MOMENTS OF GAMMA TYPE AND THE BROWNIAN
SUPREMUM PROCESS AREA

SVANTE JANSON

ABSTRACT. We study positive random variables whose moments can be
expressed by products and quotients of Gamma functions; this includes
many standard distributions. General results are given on existence,
series expansion and asymptotics of density functions. It is shown that
the integral of the supremum process of Brownian motion has moments
of this type, as well as a related random variable occurring in the study
of hashing with linear displacement, and the general results are applied
to these variables.

1. INTRODUCTION

We say that a positive random variable X has moments of Gamma type
if, for s in some interval,

J
[T;=1 T(ajs +bj)
?:1 I'(ajs +b,)
for some integers J, K > 0 and some real constants C, D > 0, a;, b;, a}, b)..
We may and will assume that a; # 0 and aj, # 0 for all j and k. We often
denote the right hand side of (1.1) by F'(s); this is a meromorphic function
defined for all complex s (except at its poles).

Similarly we say that a real random variable Y has moment generating
function of Gamma type if, for s in some interval,

ds H;']:I F(CLjS + b])
Hszl [(ajs + 1))

for some integers J, K > 0 and some real constants C, d, a; # 0, bj, aj, # 0,
%> and that Y has characteristic function of Gamma type if, for all real t,

E X® = CD? (1.1)

EeY = Ce (1.2)

J .
E eitY _ Ceitd Hj:l F(b] + 1ajt)

(1.3)
Hszl L'(b), + iayt)

for some such constants.
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Of course, (1.1) and (1.2) are the same if X = ¢¥ and D = e?; further, it
will be shown that (1.2) and (1.3) are equivalent by analytic continuation.
Moreover, we shall see that the range of validity of (1.1), or (1.2) is always
the largest possible. We amplify these simple but useful observations in
Theorem 2.1 below.

Remark 1.1. The representations in (1.1)—(1.3) are far from unique. Using
the duplication formula (A.3), or more generally the multiplication formula
(A.5), and other relations such as the functional equation I'(z 4+ 1) = 2T'(2),
a function F(s) of this form may be rewritten in many different ways. (The
rewriting can be more or less transparent; some equivalent versions may look
quite different to the unaided eye.) See for example Theorems 1.6 and 1.12.

Remark 1.2. The constant C is determined by the relation F(0) = E X° =
1, which shows that

o e D) 1.4

J
Hj:l F(bj )
provided no b; or b} is a non-positive integer. In general, C' can be found
by taking limits as s — 0.

Remark 1.3. The constant D is just a scale factor: X satisfies (1.1) if and
only if X/D satisfies the same equation with D replaced by 1 (i.e., without
the factor D®). Similarly, YV satisfies (1.2) or (1.3) if and only if Y — d
satisfies the same equation with d replaced by 0. Hence we might assume
D =1 or d =0 if convenient (but we will not do so in general).

Remark 1.4. If r € R, then z —r = I'(x —r + 1)/T'(x — r). Hence, any
rational function Q(x) with all poles and zeros real can be written as a finite
product [],T'(z + ¢¢)/T(x + ¢;) with ¢, ¢, € R. Consequently we may allow
such a rational factor Q(s) in (1.1) and (1.2), or Q(it) in (1.3), without
changing the class of distributions.

Remark 1.5. If X has moments of Gamma type and « is a real num-
ber, then X“ has moments of Gamma type. (Just substitute as for s in
(1.1).) Similarly, if X; and X» are independent and both have moments of
of Gamma type, then X;Xs has too. (Just use E(X1X2)* =E X7 E X35.)

Several well-known distributions have moments or moment generating
functions of Gamma type. We give a number of examples in Section 3.

The main motivation for the present paper is that also several less well-
known distributions have moments of Gamma type. It is then straightfor-
ward to use Mellin transform techniques to obtain expansions or asymptotics
of the density function, and it seems advantageous to do so, and to study
other properties, in general for this class of distributions. We give some ba-
sic results in Section 2, and further results on poles and zeros in Section 4.
Asymptotics of the moments are studied in Section 5, and asymptotics and
series expansions of the density function are given in Section 6.
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This paper thus was inspired by the realization that some recently studied
random variables have moments of Gamma type; we treat these in Sections
7-9. The first example is the integral of the supremum process of a Brownian
motion, i.e., the area under the supremum process (up to some fixed time 7).
Let B(t), t > 0, be a standard Brownian motion. Consider the supremum
process S(t) := maxo<s<¢ B(t), and its integral

A(T) = /0 ") a (1.5)

We further let A := A(1). For any given T > 0, the usual Brownian
scaling {B(Tt)}+>0 4 {T'2B(t)}¢>0 implies the corresponding scaling for
the supremum process {S(7't) }+>0 4 {T'25(t)}+>0, and thus

AT) =T /0 STy T2 A (1.6)

In particular, E A(T)® = T3%/2E A® and it is enough to study .A.

The random area A was studied by Janson and Petersson [19], and using
their results we will in Section 7 prove the following formula, showing that
A has moments of Gamma type. (The result for the integer moments E A",
n € N, was given in [19].) We give several different, but equivalent, formulas
of the type (1.1) for E . A®, which exemplifies Remark 1.1. The third version,
with only two non-constant Gamma factors is perhaps the simplest. The
last, where all Gamma factors are of the type I'(s/2 +b) with 0 < b < 1is
of a canonical type where there are no cancellations of poles, and it is thus
easy to see the poles and zeros, cf. Remark 4.5.

Theorem 1.6. The moments of A are given by, for Res > —1,
s D(s+1)T(s+2/3)
EAT= I'(2/3)T(3s/2+1) (
_T(s+1)I'(s+5/3) ' (
- I'(5/3)T(3s/2 +2)
_20(1/3) I(3s/2+3/2) (\/§>s
3T I(s+4/3)

3\
%)

3 \s
%)

9
C T(1/3) T(s/2+1/2)T(s/2 + 5/6) (2)s/2

T olBg T(s/2+2/3) \3)
Further, E A% = oo for real s < —1.

Remark 1.7. Several related Brownian areas are studied in Janson [17],
for example the integral of |B(t)| or the integral of a normalized Brownian
excursion. These areas do not have moments of Gamma type. In fact, most
of the Brownian areas studied there have entire functions E X* [17, §29],
which is impossible for moments of Gamma type, see Theorem 4.1(iv). (For
the remaining two areas in [17], we have no formal proof that they do not
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have moments of Gamma type, but it seems very unlikely since the integer
moments satisfy more complicated recursion formulas [17].)

As a consequence of Theorem 1.6 and our general results in Section 6, we
can express the density function of A using the confluent hypergeometric
function 1F; (denoted M in [1] and ® in [20]) or the confluent hypergeo-
metric function of the second kind U [1] (also denoted ¥ [20]). (Also the
proofs of the next two theorems are given in Section 7.)

Theorem 1.8. A has a density function fa4(x) given by, for x > 0,

2280(1/3) o=, qyn L(n+5/6) (3\n+1/2 o,
fa@) = —75= > (<) A T(n+2/3) (5) =

22/31(1 > n+5/6
( /3) Z(_l)n n+ 7/6 (§) 2n+2/3
312 n!T(n+4/3) \2
4 3
32" )
4
3’

21/2 5 2 3 2—1/631/3
_ F 9 2 L R VE I
2! 1(6 3 2$>+ ree) © (
5 o [ 21/2 123 2-1/631/3 143
—e s [ p(_Z.2.2,2 22 2B (=2 2
¢ <7r1/21 1( 6’3’2‘Z>Jr r/6) © Y\ 32"
7/6
r'(2/3) 632

_ 25/631/33;2/3 3

TR
I'(2/3) 6’32 )

It follows (most easily from the second formula above) that f4 has a
finite, positive limit f4(04+) = /2/7 as = \, 0. More precisely, fa(z) =
2/ + O(z%/3).

As z — oo, we obtain from Theorem 1.6 and our general theorems in
Section 6 the following asymptotic result. Note that the two terms in the
first or second formula for f4 in Theorem 1.8 are each much larger, of the
order z=%/3 by the asymptotics of 1 F} in [1, (13.5.1)], but they cancel each
other almost completely for large x.

Theorem 1.9.
3230(1/3) 2 2. 31/6
~ 2 S\ 0) /3, =3a%/2 4T

This result was conjectured in [19], where the weaker result P(A > z) =
exp{—3z%/2 + o(z?)} was shown from the moment asymptotic

s o LA/3) a6 s \*2
EA ~ —2s ()7, s (L.7)

d

9.2
2330712, T — oo

for integer s and a Tauberian theorem. (Only integer moments were con-
sidered in [19]. Note that (1.7) for arbitrary real s — oo follows easily from
Theorem 1.6 and Stirling’s formula; see Theorem 5.7 and (7.8).)
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Remark 1.10. Theorem 1.9 also follows from any of the last two formulas
in Theorem 1.8 and the asymptotic formula for U in [1, (13.5.2)]. Indeed,
this gives an asymptotic expansion with further terms, cf. Remark 6.3; in
this case, by [1, (13.5.2)], the complete asymptotic expansion can be written

236 o e 11 2 .,
fa(x) ~ F(2/3)37 /Be / 2F0<6,—6;7—333 ); T — o0,
where the hypergeometric series o Fjy is divergent and the asymptotic expan-
sion is interpreted in the usual way: if we truncate the series after any fixed
number of terms, the error is of the order of the first omitted term. (For
the general definition of the (generalized) hypergeometric series ,Fy, see e.g.

[13, Section 5.5].)

Theorem 1.9 may be compared with similar results for several other Brow-
nian areas in Janson and Louchard [18], see also Janson [17] and Remark 1.7.
In these results for other Brownian areas, the exponent of x is always an
integer (0, 1 or 2), while here the exponent is 1/3, which is related to the
power s'/6 in (1.7).

Another example with moments of Gamma type comes from Petersson
[24]. He studied the maximum displacement in hashing with linear probing,
and found for dense tables, after suitable normalization, convergence to a
limit distribution given by a random variable M with the distribution [24,
Theorem 5.1]

PIM < xz)=1—¢%?), >0, (1.8)
where 1)(s) := Ee~*A is the Laplace transform of A. Equivalently,
P(M > ) = p(z%2) =Ee A, 2> 0. (1.9)

This type of relation preserves moments of Gamma type; we give a general
result.

Lemma 1.11. Suppose that V and Z are two positive random variables and
a > 0. Then
P(V >z)=Ee ™7, x>0, (1.10)
if and only if
v & pi/a;gife (1.11)
where T ~ Exp(1) is independent of Z.
If (1.10) or (1.11) holds, then
EV®=T(s/a+1)EZ%* s> —a. (1.12)
In particular, if one of Z and V' has moments of Gamma type, then so has
the other.

We postpone the simple proof until Section 8. By (1.9), Lemma 1.11
applies to M and A, and thus M has moments of Gamma type. More
precisely, Theorem 1.6 implies the following, see Section 8 for details.
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Theorem 1.12. For —3/2 < Res < 3/2,

D(1+2s/3)T(2/3 —25/3) (1 —2s/3) [ 2 \s
T(2/3)T(1—s) ' (32/3)

_2I(1/3) T(1+2s/3)T(3/2—s) (3%/3\s

T 3J/m  T(4/3-2s/3) ( 2 )

_ T(1/3) T(1+2s/3)T(1/2—5/3)T(5/6 —5/3) <§>s/3

EM® =

91/3 7 I'(2/3 —s/3) 2
_ T(Y3) DO/2+s/3)T(L+5/3)D01/2— s/3)T(5/6 = 5/3) 3
91/373/2 T(2/3 - s/3) '

Further, EM?® = oo for real s < —3/2 or s > 3/2.

The special case s = 1 yields EM = 2I'(1/3)/3%/3, as found by Petersson
[24]. Petersson [24] further proved that EM?® = co for s > 2; we now see
that the sharp threshold is s = 3/2.

Our general theorems apply again; they show that M has a density, and
they yield a series expansion and asymptotics for the density. (Proofs are
given in Section 8.) Again, the results can be expressed using various hy-
pergeometric functions and series. (Again, see [13] for definitions.)

Theorem 1.13. M has a continuous density function given by, for x > 0,

3Y27(1/3) & ST 4+n/2)T(4/34n/2) r2\n/2 5.
mle) = =57, 2.1 T(7/6 + n/2)nl (§) Y

:21/23;1/22}72(3717(7; ; 9233)_23;21}71(161 g 323)

In particular, for small z we have the asymptotic formula

21/2
fm(z) = 1—/23&/%0( 2), 2 \,0. (1.13)

For large x, there is a similar formula, which is the beginning of a divergent
asymptotic expansion (interpreted as in Remark 1.10):

Theorem 1.14. As z — oo,

3 52 —7/2
T) = —=x + O(x . 1.14
fanlw) = = (@) (1.14)
More precisely, fam(x) has as x — 0o an asymptotic expansion
3 52 35 6
~— F 1, - ——
fM( ) \/271' 3 1(2 67 737 .’IJ3>
51(1/3) /2 11 7 6
TP < 6’ 6”_5)‘ (1.15)

Yet other recent examples of moments of Gamma type come from the
study of generalized Pdlya urns [10], [16]; see Section 9 for definitions and
results.
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As said above, we give some basic results in Section 2, many examples
with standard distributions in Section 3, further results on poles and zeros
in Section 4, asymptotics of the moments in Section 5, and asymptotics
and series expansions of the density function in Section 6. We give proofs
of the results above for A and M in Sections 7 and 8, and we give some
results for generalized Pdélya urns in Section 9. We end with a couple of
more technical examples (counter examples) in Section 10 and some further
remarks in Section 11. Some standard formulas for the Gamma function are
for convenience collected in Appendix A.

2. THE BASIC THEOREM AND SOME NOTATION

Let F'(s) denote the right hand side of (1.1) or (1.2). (Thus, the right
hand side of (1.3) is F'(it).) Evidently, F' is a meromorphic function in the
complex plane, and all poles are on the real axis. Let p; and p_ be the
poles closest to 0:

p+ :=min{z > 0: z is a pole of F'},

2.1
p— =max{x < 0:x is a pole of F'}, 21)

with the interpretation that p4 = 0o [p— = —oc] if there is no pole on (0, c0)
[(—00,0)]. Thus —oco < p_ < 0 < py < co. Note that we ignore any pole at
0 in the definitions (2.1); however, it follows from Theorem 2.1 that such a
pole cannot exist; F(s) is always analytic at s = 0.

Theorem 2.1. Let X > 0 and Y be random variables connected by X = e¥
and thus Y = log X, and let C, D > 0, d = log D, a; # 0, bj, a), # 0,
by, be real constants, for j =1,...,J >0 and k =1,...,K > 0. Let F(s)
be the meromorphic function in (1.1) and (1.2) and let py € (0,00) and
p— € (—00,0) be defined by (2.1). Then the following are equivalent:

1) (
(ii) (
(iii) (
iv) (
(v) (

1.1) holds for all real s in some non-empty interval.

1.1) holds for all complex s in the strip p— < Res < py.

1.2) holds for all real s in some non-empty interval.

1.2) holds for all complex s in the strip p— < Res < py.

1.3) holds for all real t # 0 in some interval |t| < to with tg > 0.
(vi) (1.3) holds for all real t.

In this case, further EX® =Ee*Y =00 if s < p_ or s > py; thus
{sER:EX* <ol ={scR:Ee*¥ <oo}=(p_,pi).
Equivalently,
pr =sup{s > 0: EX° < oo},
p— =inf{s <0:EX*® < oc0}.

Furthermore, F(s) = EX® =Ee®Y #0 when p_ < Res < p,.
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Proof. (i) <= (iii) and (ii) <= (iv) are trivial, since E X* = E¢e*Y. Further,
trivially (iv) = (iii), (vi) = (v) and (iv) = (vi). Hence, to show the
equivalences it suffices to show that (iii) = (v) and (v) = (iv).

(v) = (iv). Note first that ¢(t) := Ee® — 1 as ¢t — 0. Hence,
F(it) — 1 as t \, 0, and thus F' does not have a pole at 0.

This shows that F(z) is analytic in the strip p— < Rez < p4, and thus
F(iz) is analytic in the strip —p; < Im 2z < —p_. By continuity, p(t) = F(it)
also for ¢t = 0 and thus for the entire interval (—to,%p). Hence, on this
interval at least, ¢(t) equals the boundary values of the function F'(it) which
is analytic for 0 < Imz < —p_ and by a theorem of Marcinkiewicz [22],
Ee Y < oo for every r € (0, —p_); equivalently, Ee™ < oo if p_ < r < 0.
By considering —Y, we find similarly that Ee™ < oo if 0 < r < pg.
Consequently,

Ee™ < oo if p_ <r<p;. (2.2)

It is well-known that (2.2) implies that ¢ (z) := Ee*¥ is defined and finite for
p— < Rez < p4 and that ¥ (z) is an analytic function of z in this strip. Since
P(it) = p(t) = F(it) for [t| < tg, analytic continuation yields ¢ (z) = F(z)
in this strip, i.e. (iv) holds.

(iii) == (v). Suppose that Ee*Y = F(s) for s € (a,b), with —c0 < a <
b < oco. Let sp € (a,b) with sp # 0 and suppose that sp > 0. (The case
50 < 0 is similar, or follows by considering —Y.) Thus Ee*Y = F(sq) < oo,
and it follows that z — E e?Y is defined and analytic for 0 < Re z < sg. Since
Ee*Y = F(2) on an interval in this strip, Ee*¥ = F(z) for 0 < Rez < sq.

For any real t, we may take z = it + ¢ for 0 < € < s¢; letting € \, 0 we
have E e(#+9)Y _ E el by dominated convergence (using E(1+e%0Y) < o).
If further ¢ # 0, then also Ee(#+9)Y = F(it + ¢) — F(it) since F has only
real poles, and thus E e = F(it). Hence (v) holds.

This completes the proof of the equivalences. Suppose Ee®Y < oo for
some s > p4 (and thus py < oo). Letting z " p4, we then have, by
dominated convergence, F(z) = Ee*¥ — Eef+Y < oo, while the definition
of p; as a pole yields F(z) = |F(z)| — oo. This contradiction shows that
Ee®Y = oo for s > p,. Similarly, or by considering —Y, Ee®Y = oo for
s<p_.

Finally observe that F'(s) = 0 only when some a} s+ b} is a pole of T, i.e.,
a non-positive integer, which implies that s is real. However, if p_ < s < py,
then F(s) = Ee®Y > 0. O

Remark 2.2. The equivalence (iii) <= (iv) (or, equivalently, (i) <= (ii))
is an instance of the well-known fact that a (two-sided) Laplace transform of
a positive function or measure has singularities where the real axis intersects
the boundary of the natural strip of definition, see e.g. [6, §3.4]. The result
by Marcinkiewicz [22] used above is a sharper version of this.

We make some simple but useful observations.
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Corollary 2.3. The distribution of X is determined by the function F(s)
on the right hand side of (1.1): If EX{ = F(s) for s € I} and E X5 = F(s)

for s € I, for non-empty intervals I; and Iz, then X, 4 Xs.

Proof. By Theorem 2.1, Y7 :=log X; and Y5 := log X5 have the same char-
acteristic function F(it). Hence, Y; 4 Y5 and X3 4 Xs. O

Remark 2.4. As said above, Theorem 2.1 (e.g., by (vi)) implies that 0 is
not a pole of F'; furthermore, F(0) = EX? = 1.

Remark 2.5. Every pole or zero of F(s) must be a pole of one of the I’
factors in (1.1). However, the converse does not hold, since poles in the T’
factors may cancel; if s¢ is a pole of some factors in the numerator, but also
a pole of at least as many factors in the denominator, then sg is a removable
singularity of F', and F'(sg) is well-defined by continuity. Note that such s
do not count in the definition (2.1) of p4.

In particular, s = 0 may be a pole of some of the Gamma factors in F(s).
(This happens when some b; or b}, is 0 or a negative integer. This is the
reason we exclude ¢ = 0 in Theorem 2.1(v).) However, by Remark 2.4, all
such poles must cancel; i.e., there must be an equal number of such factors
in the numerator and denominator in (1.1).

Remark 2.6. In Theorem 2.1(v), it is important that we consider an in-
terval about 0 (unlike in (i) and (iii)). In fact, for any ¢ > 0, there exist
a random variable Y and C,d, a;,b;, a), b} such that (1.3) holds for |t| > ¢
but not for all .

For an example, let Y be any random variable with characteristic function
of Gamma type, say EeltY = F (it). Further, let Z be a random variable
with characteristic function (1—[t])4, see [9, Section XV.2], and let W be the
mixture of Z and the constant 0 obtained as W := VZ with V' ~ Be(1/2), i.e.
P(V =0)=P(V =1) =1/2, and V independent of Z; assume further that
Y is independent of Z and V. Then, for |t| > 1, the characteristic functions
EeZ =0 and Ee™ = L(Ee"Z +1) = 1, and thus Y :=Y 4+ 'W has the
characteristic function

Ee’ = Eel Eeis "W = $F(it), when |t| > e. (2.3)

1
2

Here F(it) := 3 F(it) is another function of the type in (1.3); however (2.3)
does not hold for all ¢ since F(0) = 1/2 # 1.

We do not know whether (1.3) for some interval, together with F'(0) =1,
implies that (1.3) holds for all ¢.

For future use, in particular for the asymptotic results in Sections 5 and 6,
we define the following parameters, given a random variable X or Y or a
function F(s) asin (1.1) or (1.2):

J K

ye=lagl =) lail, (2.4)

j=1 k=1
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J K
v = Zaj — Zaﬁc, (2.5)
=1 k=1

J K J_-K
5= bj— Y b — S (2.6)
k=1

j=1
J K
7= Zaj log |a;| —Za}C log |ajy,| + d, (2.7)
j=1 k=1

H;']:1 Ja;|bi=1/2
Hszl |a;€|b;€—1/2’

Proposition 2.7. The parameters v,7', 0, »,Cy depend on F only and not
on the particular representation in (1.1) or (1.2).

Cy = |C|(2m)—K)/2 (2.8)

The proof is given in Section 5.

Remark 2.8. To replace X by X!, or equivalently Y by —Y, means that
F(s) is replaced by F'(—s), which has the same form but with d replaced by
—d (D by D7') and similarly the sign of each a; and aj, is changed. This
does not affect v, §, and C1, but 4/ and » change signs. (This also follows
from (5.2) and (5.3) below.)

Remark 2.9. More generally, X%, with « real and non-zero, has parameters
|a|7) a’yla 67 o+ 'y’ozlog ’O[‘, C'1|Oé|§‘

Remark 2.10. If X = X; Xy with X1, Xy independent and both having
moments of Gamma type, cf. Remark 1.5, then the parameters ~, v/, d, » for
X are the sums of the corresponding parameters for X7 and X, while C7 is
the corresponding product.

Remark 2.11. If X has moments of Gamma type, then so has a suitably
conjugated (a.k.a. tilted) distribution: If, for simplicity, X has a density
function f(z), z > 0, let X have the density function 2" f(z)/E X" for a
real 7 such that EX" < co. Then EX*® = EX*t"/E X" and thus X has
moments of Gamma type, obtained by a simple substitution in (1.1). It
follows that v, 7/ and s are the same for X as for X , while ¢ is increased by
ry" and C; is multiplied by ¢"*/E X". (Cf. (5.3) below.) Clearly, p4 and
p— are both decreased by r.

For a random variable Y with moment generating function of Gamma
type, the same applies to Y with density function eV f(y)/Ee™, if Y has
density function f.

We note also the following relations, for a function F'(s) as above:

Lemma 2.12. We have

dooaj— Y ap=500+7),

J:a;>0 k:aj, >0
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> dajl = D lail =30y =)

7:a;<0 k:a;c<0
Proof.
v =3l + ) = So(lahl +ap) =2( D @ — Y ah).
7 k J:a;>0 k:a;c>0
=9 =3 (asl = ) = So(lahl — ap) =2( D Jagl = D lak]). O
i k j:a;<0 k:a}, <0

3. SOME EXAMPLES

There are several well-known examples of distributions with moments of
Gamma type. We collect some of them here. The results below are all
well-known. We usually omit scale parameters that may be added to the
definitions of the distributions.

Example 3.1 (Gamma distribution). Let I, have the Gamma distribu-
tion I'(a) = T'(er, 1) with density function f(x) = 2* e=%/T'(a), x > 0, for
a parameter o > 0. Then, for Res > —a,

ET? = /000 2 f(x)dx = I’(loz) /000 zotele @ dp = I‘(;:(—;)a)’ (3.1)

a simple example of moments of Gamma type. The right hand side of (3.1)
is an analytic function in Res > —a, with a pole at —a; thus p; = oo,
p— = —a, and EI'}, = oo when s < —a.

We have y =7 =1, =a —1/2, =0, C; = 271/T'(a).

Note that the different Gamma distributions can be obtained by conju-
gation from each other, cf. Remark 2.11.

Example 3.2 (Exponential distribution). The exponential distribution
Exp(1) with density function e, = > 0, is the special case a = 1 of the
Gamma distribution in Example 3.1. We thus obtain from (3.1) (or directly
from (A.1)), for T' ~ Exp(1),

ET® =T(s+1), Res > —1, (3.2)

while ET® = co when s < —1.
More generally, if 7}, has an exponential distribution Exp(u) = I'(1, u)
with mean g, which has the density function is p~te™*/#, z > 0, then

T, 4 pT and
ET; =T(s+ 1)u’, Res > —1. (3.3)

Thus 7T}, has moments of Gamma type, with p; =00, p_ = -1,y =+'=1,
§=1/2, c=logpu, Cy = /2m.
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Example 3.3 (Uniform distribution). Let U have a uniform distribution
U(0,1) on [0,1]. Then, obviously, for Res > —1,

1
s+1
This can be rewritten as a Gamma type formula by the functional equation
(A.2), which yields

1
EUS:/ z¥dr = (3.4)
0

EU* = Ty Res>-L (3.5)

while EU® = co when s < —1.

Of course, it would be silly to claim that (3.5) is a simplification of (3.4),
but it shows that the uniform distribution has moments of Gamma type and
thus belongs to the class studied here.

We have pp =00, p- =—-1,v=+9"=0,=-1,x=0,C, = 1.
Example 3.4 (Beta distribution). Let B, 3 have the Beta distribution
B(a, B8), where a, 3 > 0; then B, g has a density function f(z) = cz* (1 —
z)%71, 0 <z < 1, where ¢ = I'(a)'T(8) " 'T'(a + B), cf. (A.8). (Note that
a = (3 =1 yields the uniform distribution in Example 3.3 as a special case.)
Consequently, by (A.8), for Res > —q,

1 _

eg,= [ rrie)an = (LON G LOIE) ot fras o)

0 (a+5) MNs+a+p) T(a)l(s+a (+ ﬁg

3.6

while EB;, 5 = oo if s < —a. We have py = o0, p- = —a, vy =7 =0,
d=—-0,%2=0,Cr=T(a+ 0)/T(a).
Example 3.5 (Chi-square distribution). The chi-square distribution
x?(n) is the distribution of Q,, := >_I | N2, where Ny, Na, ... areii.d. stan-
dard normal variables. It is well-known, see e.g. [9, Section I1.3], that the chi-
square distribution is a Gamma distribution, differing from the normalized

version in Example 3.1 by a scale factor; more precisely, Q, 4 2T, /2. Con-
sequently, the chi-square distribution has moments of Gamma type, with,
by (3.1),

['(s+n/2)
EQ; =2°———— -n/2 ,
Q. Tn2) Res > —n/2, (3.7)
while EQ;, = oo for s < —n/2. We have py =00, p_ = —n/2, vy =7+ =1,

d=(n—-1)/2, x=1log2, C1 =2r/T'(n/2).
If n = 2, then Qs < 2T, £ 27 £ Ty, which also follows from (3.7) and

(3.3).

Example 3.6 (Chi distribution). The chi distribution x(n) is the distri-

bution of R, := (Z?:l Nf)l/2 = 711/2, with notations as in Example 3.5.

Hence, using (3.7), the chi distribution has moments of Gamma type, with

['(s/2+n/2)

s _ 5/2 _ 9s/2
B R, =EQy =2

Res > —n, (3.8)



MOMENTS OF GAMMA TYPE 13

while ER? = oo for s < —n. We have py = 00, p— = —n, v =+' = 1/2,
§=(n—1)/2, x=0,Cy =2""27Y2/T(n/2), cf. Remark 2.9.

In particular, the special case n = 1 shows that if N ~ N(0,1), then
|N| ~ x(1) has moments of Gamma type with

E[N|* = /22921 (s/2 + 1/2). (3.9)
Example 3.7 (F-distribution). The F-distribution is the distribution of
By e Qmlm 1 Qm (3.10)

T Qu/n om@y

where Q,, ~ x%(m) and @/, ~ x?(n) are independent. By (3.7), this has

moments of Gamma type with

sT(s+m/2)['(n/2 — s)
L(m/2)T(n/2)

for —m/2 < Res < n/2, while E F};, ,, = oo for s < —m/2 and s > n/2. We

have pi =n/2, p_ = —m/2, v =2, 7' =0,0= (n+m—2)/2, 3 = log(n/m),

C1 = 2m(I'(m/2)'(n/2))~ . (Cf. Remarks 2.8 and 2.10.)

Example 3.8 (t-distribution). The ¢-distribution is the distribution of

N
T, = ——
" R/
where N ~ N(0,1) and R,, ~ x(n) are independent. This random variable
is not positive; in fact the distribution is symmetric. However, by (3.10) and

(3.12), 7,2 4 Fi 5, so if we consider |7, 4 Fllf, we see from Example 3.7

that |7,| has moments of Gamma type, with

n

EF, = (=) EQLEQ) ™ = ()

" (3.11)

(3.12)

T'(s/2+1/2)T'(n/2 —s/2
A T RV LN LT TtV N
’ Vrl'(n/2)
for —1 < Res < n, while E|7,|* = oo for s < —1 and s > n. We have
py =mn, po=—1,y=1,9=0,6 = (n—1)/2, » = jlogn, C1 =

23/2=n/271/2 /T (n /2). (Cf. Remark 2.9.)
Example 3.9 (Weibull distribution). The standard Weibull distribution
has the distribution function

P(W, <z)=1—e"", x>0, (3.14)

for a parameter o > 0, and thus density function az® te™*", z > 0.
Note that a = 1 yields the exponential distribution in Example 3.2. More-
over, for any « and y > 0,

PWg <y) =P(Wa<y/*) =1-eV=P(T <y),
where T ~ Exp(1); hence W2 £ T and W, £ TV, Tt follows from (3.2)
that W, too has moments of Gamma type, see Remark 1.5, with

EW: =ET*/*=T(s/a+1), Res> —a, (3.15)
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while EW? = oo if s < —a. We have p; = o0, p— = —a, 7y =7 = 1/a,
§=1/2, x=a"lloga~!, C; = \/27/a, cf. Remark 2.9.

If « = 1, then obviously Wy A7~ Exp(1). If @ = 2, then W, 4124
2*1/26,2;/2 4 2~1/2 Ry, which also follows by comparing (3.15) and (3.8).
Example 3.10 (Stable distribution). Let S, be a positive stable random
variable with the Laplace transform Ee % = ¢~ with 0 < o < 1. Recall
that any positive stable distribution is of this type, for some a € (0,1), up
to a scale factor, see Feller [9, Section XIII.6]. (We may also allow o = 1,

but in this exceptional case S, is degenerate with S} =1 a.s.)
For any s > 0, by (A.10),

o oo
[(s)ES,® = / I Ee e dt = / 5l dt,
0 0

while the change of variables u =t yields

o a 1 [ d
/ e dt = / usloe—e S8 = a 1T (s/a).
0 0 u

«

Hence,

s> 0.

g T(s/0) _T(+s/a)

“ al(s) T(14s)’

(In particular, this moment is finite.) Thus, for s < 0,
I'l-s/a)

I'(1—s)

We have shown (3.16) for s < 0, but Theorem 2.1 (with py = o and p_ =

—00) shows that (3.16) holds whenever Re s < «, while E S = oo for s > a.

(The case a = 1 is exceptional; E S§ = 1 for every real s, so (3.16) holds but

p+ = 00.) Thus S, has moments of Gamma type.
Wehavey=a'—1,7 = —(a='=1),0 =0, x=a 'loga, C; = o~/

ESS = (3.16)

Example 3.11 (Mittag-Leffler distribution). The Mittag-Leffler distri-
bution with parameter o € (0,1) can be defined as the distribution of the
random variable M, := S, %, where S, is a positive stable random variable
with Ee t% = ¢7* as in Example 3.4. Since S, has the moments given
by (3.16), the Mittag-Leffler distribution too has moments of Gamma type
given by, cf. Remark 1.5,

I'(s) I'(s+1)

EM; =ES_ * = = R -1 3.17
o @ al(as) T(as+1)’ e8> =4 (3.17)

while E M = oo for s < —1. In particular, the integer moments are given
by

n!
EMM = — " —0,1,2,... 1
= Tty T OLE (3.18)
!

We have pp = 00, p- = -1, vy =9 =1—-a, 6 =0, » = —aloga,
Cy = a2, in accordance with Remark 2.9.
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The reason for the name “Mittag-Lefller distribution” is that its moment
generating function is, by (3.18),

n

[e.e] n [e.e]
EeMe =N EMP =5 2 3.19
¢ 7;) “nl nz:% I'(na+1)’ (3.19)

which converges for any complex s and is known as the Mittag-LefHer func-
tion E,(s) since it was studied by Mittag-Leffler [23]. The formula (3.19),
or equivalently (3.18), is often taken as the definition of the Mittag-Leffler
distribution.

We may also allow o = 0 and o = 1, with My ~ Exp(1) (see Example 3.2)
and M; = 1; in both cases (3.17) and (3.19) hold, although for o = 0, (3.19)
converges only for |s| < 1, and § = 1/2, C; = v/27, while for a = 1, (3.17)
trivially holds for all s with EM$ =1 < co and p_ = —o0.

The Mittag-Leffler distribution was introduced by Feller [8], see also [9,
Sections XI.5 and XIII.8(b)] and Pollard [26]. Blumenfeld and Mandelbrot
[4] considered also log M,,, which by (3.17) has moment generating function
I(s+1)/T'(as+1) of Gamma type, and called its distribution the “logarith-
mic Mittag-Leffler distribution”. Feller [8; 9] showed that the Mittag-Leffler
distribution is the limit distribution as ¢ — oo of the number of renewals up
to time ¢, properly normalized, of an i.i.d. sequence of positive random vari-
ables belonging to the domain of attraction of a stable law. It emerges also,
for example, as the limit distribution of occupancy times in the Darling—Kac
theorem, see Bingham, Goldie, Teugels [3, Section 8.11].

In the special case o = 1/2, the duplication formula (A.3) yields

Sy = m = 7122 (s/2 + 1/2), (3.20)

which by comparison with (3.9) shows that Mj / 4 V2|N| with N ~ N(0, 1),

which is equivalent to the well-known relation S} < %N 2,

Example 3.12 (A different Mittag-Leffler distribution). Another dis-
tribution related to the Mittag-Leffler function E,(s) in (3.19), and, rather
unfortunately, therefore also called “Mittag-Leffler distribution” was intro-
duced by Pillai [25] as the distribution of a random variable L, with distri-
bution function 1 — E,(—z%), where 0 < a < 1; equivalently, by (3.19),

P(Ly > x) = Bo(—2%) = Ee " Mo, (3.21)

This is another instance of the relation (1.10), and Lemma 1.11 shows that
L, has moments of Gamma type with, using (3.17),

M1+ s/a)l(1—-s/a)

EL> =T DNEM S/« =
(e} (S/O{“I‘ ) (3 1—\(1_8) )

—a <5< a,

(3.22)
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while ELf = oo if s < —a or (provided a < 1) s > «a. Note also that
Lemma 1.11 yields the representation [25]

Lo L TV NV = TYog,, (3.23)

with 7' ~ Exp(1) and the stable variable S, independent. Equivalently,

see Example 3.9, L, 4 WaSa, with the Weibull variable W, and S, inde-
pendent. It follows easily from (3.23) that L, has the Laplace transform
Ee tla = (1 4+t*)~1 ¢ >0 [25].

For a = 1, we have L; ~ Exp(1). For 0 < a < 1, p4 = «a, p— = —a,
y=2/a—-1,v =1,6 = 1/2, 2 = 0, C; = v2r/a. (For example by
Remark 2.10.)

Example 3.13 (Pareto distribution). The Pareto(«) distribution, where
a > 0, is the distribution of a random variable P, with P(P, > z) = 27¢,
x > 1. Hence P, has density function az=®"!, z > 1. Direct integration
shows that the moments are of Gamma type and given by

oo
N
EP; = / ar' o ldg =2 = 2 (@=s) , Res < a. (3.24)
1 a—s TIla—s+1)
Hence p. =, p_ = —00,y=9"=0,0=-1,%=0,C; = a.
We have P, & U~/ with U ~ U(0, 1), so alternatively these result follow
from Example 3.3 and Remarks 1.5 and 2.9.

Example 3.14 (Shifted Pareto distribution). The shifted Pareto vari-
able P, := P, — 1, where a > 0, has support (0,00) and density function
a(r +1)~*"1 2 > 0. The moments are given by, using (A.9),
~ o0 e s+ 1)l (a—s) T(s+1I(a—s)
EP; = “(w+ 1) de = =
S /0 az’(x +1) r=a« Flat1) o) :
(3.25)

for —1 < Res < «, while Eﬁg = o0 if s < —1 or s > «. Hence also
the shifted Pareto distribution has moments of Gamma type, with p; = «,
p-=-1,v=2,v=0,0=a, =0, C; =27/T(«).

For a =1, (3.25) yields E Pf = T'(1+s)I'(1—s) = Eﬁfs; hence P, < ]51_1
(so log P; has a symmetric distribution). Using (A.6), we have

s

EPf =T(1+s)[(1 —s)=sI(s)[(1 —s) = . —1<Res<l.

sin(7s)

Further, comparing (3.25) and (3.11) we see that P 4 Fyo.

More generally, (3.25) and (3.1) imply that if I'y ~ I'(1) = Exp(1) and
I, ~ I'(«) are independent, then E(I'1/T7)* = ET;E(T,)"° = EP? (for
suitable s); thus P, 4 I'1 /T, by Corollary 2.3. This is also an instance of
Lemma 1.11 (with @ =1 in (1.10) and (1.11)).
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Example 3.15 (Extreme value distributions). There are three types of
extreme value distributions, see e.g. Leadbetter, Lindgren and Rootzén [21,
Chapter I]. We let X1, X1 o, X117, denote corresponding random variables;
they have the distribution functions

P(X;<z)=e° —00 < x < 00, (3.26)
P(Xrra<z)=e¢ ", 0<z< oo, (3.27)
P(Xirra <z)=e 09 —co<a <0, (3.28)

where (for types II and III) o > 0 is a real parameter.

The distribution (3.26) (the Gumbel distribution) has the entire real line
as support, and is therefore not qualified to have moments of Gamma type.
It has, however, moment generating function of Gamma type, see Exam-
ple 3.19

The distribution (3.27) (the Fréchet distribution) satisfies, with 7" ~

Exp(1),

P(Xjjo<z)=P(T >z =P(T Y*<z), x>0,
and thus Xy o 4 T—1/e 4 1/Wy, see Example 3.9. Hence it has moments
of Gamma type with, see (3.2) and (3.15),

EXjro=T(1-s/a), Res < a. (3.29)

We have p; =, p_ = —00, vy =1/a, ¥ = —1/a, § = 1/2, 3 = a lloga,
Cy = /27 /a, cf. Remarks 2.8 and 2.9 and Examples 3.2 and 3.9.
The distribution (3.28) satisfies P(— X174 > x) = ¢ %", 2 > 0, so

X110 4 Wo and X o 4 —W,, see Example 3.9. By (3.15), |X[]]7a‘ =
—X111,o has moments of Gamma type with

E|Xr10l° =T+ s/a), Res > —a. (3.30)

We have py = 00, p_ = —a, v = = 1/a, 6 = 1/2, % = a”lloga™!,

Cl = \/271'/04.

Example 3.16 (Fejér distribution). The distribution with density func-
tion

1—cosz 1 [sin(z/2)\*

o () o< < oo, 3.31

T’ 27 < x/2 OSSR (3.31)

has characteristic function (1 — |¢|)4+, which vanishes outside the interval
[—1,1], see [9, Section XV.2]. The density function (3.31) is in harmonic
analysis known as the Fejér kernel on the real line, so we call this distribution
the Fejér distribution.
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If X has this distribution, then, for —1 < s < 0, using integration by
parts, dominated convergence, (A.7) and (A.6),

o0 [e.@]
E]X]S—2/ (1 —cosx)z® 2dx = 2/ sinz - 2% 1 dz
™ Jo 7'('(3 — 1) 0
9 ©
= ——limIm ei=)T sl 4y
m(s—1)e\o 0

p i [ .
=— _limIm L / =€) g8 4
m(s—1)e\o s Jo

(s +1) .. . (s — 1) .
= 7] I T s\ — % V7 wsi/2
ra(s 1) (= =7 7 m(e™)
Al’(s—1) (7rs> —2I'(s — 1)

=———=sin(—) = .

T 2 I(s/2)I'(1 —s/2)
The right-hand side has poles at p1 = +1 (and a removable singularity at 0),
and Theorem 2.1 shows that the formula extends to all s with —1 < Res < 1.
In other words, |X| has moments of Gamma type with, using (A.6) again
and (A.3) to obtain several versions, for —1 < Res < 1,

s (s —1) . /ms —2I'(s — 1)
EIX[=-——"F—sn (?) T T(s/2)T(1 - 5/2)
25 D(s/2 —1/2)
T 2ym I(1-s/2)
C1T(s/2-1/2)T(3/2 — 5/2)
T r'2-—s)
B 1 CT(1/2 - s/2)T(1/2+ 5/2)
cos(ms/2)T'(2 — s) m[(2 — s)
We have y = 0,7 =1, 0 = —3/2, 2 =0, Cy = (2/7)"/2.

. (3.32)

We have so far considered distributions with moments of Gamma type;
we now turn to a few examples with moment generating function of Gamma
type. Of course, if X is any of the examples above, log X yields such an
example. (One such example was mentioned in Example 3.11.)

Example 3.17 (Exponential distribution again). We noted in Exam-
ple 3.2 that T ~ Exp(1) has moments of Gamma type. It has moment
generating function of Gamma type too, since

e 1 I'(1l-s)
E sT: ST—T Jp — — 1. ]
e /0 e T =T T2 =)’ Res < (3.33)
In fact, T 4 —logU 4 log P1, and equivalently U 4 T and P, 4 el
compare (3.33) to (3.5) and (3.24). We have py =1, p_ = —c0, 7y =+' =0,
5:—1,%:0,C1:1.

Example 3.18 (Gamma distribution again). A Gamma distributed ran-
dom variable I';, ~ I'(n) with integer n > 1 can be obtained by taking the
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sum of n independent copies of T' ~ Exp(1), and thus (3.33) implies that I,
has moment generating function of Gamma type with

1 (1 —s)™
Eetn = (Ee'T)" = = Res < 1. 3.34
=R = g T e e (3:34)
We have p. =1, p_ = —-00, 7=+ =0,0=-n, x=0,C, = 1.

More generally, for any real a > 0, I, has moment generating function
Eeste = (1 — 5)~@. If a is not an integer, then this function has a singu-
larity as s ' 1 that is not a pole; hence Ee®l'e cannot be extended to a
meromorphic function in the complex plane, and I',, does not have moment
generating function of Gamma type. Consequently, the Gamma distribution
I'(«) has moment generating function of Gamma type if and only if « is an
integer.

Example 3.19 (Gumbel distribution). If X; has the Gumbel distribu-
tion (3.26), and T' ~ Exp(1), then

Ple™™ >2) =P(X; < —logz) =e " =P(T >z), x>0,

soe X1 L7 and X I 4 log T'. Consequently, the Gumbel distribution has
moment generating function of Gamma type with, see (3.2),

EeXt =ET™*=T(1-s), Res<l. (3.35)
We have pi. =1, p_ = —oc0,v=1,7=-1,0=1/2, =0, C; = /2.

Example 3.20 (Lévy area). The Lévy stochastic area is defined by the
stochastic integral A; := fg X, dy, — fot Y, dX,, where (X,,Y,), u >0, is
a two-dimensional Brownian motion starting at 0 (i.e., X,, and Yy, u > 0,
are two independent standard Brownian motions). By Brownian scaling,

Ay 4 tAq, so we consider only A := Ay. Then, for real ¢, see e.g. Protter
[28, Theorem I1.43], using (A.6),
. 1 1 1 INCEEOINC T
]EeltA: — N M (2 7r) (2 TI')‘ (336)
cosh(t)  cos(it)  sin(3 +it) T
Consequently, by Theorem 2.1, A has moment generating function of Gamma
type, with pL = +7/2 and
1 | TR plF -1
Eest = = (G + )00 “), |Res| < m/2. (3.37)
cos s T
We have vy =2/7,7 =0,0 =0, =0, C; = 2.
It is known that A has the density function 1/2 cosh(mz/2), —0co < z < o0,
see e.g. Protter [28, Corollary to Theorem I1.43] and Example 6.18 below.
Of course, e has moments of Gamma type, and so has e for every real

c. A comparison with (3.11) shows that e™ 4 Fy 1. Hence, A d -1 log F1 1.

Remark 3.21. We have shown that a large number of classical continuous
distributions have moments of Gamma type, but there are exceptions. For
example, if X ~ U(1,2), then E X* = (2571 — 1)/(s + 1) has complex zeros
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at —1 + 27wik/log2, k = £1,+2,..., which is impossible when (1.1) holds.
More generally, if X is non-degenerate and is supported in a finite interval
[a,b] with 0 < a < b < oo, then E X* is an entire function of s, which by
Theorem 4.1 below shows that X does not have moments of Gamma type.

4. POLES AND ZEROS

In this section it will be convenient to consider the class F of all functions
of the type in (1.1) and (1.2), regardless of whether they equal E X* [Ee*Y]
for some random variable X [Y] or not. Thus, F is the set of functions

[T/, D(ajs + b;)
ey Dlajs + b))

where J,K > 0 and C, D, aj, bj, a}, b} are real with D > 0 and a; # 0,
aj, # 0 for all j and k. We let F, C F be the set of such functions that
appear in (1.1) and (1.2), i.e., the set of F(s) € F such that F(s) = EX*®
for some positive random variable X and s in some interval.

A function F(s) € F is a meromorphic function of s in the complex plane
C. We can easily locate its poles (and zeros) precisely as follows. Define
v(s) = vp(s) for all s € C by

F(s) =CD?

(4.1)

m if F' has a pole of order m at s,
vp(s) = ¢ —m if F has a zero of order m at s, (4.2)
0 otherwise (i.e., F' is regular at s with F'(s) # 0).

(For F € Fr, with F(s) an extension of E X*, we also write vx.)
Since D? has neither poles nor zeros, while I'(z) has a simple pole at each
z € Z<o :={0,—1,—2,...} but no zeros,

J K
I/F(S) = Z l[ajs + bj S ZSO] - 1[&28 + b;C S ZSO]
j=1 k=1
J K
b; b,
::2:]{86 {—7ﬁ+ JZHJEZ>0}}—-§:][S€ {—nﬁt k:n&EZ>0}}
a; B — ay, -

(4.3)

Note that all poles and zeros of F' lie on the real axis.

We further define Fy := {F € F : vp(0) = 0}, i.e., the set of functions
F € F that have neither a pole nor a zero at 0. By Remark 2.4, 7, C Fy C
F. Note that F is a group under multiplication and that Fy is a subgroup.

For F' € F, we defined p4 in Section 2; the definition (2.1) can be written

p+ :=min{z > 0 : vp(x) > 0},
p— :=max{z < 0:vp(x) > 0}. (4.4)
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For general F' € F we define
p+ :=min{z > 0: vp(x) # 0},
p— =max{z < 0:vp(x)#0},

and note that this is consistent with (4.4) for F' € F, by the fact (Theo-
rem 2.1) that such F' has no zeros in (p_, p4+) and no pole at 0.

If all aj, a}, bj, bj, > 0, then F'(s) has no poles or zeros in the right halfplane
Res > 0, since none of the factors in (4.1) has; thus p; = oco. Similarly,
if all a;,a; < 0 and bj,b;, > 0, then F(s) has no poles or zeros in the left
halfplane Res < 0 and p_— = —oo. The converses do not hold, because the
representation (4.1) is not unique and we may, e.g., add cancelling factors
that separately have poles at other places. However, we may always choose
a representation of the desired type; this is part of the following theorem.

Theorem 4.1. Let F' € Fy and let p+ be as in (4.5).

(i) It is always possible to find a representation (4.1) of F(s) with all
bj, b;c > 0.

(i) If p— = —oo, then F(s) has a representation (4.1) with all a;,a) <0
and bj, by, > 0.

(iii) If p4 = oo, then F(s) has a representation (4.1) with all a;,a},b;,
b, > 0.

(iv) If p = o0 and p— = —o0 (i.e., F(s) is entire and without zeros),
then F(s) = CD?* for some real constants C and D > 0.

In particular, if X is a random variable with moments of Gamma type,
this applies to the meromorphic extension F(s) of EX®. In this case, it is
not possible that both py = oo and p— = —oo (i.e., that E X is entire),
except in the trivial case X = D a.s. for some D > 0 (and thus E X® = D?).

(4.5)

We begin by proving a lemma.

Lemma 4.2. Suppose that aj, a};, b, b, are real with aj,a) > 0 and that
F(s) := H}‘le T(ajs 4 bj)/ [1r—, T(als + b,) is analytic and non-zero in a
half-plane Res < B for some B € (—00,00). Then F(s) = e**Q(s) for
some rational function Q) with real poles and zeros and some a € R.

Proof. Say that two non-zero real numbers a and o' are commensurable if
a/a’ € Q; this is an equivalence relation on R* := R\ {0}. (In algebraic
language, the equivalence classes are the cosets of Q* in R*.) The poles
of I'(as + b) are regularly spaced with distances 1/|a|. Thus, if a and o
are incommensurable, and b,d’ are any real numbers, then I'(as + b) and
I'(a’s + ') have at most one common pole.

We divide the set {a; }3]:1 U{aj} HE | into equivalence classes of commensu-

rable numbers. This gives a corresponding factorization F(s) = Hle Fy(s)
where L is the number of equivalence classes and each F} is of the same form
as F' but with all a; and aj, commensurable. It follows that two different
factors Fy, (s) and Fy,(s) have at most a finite number of common zeros or



22 SVANTE JANSON

poles; hence, by decreasing B, we may assume that there are no such com-
mon poles or zeros with Res < B. Hence, a pole or zero of a factor Fy(s)
in Res < B cannot be cancelled by another factor, and thus such poles or
zeros do not exist. Consequently, each factor Fy(s) satisfies the assumption
of the lemma, and we may thus treat each Fy(s) separately. This means
that we may assume that all a; and aj are commensurable.

In this case, there is a positive real number r such that all a; and aj
are (positive) integer multiples of r. Using Gauss’s multiplication formula
(A.5), we may convert each factor I'(a;s + b;) or I'(a},s + b)) into a product
of a constant, an exponential factor e”*, and a number of Gamma factors
I(rs+u;) with u; € R. Using the functional relation (A.2), we may further
assume that each u; € (0, 1], provided we also allow factors (rs + u)*! with
u € R. Collecting the factors, we see that

H‘-]Izl I'(rs + u;)
F — QSQ J -
(s) = e*Q(s) K (s 4l

(4.6)

for a constant «, a rational function Q(s) with real zeros and poles, and
some uj,uj, € (0,1]. We may assume that @ has no poles or zeros with
Res < B (by again decreasing B if necessary). The factors I'(rs + u;) and
I'(rs 4+ uj,) have no zeros but each has an infinite number of poles with
Res < B, and two factors I'(rs + u;) and I'(rs + u},) have disjoint sets of
poles unless uj = uj,. Since the poles with Res < B must cancel in (4.6),
this shows that the Gamma factors must cancel each other completely, and
thus (4.6) reduces to F(s) = e**Q(s). O

Proof of Theorem 4.1. (i): Using I'(z) = I'(z + 1)/ z repeatedly on any term
with b; < 0 or b}, < 0, we may write F(s) as
J -
Hj:l I'(a;s + bj)
K od )
[Ty Tays + )

CD*Q(s) (4.7)

with Bj, l~)§C > 0, where Q(s) is a rational function with only real poles and
zeros; Q(s) = c[];(s —ri)/[1,(s — r}) for some real r; and r), i = 1,...,T
and £ = 1,...,L, say; we may further assume that r; # r for all i and /.
Since 0 is not a pole or zero of F, it is by (4.7) not a zero or pole of @), and
thus all 75,7 # 0.

If r <0, then
D(s+|r|+1)
= = 1 -/ 4.
s—r=s+|r| Tt ) (4.8)
and if r > 0, then
[(=s+r+1)
sor==r=s) =~y (4.9)

so Q(s) may be written as product of quotients of Gamma factors of the
desired type (and a constant), and thus the result follows from (4.7).
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(ii): We use (i) and may thus assume that (4.1) holds with b;, b} > 0. We
factorize F'(s) as, with d = log D,

F(s) = Ce®F(s)F_(s), (4.10)

where F'; (s) contains all factors I'(ajs +b;) and I'(a}.s + b)) with a;,a}, > 0,
and F_(s) contains the factors with a;, a) < 0, so F_ is of the desired form.

Since b;,b, > 0, F_(s) has no poles or zeros with Res < 0. By as-
sumption, p_ = —oo, and thus F'(s) is analytic and non-zero in the half-
plane Res < 0. Consequently, by (4.10), F,(s) also has no poles or ze-
ros in Res < 0. By Lemma 4.2, Fl{(s) = Q(s)e™® for a rational function
Q(s) = C1[1;(s—uy)/ [1x(s —vx) where u; and vy are real. We may assume
that u; # vy, for all j, k, and then each u; or vy is a zero or pole of F(s),
and thus all u;,v; > 0. Using (4.9), we thus can write Q(s) in the desired
form; hence Fy(s) and F(s) can be so written.

(iii): Follows from (ii) by replacing F'(s) by F(—s).

(iv): In this case, F(s) is an entire function without zeros. We use
again the factorization (4.10). By the proof of (ii), Fi(s) = e**Q(s) for
a rational function (. By symmetry, as in the proof of (iii), similarly
F_(s) = e**Q_(s) for another rational function @_. Thus,

F(s) = Celdtate-)sQ(s)Q_(s). (4.11)

Hence, the rational function Q(s)Q_(s) is entire and has neither poles nor
zeros; consequently, it is constant. Thus F(s) = Cre®® for some Oy and
dj. O

As a consequence we show that the function vg(s) describing the poles
and zeros of F'(s) essentially determines F', and thus the distribution of X
and Y satisfying (1.1) or (1.2).

Theorem 4.3. If F{,F5 € F and vy, = vp,, then Fy(s) = cD*Fi(s) for
some real constants C' # 0 and D > 0.

Proof. F := F3/F, € F and vp(s) = vp(s) — vr(s) = 0 for every s.
Hence, F' € Fy and p_ = —o0, p4 = o0; thus Theorem 4.1(iv) shows that
F(s) = CD®. O
Corollary 4.4. If X1 and Xo are positive random variables with moments

of Gamma type and vx, = vx,, then X 4 DX, for some constant D > 0.
In other words, a distribution with moments of Gamma type is uniquely
determined up to a scaling factor by the function vx(s).

Similarly, if Y1 and Yo have moment generating functions of Gamma type

with the same v, then Yo 4 Y1 + d for some real constant d.
Proof. Let Fj(s) be the meromorphic extension of EX?, j = 0,1. Then

Fy(s) = CD?Fi(s) by Theorem 4.3. Setting s = 0 we find C = 1, and
thus, for s in some interval, E X5 = Fy(s) = D*Fi(s) = E(DX;)*, whence

X, 2 DX, by Corollary 2.3.
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The final statement follows by considering X; := eYi. O

Remark 4.5. The proofs of Theorem 4.1 and Lemma 4.2 yield an almost
canonical way of expressing F'(s) € Fy in the form (4.1). We start by making
all bj, bj, > 0 by Theorem 4.1(i). We then treat positive and negative a; and
a), separately; furthermore, if these coefficients are not all commensurable
(which they are in most natural examples), we separate them into different
equivalence classes of commensurable coefficients. For each class we then
rewrite the product of the corresponding factors in the form (4.6) for some
real r (different for different classes, and chosen with |r| as large as possible).
Note that different factors in (4.6) have no common poles, so it is easy to
locate all poles and zeros. It only remains to take care of the rational part
in (4.6); in the examples we know, this is not a problem but we have not
studied this in general, and we do not know whether it is possible to use this
approach to define a unique canonical representation (4.1) for each F; we
leave this as an open problem. (Alternatively, it might be possible to define
a canonical representation including a rational factor.)

See Theorems 1.6 and 1.12 for examples of such ’canonical’ versions, but
note that they not necessarily are the simplest by other criteria.

Let Ny(z) := ) gcgen VF(8), > 0,and N_(z) := > . ovr(s), z <O.
Thus Ny (x) is the total number of poles minus the total number of zeros
(with multiplicities) in the interval (0,x], and similarly for N_(z) and the
interval [z,0) on the negative half-axis. The following proposition can be
interpreted as giving the density of poles minus zeros on the positive or
negative half-axis.

Proposition 4.6. Let Ny(z) := 20<s§x vr(s) for z > 0, and N_(z) =
Y w<s<oVF(s) for ¥ < 0. Then Ny(z)/z — %(fy —9) as * — 400 and

N_(z)/]z] = 3(v+7') as © — —c0.

Proof. Use, for simplicity, a representation as in Theorem 4.1(i). Then, using
(4.3), the terms with a; > 0 and aj, > 0 give no contributions to vp(s) and
Ny (z) for s > 0 and = > 0, while each a; < 0 gives a contribution |a;|z +
O(1) to Ni(x) (poles regularly spaced at distances 1/|a;|), and similarly
each aj, < 0 gives a contribution —|aj |z 4+ O(1) to N4 (x). Consequently, for
x > 0, using Lemma 2.12,

Ni(@) =a( Y lasl= D lakl) +0(1) =2 (v = 7) +0(1),

J:a;<0 k:a} <0

and the result as x — oo follows. The result as * — —oo follows similarly,
or by replacing F'(s) by F(—s). O
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5. ASYMPTOTICS OF MOMENTS OR MOMENT GENERATING FUNCTION

In this section we assume that X > 0 and Y = log X are random variables
such that (1.1)—(1.3) hold (for p— < Res < p4 and t € R), i.e.

IT;-1 (a5 +by)
[Tz Dags + ;)

and we write as above D = e?. Recall the definitions (2.4)—(2.8).
We begin with asymptotics of F' along the imaginary axis and close to it.

EX*=EeY = F(s) = CD* (5.1)

Theorem 5.1. Ast — +oo,

|E e | = |F(it)| ~ Cl\t\‘se_%ﬂt'. (5.2)
Moreover, for any fized real o, and uniformly for o in any bounded set,
|F(o +it)| ~ e [t]V 7| F(it)| ~ Cre* [t|>T7 e 21, (5.3)

Proof. 1t is an easy, and well-known, consequence of Stirling’s formula, see
e.g. (A.13), that for any complex constant ¢ and all complex z in a sector
|arg z| < m — ¢ (where ¢ > 0) with |z| large enough, for example |z| >
2|c|/sine,
logT'(z 4+ ¢) —logI'(2) = clogz+0(|z|_1), (5.4)

uniformly for ¢ in any bounded set and such |z|.

If a > 0 and b € R, we thus have for real ¢ — 400, taking z = iat in (5.4)
and in Stirling’s formula (A.12),

log I'(ait + b) = log T'(iat) + blog(iat) + O(t ")
= (iat + b — 1) log(iat) — iat + log V27 + O(t ™)
= (iat + b — 3) (log(at) + ir/2) — iat + log V2r + O(t_l).
Taking the real part, we find
log |'(ait + b)| = Re(log I'(ait + b))
= —gat + (b — %) log(at) + log V2T + o(t™).
Consequently, for a > 0,
IT(ait + b)| ~ V2r a®V/20712e7327 ¢ & 40, (5.5)
For general real a and ¢ we thus have (by I'(z) = I'(z))
ID(ait + b)| = [T(|alilt| + b)| ~ vV2r [a|o~ /2 [tP-1 231l ¢ toc.

The result (5.2) follows by multiplying the various factors in F(it) in (5.1),
noting that |D'| = 1.
For (5.3) we note that (5.4) implies

log |T'(a(o + it) + b)| — log |T'(ait + b)| = Re(ao log(ait +b) + O(t "))
= o(alog |a| + alog |t| + O(t_l)),
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and the result follows by multiplying the various factors in F(o + it)/F(it).
(Alternatively, at least for fixed o, we may apply (5.2) with b; replaced by
bj + oaj, b, replaced by b}, + oa) and C replaced by CD? = Ce; note
that the proof holds for any function F' of this type, without assuming the
existence of random variables X and Y.) O

Proof of Proposition 2.7. By (5.2), the values of F(it) determine =y, ¢ and
(4. Further, choosing any fixed o > 0 in (5.3), we see that F' determines +/

and s too. O
Corollary 5.2. We have v > 0. Further, if v =20, then § < 0.
Proof. By letting t — oo in (5.2), since |E Y| < 1. O

Remark 5.3. If v =0 and +' # 0, then (5.3) implies a better bound for 4,
viz. 6 < —max(y p+,7 p-). (Example 3.16 is one such example, with v = 0,
7' =1 and strict inequality 6 = —3/2 < —y/p; = —1.)
Theorem 5.4. If v > 0, then X and Y are absolutely continuous, with
continuous and infinitely differentiable density functions fx(x) on (0, 00)
and fy (y) on (—oo,00) given by

1 o+ioco

fx@ =5 [ @ F(s)ds, (5.6)
1 o+ioco
fr(y) = ol e Y9 F(s)ds, (5.7)

for any o € (p—, py).

Proof. By Theorem 5.1, the characteristic function Ee'®Y = F(it) is inte-
grable, and thus Y has a continuous density fy obtained by Fourier inver-
sion:

1 00 " 1 ico
- —ity B (i) dt = —— —sy
v (v) o /_oo e "WF(it) dt o ) e *F(s)ds. (5.8)
Since Y =log X, X also is absolutely continuous, with the density function
1 1 o0 —s—1
fx(z) = ;fy(log x) = 5 /ioox F(s)ds. (5.9)

(Alternatively and equivalently, F'(s) is the Mellin transform of fx, and this
is the Mellin inversion formula.)

Since Theorem 5.1 further implies that |¢t|V F(it) is integrable for every
N >0, fy and fx are infinitely differentiable and we may differentiate (5.9)
and (5.8) under the integral sign an arbitrary number of times.

The integrands in (5.9) and (5.8) are analytic in s for p_ < Res < py,
and thus the estimate (5.3) implies that we can move the line of integration
to any line Res = ¢ with p_ <o < p4. O

Remark 5.5. For X, we consider the density only for z > 0, and ‘infinitely
differentiable’ here means on (0, 00). Continuity and differentiability of fx
at 0 will be considered in Theorem 6.11.
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Remark 5.6. In the case v = 0, the same argument shows that if § < —1,
then X and Y have continuous density functions, which have at least [|0|] —2
continuous derivatives. However, Example 3.4, where 6 = —f, shows that
we in general do not have more derivatives. Similarly, Examples 3.3 and 3.4
show that we do not necessarily have continuous density functions for v = 0
and —1 < § < 0. Example 10.1 gives an example with v = § = 0 where the
distribution is mixed with a point mass besides the absolutely continuous
part.

Note that, by (5.2), v = 6 = 0 if and only if |EX"| = |Ee'*Y| has a
non-zero limit as ¢ — £oo; by the Riemann—Lebesgue lemma, this implies
that Y and X do not have absolutely continuous distributions.

We next consider asymptotics of F' along the real axis, when possible.

Theorem 5.7. (i) If py = oo, then for real s — +o0,

EX® =Ee?Y = F(s) ~ C1s°erslogst=)s, (5.10)
(ii) If p— = oo, then for real s — —o0,
EX® =Ee?Y = F(s) ~ Cy|s|0eslloslsl+()s, (5.11)

Proof. (i): By Theorem 4.1 and Proposition 2.7, we may assume that all
aj,a), > 0. We then argue as for Theorem 5.1. If a > 0 and b € R, then for
real s — +o0,

log'(as + b) = logI'(as) + blog(as) + O (s ')
= (as + b — 3)log(as) — as +log V21 + O(s7})
=aslogs+ (aloga—a)s+ (b—1)logs
+(b—1)loga+logv2r+0(s7), (5.12)

and the result follows again by multiplying the factors.
(ii): This follows from (i) by replacing Y by —Y, see Remark 2.8:

Ee? =EellY) ~ ¢y|s|felsloglslH(==lsl O

If p1 < o0, then F' has poles, and possibly zeros, on the positive real axis.
Typically, there is an infinite number of such poles (but see Example 3.3 for a
counter example), and then we cannot consider asymptotics for all s — +o0.
However, we can restrict s to a subset of R and obtain asymptotic results
similar to Theorem 5.7 in this case too.

Lemma 5.8. Given real aj,b;,a;, b, for 1 < j < J and1 <k < K, with
aj,a) # 0, there exists a closed set E C R and a constant £ > 0 such that
E NI has measure greater than 1/2 for every interval I of length 1, and
|sin(m(ajs + bj))| > & and |sin(w(as +b),))| > & for every j and k and all
se k.

Proof. Let N be the set of all (real) s such that ajs + b; € Z for some
j or aps + b € 7Z for some k. There exists a constant M such that no
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interval of length 1 contains more than M points of N. (For example,
M=J+K+53, la;| 7t + >, |ak|7t.) Tt follows that E = {z : |z — s| >
1/(2M + 3) for all s € N} satisfies the properties, for some £ > 0. O

In the sequel we let E denote this set, defined for a given representation
(5.1) of F(s). By considering only s € E, we can extend Theorem 5.7 to
arbitrary F'.

Theorem 5.9. For real s — +oo with s € E,
’F(S)‘ _ ’s‘dey’slog|s|+(%—'y’)s+0(1)' (5'13)
Proof. If a < 0 and b € R, then for real s — 400, by (A.6) and (5.12),
log|I'(as + b)| = —log |I'(|als — b+ 1)| + log 7 — log | sin(w(as + b))|
= —la|slog s — (|a[log |a| — !a!)s — (3 —b)logs — (3 — b)log|al

+log \/m/2 — log | sin(m(as + b))| + O(s™ 1),

=aslogs+ (alog|a] —a)s+ (b — 5) log s — log | sin(m(as + b))| + O(1).
(5.14)

If (a,b) is some (aj,b;) or (a}, b)) with a < 0, we thus have by Lemma 5.8,
for s € F with s — +o0,

log |T'(as + b)| = aslog s + (alog|a| — a)s + (b— 1) log s + O(1).  (5.15)

By (5.12), (5.15) holds also for a > 0 (and all s — 400).
Further, replacing s by —s and a by —a in (5.15), we see that if (a,b) is
some (aj,bj) or (aj, b)), then for s € E with s — —oo0,

log [T'(as + b)| = aslog|s| + (alog|a| — a)s + (b — 3)log|s| + O(1). (5.16)

Thus (5.16) holds for all such (a,b) and s — oo with s € E, and the result
follows from (5.1). O

Note that if py = oo, then 4/ = v, while if p_ = oo, then v/ = —v
by (2.4)—(2.5) together with Theorem 4.1 and Proposition 2.7; hence the
exponents in Theorems 5.7 and 5.9 agree (as they must).

For complex arguments, we will use the following estimate.

Lemma 5.10. Let ¥(o,t) := fg arctan(u/o) du for t > 0. Then, for o >0
with 0 € E and all real t,

W_ p(=5 (v = V)t =7 Wl t) + O + [tlo™) ).

2
Proof. We may assume ¢ > 0. Consider first a factor I'(as + b) with a > 0
and s = 0 +it, 0 > 0. (We may assume that o is large so that ac + b > 0,
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e.g. by using (5.3) for small ¢.) By (A.13),
% log |I'(a(o +it) + b)| = Re i log I'(a(o +it) +b)
= Re(1a log(a(o +it) + b)) + O(lo| ™)
= Re(ialog(a(o +it))) + O(|o| ™)
= —aIm(log(o +it)) + O(|0|_1)
= —aarctan(t/o) + O(|a|_1). (5.17)
Consequently, integrating from 0 to t,
log|T'(a(o +it) +b)| —log|T'(ac +b)| = —a¥(0,t) + O(te™").  (5.18)
If a < 0, we argue as in the proof of Theorem 5.9 and have by (A.6)
log [I'(a(o +it) + b)|
= —log |I'(Ja|(c 4+ it) + 1 — b)| — log | sin(m(a(o + it) + b))| + log 7.

If further (a,b) = (aj;,b;) or (aj,b,) for some j or k, and o € E, then
log |sin(w(a(o + it) + b))| = 7|a|t + O(1), and it follows, using (5.18) with
|a| instead of a, that

log|T'(a(o +it) +b)| —log|T'(ac + b)| = |a|¥ (o, t) — w|alt + O(1 + to™ 1)
= —a¥(o,t) +wat + O(1 +to ).
The result follows by multiplying the factors in F', using Lemma 2.12. [

6. ASYMPTOTICS OF DENSITY FUNCTION

We continue to assume that X and Y = log X are random variables such
that (1.1)—(1.3) hold; as above we write EX® = e*¥ = F(s). We assume
v > 0, so that density functions of X and Y exist by Theorem 5.4, and
consider asymptotics of the density function fx(x) as x — 0 or x — o0, or
equivalently of fy(y) as y — —oo or y — oo. By symmetry it suffices to
consider one side, and we concentrate on x — oo, but for convenience in
applications we write most results for both sides and for both X and Y.

We consider first z — 0o (y — o0) and begin with the case p4y = oo, when
X has moments of all (positive) orders and fx decreases rapidly (as we will
see in detail soon). We use the saddle point method, see e.g. Flajolet and
Sedgewick [12, Chapter VIII], in a standard way.

Theorem 6.1. Suppose that p+ = oo and v > 0. Then
Fx(@) ~ Gz~ lemeas, - o0,

Cq ) —me(y—3)/
fY(y) ~ \/mea(y 2)—yel¥ 7, Y — 0,

where

=(0+1/2)/7,
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co 1= 76_”/7,
Ch

V21

Proof. By Theorem 4.1 and Proposition 2.7, we may assume that all a;, a}, bj, b, >

0. We will use (5.6), which now is valid for all x > 0 and ¢ > 0.
By (A.13) and (A.14), for a,b > 0 and Re s > 0,

—c13¢

Cy =

(logT'(as + b))/ = alog(as +b) + O(|5]_1) = alog(as) + O(|s|_1),
(logT(as +b))" = % +0(|s|7?).

Consequently, writing

J K

f(s):=log F(s) =logC +ds + Zlog I'(ajs + bj) — Z log T'(as + b},),
j=1 k=1
we have for Res > 0,
J K
fl(s)=d+ Z(aj logaj + ajlogs) — Z(aﬁc log aj, + aj, log s) + O(|s| ™)
j=1 k=1

=»x+~vylogs+ O(\s\_l),
f'(s) =T +0(s| ).

Fix x > 0 and let G(s) := 27°"1F(s) and g(s) := log G(s) = —(s—1)logz +
f(s). Then

g (s) = f'(s) —logz = vylogs + s —logz + O(|s| ). (6.1)

We choose (for z large) o = e(082=2)/7 50 ylogo = logz — » and ¢'(0) =
O(o~1); thus o is an approximate saddle point of G(s). Note that o — oo
as x — 00, s0 -1 — 0. Since ¢"(s) = f"(s), we further have, as z — oo,

g"(0) = ’ya_l + 0(0_2) ~ oL, (6.2)

Further, on the line Res = o,

g'(o+it) = (o +it) = 1 =+ 0(7?) = g +O((1+[tho2). (6.3)

Consequently, Taylor’s formula yields
. _ Y —
g(o +it) = g(o) + O(|t|o™") — %t2 +O(([t)* + |t*)o™?) (6.4)
and, uniformly for [¢| < o%¢,

G(o +it) = G(o)e /27 +o), (6.5)
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For larger |t|, we have a rapid decay, for example by Lemma 5.10 which
yields, for large o and [t| > 0*6, recalling that now ' = 7,

|G (o + it)] _ |F (o + it)|
|G (o) (o)

< exp(fcmin(|t|, |t|2/0)>. (6.6)

for some ¢ > 0. It follows from (6.5) and (6.6) that (5.6) yields, using
Theorem 5.7 and the choice of o = e(1087=29/7 = ¢=/72.1/7

L GO) [% e GG
fX(x)_Qﬂ/_ooG(U+lt)dt o /_Ooe dt = N
=7 F(0)ot/? Cy

_ 0_5+1/2x—16’yaloga—i—(%—’y)a—olog:{:

= ~

V 21y V21

C 1/
_ 716(6+1/2)(10gm_%)/7$_16_70 _ 02$c1—1e—02x ’Y‘

N £\ 2Ty
The result for fy follows similarly from (5.7), or simpler by fy(y) =
eV fx(eY). O

Remark 6.2. The derivative f (z) and higher derivatives f)((n ) () can be
obtained by repeated differentiation of (5.6) under the integral sign, which
multiplies the integrand by a factor (—s—1)---(—s—n)ax~". The argument
above, including the estimates (6.5) and (6.6), applies to this integral as well
and shows that, for any n > 0,

W) ~ "G (o)T /21y ~ 0" fx(z) = (ca/7) 2"V fx (w).

In particular, every derivative of fx tends to 0 rapidly (faster than any
power of x) as & — oo.

= exp(—’y\II(U, lt]) + O(1 + ]t!ail)>

Remark 6.3. The saddle-point method yields also more precise asymptotics
including higher-order terms by refining the estimates around s = ¢ in the
proof above, see e.g. Flajolet and Sedgewick [12, Section VIIL.3|; we leave
the details to the reader. This yields an asymptotic expansion in powers of
o1, with ¢ as in the proof above, i.e., in powers of z~1/7. See Remark 1.10
for an example of such an expansion (there obtained from a known result

rather than by performing the calculations).

We continue with the case py < oo, when F'(s) has a pole at py of order
vr(py) > 1. (Recall the notion v from (4.2).) We denote the coefficients
of the singular part of the Laurent expansion of F' at a point sg by c¢(so):

vr(so)

F(s) = Z co(s0)(s — s0)~F+0(1) as s — so. (6.7)
=1

In particular, ¢;(sp) is the residue Resg, F.
We have the following standard result by Mellin inversion, see [11].
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Theorem 6.4. Suppose that py < oo and v > 0.
(i) As x — oo, for some n >0,

ve(p+)=1 N1
fX(‘T) — xfp-!—*l Z ( 1) Z[-‘rl(p‘F) logel’ + O(xfp_'_flfn)

=0

In particular, with v := vp(ps) > 1,
(=1)"cu(p+) —py—171. v—1
fX(ﬂ:') ~ WCE + log x.
If p4 is a simple pole of F', i.e. v =1, this can be written
fx(x) ~ —Res,, (F) xP+TL

(ii) More precisely, there is an asymptotic expansion, for any fized o > 0,

vr(p)
Z FZ ZHCHl(P) ' loggx + O(x—a—l)’

0<p<o (=0

summing over all poles p of F in (0,0]. (The inner sum vanishes
unless p is a pole, so formally we may sum over all p.)

Corresponding asymptotics for fy(y) = €Y fx(e¥) are obtained by replacing
each z7""1 by e and log’ z by y*.

Proof. As said above, this is a standard result, and we refer to [11] for details,
but for completeness and later use we give the simple proof.

It suffices to prove (ii), since (i) follows by taking o = p; + 1. We may
assume that o is not a pole of F' (otherwise we increase o a little). We start
with (5.6), where we integrate over a line with Res € (p_, py). We may,
using Theorem 5.1, shift the line to Res = ¢ > p4 too, but then we have to
subtract the residues of the traversed poles. Thus

1 oee —s—1 —s—1
fx(z) = — / 2 F(s)ds — > Resep(x*'F(s)), (6.8)

27 :
—leo 0<p<o

and the result follows by computing the residues, using (6.7) and 275! =

P57 (= log m)t(s — p)*/¢!, and noting that, by Theorem 5.1 again,

o+ioco o+ioco
/ 7 R (s)ds| < a;_"_l/ |F(s)|ds = O(x~71). O

—ioco —ioco

In Theorem 6.4(ii) we have an asymptotic expansion, valid for fixed o as
x — oo. It is natural to ask whether this asymptotic expansion actually
yields a series representation for fx(x), i.e., whether we can let o — oo for
fixed = (with the error term tending to 0) so that fx(x) is represented as a
convergent series. This is possible sometimes, but not always. In fact, the
following theorem shows that this is possible exactly when +' < 0, at least
provided that there is an infinite number of poles p > 0 and that these are
simple.
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Theorem 6.5. Suppose that v > 0.
(i) If ' <O, then, for all z > 0,

vr(p)—1

Z+1
= Z wﬂc“"llog%a (6.9)

p>0 =

summing over all poles p > 0 ofF. In particular, if F' has only simple poles,

fx(@) =" —Res,(F)z~". (6.10)
p>0

(il) If v > 0 and there is an infinite number of poles p > 0 of F, all
simple, then the sum (6.10) diverges for all x > 0.

(i) If v = 0, then (6.9) holds for x > e*; hence (6.10) holds for
x > €” provided all poles are simple. However, at least provided that there
is an infinite number of poles p > 0 of F' and all such poles are simple, the
sum (6.10) diverges for 0 < x < e*.

Corresponding results for fy(y) are obtained by replacing x=P~1 by e=PY
and log’ z by y¢. The cut-offs in (iii) become y > s and y < .

Proof. (i) and (iii) (convergence): We use again (6.8), and have to show that
the integral tends to 0 as ¢ — oo for every fixed z > 0. We use Lemma 5.10,
and note that 0 < W¥(o,t) < §t for ¢ > 0, and thus, because 7' < 0, for
o> 0with o € F,

|F(o +1it)]

m e
< o A VA -1
T S oP(-50 = =Gl +00+ o)

7r _
= exp(—§'y|t| +O(1 + [t|o 1))

If 0 € E is large enough we thus have |F (o +it)| = O(e‘”'tHF(U)D for all
real ¢, and hence, because v > 0,

o4ioco [e'¢)

/ e R ()| [ds) = O (e (o)) / e dt = 0 (e~ F (o).
g—100 —00

If v < 0, then this is by Theorem 5.9 o(1) as ¢ — oo for any fixed x > 0,

which shows (i).

If v/ = 0, then Theorem 5.9 yields, for a fixed x > 0, 2 7F(0) =
O(c%e(*71082)7) " which is o(1) for x > e*, showing the positive part of
(iii).

(ii) and (iii) (divergence): Let p > 0 be a pole of F' that is not too close to
a zero or another pole, meaning that the distance to every zero or other pole
is at least some small constant { > 0. (This is true for all poles if all a;, a},
are commensurable and £ is small enough; in general it is true for a large
fraction of the poles, and certainly an infinite number of them.) A simple
modification of the proof of of Theorem 5.9 then yields the same estimate
as there for the residue at p:

| Res, (F)| = p56'y’plog pt+(=7")p+0(1)
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and thus, for every fixed z,
‘w—p—l Res,(F)| = péev’p1ogp+(%—v’—1ogar)p+0(1).

Letting p — oo, we see that the terms of (6.10) are unbounded if v > 0 or
~v" =0 and s > log x; hence the sum diverges. ([l

Remark 6.6. To show divergence in (ii) and (iii), we assumed for simplicity
that F' has only simple poles on the positive axis; we conjecture that, more
generally, (6.9) diverges also without this restriction.

To show divergence we also assumed that F' has an infinite number of
positive poles; this is, on the contrary, obviously necessary for divergence,
since otherwise the sums (6.9) and (6.10) are finite. However, if ' has only
a finite number of positive poles, then the sum in (6.9) or (6.10) is not
integrable, since it is ~ cz? log z as © — 0, where p > 0 is the largest
pole of F' and ¢ # 0, £ = vp(p) — 1; hence the sum cannot equal fx(z) for
all z > 0. Example 10.2 yields an example where the sum does not equal
fx(z) for any x > 0 (although the difference tends to 0 rapidly as x — oo
by Theorem 6.4).

In this connection, note that if v > +/, then there is an infinite number
of poles in (0,00) by Proposition 4.6.

We now consider x — 0 and y — —oo. We obtain the following by the
same methods as above (now moving the line of integration towards —oo),
or more simply by applying the results above to X! and —Y; this replaces
F(s) by F(—s) and the Laurent coefficients c¢(sq) by (—1)%ce(—s0).

Theorem 6.7. Suppose that p— = —oo0 and v > 0. Then
fx(xz) ~ Cg:ﬁ_cl_le_cwfl/v, x — 0,
fY(y) -~ C1 e—cl(y—%)—'ye—(y—%)/’v y — —00,

\2my ’

where

c1:=(+1/2)/,
cg 1= ve*/7,
Cy
V2my
Theorem 6.8. Suppose that p— > —oo and v > 0.
(i) As z\, 0, for somen >0,

c1c

C3:=

e

vr(p-)—1
fx(@)=al=71 Y chrlg(!p_)loge(l/x)—i-O(x'p|_1+’7)
=0

In particular, with v := vp(p-) > 1,

Fx(z) ~ mxlﬁl—l log”~1(1/).
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If p_ is a simple pole of F', i.e. v =1, this can be written

fx(x) ~ Res, (F)zlr-I71,

(ii) More precisely, there is an asymptotic expansion, for any fized o > 0,

Z Z C€+1 \p| llog (1/13)+O( o— 1)

0>p>—0c ¢=0
summing over all poles p of F in [—0,0).

Corresponding asymptotics for fy(y) = e¥fx(e¥) are obtained by replacing
each "1 by e and logf(1/z) by (—y)*.

Theorem 6.9. Suppose that v > 0.
(i) If 7/ >0, then, for all x > 0,

-y Z C“l 2 og (1), (6.11)

p<0 =
summing over all poles p<0 ofF In partzcular if F' has only simple poles,

= Res,(F)zl/1. (6.12)

p<0

(il) If v < 0 and there is an infinite number of poles p < 0 of F, all
simple, then the sum (6.10) diverges for all x > 0.

(i) If 4/ =0, then (6.11) holds for 0 < x < e*; hence (6.12) holds for
0 < x < e* provided all poles are simple. However, at least provided that
there is an infinite number of poles p < 0 of F' and all such poles are simple,
the sum (6.12) diverges for x > e*.

Corresponding results for fy(y) are obtained by replacing zlPl=1 by elely
and log®(1/z) by (—=y)*. The cut-offs in (iii) become y < » and y > .

Theorems 6.5 and 6.9 say that (at least if v > 0), fx(x) has a series
expansion in positive (but not necessarily integer) powers of z if v/ > 0,
and a series expansion in negative (but not necessarily integer) powers of z
if v/ < 0, in both cases allowing for terms with logarithmic factors too; if
~' = 0 one expansion holds for 0 < x < e* and the other for x > e*.

Remark 6.10. Suppose that all a;, a) are commensurable; then F'(s) may
as in Section 4 (see the proof of Lemma 4.2) be rewritten with all a;, aj, = %7,
for some real » > 0. The poles of F' in (—o0,0) then form one or several
arithmetic series {s;—n/r} with gap 1/r, possibly apart from a finite number
of other poles. If further all poles are simple, then the residue at such a pole
s; — n/r is of the form (C/r)(—D)™(n!)~! [[ul(n+¢)/ LT (n + c),
and the contribution to (6.12) from this series of poles is a (generalized)
hypergeometric series with argument —Dz!/", times a constant and a power
of x. Consequently, if further v,7" > 0, then the density function may be
expressed using one or several hypergeometric functions. Typical examples
are given in Theorems 1.8 and 1.13.
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As a corollary, we get results on continuity and differentiability at 0.

Theorem 6.11. Suppose that v > 0.

(i) The density fx is continuous at 0, and thus everywhere on R, if and
only if p— < —1.

(ii) The density fx has a finite jump at 0 if and only if p— = —1 and this
is a simple pole of F. In this case fx(0+) = Res,_(F).

(iii) The density fx is infinitely differentiable on R if and only if p— =
—00.

Proof. Note that fx is infinitely differentiable on (0, 00) by Theorem 5.4, as
well as, trivially, on (—o0o,0) where it vanishes.
Parts (i) and (ii) follow immediately from Theorems 6.7 and 6.8.

If fx is infinitely differentiable at O, then every derivative f)(? ) 0)=0
because fx vanishes on (—o00,0). Hence a Taylor expansion shows that
fx(x) = O(2) as  — 0 for every integer N. If p_ were finite, this would
contradict Theorem 6.8; hence p_ = —oo.

Conversely, if p_ = —oo, then Theorem 6.7 shows that fx(x) tends to
0 rapidly as « \, 0. Moreover, by Remark 6.2 and the usual change of
variables x — 1/x, the same holds for each derivative f)(? ) (x). It follows, by

induction, that each derivative f)(?) (x) exists also at x = 0 with f)(?)(O) =0.
Hence fx is infinitely differentiable.

Remark 6.12. More generally, fx has n continuous derivatives (at 0) if
and only if p_ < —n — 1; we omit the details.

Remark 6.13. We have in this section assumed v > 0 in order to have
good estimates of F(s) as |[Ims| — oo in the proofs. It seems likely that
the results can be extended to the case v = 0 too, under suitable conditions,
but we have not pursued this beyond noting that the results above hold also
for the examples in Section 3 with v = 0, with one interesting exception for
Example 3.16.

For example, the uniform distribution in Example 3.3 has py = o0, p_ =
—1,v=49"=0, 5 =0 and a single, simple pole at —1; the series in (6.10)
is thus 0 and the series in (6.12) is 1, so (6.10) holds for x > e* = 1 and
(6.12) holds for x < e* = 1. The asymptotic result in Theorem 6.1 is not
directly applicable, since the exponent 1/ = oo, but it can be interpreted
as fx(x) =0 for large x, which is correct.

The same holds, mutatis mutandis, for the Pareto distribution in Exam-
ple 3.13, where now there is a single pole at a > 0 and the density vanishes
on (0,1).

Similarly, for the Beta distribution B(«, 3) in Example 3.4, the series in
(6.12) is

S (_1)71 F(Oé+,6) xn—&-cx—l _ F(Oé—i—ﬁ) xa—l = ﬁ -1 —r n
2 TG T @) ;( R

n=0
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which for < 1 = e* converges to the density f(z) = (I'(a+3)/T(a)T(3)) -
7 1(1 — )81, for 2 > 1 this series diverges unless 3 is an integer (when
the series is finite but does not yield f(z) = 0 for z > 1), while (6.10) holds
trivially.

The I'(n) distribution in Example 3.18 is an example with a multiple
pole. There is a single pole at 1, with ¢,(1) = (—=1)" and ¢,(1) = 0, £ #
n. Hence the sum in (6.9) is, rewritten for fy as stated in Theorem 6.5,
(1/(n — 1)!)y" e, which is the correct density for y > s = 0.

The Fejér distribution in Example 3.16 has v = 0 and p4 = 1; further, 1 is
a simple pole of F'(s) = E | X|*, with residue —2/7. Hence, Theorem 6.4, if it
applied, would give fix|(z) ~ 2772 as ¢ — oo, which is false since fix|(x) =
2772(1—cosz), see (3.31); it gives the correct average behaviour but misses
the oscillations. The reason for this interesting failure of Theorem 6.4 and
its proof is the slow decay of F(o +it) as t — oo, especially when o is close
to p4 = 1 or larger, see Theorem 5.1. On the other side, note that as x \ 0,
Theorem 6.8 correctly yields f|x(z) ~ % In fact, the proof of Theorem 6.4
and Theorem 6.8 works for x — 0 but not for + — oo due to the fact
that Theorem 5.1 yields better estimates for ¢ < 0 than for ¢ > 0 because
~' > 0. It would be interesting to find a Mellin transform argument yielding
the correct oscillatory asymptotics as £ — oo.

We give some examples of applying the theorems above to the distribu-
tions in Section 3. This is mainly as an illustration of the theorems; we
cannot expect to obtain any new results for these classical distributions.
Other applications of the theorems are given in Theorems 1.8, 1.9, 1.13,
1.14, 9.1, 9.3, 9.6, 9.7.

Example 6.14. For the exponential distribution in Example 3.2, Theo-
rem 6.1 yields f(z) ~ e™" as x — oo (this is actually an identity for all z > 0)
and Theorem 6.9 yields, since the poles are at —n — 1, with n = 0,1,...,
fx) =200 o(=1)"z™/n!, z > 0, again a trival result.

n=0

Example 6.15. Similarly, for the Gumbel distribution in Example 3.19,
f(y) = e ¥=¢" and the asymptotic formula in Theorem 6.7 is actually an
equality for all real y.

Example 6.16. Consider the stable distribution in Example 3.10 with 0 <
a < 1. Since v > 0 > 4/, we can apply Theorem 6.5(i). By (3.16), F(s) :=
E S¥ has simple poles at s = na, n =1,2,..., and, using (A.6),
—aRes; (') (1)«
I'(l—na)  (n—1T(1—na)
I'(na + 1) sin(mna)
(1) (1) e

Respa(F) =

ol (na) sin(mna)
(n—1!rn

(6.13)

(This includes the case when na is an integer, in which case na is not a pole
because of cancellation; (6.13) then correctly yields Res,q(F) = 0.) We thus
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obtain by (6.10)

fSa (SL‘) — Z(_l)n-‘rl F(na + i)ns'in(ﬂna) l‘_na_l. (6.14)
n=1 ’

This is the well-known formula for the stable density, see Feller [9, XVII.(6.8)]
(with v = —a for the positive case studied here).
In particular, as  — oo, (6.14) or Theorem 6.4 (with p; = «) yields

fsa (@) ~ = Resa(F)a™* ! = ﬁx_"‘_l, r — .
As x — 0, Theorem 6.7 yields rapid convergence to 0:
Fou () ~ Cogmme)/@=20) gmesz=2/0) o g g5
with ¢ = (1 — a)a® (=) and C3 = (2(1 — a))~1/2a!/ (229,

Example 6.17. Consider the Mittag-Leffler distribution in Example 3.11
with 0 < o < 1. Since 7,7 > 0, we can apply Theorem 6.9(i). By (3.17),
F(s) := EM; has simple poles at s = —n, n = 1,2,..., and, using (A.6),
cf. (6.13),

_ Res; (') (—1)n1 B n_1 1 (na) sin(mna)
Res—n(F) = r(11— na) ~ = DT —na) ~ Y 1 (n—1)'n

(Again, this includes the case when na is an integer, in which case —n is
not a pole but the formula correctly yields 0.) We thus obtain by (6.12)

o0

[y () = Z(—l)

n

n—1 I (na) sin(mna)
(n—1)!rn

n—1

I
—

I'(ma + «) sin(ra(m + 1))
mlm

M

(—1)™ ™. (6.16)

0

3
Il

(This is also easily obtained from the stable density (6.14) since M, = S,
and thus fy (z) = a 'z~ Vo lfg (z=V/*).) In particular, in accordance
with Theorem 6.11,

') sin(7ra) 1

fr1a (04) = 71' T Tl-a)

As x — 00, Theorem 6.1 yields
far, () ~ CQ&:(QO‘_1)/(2_2a)e_02x1/<1w>, T — 00,

with co = (1 — @)a®1=% and Cy = (27(1 — a))~/2a2e=1D/(2=20) " (This
also follows from (6.15).)

Example 6.18. The Lévy area in Example 3.20 has the moment generating
function (3.37) with simple poles at (n + 3)7, n € Z. Theorem 6.5 yields,
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for y > » =0,
00 —7y/2 1
= —1 n _(n—"_l)ﬂ'y = € ==
f(y) nz:%( )*e ? 1+e ™  2cosh(my/2)

while Theorem 6.9 yields, for y < 0,

e ) Ty/2 1
e —]_ n—1 (n—l)q'ry e ¢ - .
f(y) ;( )t e 1+e™  2cosh(ry/2)

The two sums thus sum to the same analytic expression; hence A has the
density 1/2 cosh(my/2) for —oo < y < oo. (For a more elegant proof of this,
see e.g. Protter [28, p. 91].)

7. BROWNIAN SUPREMUM PROCESS AREA

We consider the integral A = A(1) of the Brownian supremum process
defined in (1.5).

Remark 7.1. Let L(t) denote the local time of B(t) at 0. It is well-known
that the processes S(t) and L(t), have the same distribution [30, Chapter
VI.2):

{5®)} 1m0 = {L®} 2

J. T L(t)dt, so we obtain the same results for this

4
= Jo

Consequently, A(T)
integral.

Let v denote the Laplace transform of A:
Y(s) :=Ee A (7.1)

Janson and Petersson [19] proved the following formula for the Laplace trans-
form of a variation of v, or in other words, a double Laplace transform of
A: For all a, A > 0,

/0 ¢(at3/2)67)‘t dt :/0 (1 + j%>_2/36>\t dt. (7.2)

Janson and Petersson [19] used (7.2) to compute the integer moments
EA™ n € N; Theorem 1.6 extends their formula to all real and complex
moments.

Proof of Theorem 1.6. Consider for convenience X := ?A. Taking a =
V/8/3 in (7.2), we find, for A > 0,

0o 00 t \—2/3
Ee " Xe=M gt = / 1+—=) e Mdt 3
/0 0 ( ﬁ) (7.3)

Denote the common value of the integrals in (7.3) by G(\).
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Let —1 < s < 0, and integrate A*G(\). From the left hand side in (7.3)
we obtain, using Fubini’s theorem a couple of times, the standard Gamma
integral (A 7), and the change of variables t3/2 = u,

/ G(M)A N = / / —t2X =M NS qp dN

=T(s+1) IE/ et X yms1 gy
0

2 o0
=T(s+1)E 3 / e Xy 25/3 gy
0

— gr(s + 1) (—2s/3) E X25/3, (7.4)

Similarly, from the right hand side of (7.3), using the changes of variables
t= )\1/% and X\ = u?/3, and the standard Gamma and Beta integrals (A.7)
a , still assuming —1 < s <0,

nd
—2/3
/G M5 dA = // 1+— e MAS dt d)

— / / (1 4 CC)_2/3 ef)\3/2x)\8+1/2 dz d)

/ / —l—.%' 2/3 e U 25/3dxdu

gF 25/3 + )/ (14 )23 p=25/3-1 gy
0

I'(—2s/3)'(2s/3 +2/3)

I'(2/3) '

Setting the right hand sides of (7.4) and (7.5) equal, we find after some
cancellations,

_ ;F(2s/3 1) (7.5)

I'(2s/3+1)I'(2s/3 + 2/3)
I'2/3)l'(s+1) ’
for —1 < s < 0, and thus, replacing s by 3s/2,
I(s+1)I'(s+2/3)
r'2/3)I'(3s/2+1)’

EXZS/S —

EX® =

(7.6)

for —2/3 < s < 0.

We use Theorem 2.1 to extend the domain of validity of (7.6). Denote,
as usual, the right hand side of (7.6) by F(s), and note that s = —2/3
is mot a pole of F(s); it is a removable singularity since the poles in the
numerator and denominator at —2/3 cancel. The first pole of G(s) on the
negative real axis is s = —1. This can also be seen by the functional equation
I'(z + 1) = 2T'(2), which enables us to rewrite (7.6) as

(\/é s I'(s+ 1)I'(s+5/3)

) EA=EX = T(5/3)0(35/2+2)"

(7.7)
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where the right hand side clearly has a pole at —1 but not in (—1, 00). Hence
p— = —1land p; = 00, s0 (7.6) and (7.7) hold for Re s > —1 by Theorem 2.1,
while E A° = oo for s < —1.

Next, the triplication and duplication formulas (A.4) and (A.3) yield

T(s+ 1) (s +4/3)T(s + 5/3) = 2r37 35734121 (35 + 3)
= q1/2935+33=35=5/20 (35 /2 + 3/2)T'(3s/2 + 2),
and thus

P(s+DI'(s+5/3) _ 7T1/2233_5/2F(3s/2 +3/2) <23)
I'(35/2 4+ 2) [(s+4/3)

33

The third formula for E A® follows by substituting this into (7.7), and using
I'(1/3)1'(2/3) = 7/ sin(r/3) = 27/+/3 from (A.6). (The constant factor can
always be found by setting s = 0, see Remark 1.2.)

Similarly, the final formula follows by applying the duplication formula
(A.3) to I'(s + 4/3) and the triplication formula (A.4) to I'(3s/2 + 3/2).
(Alternatively, we may use (7.6), applying the duplication formula to I'(s+1)
and I'(s + 2/3) and the triplication formula to I'(3s/2 + 1).) O

We have p; = oo and p_ = —1 for A. Further, the parameters in (2.4)—
(2.8) are, from any of the expressions in Theorem 1.6: v =+' =1/2,§ = 1/6,
»=—3%log3, Oy = 7~ Y21(1/3) = 24/n/3/T(2/3). Theorem 5.7 thus yields

s F(l/g) 1/6 L1slogs—(%1log3+1)s F(1/3) 1/6( S 5/2
EA ~ =g sSensioesalosstile = —orns/o( ) (7.8)

as s — 0o, found for integer s in [19].

Proof of Theorem 1.8. The existence of the density function f(x) follows
from Theorem 5.4. The explicit formulas are obtained from Theorem 6.9 as
follows. We use the last expression in Theorem 1.6 for F(s) := E A%, where
there is no cancellation of poles. The poles are thus given by, for n € Z>,
s/2+1/2=—nand s/245/6 = —n, ie. s=—2n—1and s = —2n — 5/3;
all poles are simple. The same formula yields the residues, using (A.11) and
(A6),

(1/3 —1)"T(1/3—n) [2\-n"1/2
Res_gp—1(F) = 2(1/é77) o n!) I‘Eljﬁ_ng ' (5)

1/631/2 n sin(w/6 — nm n
:(_1)n2 3/°r(1/3) T'(n+5/6) sin(m/6 )(§>

™ n!T'(n+2/3) sin(r/3 —nm) \2
_ L2Y01(1/3)  T(n+5/6)  /3\n
= (=1 T ‘nlT(n+2/3) (5) ’
I'(1/3)

Res_g,—5/3(F) =

(=1)"T(=1/3 —n) [2\-n-5/6
STEE - F(—1/6—n)’(§>

_ 1 L3Y3T(1/3)  T(n+7/6)  /3\n
T 91/6 ’n!r(n+4/3)’(’> '

2
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Consequently, by Theorem 6.9, in particular (6.12),

_ 2T/ § oy TS/ 3y,

Jalz) = e 2

L 3Prays) i(—l)”M <3>nx2”+2/3.

21/67 n!T(n+4/3) \2

By the definition of ;Fj, and simplifying the constants using (A.3) and
(A.6), this can be written as

21/2 52 3 271/631/3 74 3
_ 2 (2.2 2.2 2 0 2B (L E 22
f.A(:Z:) 71_1/21 1<673a 237 > + F(5/6) X 141 6737 2:1:
By Kummer’s transformation [1, (13.1.27)], this equals

a0 [ 212 123 ,\ 2716318 143,
JE— F e e - F e .
. <7r1/21 N7632" ) Y re U Y6t ) )
which can be rewritten as the two last formulas in the theorem by the

definition of U [1, (13.1.3)], see also [1, (13.1.29)], again using (A.3) and
(A.6) to simplify constants. O

Proof of Theorem 1.9. Immediate by Theorem 6.1. O

Remark 7.2. The hypergeometric function 1F(a;b;z) and U(a; b; z) satis-
fies Kummer’s equation xF” 4+ (b—x)F'—aF = 0 [1, (13.1.1)], and it follows
easily that f4 satisfies the differential equation

zf(x) + (32 + £) fa(x) + 5z falz) =0, x> 0. (7.9)

We guess that it also is possible to derive this equation directly from (7.2)
by manipulations of Laplace transforms, but we have not pursued this.

8. A HASHING VARIABLE

Assaid in Section 1, when studying the maximum displacement in hashing
with linear probing, Petersson [24, Theorem 5.1] found as a limit a random
variable M with the distribution

PM > z) = ¢(@¥?) =Ee A, >0, (8.1)

where A is the Brownian supremum area studied in Section 7. Lemma 1.11
shows that this type of relation preserves moments of Gamma type; hence
M has moments of Gamma type, but we have postponed the proof until
now.

Proof of Lemma 1.11. For z > 0,
P(TYe /7Y% > 1) = P(T > 2°Z) = E(B(T > 2°Z | Z)) =Ee "7
which shows that (1.10) and (1.11) are equivalent.
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If (1.10) or (1.11) holds, and thus both hold, then, for s > —a«, using
(3.2),

EVS =RET/*EZ%*=D(s/a+1)EZ%/* O
Proof of Theorem 1.12. By (8.1) and Lemma 1.11, with o = 3/2,
EM?® =T(2s/3+1)EA2%/3,

and the result follows from Theorem 1.6; for the last formula we also use
(A.3). O

Note also that Lemma 1.11 yields the representation

ML 723 4723, (8.2)

where T2/3 has a Weibull distribution with parameter 3 /2, cf. Example 3.9,
and is independent of A.

For M, the parameters in (2.4)—(2.8) are, from any of the expressions in
Theorem 1.12: v = 1,79 = 1/3,6 = 2/3, 5 = +log 2, C; = 27/6372/31'(1/3) =
213/63=7/60 /T(2/3). Furthermore, the function F(s) := EM?* (extended to
all of the complex plane) has residue —3/v/27 at p, = 3/2, and /2/7 at
p— = —3/2. (See the proofs below for the other residues.)

Proof of Theorem 1.13. As in the proof of Theorem 1.8, the existence of the
density function faq(x) follows from Theorem 5.4 and the explicit formulas
are obtained from Theorem 6.9. We use the third expression in Theorem 1.6
for F(s) :== EM?. The poles p < 0 all come from the factor I'(1 4 2s/3)
and are thus given by, for n € Z>o, 1 +2p/3 = —n, i.e. p = —3n/2 — 3/2.
All poles are simple and we find using (A.11) the residues

Res 3

—5n

(F) = T(1/3) T(1+n/2)T(4/3+n/2) (S)—l/z—nm I

—3V T o1y T(7/6 +n/2) 2 nl

Consequently, by Theorem 6.9, in particular (6.12),

3127(1/3) & ST 4n/2)T(4/34n/2) r2\n/2 5.
faal@) = “gie = > (1) T(7/6 +n/2) ! (§> e,

Splitting the sum into two parts, for n = 2k and n = 2k + 1, and using
(2k)! = 7= 1/222FD(k +1/2) k! and (2k 4 1)! = 7~ /222K k1 T(k 4 3/2), both
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instances of (A.3), we obtain, as usual using (A.3) and (A.6),

3121(1/3) & ['(4/3 + k) 1\k
@) = =55 i Z;) T(7/6 + k) T(1/2 + k) <*> Zh /2

6
BTN SRCTLELNE AR
24/371/2 £« T(5/3 + k) k!

6

_ 3121(1/3)  T(4/3) $1/22F2(g T 1_9:3)
25/671/2 T(7/6)T(1/2) 37776727 6
~ P(/3) T(A1/6) , (11.5.4”3)
24/371/2 T(5/3) "\6'3 6
212 | 4 71 2%\ 5 115 a3
_ 2 1)2 Sq.L 2oy 22 el
2" 2F2<3’1’6’2’6) 8" 1F1(6’3’ ) =

Proof of Theorem 1.14. As remarked above, the residue at py = 3/2 is
—3/4/27, and the next pole is at 5/2, which yields (1.14) by Theorem 6.4.

More precisely, by the last expression in Theorem 1.12, there are, on the
positive real axis, poles when 1/2 —s/3 = —n or 5/6 — s/3 = —n for integer
n >0, ie, s=3n+3/2and s = 3n+ 5/2. The residues are, using (A.11)
and (A.6),

(-)™ I'(1/3) T'(1+n)'(3/24+n)'(1/3—n) _gnt1/2

Reszy,q3/2(F) = — Ry o
— (1) 21/531(1/3) T(3/2+n)(5/6+n) o
w3/2 I'(2/3+n) ’
o) s TS, TS A1) v
w1 223430(1/3) T(11/6+n)D(7/6+n)
= (=1 3/2 ' ol -6,

By Theorem 6.4, there is an asymptotic expansion —3_ ., Res,(F)z=r~1,
which by the definition of the (generalized) hypergeometric series can be
written as in (1.15), yet again using (A.11) and (A.6). O

9. TRIANGULAR AND DIAGONAL POLYA URNS

A generalized Pdlya urn contains balls of several different colours. At
each time n > 1, one of the balls is drawn at random, and a set of new
balls, depending on the colour of the drawn ball, is added to the urn. We
consider for simplicity only the case of two colours, say black and white; the
replacement rule may then be described by a matrix (CC” Z), meaning that if
the drawn ball is black [white], it is replaced together with a black and b
white balls [¢ black and d white balls]. It is here natural to let a,b,c,d be
non-negative integers, but in fact, the model can be defined (and the results

below hold) for arbitrary real a,b,c,d > 0, see [15; 16]. (Further, under
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certain conditions some of the entries can be negative too, but that case is
not interesting here.) Different values of the parameters yield a variety of
different limit laws for the numbers B,, and W,, of black and white balls in
the urn after n steps, see e.g. [10; 15; 16] and the references given there.
We are here interested in the special case of a triangular urn, meaning that
the replacement matrix is triangular, say b = 0. We start with By = bg > 0
black and Wy = wy > 0 white balls, and assume wy > 0 (otherwise, there
will never be any white balls).

9.1. Balanced triangular urns. Assume that the urn is triangular and
balanced, meaning that the total number of added balls does not depend
on the drawn ball, i.e., a = ¢ + d; we further assume that a,c,d > 0;
thus @ > d > 0 and ¢ = a — d. In this case, it is shown by Puyhaubert [29],
Flajolet, Dumas and Puyhaubert [10, Section 7] and (with a different proof)

Janson [16, Theorems 1.3(v) and 1.7] that W,,/n%/® ~4, W for a random
variable W with moments of Gamma type given by

I'((bo +wo)/a) I'(s +wo/d) C Res>-"0 (91)
'(wp/d) I'(ds/a+ (bg + wo)/a) d

In the special case (by, wg) = (¢,d), and thus by + wy = a, this simplifies
to d°’I'(s + 1)/I'(ds/a + 1), so W/d has a Mittag-Leffler distribution with
parameter d/a € (0, 1), see (3.17).

All poles of F(s) := EW?® are on the negative real axis, so p; = o0.
In general, (9.1) shows that there is a pole at —wg/d, but if by = 0, then
this singularity is removable and the first pole on the negative real axis is
—wp/d — 1. We thus have p_ = —wy/d when by > 0, but p_ = —wp/d — 1
when by = 0. In fact, if by = 0, so we start with only wg white balls, the first
drawn ball is necessarily white, and thus urn after the first draw contains ¢
black and wq + d white balls. Thus the limit random variable W is the same
for the initial conditions (0, wp) and (¢, wp + d), and we may without loss of
generality assume that by > 0.

By (9.1), we have y =+ =1 —d/a = ¢/a, § = wo/d — (bg + wo)/a, » =
—g logg +logd = (clogd + dloga)/a, and C; = (a/d)®botwo)/a=1/2D((py +
wo)/a)/T(wo/d).

The function F'(s) in (9.1) has simple poles at s = —wg/d—n,n =0,1,...,
(except that some of these may in fact be removable singularities) and Theo-
rems 5.4 and 6.9 yield by a straightforward calculation of the residues, using
(A.11) and (A.6), the following:

EW?® = d?®

Theorem 9.1. The limit variable W for a balanced triangular urn (CC” 3)
with a = ¢+ d and a,c,d,wy > 0 has a density function fy on (0,00) given
by, for x >0,

_ T((bo + wo)/a) o= (=1)" d—nwo/d n-wo /d—
fw (@) = ['(wo/d) Z n! 'r(—dn/a+b0/a)x o
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_ T((bo +wo)/a) s~ (—1)" _sdn+a—by\ . w(by — dn) sz n+wo/d—1
B Wd()l“(w();d) Z n! F( a 0>sm Oa (3) ’

In fact, [10] even gives a local limit theorem to this density function.

Remark 9.2. It follows from Theorem 9.1 by comparison with Exam-
ple 6.17, or more simply directly from (9.1) and (3.17), that in the special
case bp = 0, W/d has a Mittag-Leffler(d/a) distribution conjugated with
2%/ see Remark 2.11; similarly, in the special case by = ¢ = a — d, w/d
has a Mittag-Leffler(d/a) distribution conjugated with z(wo—d)/d,

Theorem 9.1 shows immediately that as x \ 0, the density fyy(x) satisfies
fw () ~ C'z0/=1 where C' = T'((bg +wo)/a)(T (wo/d)T(by/a)) ~td~w0/d >
0, provided by > 0. For large z, Theorem 6.1 yields:

Theorem 9.3. As x — oo,
—1 —coxo/c
fW(I) ~ szcl 16 cor 7

with ¢ = (6+1/2)a/c, ca = ca™¥°d™Y, Cy = C1(2mc/a) "2 (dad/¢)~(0+1/2)
where § and C1 are given above.

Remark 9.4. For non-balanced triangular urns (a # c+d), limit results are
given in [16], but the results are more complicated and we do not believe that
the limits have moments of Gamma type. (See for example [16, Theorem
1.6], which gives a complicated integral formula for the moments in the case
a>d>0,c>0. In the balanced case, it simplifies to (9.1), but as far as
we know, there is no similar simplification in general.

Remark 9.5. The case of triangular urns with three or more colours is not
yet fully explored. Limit laws with moments of Gamma type occur in some
cases, but presumably not in all. Some such results are given by Puyhaubert
[29], see also Flajolet, Dumas and Puyhaubert [10].

9.2. Diagonal urns. In the diagonal case b = ¢ = 0 (with a,d, by, z9 > 0
to avoid trivialities), there are simple limit results, see [16, Theorem 1.4].
We distinguish between three cases.

(i) If @ = d, the classical Pélya urn [7; 27|, W,,/n — W where W/d ~
B(woy/a,byo/a). Hence, by Example 3.4, W has moments of Gamma type

r T
EWS = a° ((bo + 'U)())/a) . (8 + U)()/a) : s> _@' (9.2)
F(wo/a) P(s + (bo + wo)/a) a
Hence, recalling that a = d, (9.1) holds in this case too. We have p; =
00, p— = —wpla, v = =0, 0 = —by/a, »» = loga, C; = T'((by +

wo)/a)/T(wo/a).
(i) If a > d, Wy/n¥/® -5 W := dU=%/2V where U ~ I'(by/a) and V ~
I'(wp/d) are independent. Thus, by (3.1),

bo/(l — ds/a)F(WO/d+ S) 7@ < Res < b—o (9.3)

s __ s F(
EW =& =g Ja Twejd) d d
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We have py = by/d, p— = —wo/d, v =1+d/a, ¥ =1—d/a, 6§ = by/a+
wo/d — 1, 3 = —2log 4 +logd, Cy = 2m(T'(bo/a)T (wo/d)) " (d/a)?/=1/2.
Theorems 5.4 and 6.9 apply again and yield the following:

Theorem 9.6. The limit variable W for a diagonal urn (8 2) with a > d >
0 and by, wy > 0 has a density function fyy on (0,00) given by, for x >0,

fwle) = dr(bo/a)lr(wo/d) > (_nl!)n F<dn * I:f i =) (%)Hwo/d_l.

n=0

Again, the asymptotic fyy(x) ~ C'z%0/41 as 2\, 0, for some C’ > 0, is
immediate. For large x, we this time use Theorem 6.4, since p; < co. The
poles of (9.3) on the positive real axis are (an+bp)/d, n =0,1,..., and the
residues are easily calculated. This yields a divergent asymptotic expansion,
interpreted as in Remark 1.10.

Theorem 9.7. As x — oo, the density fyw(x) has an asymptotic expansion

a > (—1)” an + bg + w x\ —an/d—bo/d—1
fw (@) ~ d?F(bo/a)F(wo/d)Z n! F( c(l] 0><E> '

n=0
(iii) If @ < d, we may interchange the two colours and obtain n—o/ d(nd —
Wy) LW o= dUV~=%? with U and V as above, and aW/d has the

distribution in (ii) with the exchanges a < d and by < wy.

10. FURTHER EXAMPLES
We give a couple of further examples, or rather counter examples.

Example 10.1. Let X have a distribution that is a mixture of a point
mass at 1 and a uniform distribution on [0,1], with equal weights; thus
X =1—-V + VU where V ~ Be(1/2) and U ~ U(0,1) are independent.
Then, for Res > —1,

1 1 1 1 1 s+2  T(s+3)D(s+1)
EX=—-1"+=--EU°=-+— = =
SRR 573531 2s11)  2D(st2p
(10.1)
Equivalently,
EX° — 5/2+1  T(s/2+2)T(s+1) (10.2)

s+1  TI(s/2+1)T(s+2)
Hence X has moments of Gamma type. We have p; = oo, p— = —1,
¥=79"=8§=3%=0and C; = 1/2. Note that E X* — 1/2 # 0 as t — Fo0;
cf. Remark 5.6.

Example 10.2. Consider X := T/U, where T' ~ Exp(1) and U ~ U(0,1)
are independent. Then, see Remark 1.5 and Examples 3.2 and 3.3, X has
moments of Gamma type

I'(s+1) TI(s+1)I'(1—ys)

S __ —_ —
EX = == Ta_g 1 <Res < 1. (10.3)
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Consequently, p = 1 and p_ = —1. There is an infinite number of poles
on the negative real axis, viz. —1, —2,..., but the only pole on the positive
real axis is 1. We have y =7/ =1, 6 = —1/2, 2 =0, C; = /27.

It is easy to find the density of X = T/U: for x > 0,

1 1 1— 7
IP’(T/U>;U)=]P’(T>U$):/ }P’(T>ux)du:/ e “du= xe
0 0
and thus X has the density function
dl—e™® 1-(1 -
fla) =Sz _1=04@)e™ (10.4)

dr =z x?
Since 7v,v" > 0, Theorem 6.9 applies. The residue at —n—11is (—1)"/(n! (n+
2) and (6.12) yields
G (_1)n n
J(w) = % (n+ 2)n!x
which, of course, also follows directly from (10.4).

However, in Theorem 6.5, although the sum in (6.10) consists of a single
term 272 and thus converges, the sum z=2 # f(z) for all > 0, as asserted
in Remark 6.6. (But the error is exponentially small, and the estimates in
Theorem 6.4 apply.)

11. FURTHER REMARKS

Remark 11.1. Suppose that X is a positive random variable with finite
moments (of all positive orders): E X" < oo for n > 0. If X has moments
of Gamma type, then p; = oo and (1.1) gives, in particular, a formula
for all integer moments E X™ in terms of Gamma functions. However, the
converse does not hold; even if (1.1) holds for every integer s > 0, it does not
necessarily hold for other s. An example is provided by Stieltjes’ original
example of indeterminacy in the moment problem [32, §55]: Let, for A €
[—1,1], Xy have the density function a(1 + Asin(z'/4)) exp(—z'/4) with the
normalizing constant a = 1/24. Then, using sin(y) = (¢'¥ — e™¥)/2i and

(A7),

EXY = a/ " (14 /\sin(:z:l/‘l))e*”“"l/4 dz
0

°° 1
= 4a/ y*" 3 (14 Asin(y))e ¥ dy = 6F(4n +4),
0

for any integer n > 0 and any A € [—1,1]; thus the variables X have the
same integer moments. For A = 0, the same calculation applies to non-
integer n as well, and shows that EX§ = iI'(4s +4), —1 < s < o0, so Xo
has moments of Gamma type. However, this formula cannot hold for any
other A (and s in an interval), by the uniqueness Corollary 2.3.

Note that X, < Z*, where Z has the Gamma distribution I'(4), cf. Exam-
ple 3.1. A similar example is provided by N° (or [N|® for any real number
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a > 4) with N ~ N(0,1), see [2]; indeed |N|® £ 20/279/2 with Z ~ I'(1/2),
see Examples 3.5 and 3.6, and ¢Z” with ¢ > 0 and Z ~ T'(y) is not de-
termined by its (integer) moments for any v > 0 and § > 2, see e.g. [14,
Section 4.10], so it too provides a counter example. See also [31].

Remark 11.2. Many of the examples in Section 3 are infinitely divisible,
for example the Gamma distribution I'(«), W, [5, p. 26], P, and thus P,
[5, p. 26], Ly [25]. We do not know whether there are any interesting
connections between moments of Gamma type and infinite divisibility.

Remark 11.3. It is possible to consider, more generally, moments of the
form (1.1) where a;,b;, aj, b, may be complex (and appearing in conjugate
pairs to make the function real for real s). We have not pursued this exten-
sion and do not know whether there are any interesting results or examples
for this class. A trivial example is the following.

Let X have a two-point distribution with P(X = z;) = P(X = z3) = 1/2,
where 0 < 27 < 22 < 0. Then Y :=log X too has a two-point distribution
with P(Y = y1) = P(Y = y2) = 1/2 where y; = logzj, j = 1,2. Let
d:=EY = (y1 + y2)/2 and B := (y2 — y1)/2m; thus y1,y2 = d &= 3. Then,
using (A.6),

71_escl

I'(1+i8s)I'(5 —iBs)

APPENDIX A. SOME STANDARD FORMULAS

EX*=Ee?Y = e cosh(n3s) = e Sin(%—i—ﬂ'ﬂsi) =

For the readers’ (and our own) convenience we here collect some well-
known formulas for the Gamma function, see e.g. [1, Chapter 6]. Recall
that T" is a meromorphic function in the complex plane, with simple poles

at the non-negative integers 0, —1,—2,... and no zeros, so 1/I" is an entire
function.
I'(s) = / et dt, Res > 0; (A1)
0
[(z+1) =2I(2); (A.2)
[(2z) = 71222710 (2)0(2 + 3); (A.3)
D(32) = (2m) 8 D0+ DG+ 3 (Ad)
m—1
T(mz) = (2m)” (" D2mm= 12 TT Tz + 4) (A.5)
j=0
T
()1 —-2) = Sin(r2)’ (A.6)
o
/ t 7t dt = a°T'(s), Res >0, Rea > 0; (A7)
0

! s—1/1 _ pu—l1 _F(S)F(u) es eu .
/Ot (-0 dt= o5 Res,Reu>0, (A.8)
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/OO N1t dE = M, Rev > Res > 0; (A.9)
0 I'(v)

Equation (A.7) yields by Fubini-Tonelli a relation between the Laplace
transform and negative moments for any positive random variable X:

/ T Ee X dt = E/ e At =T(5)EX™®,  s>0. (A.10)
0 0

The residue Res_,,(I') = (—1)"/n! (an easy consequence of (A.2)). Thus,
more generally, for any complex a # 0 and b,

(=)™
Res.—_(np)/a(l(az +0)) = a 1 n!) . (A.11)

Stirling’s formula says that for all complex z in a sector |argz| < m —¢
avoiding the negative real axis

logT'(z) = (z—%)logz—z—l—log\/ﬁ—l—O(]zrl), (A.12)

where the logarithm logz is the principal value with imaginary part in
(—m,m). (Here, € > 0 is arbitrary, but the implicit constant in the O term
depends on ¢.) By differentiating (A.12) twice we find, for |argz| < m —¢
(e.g., for Rez > 0),

%(logf(z)) =logz +O(|2|™"), (A.13)
2
%(logf(z)) = % +O(]2]7?). (A.14)

(Note that also the error term may be differentiated since the functions
are analytic in a larger sector and we may use Cauchy’s estimate for the
derivative.)
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