for various classes of random graphs. Much of this is focused
on the spectral gap (e.g., most k-regular graphs are Ramanujan [9]). See
Jakobson, Miller, Rivin, Rudnick [18] for evidence showing that random k-
regular graphs have the same limiting eigenvalue distribution as the Gauss-
ian orthogonal ensemble. The following results show that random threshold
graphs give a family of examples with highly controlled limiting spectrum.

There is a tight connection between the degree distribution of a threshold
graph and the spectrum of its Laplacian, see [28, 16, 29]. Recall that the
Laplacian of a graph G, with V (G) = [n], say, is the n×n matrix L = D−A,
where A is the adjacency matrix of G and D is the diagonal matrix with
entries dii = dG(i). (Thus L is symmetric and has row sums 0.) It is easily
seen that 〈Lx, y〉 =

∑
ij∈E(G)(xi−xj)(yi−yj) for x, y ∈ Rn. The eigenvalues

λi of L satisfy 0 ≤ λi ≤ n, i = 1, . . . , n, and we define the normalized spectral
distribution νL ∈ P as the empirical distribution of {λi/n}ni=1.

For a threshold graph, it is easily seen that if we order the vertices as in
(1.2) and Subsection 2.1, then for each i = 2, . . . , n the function

ϕi(j) :=


−1, j < i,

i− 1, j = i,

0, j > i.

is an eigenfunction of L with eigenvalue d(i) or d(i)+1, depending on whether
i is added as isolated or dominating, i.e., whether αi = 0 or 1 in the binary
code of the graph. Together with ϕ1 := 1 (which is an eigenfunction with
eigenvalue 0 for any graph), these form an orthogonal basis of eigenfunctions.
The Laplacian spectrum thus can be written

{0} ∪ {d(i) + αi : i = 2, . . . , n}. (9.1)

In particular, the eigenvalues are all integers.
Moreover, (9.1) shows that the spectrum {λi}n1 is closely related to the

degree sequence; in particular, asymptotically they are the same in the sense
that if Gn is a sequence of threshold graphs with v(Gn) → ∞ and µ ∈ P,
then

νL(Gn)→ µ ⇐⇒ ν(Gn)→ µ. (9.2)

(See [16] for a detailed comparison of the Laplacian spectrum and the degree
sequence for threshold graphs.) In particular, Theorem 5.5 can be restated
using the spectral distribution:
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Theorem 9.1. Let Gn be a sequence of threshold graphs such that v(Gn)→
∞. Then Gn converges in U as n→∞, if and only if the spectral distri-
butions νL(Gn) converge to some distribution µ. In this case, µ ∈ Ps and
Gn → Γµ. �

Remark 9.1. It can be shown that the spectrum and the degree sequence
are asymptotically close in the sense that (9.2) holds for any graphs Gn with
v(Gn)→∞, even though in general there is no simple relation like (9.1).

Another relation between the spectrum and the degree sequence for a
threshold graph is that their Ferrers diagrams are transposes of each other,
see [28, 29]; this is easily verified from (9.1) by induction. If we scale the
Ferrers diagrams by n, so that they fit in the unit square [0, 1]2 with a corner
at (0, 1), then the lower boundary is the graph of the empirical distribution
function of the corresponding normalized values, i.e., the distribution func-
tion of ν(G) or νL(G). Hence, these distribution functions are related by
reflection in the diagonal between (0, 1) and (1, 0), so by (5.11) (and the
comment after it), for any threshold graph G,

νL(G) = ν(G)†.
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SJ to Université de Nice and of PD and SH to Uppsala University in January
and March 2007, partly funded by the ANR Chaire d’excellence to PD. Work
was continued during a visit of SJ to the Institut Mittag-Leffler, Djursholm,
Sweden, 2009. SH was supported by grants NSF DMS-02-41246 and NIGMS
R01GM086884-2. We thank Adam Guetz and Sukhada Fadnavis for careful
reading of a preliminary draft.

References

[1] D. Aldous. Exchangeability and related topics. Lecture Notes in Math, Jan 1985.
[2] J. S. Beissinger and U. N. Peled. Enumeration of labelled threshold graphs and a

theorem of Frobenius involving Eulerian polynomials. Graphs Combin., 3(3):213–219,
1987.

[3] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.
[4] C. Borgs, J. T. Chayes, and L. Lovász. Unique limits of dense graph sequences. 2007.

Preprint, http://arxiv.org/math/0803.1244v1.
[5] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. Convergent

sequences of dense graphs I: subgraph frequencies, metric properties and testing.,
2007. Preprint, January 2007. http://arxiv.org/math.CO/0702004.

[6] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[7] K. Brown and P. Diaconis. Random walks and hyperplane arrangements. Ann.
Probab., pages 1813–1854, 1998.
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