
INTERVAL GRAPH LIMITS

PERSI DIACONIS, SUSAN HOLMES, AND SVANTE JANSON

Abstract. We work out the graph limit theory for dense interval graphs.
The theory developed departs from the usual description of a graph
limit as a symmetric function W (x, y) on the unit square, with x and
y uniform on the interval (0, 1). Instead, we fix a W and change the
underlying distribution of the coordinates x and y. We find choices such
that our limits are continuous. Connections to random interval graphs
are given, including some examples. We also show a continuity result
for the chromatic number and clique number of interval graphs. Some
results on uniqueness of the limit description are given for general graph
limits.

1. Introduction

A graph G is an interval graph if there exists a collection of intervals
{Ii}i∈V (G) such that there is an edge ij ∈ E(G) if and only if Ii ∩ Ij 6= 0,

for all pairs (i, j) ∈ V (G)2 with i 6= j.

Example 1.1. Figure 1(a) shows published confidence intervals for the
astronomical unit (roughly the length of the semi-major axis of the earth’s
elliptical orbit about the sun). Figure 1(b) shows the corresponding interval
graph (data from Youden [43]).

It is surprising how many missing edges there are in this graph as these
correspond to disjoint confidence intervals for this basic unit of astronomy.
Even in the large component, the biggest clique only has size 4.

The literature on interval graphs and further examples are given in Sec-
tion 2.1–2.3 below. Section 2.4 reviews the emerging literature on graph
limits. Roughly, a sequence of graphs Gn is said to converge if the propor-
tion of edges, triangles and other small subgraphs tends to a limit. The
limiting object is not usually a graph but is represented as a symmetric
function W (s, t) and a probability measure µ on a space S. Again roughly
W (s, t) is the chance that the limiting graph has an edge from s to t, more
details will be provided in Section 2.4.

The main results in this paper combine these two sets of ideas and work
out the graph limit theory for interval graphs. The intervals in the definition
above may be arbitrary intervals of real numbers [a, b], that without loss can
be considered inside [0, 1]. Thus an interval can be identified with a point
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(a) Confidence Intervals (b) Interval Graph

Figure 1. Building the interval graph for the Youden as-
tronomical constant confidence intervals [43].

in the triangle S := {[a, b] : 0 ≤ a ≤ b ≤ 1}, see Figure 2. An interval graph
Gn is defined by a set of intervals {[ai, bi]}ni=1, which may be identified
with the empirical measure µn = 1

n

∑
δ(ai,bi). In Section 3 we show that a

sequence of graphs Gn converges if the empirical measures µn converge to a
limiting probability µ in the usual weak star topology, provided µ satisfies a
technical condition which we show may be assumed. The limit of the graphs
is specified by a function W defined by

W (a, b; a′, b′) :=

{
1 if [a,b] ∩ [a′, b′] 6= ∅
0 otherwise

and the limiting µ.

We thus fix W and and simply vary µ with µ specifying the graph limit; this
gives all interval graph limits, but note that several µ may give the same
graph limit. With a näıve choice of µ, the assignment of µ to a graph limit
is not usually continuous (as a map from probabilities on S to graph limits).
We show that there are several natural choices of µ that lead to the same
graph limit and result in continuous assignments.

The main theorem is stated in Section 3, and results on the chromatic
number and clique number are given in Section 4. Some important prelim-
inaries on continuity of the mapping µ 7→ Γµ are dealt with in Section 5,
and Section 6 gives the proof of the main theorem. Section 7 discusses some
examples of interval graph limits and the corresponding random interval
graphs. The parametrization of graph limits is highly non unique; this is
seen in some of the examples in Section 7. Section 8 gives a portemanteau
theorem which clarifies the connections between various uniqueness results.
This is developed for the general case, not just interval graphs. The prob-
lem of finding a unique “canonical” representing measure is still open in
general. Section 9 gives the proofs of the results on clique numbers. Finally,
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Figure 2. For a given (x, y) in S, the relevant (x′, y′) that
will give an edge in the intersection graph are in the hatched
area.

Section 10 discusses extensions to other classes of intersection graphs, in
particular circular-arc graphs, circle graphs, permutation graphs and unit
interval graphs.

2. Background

This section gives background and references, treating interval graphs in
Sections 2.1 and 2.2, random interval graphs in Section 2.3 and graph limits
in Section 2.4–2.5.

2.1. Interval Graphs. Interval graphs and the closely associated subject
of interval orders are a standard topic in combinatorics. A book length
treatment of the subject is given by Fishburn [14]. Among many other re-
sults, we mention that interval graphs are perfect graphs, i.e., the chromatic
number equals the size of the largest clique (for the graph and all induced
subgraphs).

Interval graphs are a special case of intersection graphs; more generally,
we may consider a collection A of subsets of some universe and the class of
graphs that can be defined by replacing intervals by elements of A in the
definition above. (We may call such graphs A-intersection graphs.)
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McKee and McMorris [32]’s book on Intersection Graphs establishes the
relation with intervals. Further literature on the connections between these
various graph classes is in Brandstädt, Le and Spinrad [9] and Golumbic
[18].

2.2. Applications of Interval Graphs. The original question for which
interval graphs saw their first application was in the structure of genetic
DNA. Waterman and Griggs [42] and Klee [29] cite Benzer’s original pa-
per from 1959 [2]. This is also developed in the papers by Karp [28] and
Golumbic et al. [19]. Interval graphs are used for censored and truncated
data; the interval indicating for instance observed lifetime (see Gentleman
and Vandal [15] and the R packages MLEcens and lcens). They also come
in when restricting data - like permutations - to certain observable intervals,
this was the motivation behind the astrophysics paper Efron and Petrosian
[13] and the followup paper Diaconis et al. [10]. For an application of rec-
tangle intersections, see Rim and Nakajima [36] and for sphere intersections
see Ghrist [16].

2.3. Random Interval Graphs. A natural model of random interval graphs
has [ai, bi] chosen uniformly at random inside [0,1]. Scheinerman [38] shows
that

#edges =
n2

3
+ op(n

2), (2.1)

P
{minv deg(v)√

n
≤ x

}
−→ 1− e−x2/2, x > 0, (2.2)

and, if v is a fixed vertex,

P
{deg(v)

n
≤ x

}
→

{
1− (1− x)π2 , x ≥ 1

2 ;

1− (1− x)
{
π
2 − 2 cos−1[ 1√

2−2x
]
}
−
√

1− 2x, x < 1
2 .

(2.3)
He further shows that most such graphs are connected, indeed Hamiltonian,
the chromatic number is n

2 +op(n) and several other things; see also Justicz,
Scheinerman and Winkler [24] where it is shown that the maximum degree
is n− 1 with probability exactly 2/3 for any n > 1. The chromatic number
equals, as said in Section 2.1, the size of the largest clique, and this is
equivalent to the random sock sorting problem studied by Steinsaltz [41]
and Janson [20] where more refined results are shown, including asymptotic
normality which for the random interval graph Gn considered here can be
written (χ(Gn)− n/2)/

√
n→ N(0, 1/4).

We connect this random interval graph to graph limits in Example 7.4,
where also other models of random interval graphs are considered.

There has been some followup on this work with Scheinerman [39] in-
troducing an evolving family of models, and Godehardt and Jaworski [17]
studying independence numbers of random interval graphs for cluster discov-
ery. Pippenger [35] has studied other models with application to allocation
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in multi-sever queues. Here, customers arrive according to a Poisson pro-
cess, the service time distribution determines an interval length distribution
and the intervals, falling into a given window give an interval graph. For
natural models, those graphs are sparse, in contrast to our present study of
dense graphs.

Finally we give a pointer to an emerging literature on random intersection
graphs where subsets of size d from a finite set are chosen uniformly for each
vertex and there is an edge between two vertices if the subsets have a non
empty intersection. See results and references in [27] and [40].

2.4. Graph Limits. This paper studies limits of interval graphs, using the
theory of graph limits introduced by Lovász and Szegedy [30] and further
developed in Borgs, Chayes, Lovász, Sós and Vesztergombi [7, 8] and other
papers by various combinations of these and other authors; see also Austin
[1] and Diaconis and Janson [12]. We refer to these papers for the detailed
definitions, which may be summarized as follows (using the notation of [12]).

If F and G are two graphs, then t(F,G) denotes the probability that a
random mapping φ : V (F ) → V (G) defines a graph homomorphism, i.e.,
that φ(v)φ(w) ∈ E(G) when vw ∈ E(F ). (By a random mapping we mean

a mapping uniformly chosen among all |G||F | possible ones; the images of
the vertices in F are thus independent and uniformly distributed over V (G),
i.e., they are obtained by random sampling with replacement.) The basic
definition is that a sequence Gn of graphs converges if t(F,Gn) converges
for every graph F ; we will use the version in [12] where we further assume
|Gn| → ∞. More precisely, the (countable and discrete) set U of all unlabeled
graphs can be embedded in a compact metric space U such that a sequence
Gn ∈ U of graphs with |Gn| → ∞ converges in U to some limit Γ ∈ U if and
only if t(F,Gn) converges for every graph F . Let U∞ := U \ U be the set of
proper graph limits. The functionals t(F, ·) extend to continuous functions
on U , and an element Γ ∈ U∞ is determined by the numbers t(F,Γ). Hence,
Gn → Γ ∈ U∞ if and only if |Gn| → ∞ and t(F,Gn) → t(F,Γ) for every
graph F . (See [7; 8] for other, equivalent, characterizations of Gn → Γ.)

We say that a graph limit Γ ∈ U∞ is an interval graph limit if Gn → Γ
for some sequence of interval graphs. The purpose of the present paper is
to study this class of graph limits.

Remark 2.1. In Diaconis, Holmes and Janson [11], the corresponding prob-
lem for the class T of threshold graphs is studied. Recall that a graph is a
threshold graph [33] if there are real valued vertex labels vi and a threshold
t such that (i, j) is an edge if and only if vi+vj ≤ t. Equivalently, the graph
can be built up sequentially by adding vertices which are either dominating
(connected to all previous vertices) or isolated (disjoint from all previous
vertices). Threshold graphs are a subclass of interval graphs; this can be
seen from the sequential description by choosing a sequence of intervals over-
lapping all previous or disjoint from all previous intervals as required. Thus
every threshold graph limit is an interval graph limit. The description of
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threshold graph limits in [11] uses special properties of threshold graphs,
and is of a somewhat different type than the descriptions of interval graph
limits in the present paper. Thus, a threshold graph limit may be repre-
sented both as in [11] and as in the present paper, and the representations
will not be the same. (This is nothing strange, since the representations
typically are non-unique.)

Let I ⊂ U be the set of all interval graphs, and let I∞ ⊂ U∞ be the set of
all interval graph limits; further, let I ⊂ U be the closure of I in U . Then
I∞ = I ∩ U∞ = I \ I. Clearly, I∞ is a closed subset of U∞ and thus a
compact metric space.

A graph limit Γ ∈ U∞ may be represented as follows [30], see also [12; 1]
for connections to the Aldous–Hoover representation theory for exchangeable
arrays [26]. Let (S, µ) be an arbitrary probability space and let W : S×S →
[0, 1] be a symmetric measurable function. (W is sometimes called graphon
[7; 8], we will use the alternative kernel denomination [4].) Let X1, X2, . . . ,
be an i.i.d. sequence of random elements of S with common distribution µ.
Then there is a (unique) graph limit Γ ∈ U∞ with, for every graph F ,

t(F,Γ) = E
∏

ij∈E(F )

W (Xi, Xj)

=

∫
S|F |

∏
ij∈E(F )

W (xi, xj) dµ(x1) · · · dµ(x|F |). (2.4)

Further, let, for every n ≥ 1, G(n,W, µ) be the random graph obtained by
first taking random X1, X2, . . . , Xn, and then, conditionally given X1, X2,
. . . , Xn, for each pair (i, j) with i < j letting the edge ij appear with proba-
bility W (Xi, Xj), (conditionally) independently for all pairs (i, j) with i < j.
Then the random graph Gn = G(n,W, µ) converges to Γ a.s. as n→∞.

Conversely, every graph limit Γ ∈ U∞ can be represented in this way by
some such (S, µ) and W . (The representation is not unique, see Section 8.)

Remark 2.2. For any random graph G(n,W, µ) (not just interval graphs)
the number of copies of any fixed subgraph (e.g. triangles) is a U-statistic,
perhaps with extra randomization if W takes on values other than 0 or 1.
Thus central limit theorems with error estimates and correction terms as
well as large deviation results are available.

It is usually convenient to fix (S, µ) and let W : S2 → [0, 1] vary; the
standard choice of (S, µ) is the unit interval [0, 1] with Lebesgue measure
λ. (Every graph limit can be represented as in (2.4) using this space.) For
interval graphs, however, we find it more natural and convenient to instead
fix S and W as follows, and let µ vary.

There is some flexibility in the definition above of interval graphs. The
intervals in the definition may be arbitrary intervals of real numbers, or more
generally intervals in any totally ordered set, but we may without changing
the class of interval graphs restrict the intervals to be, for example, closed.
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We may also suppose that all intervals are subsets of [0, 1]. It may sometimes
be convenient to allow an empty interval ∅ (for isolated vertices), but we find
it more convenient (at least notationally) to abstain from this and consider
non-empty intervals only. We will, however, allow “intervals” [a, a] = {a} of
length 0.

Consequently, from now and throughout the paper (except where stated
otherwise) we let S := {[a, b] : 0 ≤ a ≤ b ≤ 1} be the set of closed subinter-
vals of [0, 1] (non-empty, but allowing intervals of length 0). S is naturally
identified with a closed triangle in the plane, and is thus a compact metric
space. (It is the compactness that makes this space better for our purposes
than, for example, the space of all closed intervals in R.) Further, we let
from now on W : S × S → {0, 1} be the function

W (I, J) = 1[I ∩ J 6= ∅]. (2.5)

Then, a graph G = (V,E) is an interval graph if and only if there exist in-
tervals Iv ∈ S, v ∈ V , such that the edge indicators 1[vw ∈ E] = W (Iv, Iw),
v 6= w.

Every probability measure µ on S defines a graph limit Γ ∈ U∞ by
(2.4); we denote this graph limit by Γµ. Similarly, we denote the ran-
dom graph G(n,W, µ) constructed from (S, µ) and W by G(n, µ); this is
simply the random interval graph defined by a random i.i.d. sequence of
intervals X1, X2, . . . , Xn with distribution µ; we further allow n = ∞ here,
and let G(∞, µ) be the random infinite graph defined in the same way by
X1, X2, . . . . (In [12], the standard situation when S and µ are fixed, we
instead use the notations ΓW and G(n,W ); we will also use that notation
when we discuss general functions W again in Section 8.) Hence, by the
general results quoted above, G(n, µ) → Γµ a.s. as n→∞. In particular,
Γµ is an interval graph limit: Γµ ∈ I∞ for every probability measure µ on
S.

Remark 2.3. A graph G ∈ U corresponds to a ’ghost’ ΓG ∈ U∞ with
t(F,ΓG) = t(F,G) for all F [30; 12]. If G is an interval graph represented
by a sequence I1, . . . , In of intervals in S (with n = |G|), then it follows
easily from (2.4) that ΓG = Γµ, where µ = 1

n

∑n
1 δIi is the distribution of a

random interval chosen uniformly from I1, . . . , In.

Our main theorem (Theorem 3.1) gives a converse: every interval graph
limit can be represented by a probability µ on S; moreover, we may impose
a normalization. (In fact, we have a choice between three different normal-
izations.) However, even with one of these normalizations, the representing
measure is not always unique.

Remark 2.4. For every measure µ on S we thus have a model G(n, µ) of
random interval graphs. Different measures µ give the same model (i.e., with
the same distribution for every n) if and only if they give the same graph
limit Γµ, see Section 8. We may thus construct a large number of different
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models of random interval graphs in this way. We give a few examples in
Section 7.

2.5. Degree distribution. Suppose that Gn is a sequence of graphs with,
for convenience, |Gn| = n, such that Gn → Γ for a graph limit Γ which is
represented by a kernel W on a probability space (S, µ). (In this subsec-
tion W and S may be arbitrary.) Let d̄(Gn) = 2e(Gn)/n be the average
degree of Gn. It follows immediately d̄(Gn)/n converges to the average∫
S2 W (x1, x2) dµ(x1) dµ(x2); in fact, d̄(Gn)/n = 2e(Gn)/n2 = t(K2, Gn) →
t(K2,Γ) =

∫
S2 W . (Equivalently, the edge density e(Gn)/

(
n
2

)
→
∫
S2 W .)

Moreover, let ν(Gn) be the normalized degree distribution of Gn, defined
as the distribution of the random variable di/n, where i is a uniformly ran-
dom vertex in Gn and di its degree. Then ν(Gn) converges weakly (as a
probability measure on [0, 1]) to the distribution of the random variable
W1(X) :=

∫
SW (X, z) dµ(z), where X is a random element of S with dis-

tribution µ; note that W1(X) ∈ [0, 1] and that its mean is
∫
S2 W . We can

thus regard the distribution of this random variable W1(X) as the degree
distribution of the graph limit; we denote it by ν(Γ) or (in our case, where
W is fixed) ν(µ). See for example [11].

In particular, for any given µ on our standard S, this applies a.s. to the
random interval graphs G(n, µ), since G(n, µ)→ Γµ as said above.

3. Interval Graph Limits, Theorems

Let P(S) be the set of probability measures on S := {[a, b] : 0 ≤ a ≤ b ≤
1}, equipped with the standard topology of weak convergence, which makes
P(S) a compact metric space. If µ ∈ P(S), let µL and µR be the marginals
of µ (regarding S as a subset of R2), i.e., the probability measures on [0, 1]
induced by µ and the mappings S → [0, 1] given by [a, b] 7→ a and [a, b] 7→ b,
respectively.

We further consider, both as normalizations and for reasons of continu-
ity, see Corollary 5.2 below, three subsets of P(S): (as above, λ denotes
Lebesgue measure, i.e., the uniform distribution)

PL(S) := {µ ∈ P(S) : µL = λ}, (3.1)

PR(S) := {µ ∈ P(S) : µR = λ}, (3.2)

Pm(S) := {µ ∈ P(S) : 1
2(µL + µR) = λ}. (3.3)

We have the following result, which is proved in Section 6.

Theorem 3.1. I∞ = {Γµ : µ ∈ P(S)}. Moreover, every Γ ∈ I∞ may be
represented as Γµ where we further may impose any one of the normalization
conditions in (3.1)–(3.3). In other words,

I∞ = {Γµ : µ ∈ PL(S)} = {Γµ : µ ∈ PR(S)} = {Γµ : µ ∈ Pm(S)}.

Furthermore, the mapping µ → Γµ is a continuous map of each of PL(S),
PR(S) and Pm(S) onto I∞.
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The mappings PL(S) → I∞, PR(S) → I∞, Pm(S) → I∞ are not injec-
tive. We return to this question in Sections 7 and 8.

The proof in Section 6 also shows the following, which gives an interpre-
tation of the measure µ.

Theorem 3.2. Let Gn be an interval graph, for convenience with n vertices,
defined by intervals Ini = [ani, bni] ⊆ [0, 1], i = 1, . . . , n. Suppose that, as
n→∞, the empirical measure

µn :=
1

n

n∑
i=1

δIni ∈ P(S) (3.4)

converges weakly to a measure µ ∈ P(S), and suppose further that µL and
µR have no common atom. Then Gn converges to the graph limit Γµ.

Instead of probability measures µ ∈ P(S), we may equivalently consider
S-valued random variables, i.e., random intervals [L,R] ∈ S. Each such
random interval is given by a pair of random variables (L,R) with 0 ≤ L ≤
R ≤ 1 (a.e.), and conversely. (Of course, we then only care about the (joint)
distribution of (L,R).) Note that the distribution of [L,R] belongs to PL(S)
[PR(S)] if and only if L ∼ U(0, 1) [R ∼ U(0, 1)].

Example 3.3. A natural model for a collection of confidence intervals for a
basic physical constant (as Youden’s data in the introduction or the speed of
light or the gravitational constant) has intervals of the form [µi−cσi, µi+cσi]
with µi and σi independently chosen, µi from a normal (µ, σ2) distribution
and σ2

i from a Chi-squared distribution, c is computed from the normal
quantile q and the sample size c = q1−α

2
/
√
n, where α is the target type I

error. Here the intervals are not constrained to S. A natural transformation
using the distribution function F (x) of µi + cσi yields the random intervals
[F−1(µi−cσi), F−1(µi+cσi)], which correspond to points from a distribution
on S belonging to our PR(S).

An example, with µi ∼ N(0, 4) and σ2
i ∼ 4

19χ
2
19 is given in Figure 3.

Although the graph is not the complete graph as it should be if all 30 inter-
vals overlapped, the degrees are high and quite even. The degree distribution
is:

22 20 25 26 23 14 23 23 27 23 26 25 26 27 13

23 17 23 20 27 23 14 24 25 25 26 26 17 11 10

Remark 3.4. There is an obvious reflection map of S onto itself given by
[a, b] 7→ [1−b, 1−a]; we denote the corresponding map of P(S) onto itself by
µ 7→ µ̌. (It terms of random intervals [L,R], this is [L,R] 7→ [1−R, 1−L].)
The reflection map preserves W , and it follows that Γµ̌ = Γµ.

Note that µ ∈ PL(S) ⇐⇒ µ̌ ∈ PR(S), and conversely, which means
that we can transfer results from PL(S) to PR(S), and conversely, by the
reflection map; hence it is enough to consider one of PL(S) and PR(S).

Remark 3.5. As a corollary to Theorem 3.1, we see that every limit of inter-
val graphs may be represented by a kernel that is 0/1-valued. (This implies
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−4 −2 0 2 4 6

(a) Confidence Intervals
(30) for random normal
data generated with µ =
0, σ = 2.

(b) Interval Graph

Figure 3. The interval graph for a sets of Normal intervals.

that every representing kernel is 0/1-valued, see [23] for details.) Graph
classes with this property are called random-free by Lovász and Szegedy
[31], who among other results gave a graph-theoretic characterization of such
classes. We have thus shown that the class of interval graphs is random-free.
We will see in Sections 10.1–10.4 that so are the graph classes considered
there.

4. Cliques and chromatic number

If G is a graph, let χ(G) be its chromatic number and ω(G) its clique num-
ber, i.e., the maximal size of a clique. As said in Section 2.1, interval graphs
are perfect and χ(G) = ω(G) for them. If G is an interval graph defined by a
collection of intervals {Ii}, it is easily seen that ω(G) = maxx #{i : x ∈ Ii}.
We define the corresponding quantity for measures µ ∈ P(S) by

ω(µ) := sup
a∈[0,1]

µ{I : a ∈ I} = sup
a∈[0,1]

µ
(
[0, a]× [a, 1]

)
. (4.1)

Thus, if G is an interval graph defined by intervals I1, . . . , In in S, and
µ = 1

n

∑n
i=1 δIi , then ω(G) = nω(µ).

It is easy to see that a 7→ µ
(
[0, a] × [a, 1]

)
is upper semicontinuous; this

implies that the supremum in (4.1) is attained.
We will prove the following results in Section 9.

Lemma 4.1. If µ1 and µ2 are probability measures on S that are equivalent
in the sense that Γµ1 = Γµ2, then ω(µ1) = ω(µ2).

This shows that we can define the clique number ω(Γ) for every interval
graph limit Γ by ω(Γµ) = ω(µ) for µ ∈ P(S).
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Theorem 4.2. Let Gn be an interval graph, for convenience with n vertices,
and suppose that Gn → Γ as n→∞ for some graph limit Γ. Then

1

n
χ(Gn) =

1

n
ω(Gn)→ ω(Γ). (4.2)

Remark 4.3. Neither 1
nχ nor 1

nω are continuous functions on the space
of all graphs. This may be seen by the following construction: a sequence
of dense graphs which tend to the limiting Erdös-Renyi graph with p = 1
(complete graph) but with 1

nχ and 1
nω converging to limits different from

one. For the construction, let Gn be an Erdös-Renyi graph with p = 1− 1√
n

.

This converges to the same limit as the sequence of complete graphs Kn.
However, an easy argument shows that 1

nω converges to zero. The same

example can be used to show that 1
nχ is not continuous. For this we use the

following

Lemma 4.4. For any graph G with n vertices, χ(G) ≤ (n+ ω(G))/2

Proof. Color by picking two non adjacent vertices, giving both the same new
color. Repeat until a connected subgraph of size m remains and give each
remaining vertex a separate color. This uses (n −m)/2 + m = (n + m)/2
colors and m ≤ ω(G). �

For the random graphs constructed above, ω(G) = o(n) implies χ(G) ≤
n
2 + o(n). Thus 1

nχ is discontinuous.

5. Continuity

The mapping µ 7→ Γµ of P(S) into U∞ is not continuous. However, the
following holds, as we will prove below.

Theorem 5.1. The mapping µ 7→ Γµ of P(S) into U∞ is continuous at
every µ ∈ P(S) such that µL and µR have no common atom. Conversely, it
is continuous only at these µ.

In particular, Γµ is a continuous function of µ at every µ such that either
µL or µR is continuous, which yields the following corollary.

Corollary 5.2. The mapping µ 7→ Γµ is a continuous map PL(S) → U∞,
PR(S)→ U∞ and Pm(S)→ U∞.

To prove Theorem 5.1, we begin by letting DW ⊂ S2 be the set of dis-
continuity points of W .

Lemma 5.3. DW =
{

([a, b], [c, d]) : b = c or a = d
}

.

Proof. Obvious. �

Proof of Theorem 5.1. Suppose that µn → µ in P(S) and that µL and µR
have no common atom. Then Lemma 5.3 implies that µ × µ(DW ) = 0,
and it follows that if F ∈ U and k = |F |, then

∏
ij∈E(F )W (xi, xj) : Sk →

{0, 1} ⊂ R is µk-a.e. continuous. Further, µkn → µk in P(Sk), and thus
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t(F,Γµn) → t(F,Γµ) by (2.4), see [3, Theorem 5.2]. Hence, Γµn → Γµ by
the definition of U∞.

For the converse (which we will not use), assume that a is a common atom
of µL and µR. By symmetry we may suppose that a > 0. Let, for n > 1/a,
an := a − 1/n. If µ has an atom at [a, a], we define µn by moving half of
that atom to [an, an]. Otherwise, we replace every interval [c, a] with c ≤ an
by [c, an]; this yields a map S → S which maps µ to a measure µn. It is
easy to see, in both cases, that µn → µ but, using (2.4),

t(K2,Γµn) =

∫
S2
W dµn × dµn 6→

∫
S2
W dµ× dµ = t(K2,Γµ).

Hence Γµn 6→ Γµ. �

6. Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.2. It follows from (2.4), see Remark 2.3, that

t(F,Gn) = t(F,Γµn), F ∈ U . (6.1)

Theorem 5.1 shows that Γµn → Γµ, i.e., t(F,Γµn) → t(F,Γµ) for every
F ∈ U . By (6.1), this implies t(F,Gn) → t(F,Γµ), F ∈ U , and thus Gn →
Γµ. �

Proof of Theorem 3.1. If µ ∈ P(S), then as said in Section 2.4, Γµ is the
limit a.s. of the sequence G(n, µ) of interval graphs, and thus Γµ ∈ I∞.

Conversely, if Gn is a sequence of interval graphs and Gn → Γ ∈ U∞, then
each Gn is represented by some sequence of closed intervals Ini = [ani, bni] ⊂
R, i = 1, . . . , n. By, if necessary, increasing the lengths of these interval by
small (and, e.g., random) amounts, we may further assume that for each n,
the 2n endpoints {ani, bni : 1 ≤ i ≤ n} are distinct.

Using an increasing homeomorphism ϕn of R onto itself, we may further
assume that the left endpoints {ani : 1 ≤ i ≤ n} are the points {j/n : 0 ≤
j < n} in some order, and further that all endpoints bni ≤ 1. Thus Ini ∈ S
for every i. Let µn ∈ P(S) be the corresponding probability measure given
by (3.4).

Since S is compact, the sequence µn is automatically tight, and there ex-
ists a probability measure µ ∈ P(S) such that, at least along a subsequence,
µn → µ. As a consequence, µnL → µL, and since we have forced µnL to be
the uniform measure on the set {j/n : j = 0, . . . , n − 1}, the limit µL = λ.
Hence µ ∈ PL(S).

Consequently, Theorem 3.2 applies and shows that (along the subse-
quence) Gn → Γµ. Hence Γ = Γµ.

This shows that every Γ ∈ I∞ equals Γµ for some µ ∈ PL(S). The same
argument but choosing the homeomorphism ϕn of R onto itself such that
the right endpoints or all 2n endpoints are evenly spaced in [0, 1] similarly
yields Γ = Γµ with µ ∈ PR(S) or µ ∈ Pm(S).

This, combined with Corollary 5.2, completes the proof of Theorem 3.1.
�
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7. Examples

As is well-known, representations as in Section 1 of graph limits by sym-
metric measurable functions W on a probability space are far from unique,
see e.g., [30; 7; 12] and Section 8.

In particular, an interval graph limit Γ ∈ I may be represented as Γµ
for many different µ ∈ P(S). For example, any monotone (increasing or
decreasing) homeomorphism [0, 1] → [0, 1] induces a homeomorphism of S
onto itself which preserves W , and hence maps any µ ∈ P(S) to a measure
µ′ with Γµ = Γµ′ . (One example of such a homeomorphism of S onto itself
is the reflection map in Remark 3.4, induced by the map x→ 1− x.)

If we use one of the normalizations in (3.1)–(3.3) and consider only PL(S),
PR(S) or Pm(S), the possibilities are severly restricted, and we have unique-
ness in some cases, but not all.

Example 7.1. The complete graph Kn is an interval graph, and can be
represented by any family of intervals that contain a common point. The
sequence converges to a graph limit Γ ∈ I. On the standard space [0, 1], Γ
is simply represented by the function [0, 1]2 → [0, 1] that is identically 1, but
we are are interested in representations as Γµ for µ ∈ P(S). Clearly, Γ = Γµ
for any µ ∈ P(S) such that there exists a point c ∈ [0, 1] with µ supported
on the set {[a, b] : a ≤ c ≤ b}.

It is easily seen that there is a unique representation with µ ∈ PL(S); µ
is the distribution of [U, 1] with U ∼ U(0, 1)).

Similarly (and equivalently by reflection), there is a unique representation
with µ ∈ PR(S); µ is the distribution of [0, U ] with U ∼ U(0, 1).

However, there are many representations with µ ∈ Pm(S); these are given
by random intervals [L,R] where (L,R) has any joint distribution with the
marginals L ∼ U(0, 1

2) and R ∼ U(1
2 , 1).

Example 7.2. Consider the disjoint union of two complete graphs with
banc and n − banc vertices, where 0 < a < 1/2. This sequence of graphs
converges as n→∞ to a graph limit that is represented by two measures in
PL(S), with corresponding random intervals [L,R] where L ∼ U(0, 1) and
R is given by either

R :=

{
a, L ≤ a,
1, L > a,

or the same formula with a replaced by 1 − a. It can be seen that these
two measures are the only measures in PL(S) representing the graph limit.
(This is an example of a sum of two graph limits; see [21] for general results
on such sums and decompositions.)

Example 7.3. More generally, let (pi)
m
1 be a finite or infinite sequence

of positive numbers with sum 1. Let Gn be the interval graph consisting
of disjoint complete graphs of orders bnp1c, bnp2c, . . . . (Hence, |Gn| =
n − o(n).) It is easily seen that Gn → Γ for some Γ ∈ U∞; thus Γ ∈ I.
(Again, cf. [21].)
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(b) Intervals (c) Interval Graph

Figure 4. (A) shows support of µ: tilted rectangle within
S. (B) shows the intervals with choice of parameters: 30 in-
tervals, r = 0.2. (C) shows the corresponding interval graph.

To represent Γ as Γµ with µ ∈ PL(S), let (Ji)
m
1 be a partition of (0, 1]

into disjoint intervals Ji = (ai, bi] with λ(Ji) = pi. Then, if L ∼ U(0, 1) and
R is defined by R := bi when L ∈ Ji, the random interval [L,R] represents
Γ. If m < ∞ and p1, . . . , pm are distinct, this gives m! different measures
µ ∈ PL(S) representing the same Γµ, since the intervals Ji may come in any
order. If m =∞, we have an infinite number of different representations.

Example 7.4. The random interval graph studied by Scheinerman [38], see
Section 2.3, is defined as G(n, µ) where µ ∈ P(S) is the uniform measure on
S; thus µ has the density 2 dx dy on 0 ≤ x ≤ y ≤ 1. Note that the marginal
distributions µL and µR have densities 2(1−x) and 2x on [0,1], and are thus
not uniform. Hence µ /∈ PL(S) and µ /∈ PR(S); however, µ ∈ Pm(S).

The integral W1([x, y]) :=
∫
SW ([x, y], J) dµ(J) = 1 − x2 − (1− y)2; this

leads by Section 2.5 and a calculation to the degree distribution (2.3) found
by Scheinerman [38].

It is easily seen that ω(µ) = 1/2, and thus Theorem 4.2 yields Scheiner-
man’s result that χ(G(n, µ))/n→ 1/2 (with convergence a.s.).

To obtain an equivalent representing measure µ′ ∈ PR(S), we apply the
homeomorphism x 7→ x2 of [0, 1] onto itself; this measure µ′ has the density
(2
√
xy)−1 dx dy on S = {[x, y] : 0 ≤ x ≤ y ≤ 1}.

Example 7.5. Scheinerman [39] studies another random interval graph
model, defined by random intervals [xi − ρi, xi + ρi] where xi ∼ U(0, 1)
and ρi ∼ U(0, r) are independent, and r > 0 is a parameter. This is G(n, µ)
where µ is the uniform distribution on the tilted rectangle with vertices in
(0, 0), (1, 1), (1−r, 1+r), (−r, r); this rectangle does not lie inside our stan-
dard triangle (i.e., the intervals are not necessarily inside [0, 1]), but we may
scale it to, for example, the rectangle with vertices (0, 2r

1+2r ), ( r
1+2r ,

r
1+2r ),

( r+1
1+2r ,

r+1
1+2r ), ( 1

1+2r , 1). See Figure 4 for an example.
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Example 7.6. Let 0 < r ≤ 1 and let µ be uniform on the line {(x, x+ r) :
0 ≤ x ≤ 1 − r}. This is the set of intervals of length r inside [0,1], so
by scaling we obtain a random set of intervals of length 1 in R; hence the
random graph G(n, µ) is in this case a unit interval graph, see Section 10.4.

The degree distribution ν(µ), i.e., the asymptotic degree destribution of
the random graph G(n, µ), is easily found from Section 2.5. For example, if
r ≤ 1

3 , then ν(µ) is the distribution of W (X) with X ∼ U(0, 1− r) and

W1(x) =


x+r
1−r , 0 ≤ x < r,
2r

1−r , r ≤ x ≤ 1− 2r,
1−x
1−r , 1− 2r < x ≤ 1− r.

Thus, ν(µ) has a density 2 on [ r
1−r ,

2r
1−r ) and a point mass 1−3r

1−r at 2r
1−r . If

1
3 ≤ r ≤

1
2 , then similarly ν(µ) has a density 2 on [ r

1−r , 1) and a point mass
3r−1
1−r at 1. If r ≥ 1

2 , then G(n, µ) is the complete graph and ν(µ) is a point
mass at 1.

The chromatic number is by Theorem 4.2 a.s. r
1−rn+ o(n) for r ≤ 1

2 (and

trivially n for r ≥ 1
2).

Example 7.7. Theorem 3.1 shows that we can build any interval graph limit
from a probability distribution µ on S := {[x, y] : 0 ≤ x ≤ y ≤ 1}, with
the marginal distribution of µ on the y axis being uniform, i.e., µ ∈ PR(S).
Here is a hierarchy of examples of building such measures

(i) As in Example 7.1 for the complete graph Kn. We take µ to be the
uniform distribution on the y axis. Repeated picks from µ corre-
spond to intervals [0, ui] which all intersect.

(ii) The empty graph En is an interval graph corresponding to disjoint
intervals. Let µ be the uniform distribution on the x = y diagonal.
Repeated picks from µ yield intervals [ui, ui] which are disjoint with
probability 1.

(iii) We may interpolate between these two examples, choosing a with
0 ≤ a ≤ 1 and µa uniform on the line `a = {(x, y) : x = ay, 0 ≤ y ≤
1}. This is done by picking intervals [aU,U ] with U ∼ U(0, 1) so the
y-margin U is uniform on [0, 1]. Now, some pairs of points on the
line `a will result in edges and some not:
For [x1, y1], [x2, y2] in S, the intervals overlap iff x1 ≤ x2 ≤ y1 or
x2 ≤ x1 ≤ y2. Equivalently if x1 ≤ x2 then x2 ≤ y1, or if x1 ≥ x2

then y2 ≤ x1. Here, the points on `a are [ay1, y1] and [ay2, y2], so
there is overlap iff ay1 ≤ ay2 ≤ y1 or ay2 ≤ ay1 ≤ y2, or equivalently,

ay1 ≤ y2 ≤ y1/a.

Thus the chance of an edge in this model is P(aU1 ≤ U2 ≤ U1/a) =
2P(aU1 ≤ U2 ≤ U1) = 1− a.
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Moreover, by Section 2.5, the asymptotic degree distribution ν(µa)
is the distribution of W1(U), where U ∼ U(0, 1) and

W1(u) =

{(
1
a − a

)
u, u ≥ a,

1− au, a ≤ u ≤ 1.

This distribution has density a/(1−a2) on [0, 1−a] and 1/(a(1−a2))
on [1−a, 1−a2] (for a < 1). The chromatic number is by Theorem 4.2
a.s. asymptotic to nω(µa) = (1− a)n.

(iv) The next example of µ ∈ PR(S) is a mixture of uniforms on `a,
where a has a distribution on [0, 1]. The prescription:
• Pick a = A at random from some distribution on [0, 1] and
• independently pick uniformly on `a,

means that we pick intervals [A,UA] with A and U independent and
U ∼ U(0, 1), while A has any given distribution.

(v) As an extreme example, consider the measure µ which is a (θ, 1− θ)
mixture of uniform on `0, `1, with θ ∈ [0, 1]. Then, identifying the
vertices of G(n, µ) with the picked points in S:
• None of the points on `1 have an edge between them.
• All of the points on the line `0 have edges between them.
• Pairs of points, one from `0, one from `1 have an edge with

probability 1/2, but not independently. More precisely, there is
an edge between (0, u1) and (u2, u2) iff u1 ≥ u2.

It is easily seen that in this case, the random interval graph G(n, µ)
is a threshold graph, see Remark 2.1; we may give (0, u) label u and
(u, u) label −u and take the threshold t = 0. (By [11, Corollary
6.7], G(n, µ) equals the random graph Tn,θ defined in [11].) Hence
Γµ is a threshold graph limit in this case. (It is an open problem to
characterize all µ ∈ P(S) such that Γµ is a threshold graph limit.)

(vi) Uniform intervals: As said in Example 7.4, the uniform distribution
on S does not belong to PR(S), but it is equivalent to the distribution
with density (2

√
xy)−1 dx dy which does. A change of variables to

(a, y) ∈ [0, 1]2 with a = x/y yields the density 1
2a
−1/2 da dy, so this

is of the type studied here, with a having the B(1
2 , 1) distribution

with density 1
2a
−1/2 da.

8. Uniqueness

We state a general equivalence theorem for representation of graph limits
(not necessarily interval graph limits) by symmetric measurable functions.
We therefore allow rather general probability spaces (S1, µ1) = (S2, µ2) and
general symmetric functions Wi : S2

i → [0, 1] on them. In the standard case
(S1, µ1) = (S2, µ2) = ([0, 1], λ), parts (i)–(vii) of the theorem are given in
[12] as a consequence of Hoover’s equivalence theorem for representations of
exchangeable arrays Kallenberg [26, Theorem 7.28]. Other similar results
are given by Bollobás and Riordan [5] and Borgs, Chayes and Lovász [6]; in
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particular, (viii) and (ix) below are modelled after similar results in Borgs,
Chayes and Lovász [6]. A similar theorem is stated in Janson [23], and
an almost identical theorem in the related case of partial orders is given in
Janson [22].

We first introduce more notation. If W2 : S2
2 → [0, 1] and ϕ : S1 → S2,

then Wϕ
2 (x, y) := W2(ϕ(x), ϕ(y)).

A Borel space is a measurable space (S,F) that is isomorphic to a Borel
subset of [0, 1], see e.g. [25, Appendix A1] and Parthasarathy [34]. In fact,
a Borel space is either isomorphic to ([0, 1],B) or it is countable infinite or
finite. Moreover, every Borel subset of a Polish topological space (with the
Borel σ-field) is a Borel space. A Borel probability space is a probability
space (S,F , µ) such that (S,F) is a Borel space.

If W ′ is a symmetric function S2 → [0, 1], where S is a probability space,
we say following [6] that x1, x2 ∈ S are twins (for W ′) if W ′(x1, y) =
W ′(x2, y) for a.e. y ∈ S. We say that W ′ is almost twin-free if there exists
a null set N ⊂ S such that there are no twins x1, x2 ∈ S \N with x1 6= x2.

In the theorem and its proof, we assume that [0, 1] is equipped with the
measure λ, and Sj with µj ; for simplicity we do not always repeat this.

Theorem 8.1. Suppose that (S1, µ1) and (S2, µ2) are two Borel probability
spaces and that W1 : S2

1 → [0, 1] and W2 : S2
2 → [0, 1] are two symmetric

measurable functions, and let Γ1,Γ2 ∈ U∞ be the corresponding graph limits.
Then the following are equivalent.

(i) Γ1 = Γ2 in U∞.
(ii) t(F,Γ1) = t(F,Γ2) for every graph F .

(iii) The exchangeable random infinite graphs G(∞,W1) and G(∞,W2)
have the same distribution.

(iv) The random graphs G(n,W1) and G(n,W2) have the same distribu-
tion for every finite n.

(v) There exist measure preserving maps ϕj : [0, 1]→ Sj, j = 1, 2, such
that Wϕ1

1 = Wϕ2
2 a.e., i.e., W1

(
ϕ1(x), ϕ1(y)

)
= W2

(
ϕ2(x), ϕ2(y)

)
a.e. on [0, 1]2.

(vi) There exists a measurable mapping ψ : S1 × [0, 1] → S2 that maps
µ1 × λ to µ2 such that W1(x, y) = W2

(
ψ(x, t1), ψ(y, t2)

)
for a.e.

x, y ∈ S1 and t1, t2 ∈ [0, 1].
(vii) δ�(W1,W2) = 0, where δ� is the cut metric defined in [7] (see also

[5]).

If further W2 is almost twin-free, then these are also equivalent to:

(viii) There exists a measure preserving map ϕ : S1 → S2 such that W1 =
Wϕ

2 a.s., i.e. W1(x, y) = W2

(
ϕ(x), ϕ(y)

)
a.e. on S2

1 .

If both W1 and W2 are almost twin-free, then these are also equivalent to:

(ix) There exists a measure preserving map ϕ : S1 → S2 such that ϕ
is a bimeasurable bijection of S1 \ N1 onto S2 \ N2 for some null
sets N1 ⊂ S1 and N2 ⊂ S2, and W1 = Wϕ

2 a.s., i.e. W1(x, y) =



18 PERSI DIACONIS, SUSAN HOLMES, AND SVANTE JANSON

W2

(
ϕ(x), ϕ(y)

)
a.e. on S2

1 . If further (S2, µ2) has no atoms, for
example if S2 = [0, 1], then we may take N1 = N2 = ∅.

Note that (i) =⇒ (iv) implies that we can uniquely define the random
graphs G(n,Γ) for any graph limit Γ.

Proof. (i)⇐⇒ (ii) holds by our definition of graph limits.
Next, the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒

(vi)⇐⇒ (vii) where shown in [12] in the special (but standard) case (S1, µ1) =
(S2, µ2) = ([0, 1], λ). Since every Borel space is either finite, countably infi-
nite or (Borel) isomorphic to [0, 1], it is easily seen that there exist measure
preserving maps γj : [0, 1]→ Sj , j = 1, 2. Then W

γj
j : [0, 1]2 → [0, 1], and it

is easily seen that Γj := ΓWj = Γ
W
γj
j

and G(n,Wj)
d
= G(n,W

γj
j ) for n ≤ ∞,

and further δ�(Wj ,W
γj
j ) = 0; hence (i)⇐⇒ (ii)⇐⇒ (iii)⇐⇒ (iv)⇐⇒ (vii)

by the corresponding results for [0, 1].
If (i)–(iv) hold, then by (v) for [0, 1], there exist measure preserving func-

tions ϕ′j : [0, 1] → [0, 1] such that W γ1
1

(
ϕ′1(x), ϕ′1(y)

)
= W γ2

2

(
ϕ′2(x), ϕ′2(y)

)
a.e., and thus (v) holds with ϕj := γj ◦ ϕ′j .

Conversely, if (v) holds, then G(n,W1)
d
= G(n,Wϕ1

1 ) = G(n,Wϕ2
2 )

d
=

G(n,W2) for every n ≤ ∞; thus (v) =⇒ (iii),(iv).
(vi) =⇒ (iii),(iv) is similar.

(iii) =⇒ (vi): Assume (iii). Then G(∞,W γ1
1 )

d
= G(∞,W γ2

2 ), so by the
result for [0, 1], there exists a measure preserving function h : [0, 1]2 → [0, 1]
such that W γ1

1 (x, y) = W γ2
2

(
h(x, z1), h(y, z2)

)
for a.e. x, y, z1, z2 ∈ [0, 1].

By [22, Lemma 7.2] (applied to (S1, µ1) and γ1), there exists a measure
preserving map α : S1 × [0, 1]→ [0, 1] such that γ1(α(s, u)) = s a.e. Hence,
for a.e. x, y ∈ S1 and u1, u2, z1, z2 ∈ [0, 1],

W1(x, y) = W1

(
γ1 ◦ α(x, u1), γ1 ◦ α(y, u2)

)
= W γ1

1

(
α(x, u1), α(y, u2)

)
= W γ2

2

(
h(α(x, u1), z1), h(α(y, u2), z2)

)
= W2

(
γ2 ◦ h(α(x, u1), z1), γ2 ◦ h(α(y, u2), z2)

)
.

Finally, let β = (β1, β2) be a measure preserving map [0, 1] → [0, 1]2, and
define ψ(x, t) := γ2 ◦ h

(
α(x, β1(t)), β2(t)

)
.

(vi) =⇒ (viii): Since, for a.e. x, y, t1, t2, t
′
1,

W2

(
ψ(x, t1), ψ(y, t2)

)
= W1(x, y) = W2

(
ψ(x, t′1), ψ(y, t2)

)
and ψ is measure preserving, it follows that for a.e. x, t1, t

′
1, ψ(x, t1) and

ψ(x, t′1) are twins for W2. If W2 is almost twin-free, with exceptional null
set N , then further ψ(x, t1), ψ(x, t′1) /∈ N for a.e. x, t1, t

′
1, since ψ is measure

preserving, and consequently ψ(x, t1) = ψ(x, t′1) for a.e. x, t1, t
′
1. It follows

that we can choose a fixed t′1 (almost every choice will do) such that ψ(x, t) =
ψ(x, t′1) for a.e. x, t. Define ϕ(x) := ψ(x, t′1). Then ψ(x, t) = ϕ(x) for a.e.
x, t, which in particular implies that ϕ is measure preserving, and (vi) yields
W1(x, y) = W2

(
ϕ(x), ϕ(y)

)
a.e.
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(viii) =⇒ (ix): Let N ′ ⊂ S1 be a null set such that if x /∈ N ′, then
W1(x, y) = W2(ϕ(x), ϕ(y)) for a.e. y ∈ S1. If x, x′ ∈ S1 \ N ′ and ϕ(x) =
ϕ(x′), then x and x′ are twins forW1. Consequently, ifW1 is almost twin-free
with exceptional null set N ′′, then ϕ is injective on S1 \N1 with N1 := N ′ ∪
N ′′. Since S1\N1 and S2 are Borel spaces, the injective map ϕ : S1\N1 → S2

has measurable range and is a bimeasurable bijection ϕ : S1\N1 → S2\N2 for
some measurable set N2 ⊂ S2. Since ϕ is measure preserving, µ2(N2) = 0.

If S2 has no atoms, we may take an uncountable null set N ′2 ⊂ S2 \ N2.
Let N ′1 := ϕ−1(N ′2). Then N1 ∪ N ′1 and N2 ∪ N ′2 are uncountable Borel
spaces so there is a bimeasurable bijection η : N1 ∪N ′1 → N2 ∪N ′2. Redefine
ϕ on N1 ∪N ′1 so that ϕ = η there; then ϕ becomes a bijection S1 → S2.

(viii),(ix) =⇒ (v): Trivial. �

We apply this general theorem to the case S1 = S2 = S and W1 = W2 =
W .

Corollary 8.2. Let µ1, µ2 ∈ P(S). Then, Γµ1 = Γµ2 if and only if there
exists a measurable map ψ : S × [0, 1]→ S that maps µ1×λ→ µ2 such that
for µ1-a.e. intervals I, J ∈ S and a.e. t, u ∈ [0, 1],

I ∩ J 6= ∅ ⇐⇒ ψ(I, t) ∩ ψ(J, u) 6= ∅. (8.1)

This result is still not completely satisfactory, and it leads to a number
of open questions:

Problems 8.3. (i) The simple case is when the mapping ψ in Corollary 8.2
does not depend on the second variable at all; in other words, when there
exists a measurable map ϕ : S → S that maps µ1 to µ2 such that for µ1-a.e.
intervals I, J ∈ S,

I ∩ J 6= ∅ ⇐⇒ ϕ(I) ∩ ϕ(J) 6= ∅. (8.2)

When is this possible, and when is the extra randomization in (8.1) really
needed?

(ii) To simplify the condition further, when is it possible to choose ψ or
ϕ such that (8.1) or (8.2) hold for all I and J , and not just almost all? Note
that in Example 7.2, the two different representing measures are related
by the map ϕ defined by ϕ([x, y]) = [x + 1 − a, y + 1 − a] for y ≤ a and
ϕ([x, y]) = [x− a, y − a] for y > x ≥ a, and arbitrarily for x < a < y; this ϕ
satisfies (8.2) for a.e. I and J , but not for all.

(iii) One way to obtain a map ϕ : S → S that satisfies (8.1) for all
I and J is to take ϕ([a, b]) = [f(a), f(b)] for a (strictly) increasing map
f : [0, 1] → [0, 1], or ϕ([a, b]) = [f(b), f(a)] for a (strictly) decreasing map
f : [0, 1] → [0, 1]. Are there any other such maps ϕ? Again, note that in
Examples 7.2 and 7.3 there are natural maps ϕ that satisfy (8.2) for a.e. I
and J , but these are given by functions f that permute subintervals of [0, 1],
and are not monotone. It seems that this problem is related to connectedness
of the random interval graphs G(n, µ1), and also to the question whether



20 PERSI DIACONIS, SUSAN HOLMES, AND SVANTE JANSON

there are several orientations of the complement of these interval graphs, cf.
[14].

Problem 8.4. Is there some additional condition on µ that leads to a unique
“canonical” representing measure µ ∈ P(S) for each interval graph limit Γ?

Note that requiring µ ∈ PL(S) yields uniqueness in Example 7.1 but not
in Example 7.2.

9. Proof of Theorem 4.2

We begin by proving a special case.

Lemma 9.1. Let µ ∈ P(S). Then 1
nω(G(n, µ))

a.s.−→ ω(µ) as n→∞.

Proof. Recall the construction ofG(n, µ) using i.i.d. random intervals I1, . . . , In
with distribution µ, and let again µn = 1

n

∑n
1 δIi be the corresponding em-

pirical measure.
Let ε > 0. Choose a such that ω(µ) = µ

(
[0, a] × [a, 1]

)
. By the law of

large numbers, a.s. for all large n,

µn
(
[0, a]× [a, 1]

)
=

1

n
#
{
i ≤ n : Ii ∈ [0, a]× [a, 1]

}
> ω(µ)− ε. (9.1)

In the opposite direction, for every a ∈ [0, 1], µ
(
[0, a]× [a, 1]

)
< ω(µ) + ε,

and thus, for some δ = δ(a) > 0, µ
(
[0, a+δ]×[a−δ, 1]

)
< ω(µ)+ε. The open

intervals (a− δ(a), a+ δ(a)) cover the compact set [0, 1], so we can choose a
finite subcover (aj − δj , aj + δj), j = 1, . . . ,m. By the law of large numbers,
a.s. for all large n, #{i ≤ n : Ii ∈ [0, aj + δj ]× [aj − δj , 1]} < n(ω(µ) + ε) for
each j = 1, . . . ,m, which implies that

µn
(
[0, a]× [a, 1]

)
=

1

n
#
{
i ≤ n : Ii ∈ [0, a]× [a, 1]

}
< ω(µ) + ε (9.2)

for every a ∈ [0, 1]. Combining (9.1) and (9.2), we see that ω(µ) − ε <
ω(µn) < ω(µ) + ε, and the result follows since 1

nω(G(n, µ)) = ω(µn). �

Proof of Lemma 4.1. By Theorem 8.1(i) =⇒ (iv), the random graphsG(n, µ1)
andG(n, µ2) have the same distribution and the result follows by Lemma 9.1.

�

A direct analytic proof of Lemma 4.1 using e.g. Corollary 8.2 seems more
difficult than this argument using random graphs.

Proof of Theorem 4.2. As in the proof of Theorem 3.1, we may (by consid-
ering a subsequence) assume that Gn is defined by intervals Ini = [ani, bni] ⊆
[0, 1], i = 1, . . . , n such that the corresponding empirical measures µn given
by (3.4) converge to a measure µ ∈ Pm(S). By Theorem 3.2, Γµ = Γ.

Let an ∈ [0, 1] be such that ω(µn) = µn
(
[0, an]× [an, 1]

)
. By considering

a further subsequence we may assume that an → a for some a ∈ [0, 1].
Since µ ∈ Pm(S), µL and µR are continuous measures and thus µ

(
∂([0, b]×
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[b, 1])
)

= µ
(
[0, b]× {b} ∪ {b} × [b, 1]

)
= 0 for every b ∈ [0, 1]. Together with

µn → µ, this implies

µ
(
[0, b]× [b, 1]

)
= lim

n→∞
µn
(
[0, b]× [b, 1]

)
≤ lim inf

n→∞
ω(µn). (9.3)

Moreover, a routine argument shows that

ω(µn) = µn
(
[0, an]× [an, 1]

)
→ µ

(
[0, a]× [a, 1]

)
. (9.4)

Consequently, ω(µ) = µ
(
[0, a] × [a, 1]

)
and ω(µn) → ω(µ) = ω(Γ). The

result follows for the subsequence since χ(Gn) = ω(Gn) = nω(µn). The
same argument applies to every subsequence of Gn, which thus has a sub-
subsequence such that (4.2) holds; this implies that (4.2) holds for the full
sequence. �

10. Other intersection graphs

The methods above can be used also for some other classes of intersection
graphs. In general, for A-intersection graphs defined using a collection A of
sets, we define W = WA : A×A → {0, 1} by

W (A,B) =

{
1 if A ∩B 6= ∅,
0 if A ∩B = ∅.

(10.1)

We take S = A (equipped with some suitable σ-field) and use this fixed
function W , just as for the case of interval graphs above. If µ is any prob-
ability measure on S = A, then the random graphs G(n, µ) are random
A-intersection graphs (and each µ gives a model of such random graphs);
thus the graph limit Γµ is an A-intersection graph limit. The problem
whether the converse holds, i.e., whether every A-intersection graph limit
can be represented as Γµ for some such µ, is more subtle; we have proved it
for interval graphs above, and our methods apply also to some other cases,
see Sections 10.1–10.3 below; however, the converse is not true in general,
see Section 10.4. (For a more trivial counterexample, let A be the count-
able family of all finite subsets of N; then every graph is an A-intersection
graph, but not every graph limit can be represented by Γµ for a measure µ
on A, since this would imply that the class of all graphs is random-free, see
Remark 3.5, a contradiction.)

We leave the general case as an open problem and remark that our meth-
ods seem to work best when the set A has a compact topology; however,
even in that case there are problems because the map µ→ Γµ is in general
not continuous, as seen in Theorem 5.1.

Problem 10.1. Find general conditions on A that guarantee that every
A-intersection graph limit is Γµ for some µ ∈ P(A).

We study a few cases individually. Note that the function W depends
on the graph class by the general formula (10.1). For each class one can
ask questions similar to Problems 8.3–8.4, study random graphs G(n,Γ)
generated by suitable graph limits, and so on; we leave this to the readers.



22 PERSI DIACONIS, SUSAN HOLMES, AND SVANTE JANSON

10.1. Circular-arc graphs. Circular-arc graphs are the intersection graphs
defined by letting A be the collection of arcs on the unit circle T, see
[9; 18; 29]. As for interval graphs, we may assume that the arcs are closed,
and we allow arcs of length 0. We also allow the whole circle as an arc;
this is special since it has no endpoint. This class obviously contain the
interval graphs, and the containment is strict. (For example, the cycle Cn
with n ≥ 4 is a circular-arc graph but not an interval graph.)

For technical reasons, we first regard the whole circle as having two co-
inciding (and otherwise arbitrary) endpoints. The space of arcs may then
be identified with S0

CA := [0, 2π] × T, with (`, eiθ) corresponding to the arc
{eit : t ∈ [θ, θ + `]} of length `. The argument in the proof of Theorem 3.1
shows that every circular-arc graph limit may be represented as Γµ for some
measure µ ∈ P(S0

CA), for example with the marginal distribution of θ uni-
form on T.

To get rid of the artificial endpoints for the full circle, we identify all
points (2π, eiθ) in S0

CA and let SCA be the resulting quotient space; SCA is

homeomorphic to the unit disc D := {z ∈ C : |z| ≤ 1} with reiθ ∈ D
corresponding to (2π(1 − r), eiθ) ∈ S0

CA and thus 0 ∈ D corresponding to
the full circle. (This gives a unique representation of the closed arcs on T.)
The quotient map S0

CA → SCA preserves W , so by mapping µ from S0
CA to

SCA, we see that the circular-arc graph limits are exactly the graph limits
Γµ for µ ∈ P(SCA), in analogy with Theorem 3.1 for interval graphs. (The
main reason that we do not use SCA directly in the proof is that W is not
continuous at pairs (I, J) where I = T and J has length 0.)

10.2. Circle graphs. Circle graphs are the intersection graphs defined by
the collection of chords of the unit circle T [18, Chapter 11]. We represent a
chord by its two endpoints, and first for convenience consider the endpoints
as an ordered pair of points. We thus consider the space S0

CG := T×T (allow-
ing chords of length 0). The argument in the proof of Theorem 3.1 shows
that every circle graph limit may be represented as Γµ for some measure
µ ∈ P(S0

CG), for example with the average of the two marginal distributions
on T being uniform (in analogy with Pm(S)).

The space of all chords on T really is the quotient space SCG of S0
CG

obtained by identifying (a, b) and (b, a) for any a, b ∈ T. (The resulting
compact space is homeomorphic to a Möbius strip.) Again, the quotient
mapping preserves W , so we can map µ ∈ P(S0

CG) to a measure on SCG.
Consequently, the circle graph limits are the graph limits Γµ for µ ∈ P(SCG).

10.3. Permutation graphs. A graph is a permutation graph if we can label
the vertices by 1, . . . , n and there is a permutation π of {1, . . . n} such that
for i < j there is an edge ij if and only if π(i) > π(j). It is easy to see that
the permutation graphs are the intersection graphs defined by the collection
of all line segments with one endpoint on each of two parallel lines; we may
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take A = [0, 1]×[0, 1] with (a, b) representing the line segment between (a, 0)
and (b, 1) [18, Chapter 7].

The argument in the proof of Theorem 3.1 shows that every permutation
graph limit may be represented as Γµ for some measure µ ∈ P([0, 1]2), for
example with the two marginal distributions on [0, 1] both being uniform.

10.4. Unit interval graphs. Unit interval graphs are the intersection graphs
defined by the collection A = {[x, x + 1] : x ∈ R} of unit intervals in R.
(Again, we choose the intervals as closed; the collection of open unit inter-
vals defines the same class of graphs.) This class coincides with the class
of proper interval graphs, defined by collections of intervals I1, . . . , In in R,
with the additional requirement that no Ii is a proper subinterval of another.
(Or, equivalently, that Ii 6⊆ Ij for all i, j.) They are also called indifference
graphs. See [9; 18; 37]. This is a subclass of all interval graphs and the
containment is strict since K1,3 is an interval graph but not a unit interval
graph.

The set A above is naturally identified with R, with W (x, y) = 1 when
|x−y| ≤ 1; thus every probability measure on R defines a unit interval graph
limit. However, this mapping is not onto. In fact, the empty graph En is
a unit interval graph, so the limit as n→∞ is a unit interval graph limit;
this graph limit Γ0 is defined by the kernel 0 on any probability space and
has t(K2,Γ0) = 0, but if µ ∈ P(R), then the corresponding graph limit Γµ
has by (2.4)

t(K2,Γµ) =

∫∫
|x−y|≤1

dµ(x1) dµ(x2) > 0.

Thus Γ0 6= Γµ. (Note that if µn ∈ P(R) is a measure representing En, then
necessarily the sequence µn is not tight, and in fact converges vaguely to 0,
so this problem is connected to the non-compactness of R.)

Another approach to unit interval graph limits is to regard them as spe-
cial cases of interval graph limits and use the theory developed above to
characterize them using special measures on the triangle S = {[a, b] : 0 ≤
a ≤ b ≤ 1}. This yields the following theorem.

Theorem 10.2. A graph limit Γ is a unit interval graph limit if and only if
Γ = Γµ for a measure µ ∈ P(S) that has support on some curve t 7→ γ(t) =
(γ1(t), γ2(t)) ∈ S such that γ1(t) and γ2(t) are weakly increasing.

Proof. Suppose that Gn is a sequence of unit interval graphs with Gn → Γ.
In the proof of Theorem 3.1, the interval representations are modified by
homeomorphisms, and the results are, of course, not unit interval represen-
tations, but they are proper interval representations, i.e., no interval is a
subinterval of another. Thus, the measures µn have the property that for
each (a, b) ∈ S, µn

(
[0, a) × (b, 1]

)
· µn

(
(a, 1] × [0, b)

)
= 0. Since µn → µ

(for a subsequence), the same holds for µ, which implies that if a1 < a2 and
b1 > b2, then (a1, b1) and (a2, b2) cannot both belong to suppµ. (Choose
a = (a1 + a2)/2 and b = (b1 + b2)/2.)
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Let E = {a + b : (a, b) ∈ suppµ}. Then E is a closed subset of [0, 2]
and for each t ∈ E there is exactly one (a, b) ∈ suppµ with a + b = t; we
define f(t) = a and g(t) = b so f and g are functions E → [0, 1]. Note
that f(t) + g(t) = t. If t1 < t2 and g(t1) > g(t2), then f(t1) < f(t2);
thus (f(t1), g(t1)) and (f(t2), g(t2)) are two points in suppµ violating the
condition above. Consequently, if t1 < t2 then g(t1) ≤ g(t2), and similarly
f(t1) ≤ f(t2). (Since f(t)+g(t) = t this further implies f(t2)−f(t1) ≤ t2−t1
and g(t2)−g(t1) ≤ t2− t1.) We may now extend f and g to the complement
[0, 1] \ E, e.g. linearly in each component, and define γ(t) = (f(t), g(t)).

For the converse, consider the random graph G(n, µ). This is an interval
graph represented by intervals I1, . . . , In ∈ S that lie on the curve γ. This
is not necessarily a proper interval representation, since two of the intervals
may lie on the same horizontal or vertical part of γ, but it is easily seen that
it is always possible to obtain a proper interval representation of the same
graph by moving some of the endpoints a little. Thus G(n, µ) is a proper
interval graph, and thus a unit interval graph, whence Γµ is a unit interval
graph limit. �

Again, the representation by such a measure µ is not unique.

Problem 10.3. Is it possible to make a canonical choice in some way? Is
it possible to use a fixed curve γ?

Remark 10.4. Γµ may happen to be a unit interval graph limit also if
µ is not of the type in Theorem 10.2; for example if µ is any measure
supported on [0, 1

2 ]× [1
2 , 1] when each G(n, µ) is the complete graph Kn. To

characterize all measures µ ∈ P(S) such that Γµ is a unit interval graph
limit is a different, and open, problem.

The unit interval graphs can also be characterized as the intervals graphs
G that do not contain K1,3 as an induced subgraph [9; 18; 37]. In general,
for two graphs F and G with |F | ≤ |G|, let tind(F,G) be the probability
that the induced subgraph of G obtained by selecting |F | vertices uniformly
at random is isomorphic to F ; this number is closely connected to t(F,G)
defined in Section 2.4 (which loosely speaking counts subgraphs of G and
not just induced subgraphs), see [7], [30] or [12] for details. For any fixed
F , tind(F, ·) extends to graph limits Γ and we have tind(F,Gn)→ tind(F,Γ)
if Gn → Γ; moreover, tind(F,Γ) is a continuous function of Γ. Using this
notation, G is a unit interval graph if and only if G is an interval graph with
tind(K1,3, G) = 0.

Theorem 10.5. Let Γ be a graph limit. Then the following are equivalent:

(i) Γ is a unit interval graph limit.
(ii) Γ is an interval graph limit and tind(K1,3,Γ) = 0.
(iii) The random graphs G(n,Γ) are unit interval graphs.

Proof. (i) =⇒ (ii) is clear by the comments above.
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(ii) =⇒ (iii). Use Theorem 3.1 and choose a measure µ ∈ P(S) rep-
resenting Γ. There is a formula analoguous to (2.4) for tind(F,Γ), with∏
ij∈E(F )W (xi, xj) replaced by

∏
ij∈E(F )W (xi, xj)

∏
ij /∈E(F )(1−W (xi, xj)),

and it follows easily that for any n ≥ |F |,
E tind

(
F,G(n,Γ)

)
= E tind

(
F,G(|F |,Γ)

)
= tind(F,Γ).

Hence, (ii) implies thatG(n,Γ) a.s. is an interval graphG with tind(K1,3, G) =
0, i.e., a unit interval graph. (The case n < 4 is trivial.)

(iii) =⇒ (i) follows since G(n,Γ)→ Γ a.s. �

Finally, we mention that a related characterization of unit interval graphs
is that they are the graphs that contain no induced subgraph isomorphic to
Ck for any k ≥ 4, K1,3, S3 or S3, where S3 is the graph on 6 vertices

{1, . . . , 6} with edge set {12, 13, 23, 14, 25, 36}, and S3 is its complement [9].
The same argument as in the proof of Theorem 10.5 yields (see [11, Theorem
3.2] for a more general result):

Theorem 10.6. A graph limit Γ is a unit interval graph limit if and only
if tind(F,Γ) = 0 for every F ∈ {Ck}k≥4 ∪ {K1,3, S3, S3}. �
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