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Abstract. We give a unified treatment of the limit, as the size tends
to infinity, of simply generated random trees, including both the well-
known result in the standard case of critical Galton–Watson trees and
similar but less well-known results in the other cases (i.e., when no
equivalent critical Galton–Watson tree exists). There is a well-defined
limit in the form of an infinite random tree in all cases; for critical
Galton–Watson trees this tree is locally finite but for the other cases the
random limit has exactly one node of infinite degree.

The proofs use a well-known connection to a random allocation model
that we call balls-in-boxes, and we prove corresponding theorems for this
model.

This survey paper contains many known results from many different
sources, together with some new results.
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1. Introduction

The main purpose of this survey paper is to study the asymptotic shape
of simply generated random trees in complete generality; this includes con-
ditioned Galton–Watson trees as a special case, but we will also go beyond
that case. Definitions are given in Section 2; here we only recall that simply
generated trees are defined by a weight sequence (wk), and that the case
when the weight sequence is a probability distribution yields conditioned
Galton–Watson trees.

It is well-known that in the case of a critical conditioned Galton–Watson
tree, i.e., when the defining offspring distribution has expectation 1, the ran-
dom tree has a limit (as the size tends to infinity); this limit is an infinite
random tree, the size-biased Galton–Watson tree defined by Kesten [74],
see also Aldous [4], Aldous and Pitman [6] and Lyons, Pemantle and Peres
[84]. It is also well-known that this case is less special than it might seem;
there is a notion of equivalent weight sequences defining the same simply
generated random tree, see Section 4, and a large class of weight sequences
have an equivalent probability weight sequence defining a critical condi-
tioned Galton–Watson tree. Many probabilists, including myself, have often
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concentrated on this “standard” case of critical conditioned Galton–Watson
trees and dismissed the remaining cases as uninteresting exceptional cases.
However, some researchers, in particular mathematical physicists, have stud-
ied such cases too. Bialas and Burda [13] studied one case (Example 10.7
below) and found a phase transition as we leave the standard case; this can
be interpreted as a condensation making the tree bushy with one or a few
nodes of very high degree. This interesting condensation was studied further
by Jonsson and Stefánsson [67], who showed that (in the power-law case),
there is a limit tree of a different type, having one node of infinite degree.

We give in the present paper a unified treatment of the limit as the size
tends to infinity for all simply generated trees, including both the well-
known result in the standard case of critical Galton–Watson trees and the
“exceptional” cases (i.e., when no equivalent probability weight sequence
exists, or when such a sequence exists but not with mean 1). We will see
that there is a well-defined limit in the form of an infinite random tree for
any weight sequence. In the non-standard cases, this infinite random limit
has exactly one node of infinite degree, so its form differs from the standard
case of a critical Galton–Watson tree where all nodes in the limit tree have
finite degrees, but nevertheless the trees are similar; see Sections 5 and 7 for
details.

Some important notation, used throughout the paper, is introduced in
Section 3, while Sections 4 and 6 contain further preliminaries. The main
limit theorem for simply generated random trees is stated in Section 7, to-
gether with some other, related, limit theorems concerning node degrees and
fringe subtrees. The differences between different types of weight sequences
are discussed further in Section 8, and this is continued in Section 9 with a
summary of the main results from Section 19 on the maximum outdegree in
the random tree.

The proofs of the limit theorems for random trees use a well-known con-
nection to a random allocation model that we call balls-in-boxes; this model
exhibits a similar behaviour, with condensation in the non-classical cases,
see e.g. Bialas, Burda and Johnston [14]. The model is defined in Section 11,
and the relation between the models is described in Section 15. The balls-in-
boxes model is interesting in its own right, and it has been used for several
other applications; we give some examples from probability theory, com-
binatorics and statistical physics in Section 12. We therefore also develop
the general theory for balls-in-boxes with arbitrary weight sequences (in the
range where the mean occupancy is bounded). In particular, we give in Sec-
tion 11 theorems corresponding to (and in some ways extending) our main
theorems for random trees.

The limit theorems for balls-in-boxes are proved in Sections 13–14, and
then these results are used to prove the limit theorems for random trees in
Sections 15–17.

The remaining sections contain additional results. Section 18 gives as-
ymptotic results for the partition functions of the models. The very long
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Section 19 gives results on the largest degrees in random trees, and the
largest numbers of balls in a box in the balls-in-boxes model; the section
is long because there are several different cases with different types of be-
haviour. (See also the summary in Section 9.) In particular, we study in
Section 19.6 the case when there is condensation, and investigate whether
this appears as condensation to a single box (or node), or whether the con-
densation is distributed over several boxes (nodes); it turns out that both
cases can occur. We give also, in Section 19.7, applications to the size of the
largest tree in random forests. In Section 20, the condensation in random
trees is discussed in further detail. Finally, some additional comments, re-
sults and open problems are given in Sections 21 and 22; Section 21 mentions
briefly various other types of asymptotic results for simply generated random
trees, and Section 22 discusses alternative ways to condition Galton–Watson
trees.

This paper contains many known results from many different sources,
together with some new results. (We believe, for example, that the theorems
in Section 7 are new in the present generality.) We have tried to give relevant
references, but the absence of references does not necessarily imply that a
result is new.

2. Simply generated trees

2.1. Ordered rooted trees. The trees that we consider are (with a few ex-
plicit exceptions) rooted and ordered (such trees are also called plane trees).
Recall that a tree is rooted if one node is distinguished as the root o; this im-
plies that we can arrange the nodes in a sequence of generations (or levels),
where generation x consists of all nodes of distance x to the root. (Thus
generation 0 is the root; generation 1 is the set of neighbours of the root,
and so on.) If v is a node with v 6= o, then the parent of v is the neighbour
of v on the path from v to o; thus, every node except the root has a unique
parent, while the root has no parent. Conversely, for any node v, the neigh-
bours of v that are further away from the root than v are the children of v.
The number of children of v is the outdegree d+(v) > 0 of v. Note that if v
is in generation x, then its parent is in generation x− 1 and its children are
in generation x+ 1.

Recall further that a rooted tree is ordered if the children of each node are
ordered in a sequence v1, . . . , vd, where d = d+(v) > 0 is the outdegree of v.
See e.g. Drmota [33] for more information on these and other types of trees.
(The trees we consider are called planted plane trees in [33].) We identify
trees that are isomorphic in the obvious (order preserving) way. (Formally,
we can define our trees as equivalence classes. Alternatively, we may select
a specific representative in each equivalence class as in Section 6.)

Remark 2.1. Some authors prefer to add an extra (phantom) node as a
parent of the root; such trees are called planted. (An alternative version is
to add only a pendant edge at the root, with no second endpoint.) There
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is an obvious one-to-one correspondence between trees with and without
the extra node, so the difference is just a matter of formulations, but when
comparing results one should be careful whether, for example, the extra
node is counted or not. The extra node yields the technical advantage that
also the root has indegree 1 and thus total degree = 1 + d+(v); it further
gives each embedding in the plane a unique ordering of the children of every
node (in clockwise order from the parent, say). Nevertheless, we find this
device less natural and we will not use it in the present paper. (We use
outdegrees instead of degrees and assume that an ordering of the children
as above is given; then there are no problems.)

We are primarily interested in (large) finite trees, but we will also con-
sider infinite trees, for example as limit objects in our main theorem (Theo-
rem 7.1). The infinite trees may have nodes with infinite outdegree d+(v) =
∞; in this case we assume that the children are ordered v1, v2, . . . (i.e., the
order type of the set of children is N).

We let Tn be the set of all ordered rooted trees with n nodes (including
the root) and let Tf :=

⋃∞
n=1 Tn be the set of all finite ordered rooted trees;

see further Section 6.

Remark 2.2. Note that Tn is a finite set. In fact, it is well-known that its
size |Tn| is the (n− 1):th Catalan number

Cn−1 =
1

n

(
2n− 2

n− 1

)
=

(2n− 2)!

n! (n− 1)!
, (2.1)

see e.g. [33, Section 1.2.2 and Theorem 3.2], [40, Section I.2.3] or [103,
Exercise 6.19(e)], but we do not need this.

For any tree T , we let |T | denote the number of nodes; we call |T | the
size of T . As is well known, for any finite tree T ,∑

v∈T
d+(v) = |T | − 1, (2.2)

since every node except the root is the child of exactly one node.

2.2. Galton–Watson trees. An important class of examples of random
ordered rooted trees is given by the Galton–Watson trees. These are de-
fined as the family trees of Galton–Watson processes: Given a probability
distribution (πk)

∞
k=0 on Z>0, or, equivalently, a random variable ξ with dis-

tribution (πk)
∞
k=0, we build the tree T recursively, starting with the root

and giving each node a number of children that is an independent copy
of ξ. (We call (πk)

∞
k=0 the offspring distribution of T ; we sometimes also

abuse the language and call ξ the offspring distribution.) In other words,
the outdegrees d+(v) are i.i.d. with the distribution (πk)

∞
k=0.

Recall that the Galton–Watson process is called subcritical, critical or
supercritical as the expected number of children E ξ =

∑∞
k=0 kπk satisfies

E ξ < 1, E ξ = 1 or E ξ > 1. It is a standard basic fact of branching process
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theory that T is finite a.s. if E ξ 6 1 (i.e., in the subcritical and critical cases),
but T is infinite with positive probability if E ξ > 1 (the supercritical case),
see e.g. Athreya and Ney [8].

The Galton–Watson trees have random sizes. We are mainly interested
in random trees with a given size; we thus define Tn as T conditioned on
|T | = n. These random trees Tn are called conditioned Galton–Watson trees.
By definition, Tn has size |Tn| = n.

It is well-known that several important classes of random trees can be
seen as conditioned Galton–Watson tree, see e.g. Aldous [4], Devroye [32],
Drmota [33] and Section 10.

2.3. Simply generated trees. The random trees that we will study are a
generalization of the Galton–Watson trees. We suppose in this paper that we
are given a fixed weight sequence w = (wk)k>0 of non-negative real numbers.
We then define the weight of a finite tree T ∈ Tf by

w(T ) :=
∏
v∈T

wd+(v), (2.3)

taking the product over all nodes v in T . Trees with such weights are called
simply generated trees and were introduced by Meir and Moon [85]. To avoid
trivialities, we assume that w0 > 0 and that there exists some k > 2 with
wk > 0.

We let Tn be the random tree obtained by picking an element of Tn at
random with probability proportional to its weight, i.e.,

P(Tn = T ) =
w(T )

Zn
, T ∈ Tn, (2.4)

where the normalizing factor Zn is given by

Zn = Zn(w) :=
∑
T∈Tn

w(T ); (2.5)

Zn is known as the partition function. This definition makes sense only
when Zn > 0; we tacitly consider only such n when we discuss Tn. Our
assumptions w0 > 0 and wk > 0 for some k > 2 imply that Zn > 0 for
infinitely many n, see Corollary 15.6 for a more precise result. (In most
applications, w1 > 0, and then Zn > 0 for every n > 1, so there is no
problem at all. The archetypical example with a parity restriction is given
by the random (full) binary tree, see Example 10.3, for which Zn > 0 if and
only if n is odd.)

One particularly important case is when
∑∞

k=0wk = 1, so the weight
sequence (wk) is a probability distribution on Z>0. (We then say that (wk)
is a probability weight sequence.) In this case we let ξ be a random variable
with the corresponding distribution: P(ξ = k) = wk; we further let T be
the random Galton–Watson tree generated by ξ. It follows directly from the
definitions that for every finite tree T ∈ Tf , P(T = T ) = w(T ). Hence

Zn = P(|T | = n) (2.6)
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and the simply generated random tree Tn is the same as the random Galton–
Watson tree T conditioned on |T | = n, i.e., it equals the conditioned Galton–
Watson tree Tn defined above.

It is well-known, see Section 4 for details, that in many cases it is possible
to change the weight sequence (wk) to a probability weight sequence without
changing the distribution of the random trees Tn; in this case Tn can thus be
seen as a conditioned Galton–Watson tree. Moreover, in many cases this can
be done such that the resulting probability distribution has mean 1. In such
cases it thus suffices to consider the case of a probability weight sequence
with mean E ξ = 1; then Tn is a conditional critical Galton–Watson tree. It
turns out that this is a nice and natural setting, with many known results
proved by many different authors. (In many papers it is further assumed
that ξ has finite variance, or even a finite exponential moment. This is not
needed for the main results presented here, but may be necessary for other
results. See also Sections 8, 19 and 21.)

3. Notation

We consider a fixed weight sequence w = (wk)k>0. The support supp(w)
of the weight sequence w = (wk) is {k : wk > 0}. We define

ω = ω(w) := sup supp(w) = sup{k : wk > 0} 6∞, (3.1)

(When considering Tn, we assume, as said above, w0 > 0 and wk > 0 for
some k > 2; this can be written 0 ∈ supp(w) and ω > 2.)

We further define (assuming that the support contains at least two points)

span(w) := max{d > 1 : d | (i− j) whenever wi, wj > 0}. (3.2)

Since we assume w0 > 0, i.e., 0 ∈ supp(w), we can simplify this to

span(w) = max{d > 1 : d | i whenever wi > 0}, (3.3)

the greatest common divisor of supp(w).
We let

Φ(z) :=
∞∑
k=0

wkz
k (3.4)

be the generating function of the given weight sequence, and let ρ ∈ [0,∞]
be its radius of convergence. Thus

ρ = 1/ lim sup
k→∞

w
1/k
k . (3.5)

Φ(ρ) is always defined, with 0 < Φ(ρ) 6 ∞. Note that (assuming ω > 0)
Φ(∞) = ∞; in particular, if ρ = ∞, then Φ(ρ) = ∞. On the other hand,
if ρ < ∞, then both Φ(ρ) = ∞ and Φ(ρ) < ∞ are possible. If ρ > 0, then
Φ(t)↗ Φ(ρ) as t↗ ρ by monotone convergence.

We further define, for t such that Φ(t) <∞,

Ψ(t) :=
tΦ′(t)

Φ(t)
=

∑∞
k=0 kwkt

k∑∞
k=0wkt

k
; (3.6)
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Ψ(t) is thus defined and finite at least for 0 6 t < ρ, and if Φ(ρ) < ∞,
then Ψ(ρ) is still defined by (3.6), with Ψ(ρ) 6∞ (note that the numerator
in (3.6) may diverge in this case, but not for 0 6 t < ρ). Moreover, if
Φ(ρ) = ∞, we define Ψ(ρ) := limt↗ρ Ψ(t) 6 ∞. (The limit exists by
Lemma 3.1(i) below, but may be infinite.)

Alternatively, (3.6) may be written

Ψ(ex) = ex
Φ′(ex)

Φ(ex)
=

d

dx
log Φ(ex). (3.7)

The function Ψ will play a central role in the sequel. This is mainly
because of Lemma 4.2 below, which gives a probabilistic interpretation of
Ψ(t). Its basic properties are given by the following lemma, which is proved
in Section 13.

Lemma 3.1. Let w = (wk)
∞
k=0 be a given weight sequence with w0 > 0 and

wk > 0 for some k > 1 (i.e., ω(w) > 0).

(i) If 0 < ρ 6∞, then the function

Ψ(t) :=
tΦ′(t)

Φ(t)
=

∑∞
k=0 kwkt

k∑∞
k=0wkt

k
(3.8)

is finite, continuous and (strictly) increasing on [0, ρ), with Ψ(0) = 0.
(ii) If 0 < ρ 6∞, then Ψ(t)→ Ψ(ρ) 6∞ as t↗ ρ.
(iii) For any ρ, Ψ is continuous [0, ρ]→ [0,∞].
(iv) If ρ <∞ and Φ(ρ) =∞, then Ψ(ρ) := limt→ρ Ψ(t) =∞.
(v) If ρ =∞, then Ψ(ρ) := limt→ρ Ψ(t) = ω 6∞.

Consequently, if ρ > 0, then

Ψ(ρ) = lim
t↗ρ

Ψ(t) = sup
06t<ρ

Ψ(t) ∈ (0,∞]. (3.9)

We define
ν := Ψ(ρ). (3.10)

In particular, if Φ(ρ) <∞, then

ν =
ρΦ′(ρ)

Φ(ρ)
6∞. (3.11)

It follows from Lemma 3.1 that ν = 0 ⇐⇒ ρ = 0, and that if ρ > 0, then

ν := Ψ(ρ) = lim
t↗ρ

Ψ(t) = sup
06t<ρ

Ψ(t) ∈ (0,∞]. (3.12)

It follows from (3.8) that ν 6 ω.
Note that all these parameters depend on the weight sequence w = (wk);

we may occasionally write e.g. ω(w) and ν(w), but usually we for simplicity
do not show w explicitly in the notation.

Remark 3.2. Let Z(z) denote the generating function Z(z) :=
∑∞

n=1 Znz
n.

Then
Z(z) = zΦ(Z(z)), (3.13)
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as shown already by Otter [93]. This equation is the basis of much work
on simply generated trees using algebraic and analytic methods, see e.g.
Drmota [33], but the present paper uses different methods and we will use
(3.13) only in a few minor remarks.

3.1. More notation. We define N0 = Z>0 := {0, 1, 2, . . . }, N1 = Z>0 :=
{1, 2, . . . }, N0 := N0 ∪ {∞} and N1 := N1 ∪ {∞}.

All unspecified limits are as n→∞. Thus, an ∼ bn means an/bn → 1 as

n→∞. We use
p−→ and

d−→ for convergence in probability and distribution,

respectively, of random variables, and
d
= for equality in distribution. We use

op and Op in the standard senses: op(an) is an unspecified random variable

Xn such that Xn/an
p−→ 0 as n→∞, and Op(an) is a random variable Xn

such that Xn/an is stochastically bounded (usually called tight). We say
that some event holds w.h.p. (with high probability) if its probability tends
to 1 as n→∞. (See further e.g. [62].)

A coupling of two random variables X and Y is formally a pair of random

variables X ′ and Y ′ defined on a common probability space such that X
d
=

X ′ and Y
d
= Y ′; with a slight abuse of notation we may continue to write X

and Y , thus replacing the original variables with new ones having the same
distributions.

We write Xn
d
≈ X ′n for two sequences of random variables or vectors Xn

and X ′n if there exists a coupling of Xn and X ′n with Xn = X ′n w.h.p.; this
is equivalent to dTV(Xn, X

′
n) → 0 as n→∞, where dTV denotes the total

variation distance.
We use C1, C2, . . . to denote unimportant constants, possibly different at

different occurrences.
Recall that d+(v) = d+

T (v) always denotes the outdegree of a node v in a
tree T . (We use the notation d+(v) rather than d(v) to emphasise this.) We
will not use the total degree d(v) = 1 +d+(v) (when v 6= o), but care should
be taken when comparing with other papers.

4. Equivalent weights

If a, b > 0 and we change wk to

w̃k := abkwk, (4.1)

then, for every tree T ∈ Tn, w(T ) is changed to, using (2.2),

w̃(T ) = anb
∑
v d

+(v)w(T ) = anbn−1w(T ). (4.2)

Consequently, Zn is changed to

Z̃n := anbn−1Zn, (4.3)

and the probabilities in (2.4) are not changed. In other words, the new
weight sequence (w̃k) defines the same simply generated random trees Tn as
(wk). (This is essentially due to Kennedy [73], who did not consider trees
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but showed the corresponding result for Galton–Watson processes. See also
Aldous [4].) We say that weight sequence (wk) and (w̃k) related by (4.1)
(for some a, b > 0) are equivalent. (This is clearly an equivalence relation
on the set of weight sequences.)

Let us see how replacing (wk) by the equivalent weight sequence (w̃k)
affects the parameters defined above. The support, span and ω are not
affected at all.

The generating function Φ(t) is replaced by

Φ̃(t) :=
∞∑
k=0

w̃kt
k =

∞∑
k=0

abktk = aΦ(bt), (4.4)

with radius of convergence ρ̃ = ρ/b. Further, Ψ(t) is replaced by

Ψ̃(t) :=
tΦ̃′(t)

Φ̃(t)
=
tabΦ′(bt)

aΦ(bt)
= Ψ(bt). (4.5)

Hence, if ρ > 0, ν is replaced by, using (3.12),

ν̃ := sup
06t<ρ̃

Ψ̃(t) = sup
06t<ρ/b

Ψ(bt) = sup
06s<ρ

Ψ(s) = ν;

if ρ = 0 then ν̃ = ρ̃ = 0 = ν is trivial. In other words, ν is invariant and
depends only on the equivalence class of the weight sequence.

Lemma 4.1. There exists a probability weight sequence equivalent to (wk)
if and only if and only if ρ > 0. In this case, the probability weight sequences
equivalent to (wk) are given by

pk =
tkwk
Φ(t)

, (4.6)

for any t > 0 such that Φ(t) <∞.

Proof. The equivalent weight sequence (w̃k) given by (4.1) is a probability
distribution if and only if

1 =
∞∑
k=0

w̃k = a
∞∑
k=0

wkb
k = aΦ(b),

i.e., if and only if Φ(b) <∞ and a = Φ(b)−1. Thus, there exists a probability
weight sequence equivalent to (wk) if and only if there exists b > 0 with
Φ(b) < ∞, i.e., if and only if ρ > 0; in this case we can choose any such b
and take a := Φ(b)−1, which yields (4.6) (with t = b). �

We easily find the probability generating function and thus moments of
the probability weight sequence in (4.6); we state this in a form including
the trivial case t = 0.

Lemma 4.2. If t > 0 and Φ(t) <∞, then

pk :=
tkwk
Φ(t)

, k > 0, (4.7)
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defines a probability weight sequence (pk). This probability distribution has
probability generating function

Φt(z) :=
∞∑
k=0

pkz
k =

Φ(tz)

Φ(t)
, (4.8)

and a random variable ξ with this distribution has expectation

E ξ = Φ′t(1) =
tΦ′(t)

Φ(t)
= Ψ(t) (4.9)

and variance

Var ξ = tΨ′(t); (4.10)

furthermore, for any s > 0 and x > 0,

P(ξ > x) 6 e−sx
Φ(est)

Φ(t)
6 e−sx

Φ(est)

Φ(0)
. (4.11)

If t < ρ, then E ξ and Var ξ are finite. If t = ρ, however, E ξ and Var ξ may
be infinite (we define Var ξ = ∞ when E ξ = ∞, but Var ξ may be infinite
also when E ξ is finite); (4.9)–(4.10) still hold, with Ψ′(ρ) 6∞ defined as the
limit lims↗ρ Ψ′(s). The tail estimate (4.11) is interesting only when t < ρ,
when we may choose any s < log(ρ/t) and obtain the estimate O(e−sx).

Proof. Direct summations yield

∞∑
k=0

pk =

∑∞
k=0 t

kwk
Φ(t)

= 1 (4.12)

and, more generally,

∞∑
k=0

pkz
k =

∑∞
k=0wkt

kzk

Φ(t)
=

Φ(tz)

Φ(t)
, (4.13)

showing that (pk) is a probability distribution with the probability generat-
ing function Φt given in (4.8).

The expectation E ξ = Φ′t(1) is evaluated by differentiating (4.8) (for
z < 1 and then taking the limit as z → 1 to avoid convergence problems if
t = ρ), or directly from (4.7) as

E ξ =

∞∑
k=0

kpk =

∑∞
k=0 kwkt

k

Φ(t)
= Ψ(t).

Similarly, the variance is given by, using (4.8) and (4.9),

Var ξ = Φ′′t (1) + Φ′t(1)− (Φ′t(1))2 =
t2Φ′′(t)

Φ(t)
+
tΦ′(t)

Φ(t)
−
(
tΦ′(t)

Φ(t)

)2

= tΨ′(t).
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Alternatively,

tΨ′(t) = t
d

dt

∑∞
k=0 kt

kwk
Φ(t)

=

∑∞
k=0 k

2tkwk
Φ(t)

−
(∑∞

k=0 kt
kwk

Φ(t)

)2

=
∞∑
k=0

k2pk −
( ∞∑
k=0

kpk

)2

= E ξ2 − (E ξ)2 = Var ξ.

(In the case t = ρ and Var ξ = ∞, we use this calculation for t′ < t and let
t′ → t.)

Finally, by (4.8),

P(ξ > x) 6 e−sx E esξ = e−sxΦt(e
s) = e−sx

Φ(est)

Φ(t)
. �

In particular, taking t = 1, we recover the standard facts that if (wk) is a
probability distribution, so Φ(1) = 1, then it has expectation Φ′(1) = Ψ(1)
and variance Ψ′(1).

Remark 4.3. We see from Lemma 4.1 that the probability weight sequences
equivalent to (wk) are given by (4.6), where t ∈ (0, ρ] when Ψ(ρ) < ∞
and t ∈ (0, ρ) when Ψ(ρ) = ∞. By Lemma 3.1, t 7→ E ξ = Ψ(t) is an
increasing bijection (0, ρ]→ (0, ν] and (0, ρ)→ (0, ν). Hence, any equivalent
probability weight sequence is uniquely determined by its expectation, and
the possible expectations are (0, ν] (when Ψ(ρ) <∞) or (0, ν) (when Ψ(ρ) =
∞).

Remark 4.4. Note that we will frequently use (4.6) to define a new prob-
ability weight sequence also if we start with a probability weight sequence
(wk). Probability distributions related in this way are called conjugated or
tilted. Conjugate distributions were introduced by Cramér [27] as an impor-
tant tool in large deviation theory, see e.g. [31]. The reason is essentially
the same as in the present paper: by conjugating the distribution we can
change its mean in a way that enables us to keep control over sums Sn.

5. A modified Galton–Watson tree

Let (πk)k>0 be a probability distribution on N0 and let ξ be a random
variable on N0 with distribution (πk)

∞
k=0:

P(ξ = k) = πk, k = 0, 1, 2, . . . (5.1)

We assume that the expectation µ := E ξ =
∑

k kπk 6 1 (the subcritical or
critical case).

In this case, we define (based on Kesten [74] and Jonsson and Stefánsson

[67]) a modified Galton–Watson tree T̂ as follows: There are two types of
nodes: normal and special, with the root being special. Normal nodes have
offspring (outdegree) according to independent copies of ξ, while special
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nodes have offspring according to independent copies of ξ̂, where

P(ξ̂ = k) :=

{
kπk, k = 0, 1, 2, . . . ,

1− µ, k =∞.
(5.2)

(Note that this is a probability distribution on N1.) Moreover, all children
of a normal node are normal; when a special node gets an infinite number of
children, all are normal; when a special node gets a finite number of children,
one of its children is selected uniformly at random and is special, while all
other children are normal.

Thus, for a special node, and any integers j, k with 1 6 j 6 k < ∞, the
probability that the node has exactly k children and that the j:th of them
is special is kπk/k = πk.

Since each special node has at most one special child, the special nodes

form a path from the root; we call this path the spine of T̂ . We distinguish
two different cases:

(T1) If µ = 1 (the critical case), then ξ̂ < ∞ a.s. so each special node has
a special child and the spine is an infinite path. Each outdegree d+(v)

in T̂ is finite, so the tree is infinite but locally finite.

In this case, the distribution of ξ̂ in (5.2) is the size-biased dis-

tribution of ξ, and T̂ is the size-biased Galton–Watson tree defined
by Kesten [74], see also Aldous [4], Aldous and Pitman [6], Lyons,
Pemantle and Peres [84] and Remark 5.7 below. The underlying size-
biased Galton–Watson process is the same as the Q-process studied
in Athreya and Ney [8, Section I.14], which is an instance of Doob’s
h-transform. (See Lyons, Pemantle and Peres [84] for further related
constructions in other contexts and Geiger and Kauffmann [45] for a
generalization.)

An alternative construction of the random tree T̂ is to start with
the spine (an infinite path from the root) and then at each node in the
spine attach further branches; the number of branches at each node in

the spine is a copy of ξ̂ − 1 and each branch is a copy of the Galton–
Watson tree T with offspring distributed as ξ; furthermore, at a node
where k new branches are attached, the number of them attached to
the left of the spine is uniformly distributed on {0, . . . , k}. (All random
choices are independent.) Since the critical Galton–Watson tree T is

a.s. finite, it follows that T̂ a.s. has exactly one infinite path from the
root, viz. the spine.

(T2) If µ < 1 (the subcritical case), then a special node has with probability
1−µ no special child. Hence, the spine is a.s. finite and the number L
of nodes in the spine has a (shifted) geometric distribution Ge(1− µ),

P(L = `) = (1− µ)µ`−1, ` = 1, 2, . . . . (5.3)

The tree T̂ has a.s. exactly one node with infinite outdegree, viz. the

top of the spine. T̂ has a.s. no infinite path.



14 SVANTE JANSON

In this case, an alternative construction of T̂ is to start with a spine
of random length L, where L has the geometric distribution (5.3). We
attach as in (T1) further branches that are independent copies of the
Galton–Watson tree T ; at the top of the spine we attach an infinite
number of branches and at all other nodes in the spine the number

we attach is a copy of ξ∗ − 1 where ξ∗
d
= (ξ̂ | ξ̂ < ∞) has the size-

biased distribution P(ξ∗ = k) = kπk/µ. The spine thus ends with an
explosion producing an infinite number of branches, and this is the
only node with an infinite degree. This is the construction by Jonsson
and Stefánsson [67].

Example 5.1. In the extreme case µ = 0, or equivalently ξ = 0 a.s., i.e.,

π0 = 1 and πk = 0 for k > 1, (5.2) shows that ξ̂ = ∞ a.s. Hence, every
normal node has no child and is thus a leaf, while every special node has an
infinite number of children, all normal. Consequently, the root is the only
special node, the spine consists of the root only (i.e., its length L = 1), and

the tree T̂ consists of the root with an infinite number of leaves attached to
it, i.e., T̂ is an infinite star. (This is also given directly by the alternative
construction in (T2) above.) In contrast, T consists of the root only, so

|T | = 1. In this case there is no randomness in T or T̂ .

Remark 5.2. In case (T1), if we remove the spine, we obtain a random
forest that can be regarded as coming from a Galton–Watson process with
immigration, where the immigration is described by an i.i.d. sequence of

random variables with the distribution of ξ̂ − 1, see Lyons, Pemantle and
Peres [84]. (In the Poisson case, Grimmett [47] gave a slightly different

description of T̂ using a Galton–Watson process with immigration.)
In case (T2), we can do the same, but now the immigration is different:

at a random (geometric) time, there is an infinite immigration, and after
that there is no more immigration at all.

Remark 5.3. Some related modifications of Galton–Watson trees having a
finite spine have been considered previously. Sagitov and Serra [102] con-
struct (as a limit for a certain two-type branching process) a random tree
similar to the one in (T2) above (with a subcritical ξ), with a finite spine
having a length with the geometric distribution (5.3); the difference is that
at the top of the spine, only a finite number of Galton–Watson trees T are
attached. (This number may be a copy of ξ∗ − 1 as at the other points of
the spine, or it may have a different distribution, see [102].) Thus there is
no explosion, and the tree is finite. Another modified Galton–Watson tree is
used by Addario-Berry, Devroye and Janson [1]; the proofs use a truncated
version of (T1) above (with a critical ξ), where the spine has a fixed length
k; at the top of the spine the special node becomes normal and reproduces
normally with ξ children. Geiger [44] studied T conditioned on its height
being at least n, see Section 22, and gave a construction of it using a spine
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of length n, but with more complicated rules for the branches. See also the

modified trees T̂1n, T̂2n, T̂3n in Section 20.
The invariant random sin-tree constructed by Aldous [2] in a more general

situation, is for a critical Galton–Watson process another related tree; it has

an infinite spine as T̂ , but differs from T̂ in that the root has ξ+ 1 children

(and thus ξ normal children) instead of ξ̂. In this case, it may be better
to reverse the orientation of the spine and consider the spine as an infinite
path · · · v−2v−1v0 starting at −∞ (there is thus no root); we attach further
branches (copies of T ) as above, with all vi, i < 0, special (the number of

children is a copy of ξ̂), but the top node v0 normal (the number of children
is a copy of ξ, and all are normal).

Kurtz, Lyons, Pemantle and Peres [78] and Chassaing and Durhuus [23]
have constructed related trees with infinite spines using multi-type Galton–
Watson processs.

Remark 5.4. If ξ has the probability generating function ϕ(x) := Exξ =∑∞
k=0 πkx

k, then ξ̂ has by (5.2) the probability generating function

Exξ̂ =
∞∑
k=0

kπkx
k = xϕ′(x), (5.4)

at least for 0 6 x < 1. (Also for µ < 1 when ξ̂ may take the value ∞.)

Remark 5.5. In case (T1), the random variable ξ̂ is a.s. finite and has mean

E ξ̂ =

∞∑
k=0

k P(ξ̂ = k) =

∞∑
k=0

k2πk = E ξ2 = σ2 + 1, (5.5)

where σ2 := Var ξ 6 ∞. In case (T2), we have P(ξ̂ = ∞) > 0 and thus

E ξ̂ = ∞. This suggests that in results that are known in the critical case
(T1), and where σ2 appears as a parameter (see e.g. Section 21), the correct

generalization of σ2 to the subcritical case (T2) is not Var ξ but E ξ̂−1 =∞.
(See Remark 5.6 below for a simple example.) We thus define, for any
distribution (πk)

∞
k=0 with expectation µ 6 1,

σ̂2 := E ξ̂ − 1 =

{
σ2, µ = 1,

∞, µ < 1.
(5.6)

Remark 5.6. Let lk(T ) denote the number of nodes with distance k to
the root in a rooted tree T . (This is thus the size of the k:th generation.)
Trivially, l0(T ) = 1, while l1(T ) = d+

T (o), the root degree.

It follows by the construction of T̂ and induction that in case (T1), using
(5.5),

E lk(T̂ ) = 1 + k(E ξ̂ − 1) = kσ2 + 1, k > 0. (5.7)

In case (T2), we have if µ > 0 and k > 1 a positive probability that L = k

and then lk(T̂ ) = ∞. Thus E lk(T̂ ) = ∞. Consequently, using (5.6), if
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0 < µ 6 1, then

E lk(T̂ ) = kσ̂2 + 1, k > 1. (5.8)

However, this fails if µ = 0; in that case, l1(T̂ ) =∞ but lk(T̂ ) = 0 for k > 2,
see Example 5.1.

Remark 5.7. As said above, in the case µ = 1, the tree T̂ is the size-
biased Galton–Watson tree, see [74], [6] and [84]. For comparison, we give
the definition of the latter, for an arbitrary distribution (πk)k>0 with finite
mean µ > 0: Let, as above, ξ have the distribution (πk), see (5.1), and let
ξ∗ have the size-biased distribution defined by

P(ξ∗ = k) =
kπk
µ
, k = 0, 1, 2, . . . (5.9)

(Note that this is a probability distribution on N1.) Construct T ∗ as T̂
above, with normal and special nodes, with the only difference that the
number of children of a special node has the distribution of ξ∗ in (5.9).

In the critical case µ = 1, we have ξ∗ = ξ̂ and thus T ∗ = T̂ , but in

the subcritical case µ < 1, T ∗ and T̂ are clearly different. (Note that T ∗
always is locally finite, but T̂ is not when µ < 1.) When µ > 1, T̂ is not
even defined, but T ∗ is. (As remarked by Aldous and Pitman [6], in the
supercritical case T ∗ has a.s. an uncountable number of infinite paths from
the root, in contrast to the case µ 6 1 when the spine a.s. is the only one.)
T ∗ can also be constructed by the alternative construction in (T1) above

starting with an infinite spine, again with the difference that ξ̂−1 is replaced
by ξ∗−1. T ∗ can also be seen as a Galton–Watson process with immigration
in the same way as in Remark 5.2.

By (5.9), the probability that a given special node in T ∗ has k > 1
children, with a given one of them special, is

1

k
P(ξ∗ = k) =

kπk
kµ

=
πk
µ
. (5.10)

Let T be a fixed tree of height `, and let u be a node in the `:th (and

last) generation in T . Let T ∗(`) denote T ∗ truncated at height `. It follows

from (5.10) and independence that the probability that T ∗(`) = T and that
u is special (i.e., u is the unique element of the spine at distance ` from the

root) equals µ−` P(T (`) = T ). Hence, summing over the l`(T ) possible u,

P(T ∗(`) = T ) = µ−`l`(T )P(T (`) = T ), (5.11)

which explains the name size-biased Galton–Watson tree. (As an alternative,
one can thus define T ∗ directly by (5.11), noting that this gives consistent
distributions for m = 1, 2, . . . , see Kesten [74].) See further Section 22.2.
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6. The Ulam–Harris tree and convergence

It is convenient, especially when discussing convergence, to regard our
trees as subtrees of the infinite Ulam–Harris tree defined as follows. (See
e.g. Otter [93], Harris [51, §VI.2], Neveu [91] and Kesten [74].)

Definition 6.1. The Ulam–Harris tree U∞ is the infinite rooted tree with
node set V∞ :=

⋃∞
k=0 Nk1, the set of all finite strings i1 · · · ik of positive

integers, including the empty string ∅ which we take as the root o, and with
an edge joining i1 · · · ik and i1 · · · ik+1 for any k > 0 and i1, . . . , ik+1 ∈ N1.

Thus every node v = i1 · · · ik has outdegree d+(v) = ∞; the children of
v are the strings v1, v2, v3, . . . , and we let them have this order so U∞
becomes an infinite ordered rooted tree. The parent of i1 · · · ik (k > 0) is
i1 · · · ik−1.

The family T of ordered rooted trees can be identified with the set of all
rooted subtrees T of U∞ that have the property

i1 · · · iki ∈ V (T ) =⇒ i1 · · · ikj ∈ V (T ) for all j 6 i. (6.1)

Equivalently, by identifying T and its node set V (T ), we can regard T as
the family of all subsets V of V∞ that satisfy

∅ ∈ V, (6.2)

i1 · · · ik+1 ∈ V =⇒ i1 · · · ik ∈ V, (6.3)

i1 · · · iki ∈ V =⇒ i1 · · · ikj ∈ V for all j 6 i. (6.4)

We let Tf := {T ∈ T : |T | < ∞} be the set of all finite ordered rooted
trees and Tn := {T ∈ T : |T | = n} the set of all ordered rooted trees of size
n.

If T ∈ T, we let as above d+(v) = d+
T (v) denote the outdegree of v for

every v ∈ V (T ), For convenience, we also define d+(v) = 0 for v /∈ V (T );
thus d+(v) is defined for every v ∈ V∞, and the tree T ∈ T is uniquely
determined by the (out)degree sequence (d+

T (v))v∈V∞ . It is easily seen that

this gives a bijection between T and the set of sequences (dv) ∈ NV∞0 with
the property

di1···iki = 0 when i > di1···ik . (6.5)

The family Tlf of locally finite trees corresponds to the subset of all such
sequences with all dv < ∞, and the family Tf of finite trees correspond to
the subset of all such sequences (dv) with all dv <∞ and only finitely many
dv 6= 0.

In this way we have Tf ⊂ Tlf ⊂ T ⊂ NV∞0 ; note that Tlf = T ∩ NV∞0 , so

Tf ⊂ Tlf ⊂ NV∞0 .

We give N0 the usual compact topology as the one-point compactification
of the discrete space N0. Thus N0 is a compact metric space. (One metric,
among many equivalent ones, is given by the homomorphism n 7→ 1/(n+ 1)

onto {1/n}∞n=1 ∪ {0} ⊂ R.) We give NV∞0 the product topology and its
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subspaces Tf , Tlf and T the induced topologies. Thus NV∞0 is a compact
metric space, and its subspaces Tf , Tlf and T are metric spaces. (The precise
choice of metric on these spaces is irrelevant; we will not use any explicit
metric except briefly in Section 20.) Moreover, the condition (6.5) defines

T as a closed subset of NV∞0 ; thus T is a compact metric space. (Tf and Tlf

are not compact. In fact, it is easily seen that they are dense proper subsets
of T. Tf is a countable discrete space.)

In other words, if Tn and T are trees in T, then Tn → T if and only if the
outdegrees converge pointwise:

d+
Tn

(v)→ d+
T (v) for each v ∈ V∞. (6.6)

It is easily seen that it suffices to consider v ∈ V (T ), i.e., (6.6) is equivalent
to

d+
Tn

(v)→ d+
T (v) for each v ∈ V (T ), (6.7)

since (6.7) implies that if v /∈ V (T ), then v /∈ V (Tn) for sufficiently large n,
and thus d+

Tn
(v) = 0. (Consider the last node w in V (T ) on the path from

the root to v and use d+
Tn

(w)→ d+
T (w).)

Alternatively, we may as above consider the node set V (T ) as a subset of
V∞ and regard T as the family of all subsets of V∞ that satisfy (6.2)–(6.4).
We identify the family of all subsets of V∞ with {0, 1}V∞ , and give this
family the product topology, making it into a compact metric space. (Thus,
convergence means convergence of the indicator 1{v ∈ ·} for each v ∈ V∞.)
This induces a topology on T, where Tn → T means that, for each v ∈ V∞,
if v ∈ V (T ), then v ∈ V (Tn) for all large n, and, conversely, if v /∈ V (T ),
then v /∈ V (Tn) for all large n.

If v = i1 . . . ik with k > 0, then v ∈ V (T ) if and only of ik 6 d
+
T (i1 . . . ik−1).

It follows immediately that V (Tn)→ V (T ) in the sense just described, if and
only if (6.6) holds. The two definitions of Tn → T above are thus equivalent
(for T, and thus also for its subsets Tf and Tlf).

Furthermore, we see, e.g. from (6.6), that the convergence of trees can be
described recursively: Let T(j) denote the j:th subtree of T , i.e., the subtree

rooted at the j:th child of T , for j = 1, . . . , d+
T (o). (We consider only finite

j, even when d+
T (o) =∞.) Then, Tn → T if and only if

(i) the root degrees converge: d+
Tn

(o)→ d+
T (o), and further,

(ii) for each j = 1, . . . , d+
T (o), Tn,(j) → T(j).

(Note that Tn,(j) is defined for large n, at least, by (i).)
It is important to realize that the notion of convergence used here is a local

(pointwise) one, so we consider only a single v at a time, or, equivalently, a
finite set of v; there is no uniformity in v required.

If T is a locally finite tree, T ∈ Tlf , then d+
T (v) <∞ for each v, and thus

(6.6) means that for each v, d+
Tn

(v) = d+(v) for all sufficiently large n.

Let T (m) denote the tree T truncated at height m, i.e., the subtree of T
consisting of all nodes in generations 0, . . . ,m. If T is locally finite, then
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each T (m) is a finite tree, and it is easily seen from (6.7) that convergence
to T can be characterised as follows:

Lemma 6.2. If T is locally finite, then, for any trees Tn ∈ T,

Tn → T ⇐⇒ T (m)
n → T (m) for each m

⇐⇒ T (m)
n = T (m) for each m and all large n.

(The last condition means for n larger than some n(m) depending on m.) �

This notion of convergence for locally finite trees is widely used; see e.g.
Otter [93] and Aldous and Pitman [6].

In general, if T is not locally finite, this characterization fails. (For ex-
ample, if Sn, 1 6 n 6 ∞, is a star where the root has outdegree n and

its children all have outdegree 0, then Sn → S∞, but S
(m)
n 6= S

(m)
∞ for

all n and m > 1.) Instead, we have to localise also horizontally: Let

V [m] :=
⋃m
k=0{1, . . . ,m}k, the subset of V∞ consisting of strings of length

at most m with all elements at most m. For a tree T ∈ T, let T [m] be the
subtree with node set V (T ) ∩ V [m], i.e., the tree T truncated at height m
and pruned so that all outdegrees are at most m. It is then easy to see from
(6.6) that the following analogue and generalization of Lemma 6.2 holds:

Lemma 6.3. For any trees T, Tn ∈ T,

Tn → T ⇐⇒ T [m]
n → T [m] for each m

⇐⇒ T [m]
n = T [m] for each m and all large n.

(The last condition means for n larger than some n(m) depending on m.) �

Our notion of convergence for general trees T ∈ T was introduced in this
form by Jonsson and Stefánsson [67] (where the truncation T [m] is called a
left ball).

Remark 6.4. It is straightforward to obtain versions of Lemmas 6.2–6.3
for random trees T , Tn and convergence in probability or distribution. For
example: For any random trees T, Tn ∈ T,

Tn
d−→ T ⇐⇒ T [m]

n
d−→ T [m] for each m. (6.8)

If T ∈ Tlf , a.s., then we also have

Tn
d−→ T ⇐⇒ T (m)

n
d−→ T (m) for each m, (6.9)

see e.g. Aldous and Pitman [6]. The proofs are standard using the methods
in e.g. Billingsley [15].

7. Main result for simply generated random trees

Our main result for trees is the following, proved in Section 16. The
case when ν > 1 and σ2 < ∞ was shown implicitly by Kennedy [73] (who
considered Galton–Watson processes and not trees), and explicitly by Aldous
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and Pitman [6], see also Grimmett [47], Kolchin [76], Kesten [74] and Aldous
[4]. Special cases with 0 < ν < 1 and ν = 0 are given by Jonsson and
Stefánsson [67] and Janson, Jonsson and Stefánsson [64], respectively.

Theorem 7.1. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 2.

(i) If ν > 1, let τ be the unique number in [0, ρ] such that Ψ(τ) = 1.
(ii) If ν < 1, let τ := ρ.

In both cases, 0 6 τ <∞ and 0 < Φ(τ) <∞. Let

πk :=
τkwk
Φ(τ)

, k > 0; (7.1)

then (πk)k>0 is a probability distribution, with expectation

µ = Ψ(τ) = min(ν, 1) 6 1 (7.2)

and variance σ2 = τΨ′(τ) 6 ∞. Let T̂ be the infinite modified Galton–
Watson tree constructed in Section 5 for the distribution (πk)k>0. Then

Tn
d−→ T̂ as n→∞, in the topology defined in Section 6.

Furthermore, in case (i), µ = 1 (the critical case) and T̂ is locally finite

with an infinite spine; in case (ii) µ = ν < 1 (the subcritical case) and T̂
has a finite spine ending with an explosion.

Remark 7.2. Note that we can combine the two cases ν > 1 and ν < 1
and define, using Lemma 3.1 and with Ψ(ρ) = ν,

τ := max
{
t 6 ρ : Ψ(t) 6 1

}
. (7.3)

Remark 7.3. In case (ii), there is no τ > 0 with Ψ(τ) = 1, see Lemma 3.1.
Hence the definition of τ can also be expressed as follows, recalling Ψ(t) :=
tΦ′(t)/Φ(t) from (3.6): τ is the unique number in [0, ρ] such that

τΦ′(τ) = Φ(τ), (7.4)

if there exists any such τ ; otherwise τ := ρ. (Equation (7.4) is used in many
papers to define τ , in the case ν > 1.)

Remark 7.4. If 0 < t < ρ, then

d

dt

(
Φ(t)

t

)
=
tΦ′(t)− Φ(t)

t2
=

Φ(t)

t2
(
Ψ(t)− 1

)
.

Since Ψ(t) is increasing by Lemma 3.1, it follows that Φ(t)/t decreases on
[0, τ ] and increases on [τ, ρ], so τ can, alternatively, be characterised as
the (unique) minimum point in [0, ρ] of the convex function Φ(t)/t, cf. e.g.
Minami [89] and Jonsson and Stefánsson [67]. Consequently,

Φ(τ)

τ
= inf

06t6ρ

Φ(t)

t
= inf

06t<∞

Φ(t)

t
. (7.5)

(This holds also when ρ = 0, trivially, since then Φ(t)/t = ∞ for every
t > 0.)
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Remark 7.5. By Remark 7.4, τ is, equivalently, the (unique) maximum
point in [0, ρ] of t/Φ(t), which by (3.13) is the inverse function of the gener-
ating function Z(z). It follows easily that

τ = Z(ρZ), (7.6)

where ρZ = τ/Φ(τ) is the radius of convergence of Z; see also Corol-
lary 18.17. Note that 0 6 ρZ <∞ and that ρZ = 0 ⇐⇒ τ = 0 ⇐⇒ ρ = 0.
Otter [93] uses (7.6) as the definition of τ (by him denoted a); see also Mi-
nami [89].

Remark 7.6. When ν = 0 (which is equivalent to ρ = 0), the limit T̂ is the

non-random infinite star in Example 5.1, so Theorem 7.1 gives Tn
p−→ T̂ .

Remark 7.7. We consider briefly the cases excluded from Theorem 7.1.
The case when w0 = 0 is completely trivial, since then w(T ) = 0 for every
finite tree, so Tn is undefined. The same holds (for n > 2) when w0 > 0 but
wk = 0 for all k > 1, i.e., when ω = 0.

The case when w0 > 0 and w1 > 0 but wk = 0 for k > 2, so ω = 1, is
also trivial. Then w(T ) = 0 unless T is a rooted path Pn for some n. Thus
Zn = w(Pn) = w0w

n−1
1 , and (a.s.) Tn = Pn, which converges as n→∞ to

the infinite path P∞. We have ν = 1 = ω, but, in contrast to Theorem 7.1,
τ =∞, with τ defined e.g. by (7.3). Further, interpreting (7.1) as a limit, we
have πk = δk1, so (πk) is the distribution concentrated at 1; thus (5.2) yields

ξ̂ = 1 a.s., so T̂ consists of an infinite spine only, i.e. T̂ = P∞. Consequently,

Tn
d−→ T̂ holds in this case too.

Remark 7.8. If we replace (wk) by the equivalent weight sequence (w̃k)
given by (4.1), then (7.3) and (4.5) show that τ is replaced by

τ̃ := max{t 6 ρ̃ : Ψ̃(t) 6 1} = max{t 6 ρ/b : Ψ(bt) 6 1} = τ/b. (7.7)

The corresponding probability weight sequence given by (7.1) thus is, using
(4.4),

π̃k :=
τ̃kw̃k

Φ̃(τ̃)
=

(τ/b)kabkwk
aΦ(τ)

=
τkwk
Φ(τ)

= πk, (7.8)

so the distribution (πk) is invariant and depends only on the equivalence
class of (wk).

Remark 7.9. If ρ > 0, then τ > 0 and the distribution (πk) is a probability
weight sequence equivalent to (wk). There are other equivalent probability
weight sequences, see Lemma 4.1, but Theorem 7.1 and the theorems below
show that (πk) has a special role and therefore is a canonical choice of a
weight sequence in its equivalence class. Remark 4.3 shows that (πk) is the
unique probability distribution with mean 1 that is equivalent to (wk), if
any such distribution exists. If no such distribution exists but ρ > 0, then
(πk) is the probability distribution equivalent to (wk) that has the maximal
mean.
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A heuristic motivation for this choice of probability weight sequence is
that when we construct Tn as a Galton–Watson tree T conditioned on
|T | = n, it is better to condition on an event of not too small probabil-

ity; in the critical case this probability decreases as n−3/2 provided σ2 <∞,
see [93] (ν > 1) and [76, Theorem 2.3.1] (ν > 1, σ2 < ∞), and always
subexponentially, but in the subcritical and supercritical cases it typically
decreases exponentially fast, see Theorems 18.7 and 18.11.

As a special case of Theorem 7.1 we have the following result for the root
degree d+

Tn(o), proved in Section 15.

Theorem 7.10. Let (wk)k>0 and (πk)k>0 be as in Theorem 7.1. Then, as
n→∞,

P(d+
Tn(o) = d)→ dπd, d > 0. (7.9)

Consequently, regarding d+
Tn(o) as a random number in N0,

d+
Tn(o)

d−→ ξ̂, (7.10)

where ξ̂ is a random variable in N0 with the distribution given in (5.2).

Note that the sum
∑∞

0 dπd = µ of the limiting probabilities in (7.9) may
be less than 1; in that case we do not have convergence to a proper finite
random variable, which is why we regard d+

Tn(o) as a random number in N0.
Theorem 7.10 describes the degree of the root. If we instead take a ran-

dom node, we obtain a different limit distribution, viz. (πk). We state two
versions of this; the two results are of the types called annealed and quenched
in statistical physics. In the first (annealed) version, we take a random tree
Tn and, simultaneously, a random node v in it. In the second (quenched)
version we fix a random tree Tn and study the distribution of outdegrees in
it. (This yields a random probability distribution. Equivalently, we study
the outdegree of a random node conditioned on the tree Tn.)

Theorem 7.11. Let (wk)k>0 and (πk)k>0 be as in Theorem 7.1.

(i) Let v be a uniformly random node in Tn. Then, as n→∞,

P(d+
Tn(v) = d)→ πd, d > 0. (7.11)

(ii) Let Nd be the number of nodes in Tn of outdegree d. Then

Nd

n

p−→ πd, d > 0. (7.12)

The proof is given in Section 17. (When ν > 1, this was proved by Otter
[93], see also Minami [89].) See Section 21.2 for further results.

Instead of considering just the outdegree of a random node, i.e., its num-
ber of children, we may obtain a stronger result by considering the subtree
containing its children, grandchildren and so on. (This random subtree is
called a fringe subtree by Aldous [2].) We have an analogous result, also
proved in Section 17. Cf. [2], which in particular contains (i) below in the
case ν > 1 and σ2 <∞; this was extended by Bennies and Kersting [11] to
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the general case ν > 1. (Note that the limit distribution, i.e. the distribution
of T , is a fringe distribution in the sense of [2] only if µ = 1, i.e., if and only
if ν > 1.)

Theorem 7.12. Let (wk)k>0 and (πk)k>0 be as in Theorem 7.1, and let T
be the Galton–Watson tree with offspring distribution (πk). Further, if v is
a node in Tn, let Tn;v be the subtree rooted at v.

(i) Let v be a uniformly random node in Tn. Then, Tn;v
d−→ T , i.e., for

any fixed tree T ,

P(Tn;v = T )→ P(T = T ). (7.13)

(ii) Let T be an ordered rooted tree and let NT := |{v : Tn;v = T}| be the
number of nodes in Tn such that the subtree rooted there equals T .
Then

NT

n

p−→ P(T = T ). (7.14)

Remark 7.13. Aldous [2] considers also the tree obtained by a random re-
rooting of Tn, i.e., the tree obtained by declaring a uniformly random node
v to be the root. Note that this re-rooted tree contains Tn;v as a subtree,
and that, provided v 6= o, there is exactly one branch from the new root
not in this subtree, viz. the branch starting with the original parent of v.
Aldous [2] shows, at least when ν > 1 and σ2 < ∞, convergence of this
randomly re-rooted tree to the random sin-tree in Remark 5.3. The limit of
the re-rooted tree is thus very similar to the limit of Tn in Theorem 7.1, but
not identical to it.

8. Three different types of weights

Although Theorem 7.1 has only two cases, it makes sense to treat the case
ρ = 0 separately. We thus have the following three (mutually exclusive) cases
for the weight sequence (wk):

I. ν > 1. Then 0 < τ <∞ and τ 6 ρ 6∞. The weight sequence (wk)
is equivalent to (πk), which is a probability distribution with mean
µ = Ψ(τ) = 1 and probability generating function

∑∞
k=0 πkz

k with
radius of convergence ρ/τ > 1.

II. 0 < ν < 1. Then 0 < τ = ρ < ∞. The weight sequence (wk)
is equivalent to (πk), which is a probability distribution with mean
µ = Ψ(τ) = ν < 1 and probability generating function

∑∞
k=0 πkz

k

with radius of convergence ρ/τ = 1.
III. ν = 0. Then τ = ρ = 0, and (wk) is not equivalent to any probability

distribution.

If we consider the modified Galton–Watson tree in Theorem 7.1, then III
is the case discussed in Example 5.1; excluding this case, I and II are the
same as (T1) and (T2) in Section 5.

We can reformulate the partition into three cases in more probabilistic
terms. If ξ is a non-negative integer valued random variable with distribution
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given by pk = P(ξ = k), k > 0, then the exponential moments of ξ are
ERξ =

∑∞
k=0 pkR

k for R > 1. (Equivalently, E erξ for r := logR > 0.) We
say that ξ, or the distribution (pk), has some finite exponential moment if
ERξ < ∞ for some R > 1; this is equivalent to the probability generating
function

∑∞
k=0 pkz

k having radius of convergence strictly larger than 1.
Consider again a probability distribution (w̃k) equivalent to (wk), with

w̃k = tkwk/Φ(t) for some t 6 ρ. By Section 4, the radius of convergence of

the probability generating function Φ̃(z) of this distribution is ρ/t, cf. (4.4).
Hence, the distribution (w̃k) has some finite exponential moment if and only
if 0 < t < ρ. The cases I–III can thus be described as follows:

I. ν > 1. Then (wk) is equivalent to a probability distribution with
mean µ = 1 (with or without some exponential moment). Moreover,
(πk) in (7.1) is the unique such distribution.

II. 0 < ν < 1. Then (wk) is equivalent to a probability distribution
with mean µ < 1 and no finite exponential moment. Moreover, (πk)
in (7.1) is the unique such distribution.

III. ν = 0. Then (wk) is not equivalent to any probability distribution.

Case I may be further subdivided. From an analytic point of view, it is
natural to split I into two subcases:

Ia. ν > 1; equivalently, 0 < τ < ρ 6 ∞. The weight sequence (wk)
is equivalent to (πk), which is a probability distribution with mean
µ = 1 and probability generating function

∑∞
k=0 πkz

k with radius
of convergence ρ/τ > 1. In other words, (wk) is equivalent to a
probability distribution with mean µ = 1 and some finite exponential
moment. (Then (πk) is the unique such distribution.) By (7.6), the
condition can also be written analytically as Z(ρZ) < ρ, a version
used e.g. in [35]. (This case is called generic in [35] and [67].)

Ib. ν = 1; then 0 < τ = ρ <∞. The weight sequence (wk) is equivalent
to (πk), which is a probability distribution with mean 1 and prob-
ability generating function

∑∞
k=0 πkz

k with radius of convergence
ρ/τ = 1. In other words, (wk) is equivalent to a probability distri-
bution with mean µ = 1 and no finite exponential moment. (Then
(πk) is the unique such distribution.)

Case Ia is convenient when using analytic methods, since it says that the
point τ is strictly inside the domain of convergence of Φ, which is convenient
for methods involving contour integrations in the complex plane. (See e.g.
Drmota [33] for several such results of different types.) For that reason,
many papers using such methods consider only case Ia. However, it has
repeatedly turned out, for many different problems, that results proved by
such methods often hold, by other proofs, assuming only that we are in
case I with finite variance of (πk). (In fact, as shown in [59], it is at least
sometimes possible to use complex analytic methods also in the case when
τ = ρ and (πk) has a finite second moment.) Consequently, it is often more
important to partition case I into the following two cases:
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Iα. ν > 1 and (πk) has variance σ2 < ∞. In other words, (wk) is
equivalent to a probability distribution (πk) with mean µ = 1 and
finite second moment σ2.

Iβ. ν = 1 and (πk) has variance σ2 = ∞. In other words, (wk) is
equivalent to a probability distribution with mean µ = 1 and infinite
variance.

Note that Ia is a subcase of Iα, since a finite exponential moment implies
that the second moment is finite.

When ν > 1, the quantity σ2 is another natural parameter of the weight
sequence (wk), which frequently occurs in asymptotic results, see e.g. Sec-
tion 21. (When ν < 1, the natural analogue is ∞, see Remark 5.5.) By
Theorem 7.1 (or (4.10)), σ2 = τΨ′(τ), so (assuming ν > 1), we have case
Iα when Ψ′(τ) < ∞ and Iβ when Ψ′(τ) = ∞. Moreover, when ν > 1, then
(πk) has mean µ = 1, and it follows from (4.8) that the variance σ2 of (πk)
also is given by the formula [4]

σ2 = Φ′′τ (1) + µ− µ2 = Φ′′τ (1) =
τ2Φ′′(τ)

Φ(τ)
. (8.1)

Hence Iα is the case ν > 1 and Φ′′(τ) < ∞; equivalently, either ν > 1 or
ν = 1 and Φ′′(ρ) <∞.

Remark 8.1. We have seen that except in case III, we may without loss of
generality assume that the weight (wk) is a probability weight sequence. If
this distribution is critical, i.e. has mean 1, we are in case I with πk = wk,
so we do not have to change the weights.

If the distribution (wk) is supercritical, then ν > 1 and we are in case Ia;
we can change to an equivalent critical probability weight. Hence we never
have to consider supercritical weights. (Recall that by Remark 4.3, ν is the
supremum of the means of the equivalent probability weight sequences.)

If the distribution (wk) is subcritical, we can only say that we are in case
I or II. We can often change to an equivalent critical probability weight, but
not always.

9. The maximum degree

Theorem 7.1 studies convergence of the random tree Tn in the topology
defined in Section 6, which really means local convergence close to the root;
we have seen that the limit is of somewhat different types depending on the
weight sequence, with condensation in the form of a node of infinite degree

in the limit tree T̂ in cases II and III but not in case I.
An alternative way to study the condensation (or absence of it) is to study

the largest degree in the tree. This is discussed in detail in Section 19 (in
the more general setting of random allocations). We give here a short sum-
mary of the main results, showing a similar picture: the maximum degree is
typically rather small (logarithmic) in case I but larger (of order n) in cases
II and III, which can be interpreted as a condensation; however, there are
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exceptions in the latter cases, and we do not have general theorems covering
all possible weight sequences.

The relation between the two ways of looking at condensation is discussed
in Section 20.

We denote, as in Section 19, the maximum outdegree in the tree Tn by
Y(1); we use further the notation in Theorem 7.1 and Section 8.

Case Ia: ν > 1. In this case 0 < τ < ρ 6 ∞, and we have a logarithmic
bound due to Meir and Moon [86] (Theorem 19.3):

Y(1) 6
1

log(ρ/τ)
log n+ op(log n); (9.1)

if further w
1/k
k → 1/ρ as k →∞, then

Y(1)

log n

p−→ 1

log(ρ/τ)
. (9.2)

In particular, if ρ =∞, then Y(1) = op(log n).
Moreover, if wk+1/wk → a > 0 as k →∞, then Y(1) = k(n) + Op(1)

for some deterministic sequence k(n), so Y(1) is essentially concentrated in
an interval of length O(1) (Theorem 19.16). The distribution of Y(1) is
asymptotically given by a discretised Gumbel distribution (Theorem 19.19),
but different subsequences may have different limits and no limit distribution
exists.

Similarly, if wk+1/wk → 0, then Y(1) ∈ {k(n), k(n) + 1} so Y(1) is concen-
trated on at most two values, and often (but not always) on a single value
(Theorems 19.16 and 19.23).

Case Iα: ν > 1 and σ2 <∞. The maximum outdegree Y(1) is asymptotically
distributed as the maximum ξ(1) of n i.i.d. copies of ξ; this holds in the strong
sense that the total variation distance

dTV

(
Y(1), ξ(1)

)
→ 0 (9.3)

(Theorem 19.7 and Corollary 19.11). Since E ξ2 <∞, this implies in partic-
ular

Y(1) = op(n1/2). (9.4)

Case Iβ: ν > 1 and σ2 =∞. We have

Y(1) = op(n) (9.5)

(Theorem 19.2), and this is (more or less) best possible (Example 19.27).
However, (9.3) does not always hold in this case (Example 19.27).
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Case II: 0 < ν < 1. In this case, if further (wk) satisfies an asymptotic
power-law wk ∼ ck−β as k →∞, then Jonsson and Stefánsson [67] showed
that

Y(1) = (1− ν)n+ op(n), (9.6)

while the second largest node degree Y(2) = op(n) (Theorem 19.34 and Re-
mark 19.35). However, if the weight sequence is more irregular, this is
no longer always true; it is possible (at least along a subsequence) that
Y(1) = op(n), which can be seen as incomplete condensation; it is also pos-
sible (at least along a subsequence) that Y(2) too is of order n, meaning
condensation to two or more giant nodes (Example 19.37).

Case III: ν = ρ = 0. This is similar to case II. In some regular cases we have
(9.6), which now says Y(1) = n + op(n), and then necessarily Y(2) = op(n)
(Example 19.36), but there are exceptions in other cases with an irregular
weight sequence (Examples 19.38 and 19.39).

10. Examples of simply generated random trees

One of the reasons for the interest in simply generated trees is that many
kinds of random trees occuring in various applications can be seen as simply
generated random trees and conditioned Galton–Watson trees. We give
some important examples here, see further Aldous [3, 4], Devroye [32] and
Drmota [33].

We see from Theorem 7.1 and Section 8 that any simply generated random
tree defined by a weight sequence with ρ > 0 can be defined by an equivalent
probability weight sequence, and then the tree is the corresponding condi-
tioned Galton–Watson tree. Moreover, the probability weight sequence (πk)
defined in (7.1) is the canonical choice of offspring distribution. Recall that
(πk) is characterised by having mean 1, whenever this is possible (i.e., in
case I), i.e., we prefer to have critical Galton–Watson trees.

Example 10.1 (ordered trees). The simplest example is to take wk = 1 for
every k > 0. Thus every tree has weight 1, and Tn is a uniformly random
ordered rooted tree with n nodes. Further, Zn is the number of such trees;
thus Zn is the Catalan number Cn−1, see Remark 2.2 and (2.1). (For this
reason, these random trees are sometimes called Catalan trees.)

We have

Φ(t) =

∞∑
k=0

tk =
1

1− t
(10.1)

and

Ψ(t) =
tΦ′(t)

Φ(t)
=

t

1− t
. (10.2)

Thus ρ = 1 and ν = ∞ (cf. Lemma 3.1(iv)), and Ψ(τ) = 1 yields τ = 1/2.
Hence (7.1) yields the canonical probability weight sequence

πk = 2−k−1, k > 0. (10.3)
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In other words, the uniformly random ordered rooted tree is the conditioned
Galton–Watson tree with geometric offspring distribution ξ ∼ Ge(1/2).
(This is the geometric distribution with mean 1. Any other geometric distri-
bution yields an equivalent weight sequence, and thus the same conditioned
Galton–Watson tree.)

The size-biased random variable ξ̂ in (5.2) has the distribution

P(ξ̂ = k) = kπk = k2−k−1, k > 1; (10.4)

thus ξ̂− 1 has a negative binomial distribution NBin(2, 1/2). It follows that

in the infinite tree T̂ , if v is a node on the spine (for example the root) and
dL(v), dR(v) are the numbers of children of it to the left and right of the
spine, respectively, then

P
(
dL(v) = j and dR(v) = k

)
=

1

j + k + 1
P(ξ̂ = j + k + 1) = 2−j−k−2

= 2−j−1 · 2−k−1, j, k > 0; (10.5)

thus dL(v) and dR(v) are independent and both have the same distribution
Ge(1/2) as ξ.

We have σ2 := Var ξ = τΨ′(τ) = 2, see Theorem 7.1 and (8.1), and

E ξ̂ = σ2 + 1 = 3, see (5.5).

Example 10.2 (unordered trees). We have assumed that our trees are
ordered, but it is possible to consider unordered labelled rooted trees too
by imposing a random order on the set of children of each node. Note
first that for ordered trees, the ordering of the children implicitly yields a
labelling of all nodes as in Section 6. Hence, any ordered tree with n nodes
can be explicitly labeled by 1, . . . , n in exactly n! ways, and a uniformly
random labelled ordered rooted tree is the same as a uniformly random
unlabelled ordered rooted tree with a random labelling. (For unordered
trees, a uniformly random labelled tree is different from a uniformly random
unlabelled tree. We consider only labelled unordered trees here. In fact,
unlabelled unordered trees are not simply generated trees; more formally,
there is no weight sequence such that the corresponding simply generated
random tree, with the orderings of the children of each node ignored, is a
uniformly random unlabelled unordered tree.)

An unordered labelled rooted tree with outdegrees di corresponds to
∏
i di!

different ordered labelled rooted trees. If we take wk = 1/k!, we give each
of these ordered trees weight

∏
i di!

−1, so their total weight is 1. Hence,
the simply generated random tree with the weight sequence (1/k!) yields,
by ignoring the orderings of the children of each node, a uniformly random
unordered labelled rooted tree.

In this sense, a uniformly random unordered labelled rooted tree is equiv-
alent to a simply generated random tree with wk = 1/k!, and with a minor
abuse of notation, we may say that a uniformly random unordered labelled
rooted tree is simply generated (with wk = 1/k!).
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The number of unordered labelled unrooted trees with n nodes is nn−2, see
e.g. [103, Section 5.3], a result given by Cayley [22] and known as Cayley’s
formula. (Although attributed by Cayley to Borchardt [17] and even earlier
found by Sylvester [104], see e.g. [103, p. 66].) Equivalently, the number of
unordered labelled rooted trees with n nodes is nn−1. Hence random such
trees are sometimes called Cayley trees. However, this name is also used for
regular infinite trees.

We have, with wk = 1/k!,

Φ(t) =

∞∑
k=0

tk

k!
= et (10.6)

and

Ψ(t) =
tΦ′(t)

Φ(t)
= t. (10.7)

Thus ν = ∞ and Ψ(τ) = 1 yields τ = 1. Hence (7.1) yields the canonical
probability weight sequence

πk =
e−1

k!
, k > 0. (10.8)

In other words, the uniformly random labelled unordered rooted tree is
(equivalent to) the conditioned Galton–Watson tree with Poisson offspring
distribution ξ ∼ Po(1). (Any other Poisson distribution yields an equivalent
weight sequence, and thus the same conditioned Galton–Watson tree.)

The size-biased random variable ξ̂ in (5.2) has the distribution

P(ξ̂ = k) = kπk =
e−1

(k − 1)!
, k > 1; (10.9)

thus ξ̂− 1 has also the Poisson distribution Po(1), i.e., ξ̂− 1
d
= ξ. (It is only

for a Poisson distribution that ξ̂ − 1
d
= ξ.)

We have σ2 := Var ξ = τΨ′(τ) = 1 and E ξ̂ = σ2 + 1 = 2, cf. (8.1) and
(5.5).

The partition function is given by

Zn(π) = P(|T | = n) =
nn−1e−n

n!
. (10.10)

This is a special case of the Borel distribution in (12.29) below; Borel [18]
proved a result equivalent to (10.10) for a queueing problem, see also Otter
[93], Tanner [107], Dwass [36], Takács [106], Pitman [99], Example 12.6 and
Theorem 15.5 below. Equivalently, using (4.3),

Zn(w) = enZn(π) =
nn−1

n!
. (10.11)

Recall that Zn is defined by the sum (2.5) over unlabelled ordered rooted
trees; if we sum over labelled ordered rooted trees, we obtain n!Zn, which
by the argument above corresponds to weight 1 on each labelled unordered
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rooted tree; i.e., the number of labelled unordered rooted trees is n!Zn(w) =
nn−1. Thus (10.11) is equivalent to Cayley’s formula for the number of
unordered trees given above.

By (10.11), the generating function Z(z) is
∑∞

n=1 n
n−1zn/n!, known as

the the tree function; see (12.22)–(12.25) in Example 12.6.

Example 10.3 (binary trees I). The name binary tree is used in (at least)
two different, but related, meanings. The first version (Drmota [33, Section
1.2.1]), sometimes called full binary tree or strict binary tree, is an ordered
rooted tree where every node has outdegree 0 or 2. We obtain a uniformly
random full binary tree by taking the weight sequence with w0 = w2 = 1,
and wk = 0 for k 6= 0, 2. Note that this weight sequence has span 2; this is
the standard example of a weight sequence with span > 1. As a consequence,
a full binary tree of size n exists only if n is odd. (This is easily seen directly;
see Corollary 15.6 for a general result.)

We have
Φ(t) = 1 + t2 (10.12)

and

Ψ(t) =
tΦ′(t)

Φ(t)
=

2t2

1 + t2
. (10.13)

Thus ρ = ∞, ν = 2 (cf. Lemma 3.1(v)), and Ψ(τ) = 1 yields τ = 1. Hence
(7.1) yields the canonical probability weight sequence

πk = 1
2 , k = 0, 2. (10.14)

In other words, the random full binary tree is the conditioned Galton–
Watson tree with offspring distribution ξ = 2X where X ∼ Be(1/2). (In
the Galton–Watson tree T , thus each node gets either twins or no children,
each outcome with probability 1/2.)

The size-biased random variable ξ̂ has P(ξ̂ = 2) = 1 by (10.14) and (5.2),

so ξ̂ = 2 and ξ̂ − 1 = 1 a.s.

We have σ2 := Var ξ = 1 and E ξ̂ = σ2 + 1 = 2, cf. (8.1) and (5.5).

Example 10.4 (binary trees II). The second version of a binary tree (Dr-
mota [33, Example 1.3]) is a rooted tree where every node has at most one
left child and at most one right child. Thus, each outdegree is 0, 1 or 2; if
there are two children they are ordered, and, moreover, if there is only one
child, it is marked as either left or right. (There is a one-to-one correspon-
dence between binary trees of this type with n nodes and the full binary
trees in Example 10.3 with 2n + 1 nodes, mapping a binary tree T to a
full binary tree T ′, where T ′ is obtained from T by adding 2 − d external
nodes at every node with outdegree d; conversely, we obtain T by deleting
all leaves in T ′ and keeping only the nodes that have outdegree 2 in T ′ (the
internal nodes).)

There are thus two types of nodes with outdegree 1, but only one type
each of nodes with outdegrees 0 or 2. If we ignore the type of child at each
node with only one child, we obtain an ordered tree with all outdegrees 6 2,
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and each such tree with n1 nodes of degree 1 corresponds to 2n1 binary
trees. This number equals the weight given by the weight sequence w0 = 1,
w1 = 2, w2 = 1, and wk = 0 for k > 3, i.e., wk =

(
2
k

)
. Hence, a simply

generated random tree with this weight sequence has the same distribution
as the ordered tree obtained from a uniformly distributed random binary
tree; conversely, we may obtain a uniformly distributed random binary tree
by taking a simply generated random tree with wk =

(
2
k

)
and randomly

labelling each single child as left or right.
In this sense, we may say that a uniformly distributed random binary tree

is (equivalent to) a simply generated random tree with wk =
(

2
k

)
.

The choice wk =
(

2
k

)
yields

Φ(t) = 1 + 2t+ t2 = (1 + t)2 (10.15)

and

Ψ(t) =
tΦ′(t)

Φ(t)
=

2t

1 + t
. (10.16)

Thus ρ = ∞, ν = 2, and Ψ(τ) = 1 yields τ = 1. Hence (7.1) yields the
canonical probability weight sequence

πk =
1

4

(
2

k

)
, k > 0. (10.17)

In other words, a uniformly random binary tree of this type is (equivalent
to) the conditioned Galton–Watson tree with binomial offspring distribution
ξ ∼ Bi(2, 1/2). (Any other distribution Bi(2, p), 0 < p < 1, is equivalent
and yields the same conditioned Galton–Watson tree.)

The size-biased random variable ξ̂ has by (5.2) P(ξ̂ = 1) = P(ξ̂ = 2) = 1
2 ;

thus ξ̂ − 1 ∼ Bi(1, 1/2).

We have σ2 := Var ξ = 1/2 and E ξ̂ = σ2 + 1 = 3/2, cf. (8.1) and (5.5).

Example 10.5 (Motzkin trees). A Motzkin tree is a ordered rooted tree
with each outdegree 6 2. The difference from Example 10.4 is that there
is only one type of a single child. Thus we count such trees and obtain
uniformly random Motzkin trees by taking w0 = w1 = w2 = 1 and wk = 0,
k > 3. (We thus have the same set of trees as in Example 10.4, but different
probability distributions on it.)

We have
Φ(t) = 1 + t+ t2 (10.18)

and

Ψ(t) =
1 + 2t

1 + t+ t2
. (10.19)

Thus ρ = ∞, ν = 2, and Ψ(τ) = 1 yields τ = 1. Hence (7.1) yields the
canonical probability weight sequence

πk = 1
3 , k = 0, 1, 2. (10.20)

In other words, a uniformly random Motzkin tree is the conditioned Galton–
Watson tree with offspring distribution ξ uniform on {0, 1, 2}.
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The size-biased random variable ξ̂ has, by (5.2) and (10.20), the distribu-

tion P(ξ̂ = 1) = 1
3 , P(ξ̂ = 2) = 2

3 ; thus ξ̂ − 1 ∼ Bi(1, 2/3).

We have σ2 := Var ξ = 2/3 and E ξ̂ = σ2 + 1 = 5/3, cf. (8.1) and (5.5).

Example 10.6 (d-ary trees). In a d-ary tree, each node has d positions
where a child may be attached, and there is at most one child per position.
(Trees with children attached at different positions are regarded as different
trees.) This generalises the binary trees in Example 10.4, which is the special
case d = 2.

Since k children may be attached in
(
d
k

)
ways (with a given order), the

argument in Example 10.4 shows that a uniformly random d-ary tree is
equivalent to a simply generated random tree with wk =

(
d
k

)
. We have

Φ(t) = (1 + t)d (10.21)

and

Ψ(t) =
tΦ′(t)

Φ(t)
=

dt

1 + t
. (10.22)

Thus ρ = ∞, ν = ω = d, and Ψ(τ) = 1 yields τ = 1/(d − 1). Hence (7.1)
yields the canonical probability weight sequence

πk =

(
d

k

)
(d− 1)d−kd−d =

(
d

k

)(1

d

)k(d− 1

d

)d−k
, k > 0. (10.23)

In other words, a uniformly random d-ary tree is (equivalent to) the condi-
tioned Galton–Watson tree with binomial offspring distribution ξ ∼ Bi(d, 1/d).
(Any other distribution Bi(d, p), 0 < p < 1, is equivalent and yields the same
conditioned Galton–Watson tree.)

The size-biased random variable ξ̂ has the distribution

P(ξ̂ = k) = kπk =

(
d− 1

k − 1

)(1

d

)k−1(d− 1

d

)d−k
, k > 1; (10.24)

thus ξ̂ − 1 has the Binomial distribution Bi(d− 1, 1/d).

We have σ2 := Var ξ = 1− 1/d and E ξ̂ = σ2 + 1 = 2− 1/d, cf. (8.1) and
(5.5).

Example 10.7. Let β be a real constant and let wk = (k+1)−β. (The case
β = 0 is Example 10.1.) Then ρ = 1.

If −∞ < β 6 1, then Φ(ρ) =∞, so ν =∞ by (3.10) and Lemma 3.1(iv).
If β > 1, then Φ(ρ) = ζ(β) <∞ and

ν = Ψ(1) =

∑
k kwk

Φ(1)
=
ζ(β − 1)− ζ(β)

ζ(β)
, β > 2, (10.25)

while ν = Ψ(1) =∞ if β 6 2. Hence, see also Bialas and Burda [13],

ν = 1 ⇐⇒ ζ(β − 1) = 2ζ(β) ⇐⇒ β = β0 = 2.47875 . . . (10.26)

and ν > 1 ⇐⇒ −∞ < β < β0. (It can be shown that ν is a decreasing
function of β for β > 2.) In the case β = β0, when thus ν = 1, we further
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have σ2 = ∞ by (8.1), since Φ′′(1) = ∞ when β 6 3. This is thus case Iβ,
in the notation of Section 8.

In the case β > β0 we thus have 0 < ν < 1, and Tn converges to a random

tree T̂ with one node of infinite degree, see Theorem 7.1 and Section 5. If

β 6 β0, then ν > 1 and the limit tree T̂ is locally finite. We thus see a
phase transition at β = β0 when we vary β in this example.

Note, however, that there is nothing special with the rate of decrease
k−β0 ; the value of β0 depends on the exact form of our choice of the weights
wk in this example, and reflects the values for small k rather than the as-
ymptotic behaviour. For example, as remarked by Bialas and Burda [13],
just changing w0 would change β0 to any desired value in (2,∞). With a
different w0, Φ(1) = ζ(β)−1 +w0, and a modification of (10.25) shows that
the critical value β0 yielding ν = 1 is given by, see [13],

2ζ(β0)− ζ(β0 − 1) = 1− w0. (10.27)

In particular, β0 > 3 for w0 < 1 + ζ(2) − 2ζ(3) = 0.24082 . . . ; in this case,
for the critical β = β0, we then have ν = 1 and σ2 <∞, see (8.1).

See [13] for some further analytic properties. For example, if β0 < 3 (for

example when w0 = 1), then, as β ↗ β0, we have 1− τ ∼ c(β0 − β)1/(β0−2),
where c > 0 and the exponent can take any value > 1.

Example 10.8. Take wk = k!. The generating function Φ(t) =
∑∞

k=0 k! tk

has radius of convergence ρ = 0 so we are in case III, and there exists no
equivalent conditioned Galton–Watson tree.

Theorem 7.1 shows that Tn converges to an infinite star, see Remark 7.6
and Example 5.1. This means that the root degree converges in probability
to ∞, and that the outdegree of any fixed child converges to 0 in probabil-
ity, i.e., equals 0 w.h.p. Note, however, that we cannot draw the conclusion
that the outdegrees of all children of the root are 0 w.h.p.; Theorem 7.1
and symmetry imply that the proportion of children of the root with out-
degree > 0 tends to 0, but the number of such children may still be large.
(Theorem 7.11(ii) yields the same conclusion.)

In fact, for this particular example wk = k!, it is shown by Janson, Jon-
sson and Stefánsson [64], using direct calculations, that w.h.p. all subtrees
attached to the root have size 1 or 2, and that the number of such subtrees
of size 2 has an asymptotic Poisson distribution Po(1). (This number thus
w.h.p. equals N1, and l2(Tn), and also the number of children of the root
with at least one child.)

Example 10.9. If we instead take wk = k!α with 0 < α < 1, then as in
Example 10.8, ρ = 0 and Tn converges to the infinite star in Example 5.1.

In this case, if (for simplicity) 1/α /∈ N1, then Ni(Tn)/n1−iα p−→ i!α for
1 6 i 6 b1/αc, while Ni = 0 w.h.p. for each fixed i > b1/αc; furthermore,
among the subtrees attached to the root, w.h.p. there are subtrees of all
sizes 6 b1/αc+ 1, and all possible shapes of these trees, with the number of
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each type tending to ∞ in probability, but no larger subtrees. See Janson,
Jonsson and Stefánsson [64] for details.

If we take wk = k!α with α > 1, then w.h.p. Tn is a star with n−1 leaves,
so Nd = 0 for 1 6 d < n− 1.

See also the examples in Section 12.

11. Balls-in-boxes

The balls-in-boxes model is a model for random allocation of m (unla-
belled) balls in n (labelled) boxes; here m > 0 and n > 1 are given integers.
The set of possible allocations is thus

Bm,n :=
{

(y1, . . . , yn) ∈ Nn0 :
n∑
i=1

yi = m
}
, (11.1)

where yi counts the number of balls in box i.
We suppose again that w = (wk)

∞
k=0 is a fixed weight sequence, and we

define the weight of an allocation y = (y1, . . . , yn) as

w(y) :=

n∏
i=1

wyi . (11.2)

Given m and n, we choose a random allocation Bm,n with probability
proportional to its weight, i.e.,

P(Bm,n = y) =
w(y)

Z(m,n)
, y ∈ Bm,n, (11.3)

where the normalizing factor Z(m,n), again called the partition function, is
given by

Z(m,n) = Z(m,n; w) :=
∑

y∈Bm,n

w(y). (11.4)

We consider only m and n such that Z(m,n) > 0; otherwise Bm,n is un-

defined. See further Lemma 13.3. We write Bm,n = (Y
(m,n)

1 , . . . , Y
(m,n)
n ),

which we usually simplify to (Y1, . . . , Yn), omitting the superscripts.

Remark 11.1. The names balls-in-boxes and balls-in-bins are used in the
literature for several different allocation models. We use balls-in-boxes for
the model defined here, following e.g. Bialas, Burda and Johnston [14].

Example 11.2 (probability weights). In the special case when (wk) is a
probability weight sequence, let ξ1, ξ2, . . . be i.i.d. random variables with the
distribution (wk). Then w(y) = P

(
(ξ1, . . . , ξn) = y

)
for any y = (y1, . . . , yn).

Hence
Z(m,n) = P

(
(ξ1, . . . , ξn) ∈ Bm,n

)
= P(Sn = m), (11.5)

where we define

Sn :=
n∑
i=1

ξi. (11.6)
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Moreover, Bm,n has the same distribution as (ξ1, . . . , ξn) conditioned on
Sn = m:

(Y
(m,n)

1 , . . . , Y (m,n)
n )

d
=
(
(ξ1, . . . , ξn) | Sn = m

)
. (11.7)

We will use this setting (and notation) several times below. (This construc-
tion of a random allocation Bm,n is used by Kolchin [76] and there called
the general scheme of allocation.)

We can replace the weight sequence by an equivalent weight sequence for
the balls-in-boxes model just as we did for the random trees in Section 4.

Lemma 11.3. Suppose that we replace the weights (wk) by equivalent weights
(w̃k) where w̃k := abkwk with a, b > 0 as in (4.1). Then the weight of an
allocation y = (y1, . . . , yn) ∈ Bm,n is changed to

w̃(y) = anbmw(y), (11.8)

and the partition function Z(m,n) = Z(m,n; w) is changed to

Z̃(m,n) := Z(m,n; w̃) = anbmZ(m,n), (11.9)

while the distribution of Bm,n is invariant. Thus Bm,n depends only on the
equivalence class of the weight sequence.

Proof. We have, by the definition (11.2),

w̃(y) =

n∏
i=1

w̃yi =

n∏
i=1

abyiwyi = anb
∑n
i=1 yi

n∏
i=1

wyi = anbmw(y), (11.10)

which shows (11.8), and (11.9) follows by (11.4). Consequently, for every y ∈
Bm,n, we have w̃(y)/Z̃(m,n) = w(y)/Z(m,n) so the probability P(Bm,n =
y) in (11.3) is unchanged, which completes the proof. �

Our aim is to describe the asymptotic distribution of the random alloca-
tion Bm,n as m,n→∞; we consider the case when m/n→ λ for some real λ,
and assume for simplicity that 0 6 λ < ω = ω(w). (Cases with m/n → ∞
are interesting too in some applications, for example in Section 19.7, but
will not be considered here. See e.g. Kolchin, Sevast’yanov and Chistyakov
[77], Kolchin [76] and Pavlov [96] for such results in special cases.) The first
step is to note that the distribution of Bm,n = (Y1, . . . , Yn) is exchangeable,
i.e., invariant under any permutation of Y1, . . . , Yn. Hence, the distribution
is completely described by the (joint) distribution of the numbers of boxes
with a certain number of balls, so it suffices to study these numbers.

For any allocation of balls y = (y1, . . . , yn) ∈ Nn0 , and k > 0, let

Nk(y) := |{i : yi = k}|, (11.11)

the number of boxes with exactly k balls. Thus, if y ∈ Bm,n, then

∞∑
k=0

Nk(y) = n and
∞∑
k=0

kNk(y) = m. (11.12)
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We thus want to find the asymptotic distribution of the random variables
Nk(Bm,n), k = 0, 1, . . . . Our main result is the following, which will be
proved in Section 14 together with the other theorems in this section.

Theorem 11.4. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n→ λ
with 0 6 λ < ω.

(i) If λ 6 ν, let τ be the unique number in [0, ρ] such that Ψ(τ) = λ.
(ii) If λ > ν, let τ := ρ.

In both cases, 0 6 τ <∞ and 0 < Φ(τ) <∞. Let

πk :=
wkτ

k

Φ(τ)
, k > 0. (11.13)

Then (πk)k>0 is a probability distribution, with expectation

µ = Ψ(τ) = min(λ, ν) (11.14)

and variance σ2 = τΨ′(τ) 6∞. Moreover, for every k > 0,

Nk(Bm,n)/n
p−→ πk. (11.15)

If we regard the weight sequence w as fixed and vary λ (i.e., vary m(n)),
we see that if 0 < ν <∞, there is a phase transition at λ = ν.

Note that τ and πk in Theorem 7.1 are the same as in Theorem 11.4
with λ = 1. Indeed, we will later see that the random trees correspond to
m = n− 1 and thus λ = 1.

Remark 11.5. The argument in Remark 7.4 extends and shows that τ is
the (unique) minimum point in [0, ρ] of Φ(t)/tλ; i.e.,

Φ(τ)

τλ
= inf

06t6ρ

Φ(t)

tλ
= inf

06t<∞

Φ(t)

tλ
. (11.16)

By (11.15), there are roughly nπk boxes with k balls. Summing this
approximation over all k we would get n boxes (as we should) with a total
of n

∑∞
k=0 kπk = nµ balls. However, the total number of balls is m ≈ nλ,

so in the case λ > ν, (11.14) shows that about n(λ−µ) = n(λ− ν) balls are
missing. Where are they?

The explanation is that the sums
∑∞

k=0 kNk(Bm,n)/n = m are not uni-
formly summable, and we cannot take the limit inside the summation sign.
The “missing balls” appear in one or several boxes with very many balls,
but these “giant” boxes are not seen in the limit (11.15) for fixed k. In
physical terminology, this can be regarded as condensation of part of the
mass (= balls). We study this further in Section 19.6. The simplest case is
that there is a single giant box with ≈ (λ− ν)n balls. We shall see that this
happens in an important case (Theorem 19.34; see also Bialas, Burda and
Johnston [14, Fig. 1] for some numerical examples), but that there are also
other possibilities (Examples 19.37–19.39).
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Recall that for simply generated random trees, which as said above cor-
respond to balls-in-boxes with λ = 1, Theorem 7.1 too shows that there is
a condensation when ν < λ = 1 (since then µ < 1 by (7.2)); in this case
the condensation appears as a node of infinite degree in the random limit

tree T̂ of type (T2), see Section 5. We shall in Section 20 study the relation
between the forms of the condensation shown in Theorems 7.1 and 11.4.

We further have the following, essentially equivalent, version of Theo-
rem 11.4, where we assume only that m/n is bounded, but not necessarily
convergent.

Theorem 11.6. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n 6 C
for some C < ω.

Define the function τ : [0,∞)→ [0,∞] by τ(x) := sup{t 6 ρ : Ψ(t) 6 x}.
Then τ(x) is the unique number in [0, ρ] such that Ψ(τ(x)) = x when x 6 ν,
and τ(x) = ρ when x > ν; furthermore, the function x 7→ τ(x) is continuous.
We have 0 6 τ(m/n) <∞ and 0 < Φ(τ(m/n)) <∞, and for every k > 0,

Nk(Bm,n)

n
− wk(τ(m/n))k

Φ(τ(m/n))

p−→ 0. (11.17)

Furthermore, for any C < ω, this holds uniformly as n→∞ for all m =
m(n) with m/n 6 C.

Returning to the random variables Y1, . . . , Yn, we have the following re-
sult, which is shown by a physicists’ proof by Bialas, Burda and Johnston
[14].

Theorem 11.7. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n→ λ
where 0 6 λ < ω, and let (πk)k>0 be as in Theorem 11.4. Then, for every
` > 1 and y1, . . . , y` > 0,

P(Y
(m,n)

1 = y1, . . . , Y
(m,n)
` = y`)→

∏̀
i=1

πyi . (11.18)

In other words, for every fixed `, the random variables Y1, . . . , Y` converge
jointly to independent random variables with the distribution (πk)k>0.

A more fancy way of describing the same result is that the sequence
Y1, . . . , Yn, arbitrarily extended to infinite length, converges in distribution,
as an element of N∞0 , to a sequence of i.i.d. random variables with the
distribution (πk)k>0. (See e.g. [15, Problem 3.7].)

Remark 11.8. We have assumed w0 > 0 in the results above for con-
venience, and because this condition is necessary when discussing simply
generated trees, which is our main topic. The balls-in-boxes model makes
sense also when w0 = 0, but this case is easily reduced to the case w0 > 0:
Let α := min{k : wk > 0}. If α > 0, then this means that each box
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has to have at least α balls. (In particular, we need m > αn.) There
is an obvious correspondence between such allocations in Bm,n and alloca-
tions in Bm−αn,n obtained by removing α balls from each box. Formally,
if y = (y1, . . . , yn) ∈ Bm,n let ỹ = (ỹ1, . . . , ỹn) with ỹi := yi − α, and note
that if we shift the weight sequence to w̃k := wk+α, then w̃(ỹ) = w(y); thus
Bm,n has the same distribution as Bm−αn,n for w̃, with α extra balls added
in each box. It follows easily that the results above hold also in the case
w0 = 0. (We interpret wkτ

k/Φ(τ) for τ = 0 as the appropriate limit value.
Note also that it is essential to use (3.2) and not (3.3) when w0 = 0.)

Remark 11.9. Similarly, we can always reduce to the case span(w) = 1: If
span(w) = d, then the number of balls in each box has to be a multiple of d,
so we may instead consider an allocation of m/d “superballs”, each consist-
ing of d balls. This means replacing each Yi by Yi/d and using the weight
sequence (wdk). We prefer, however, to allow a general span in our theorems,
for ease of our applications to simply generated trees where the correspond-
ing reduction is more complicated. (For trees, we may replace each branch
by a d-fold branch. In the probability weight sequence case with Galton–
Watson trees, this replaces the random variable ξ by (ξ1 + · · ·+ ξd)/d, with

ξi
d
= ξ i.i.d., but the roots gets a different offspring distribution ξ/d; more

generally, for a general weight sequence w, we replace Φ(t) by Φ(t1/d)d, ex-
cept at the root where we use different weights with the generating function
Φ(t1/d). We will not use this and leave the details to the reader.)

Remark 11.10. We have assumedm/n→ λ < ω in Theorems 11.4 and 11.7,
and similarly m/n 6 C < ω in Theorem 11.6; hence, for n large at least,
m/n < ω. In fact, m/n 6 ω is trivially necessary, see Lemma 13.3. When
ω <∞, the only remaining case (assuming m/n converges) is thus m/n→ ω
with m/n 6 ω; in this case, it is easy to see that (11.15) and (11.18) hold
with πω = 1 and πk = 0, k 6= ω. (This can be seen as a limiting case of
(11.13) with τ =∞.)

In fact, if ω < ∞, so the boxes have a finite maximum capacity ω, then
the complementation yi 7→ ω − yi yields a bijection of Bm,n onto Bωn−m,n,
which preserves weights if (wk) simultaneously is reflected to w̃ := (wω−k).
Hence, Bm,n corresponds to Bωn−m,n (for w̃), and results for m/n→ ω <∞
follow from results for m/n→ 0.

As said above, we do not consider the case ω =∞ and m/n→∞, when
the average occupancy tends to infinity.

12. Examples of balls-in-boxes

Apart from the connection with simply generated trees, see Section 15,
the balls-in-boxes model is interesting in its own right.

We begin with three classic examples of balls-in-boxes, see e.g. Feller [38,
II.5] and Kolchin [76], followed by further examples from probability theory,
combinatorics and statistical physics, including several examples of random
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forests. (We return to these examples of random forests in Section 19.7,
where we study the size of the largest tree in them.)

Example 12.1 (Maxwell–Boltzmann statistics; multinomial distribution).
Consider a uniform random allocation of m labelled balls in n boxes. This
is the same as throwing m balls into n boxes at random, independently
and with each ball uniformly distributed. (In statistical mechanics, this
is known as the Maxwell–Boltzmann statistics.) It is elementary that the
resulting random allocation (Y1, . . . , Yn) has a multinomial distribution

P
(
(Y1, . . . , Yn) = (y1, . . . , yn)

)
= n−m

(
m

y1, . . . , yn

)
= m!n−m

n∏
i=1

1

yi!
.

(12.1)
If we take wk = 1/k!, we see that the probabilities in (12.1) and (11.3)
are proportional, and thus must be identical, so the weight sequence (1/k!)
yields the uniform random allocation of labelled balls. We see also that then

Z(m,n) = nm/m!. (12.2)

Alternatively, we may take a Poisson distribution Po(a): wk = ake−a/k!;
this is an equivalent weight sequence for any a > 0. We see directly that
then Sn ∼ Po(na) so (11.5) yields

Z(m,n) = (na)me−na/m!; (12.3)

hence we see again that (11.3) and (12.1) agree.
Comparing with Example 10.2, and using Lemma 17.1 below, we see that

the multiset of degrees in a random unordered labelled tree of size n has
exactly the distribution obtained when throwing n− 1 balls into n boxes at
random.

With wk = 1/k! we have, as in Example 10.2, (10.6)–(10.7) and ρ = ω =
ν = ∞. Hence, if m/n → λ, we have τ = λ and thus πk = λke−λ/k!, so
(πk) is the Po(λ) distribution, which thus is the canonical choice of weights.
(In the asymptotic case; for given m and n one might choose Po(m/n), cf.
(11.17).)

Theorem 11.7 (or (11.15)) shows that if m/n→ λ <∞, then the asymp-
totic distribution of the numbers of balls in a given urn is Po(λ).

The idea to study the multinomial distribution as a vector of i.i.d. Poisson
variables conditioned on the sum is an old one that has been used repeatedly,
see e.g. Kolchin, Sevast’yanov and Chistyakov [77], Holst [52, 53], Kolchin
[76], Janson [55].

Example 12.2 (Bose–Einstein statistics). The weight sequence wk = 1
yields a uniform distribution over all allocations of m identical and indistin-
guishable balls in n boxes; thus each allocation (Y1, . . . , Yn) ∈ Bm,n has the

same probability 1/|Bm,n| = 1/
(
n+m−1

m

)
.

This is known as Bose–Einstein statistics in statistical quantum mechan-
ics; it is the distribution followed by bosons. (In the simple case with no
forces acting on them.)
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Comparing with Example 10.1, and using Lemma 17.1 below, we see that
the multiset of degrees in a random ordered tree of size n has exactly the
distribution obtained by a uniform random allocation of n − 1 balls into n
boxes.

As in Example 10.1 we have (10.1)–(10.2) and ρ = 1, ν = ∞. If m/n →
λ <∞, then the equation Ψ(τ) = λ is, by (10.2), τ/(1− τ) = λ, and thus

τ =
λ

1 + λ
. (12.4)

Any geometric distribution Ge(p) with 0 < p < 1 is a weight sequence
equivalent to (wk), and (12.4) shows that the canonical choice (7.1) is, using
(10.1),

πk = (1− τ)τk =
λk

(λ+ 1)k+1
, (12.5)

which is the distribution Ge(1− τ) = Ge(1/(λ+ 1)). By Theorem 11.7, this
is also the asymptotic distribution of balls in a given urn.

See also Holst [52, 53] and Kolchin [76].

Example 12.3 (Fermi–Dirac statistics). The other type of particles in sta-
tistical quantum mechanics is fermions; they exclude each other (the Pauli
exclusion principle) so all allocations of them have to satisfy Yi 6 1, i.e.,
Yi ∈ {0, 1}. A random allocation uniform among all such possibilities is
known as Fermi–Dirac statistics; this is thus equivalent to a uniform ran-
dom choice of one of the

(
n
m

)
subsets of m boxes.

We obtain this distribution by the choice w0 = w1 = 1 and wk = 0 for
k > 2; thus

Φ(t) = 1 + t (12.6)

and

Ψ(t) =
t

1 + t
. (12.7)

We have ρ = ∞ and ν = ω = 1. (Formally, (12.6) is the case d = 1 of
(10.21), but note that we assume d > 2 in Example 10.6.)

If m/n → λ < 1, we thus have a rather trivial example of the general
theory with τ/(1 + τ) = λ and thus

τ =
λ

1− λ
, (12.8)

and (πk) = (1 − λ, λ, 0, 0, . . . ), i.e., the Bernoulli distribution Be(λ). (Any
Bernoulli distribution Be(p) with 0 < p < 1 is equivalent.)

Since ω = 1, the corresponding conditioned Galton–Watson tree is triv-
ially the deterministic path Pn, a case which we have excluded above.

Example 12.4 (Pólya urn [53]). Consider a multicolour Pólya urn contain-
ing balls of n different colours, see Eggenberger and Pólya [37]. Initially,
the urn contains a > 0 balls of each colour. Balls are drawn at random,
one at a time. After each drawing, the drawn ball is replaced together with
b > 0 additional balls of the same colour. (It is natural to take a and b to be
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integers, but the model is easily interpreted also for arbitrary real a, b > 0,
see e.g. [58].)

Make m draws, and let Yi be the number of times that a ball of colour i
is drawn; then (Y1, . . . , Yn) is a random allocation in Bm,n.

A straightforward calculation, see [37], [66], [53], shows that

P
(
(Y1, . . . , Yn) = (y1, . . . , yn)

)
=

(
m

y1, . . . , yn

)∏n
i=1 a(a+ b) · · · (a+ (yi − 1)b)

na(na+ b) · · · (na+ (m− 1)b)

=

∏n
i=1

(
a/b+yi−1

yi

)(
na/b+m−1

m

) .

(12.9)

Hence, as noted by Holst [53], this equals the random allocation given by
the weights

wk =

(
a/b+ k − 1

k

)
= (−1)k

(
−a/b
k

)
, k = 0, 1, . . . . (12.10)

Note that the case a = b yields wk = 1 and the uniform random allocation
in Example 12.2 (Bose–Einstein statistics). We have

Φ(t) =
∞∑
k=0

(
a/b+ k − 1

k

)
tk = (1− t)−a/b, (12.11)

with radius of convergence ρ = 1, and thus

Ψ(t) =
a

b
· t

1− t
. (12.12)

Hence, ν = Ψ(1) =∞, and for any λ ∈ [0,∞),

τ =
bλ

a+ bλ
. (12.13)

The equivalent probability weight sequences are, by Lemma 4.1, given by

tkwk
Φ(t)

=

(
a/b+ k − 1

k

)
tk(1− t)a/b, 0 < t < 1, (12.14)

which is the negative binomial distribution NBin(a/b, 1− t) (where the pa-
rameter a/b is not necessarily an integer). The canonical choice, which by
Theorems 11.4 and 11.7 is the asymptotic distribution of the number of balls
of a given colour, is NBin(a/b, 1−τ) = NBin(a/b, a/(a+bλ)). See also Holst
[53] and Kolchin [76].

Note that the case b = 0 (excluded above) means drawing with replace-
ment; this is Example 12.1, which thus can be seen as a limit case. (This

corresponds to the Poisson limit NBin(a/b, a/(a+ bλ))
d−→ Po(λ) as b→ 0.)

Example 12.5 (drawing without replacement). Consider again an urn with
balls of n colours, with initially a balls of each colour. (This time, a > 1 is
an integer.) Draw m balls without replacement, and let as above Yi be the
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number of drawn balls of colour i. (The case a = 1 yields the Fermi–Dirac
statistics in Example 12.3.)

Formally, this is the case b = −1 of Example 12.4, and a similar calculation
shows that

P
(
(Y1, . . . , Yn) = (y1, . . . , yn)

)
=

∏n
i=1

(
a
yi

)(
na
m

) ; (12.15)

hence this is the random allocation given by the weights

wk =

(
a

k

)
, k = 0, 1, . . . (12.16)

We have thus Φ(t) = (1 + t)a, exactly as in Example 10.6, with d = a.
The equivalent probability weight sequences are the binomial distributions

Bi(a, p), 0 < p < 1, and the canonical choice is, for 0 < λ < a, (πk) =
Bi(a, λ/a), i.e.

πk =

(
a

k

)(
λ

a

)k (a− λ
a

)a−k
=

(
a

k

)
λk(a− λ)a−k

aa
. (12.17)

See also Holst [53] and Kolchin [76].
Note that taking the limit as a→∞, we obtain drawing with replacement,

which is Example 12.1; this corresponds to the Poisson limit Bi(a, λ/a)
d−→

Po(λ) as a→∞.

Example 12.6 (random rooted forests [76]). Consider labelled rooted forests
consisting of n unordered rooted trees with together m nodes, all of which
are labelled. (Thus m > n.) We may assume that the n roots are labelled
1, . . . , n; let Ti be the tree with root i and let ti := |Ti|. Then the node sets
V (Ti) form a partition of {1, . . . ,m}, so

∑n
i=1 ti = m and (t1, . . . , tn) is an

allocation in Bm,n, with each ti > 1. Furthermore, given (t1, . . . , tn) ∈ Bm,n
with all ti > 1, the node sets V (Ti) can be chosen in

(
m−n

t1−1,...,tn−1

)
ways, and

given V (Ti), the tree Ti can by Cayley’s formula be chosen in tti−2
i ways.

(The trees are rooted but the roots are given.) Hence, the number of forests
with the allocation (t1, . . . , tn) is(

m− n
t1 − 1, . . . , tn − 1

) n∏
i=1

tti−2
i = (m− n)!

n∏
i=1

tti−2
i

(ti − 1)!
= (m− n)!

n∏
i=1

tti−1
i

ti!
.

(12.18)
Hence, a uniformly random labelled rooted forest corresponds to a random
allocation Bm,n with the weight sequence

wk =
kk−1

k!
, k > 1, and w0 = 0. (12.19)

Note that here w0 = 0 unlike almost everywhere else in the present paper; in
the notation of Remark 11.8, we have α = 1. (As discussed in Remark 11.8,
we can reduce to the case w0 > 0 by considering (t1 − 1, . . . , tn − 1), which
is an allocation in Bm−n,n; this means that we count only non-root nodes.
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We prefer, however, to keep the setting above with w0 = 0, noting that the
results above still hold by Remark 11.8.)

If F r
m,n denotes the number of labelled rooted forests with m labelled

nodes of which n are given as roots, then (12.18) implies

F r
m,n = (m− n)!Z(m,n). (12.20)

It is well-known that F r
m,n = nmm−n−1, a formula also given by Cayley [22],

see e.g. [103, Proposition 5.3.2] or [99]; thus

Z(m,n) =
nmm−n−1

(m− n)!
. (12.21)

We have

Φ(t) :=
∞∑
k=1

kk−1

k!
tk = T (t), (12.22)

the well-known tree function (known by this name since it is the exponential
generating function for rooted unordered labelled trees, cf. Example 10.2).
Note that T (z) satisfies the functional equation

T (z) = zeT (z); (12.23)

see e.g. [40, Section II.5]. Equivalently,

z = T (z)e−T (z), (12.24)

which by differentiation leads to

T ′(z) =
T (z)

z(1− T (z))
. (12.25)

Hence,

Ψ(t) :=
tΦ′(t)

Φ(t)
=

1

1− T (t)
. (12.26)

By (12.22) and Stirling’s formula, Φ(t) has radius of convergence ρ = e−1.
Furthermore, (12.24) implies that Φ(ρ) = T (e−1) = 1. Hence, (12.26) yields
ν = Ψ(ρ) =∞, and if 1 6 λ <∞, then λ = Ψ(τ) is solved by

T (τ) = 1− 1

λ
=
λ− 1

λ
(12.27)

and thus, using (12.24),

τ =
λ− 1

λ
e−(λ−1)/λ. (12.28)

The probability weight sequences equivalent to (wk) are by Lemma 4.1
given by, substituting x = T (t), and thus t = xe−x by (12.24),

pk =
tk

T (t)
wk =

kk−1tk

T (t)k!
=

(kx)k−1e−kx

k!
, k > 1, (12.29)



44 SVANTE JANSON

where 0 6 t 6 e−1 and thus 0 6 x 6 1. This is known as a Borel distribution;
it appears for example as the distribution of the size |T | of the Galton–
Watson tree with offspring distribution Po(x). (This was first proved by
Borel [18]. It follows by Theorem 15.5 below, with the probability weight
sequence Po(x); see also Otter [93], Tanner [107], Dwass [36], Takács [106],
Pitman [99].) It follows that the random rooted forest considered here has
the same distribution as the forest defined by a Galton–Watson process
with starting with n individuals (the roots) and Po(x) offspring distribution,
conditioned to have total sizem; cf. Example 12.8 below. See further Kolchin
[76] and Pavlov [96].

In particular, the choice x = 1 (t = e−1) in (12.29) yields the equivalent
probability weight sequence

w̃k = e−kwk =
kk−1e−k

k!
, k > 1, (12.30)

which by Stirling’s formula satisfies the asymptotic power-law

w̃k ∼
1√
2π
k−3/2, as k →∞. (12.31)

Moreover, the canonical distribution for a given λ > 1 is, using (12.28),

πk =
kk−1τk

T (τ)k!
=
kk−1

k!

(
λ− 1

λ

)k−1

e−k(λ−1)/λ. (12.32)

By Theorems 11.4 and 11.7, and Remark 11.8, this is the asymptotic dis-
tribution of the size of a given (or random) tree in the forest, say T1. The
asymptotic distribution of |T1| is thus the distribution of the size |T | of a
Galton–Watson tree with offspring distribution Po(1 − 1/λ). Moreover, T1

is, given its size |T1|, uniformly distributed over all trees on |T1| nodes, and
the same is true for the Poisson Galton–Watson tree T by Example 10.2.

Consequently, T1
d−→ T as n→∞ with m/n → λ. (We may regard T1 as

an ordered tree, ordering the children of a node e.g. by their labels.)

The same random allocation Bm,n also describes the block lengths in
hashing with linear probing; see Janson [56]. Indeed, there is a one-to-one
correspondence between hash tables and rooted forests, see e.g. Knuth [75,
Exercise 6.4-31] and Chassaing and Louchard [24].

Example 12.7 (random unrooted forests). Consider labelled unrooted for-
ests consisting of n trees with together m nodes, all of which are labelled.
(Thus m > n.) We may assume that the n trees are labelled T1, . . . , Tn;
let ti := |Ti|. As in Example 12.6, the node sets V (Ti) form a partition of
{1, . . . ,m}, so

∑n
i=1 ti = m and (t1, . . . , tn) is an allocation in Bm,n, with

each ti > 1. In the unrooted case, given (t1, . . . , tn) ∈ Bm,n with all ti > 1,
the node sets V (Ti) can be chosen in

(
m

t1,...,tn

)
ways, and given V (Ti), the

tree Ti can by Cayley’s formula be chosen in tti−2
i ways. Hence, the number
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of unrooted forests with the allocation (t1, . . . , tn) is(
m

t1, . . . , tn

) n∏
i=1

tti−2
i = m!

n∏
i=1

tti−2
i

ti!
. (12.33)

Hence, a uniformly random labelled unrooted forest corresponds to a random
allocation Bm,n with the weight sequence

wk =
kk−2

k!
, k > 1, and w0 = 0. (12.34)

As in Example 12.6, we have w0 = 0, but this is no problem by Remark 11.8.
If F u

m,n denotes the number of labelled unrooted forests with m labelled
nodes and n labelled trees, then (12.33) implies

F u
m,n = m!Z(m,n). (12.35)

There is no simple general formula for F u
m,n, as there is for the rooted forests

in Example 12.6, and hence no simple formula for Z(m,n). Asymptotics are
given by Britikov [20]. (See Example 18.16 for one case. The asymptotic
formula when m/n → λ > 2 follows similary from Theorem 19.34(ii), and
when m/n→ λ < 2 with m = λn+ o(

√
n) from Theorem 18.12.)

We have

Φ(t) :=
∞∑
k=1

kk−2

k!
tk = T (t)− 1

2T (t)2, (12.36)

where T (t) is the tree function in (12.22). (The latter equality is well-known,
see e.g. [40, II.5.3]; it can be shown e.g. by showing that both sides have the
same derivative T (t)/t; there are also combinatorial proofs.) Hence, using
(12.25),

Ψ(t) :=
tΦ′(t)

Φ(t)
=
T (t)

Φ(t)
=

1

1− T (t)/2
; (12.37)

cf. the similar (12.26) in the rooted case.
As for (12.22), Φ has the radius of convergence ρ = e−1, but now, by

(12.37), ν = Ψ(ρ) = 2 is finite, so there is a phase transition at λ = 2.
The parameter τ is by the definition in Theorem 7.1 and (12.37) given by
T (τ) = 2− 2/λ = 2(λ− 1)/λ for λ 6 2; thus, using (12.24),

τ =

{
2λ−1

λ e−2(λ−1)/λ, λ 6 2.

e−1, λ > 2.
(12.38)

The probability weight sequences equivalent to (wk) are by Lemma 4.1
given by, again substituting t = xe−x or x = T (t),

pk =
kk−2tk

T (t)(1− T (t)/2)k!
=
x(kx)k−2e−kx

(1− x/2)k!
, k > 1, (12.39)
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where 0 6 t 6 e−1 and thus 0 6 x 6 1. In particular, taking x = 1 (t = e−1),
we obtain the equivalent probability weight sequence

w̃k = 2wke
−k =

2kk−2e−k

k!
, k > 1, (12.40)

which by Stirling’s formula satisfies the asymptotic power-law

w̃k ∼
2√
2π
k−5/2, as k →∞. (12.41)

Moreover, the canonical distribution for a given λ > 1 is, by (12.38) and
(12.39), for k > 1,

πk =
kk−2τk

T (τ)(1− T (τ)/2)k!
=

kk−2

k! λ
(

2λ−1
λ

)k−1
e−2k(λ−1)/λ, λ 6 2,

2kk−2e−k

k! , λ > 2.

(12.42)
By Theorems 11.4 and 11.7, and Remark 11.8, this is the asymptotic distri-
bution of the size of a given (or random) tree in the forest, say T1.

We shall see in Theorem 19.49 that the phase transition at λ = 2 is seen
clearly in the size of the largest tree in the forest: if m/n→ λ < 2, then the
largest tree is of size Op(log n), while if m/n→ λ > 2, then there is a unique
giant tree of size (λ− 2)n+ op(n); for details see Theorems 19.34 and 19.49,
and, more generally,  Luczak and Pittel [83]. This is thus an example of the
condensation discussed after Theorem 11.4 (and similar to the condensation
in Theorem 7.1 when ν < 1).

Example 12.8 (simply generated forests and Galton–Watson forests). A
simply generated forest is a sequence (T1, . . . , Tn) of rooted trees, with weight

w(T1, . . . , Tn) :=
n∏
i=1

w(Ti), (12.43)

where w(Ti) is given by (2.3), for some fixed weight sequence w. A simply
generated random forest with n trees and m nodes, where n and m are given
with m > n, is such a forest chosen at random, with probability proportional
to its weight. Note that in the special case n = 1, this is the same as a
simply generated random tree defined in Section 2. More generally, for any
n, a simply generated random forest (T1, . . . , Tn) is, conditioned on the sizes
|T1|, . . . , |Tn|, a sequence of independent simply generated random trees with
the given sizes (all defined by the same weight sequence w). Moreover, the
sizes (|T1|, . . . , |Tn|) form an allocation in Bm,n, and it is easily seen that this
is a random allocation Bm,n defined by the weight sequence (Zk)

∞
k=0, where

Zk is the partition function (2.5) for simply generated trees with weight
sequence w (and Z0 = 0).

A simply generated random forest can thus be obtained by a two-stage
process, combining the constructions in Sections 2 and 11. Note that equiv-
alent weight sequences w yield equivalent weight sequences (Zk) by (4.3),
and thus the same simply generated random forest.
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In the special case when w is a probability weight sequence, we also
define a Galton–Watson forest with n trees, for a given n, as a sequence
(T1, . . . , Tn) of n i.i.d. Galton–Watson trees; it describes the evolution of a
Galton–Watson process started with n particles. (It can also be seen as a
single Galton–Watson tree T with the root chopped off, conditioned on the
root degree being n, provided that this root degree is possible.) Note that
the probability distribution of the forest is given by the weights in (12.43).
Hence, in the probability weight sequence case, the simply generated ran-
dom forest equals the conditioned Galton–Watson forest with n trees and m
nodes, defined as a Galton–Watson forest with n trees conditioned on the
total size being m; in other words, it describes a Galton–Watson process
started with n particles conditioned on the total size being m.

Random forests of this type are studied by Pavlov [96], see also Flajolet
and Sedgewick [40, Example III.21].

For example, taking wk = 1/k!, we have by (10.11) Zk = kk−1/k!, k > 1;
this is the weight sequence used in Example 12.6, so we obtain the same
random allocation of tree sizes as there; moreover, given the tree sizes, the
trees are uniformly random labelled unordered rooted trees by Example 10.2.
Consequently, for this weight sequence, the simply generated random forest
is the random labelled forest with unordered rooted trees in Example 12.6.
The same random forest is obtained by the equivalent probability weight
sequence wk = xke−x/k!, with 0 < x 6 1, so it equals also the conditioned
Galton–Watson forest with offspring distribution Po(x), cf. Example 12.6.

Another example is obtained by taking wk = 1 for all k > 0. Then
every forest has weight 1, so the this simply generated random forest is a
uniformly random forest of ordered rooted trees. (An ordered rooted forest.)
By Example 10.1, the weight sequence (Zk) is then given by the Catalan
numbers in (2.1): Zk = Ck−1 = (2k − 2)!/(k! (k − 1)!), k > 1.

Further examples are given by starting with the other examples of random
trees in Section 10.

We shall see in Theorem 18.11 that if the weight sequence w is as in
Theorem 7.1, and further span(w) = 1, ν > 1 and σ2 <∞, then

Zk ∼
τ√

2πσ2

(
Φ(τ)

τ

)k
k−3/2. (12.44)

Recalling Z(τ/Φ(τ)) = τ by (7.6), we may replace Zk by the equivalent
probability weight sequence

Z̃k :=
Zk

Z(τ/Φ(τ))

(
τ

Φ(τ)

)k
=
Zk
τ

(
τ

Φ(τ)

)k
∼ 1√

2πσ2
k−3/2, (12.45)

so we have the asymptotic behaviour Z̃k ∼ ck−3/2 for every such weight

sequence w, where only the constant c = 1/
√

2πσ2 depends on w. This
explains why random forests of this type have similar asymptotic behaviour,
in contrast to the unrooted forests in Example 12.7 which are given by
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random allocations defined by a weight sequence ∼ ck−5/2, see (12.41); see
further Example 12.10.

Example 12.9. Let, as in Example 10.7, wk = (k + 1)−β for some real
constant β. Then ρ = 1. As shown in Example 10.7, ν = ∞ if β 6 2, and
ν < ∞ if β > 2; in the latter case, ν is given by (10.25). This example is
studied further in e.g. Bialas, Burda and Johnston [14].

Example 12.10 (power-law). More generally, suppose that wk ∼ ck−β as
k →∞, for some real constant β and c > 0, i.e., that wk asymptotically
satisfies a power-law. Qualitatively, we have the same behaviour as in Ex-
amples 10.7 and 12.9, but numerical values such as the critical β in (10.26)
will in general be different.

We repeat some easy facts: first, ρ = 1, ω =∞ and span(w) = 1.
If −∞ < β 6 1, then Φ(ρ) = Φ(1) =∞; hence ν =∞ by Lemma 3.1(iv).
If 1 < β 6 2, then Φ(ρ) < ∞ but Φ′(ρ) =

∑∞
k=0 kwk = ∞; hence again

ν = Ψ(ρ) =∞ by (3.11).
On the other hand, if β > 2, then Φ(1) < ∞ and Φ′(1) < ∞, and thus

ν <∞ by (3.11). Summarising:

ν <∞ ⇐⇒ β > 2. (12.46)

In the case β > 2, there is thus a phase transition when we vary λ.
Suppose β > 2, so ν < ∞. If λ > ν, then τ = ρ = 1, and the canonical

distribution (πk) is by (11.13) given simply by πk = wk/Φ(1). This distri-
bution then has mean µ = ν <∞ by (11.14); since πk � k−β as k →∞, the
variance σ2 =∞ if 2 < β 6 3, while σ2 <∞ when β > 3.

Note that Examples 12.6 and 12.7 with random forests are of this type,
provided we replace wk by the equivalent w̃k := e−kwk; Stirling’s formula
shows that w̃k ∼ ck−β where β = 3/2 for rooted forests and β = 5/2 for
unrooted forests, see (12.31) and (12.41) (with a different choice of constant
factor in the latter). The different values of β explains the different asymp-
totical behaviours of these two types of random forests: by the results above,
the tail behaviour of wk implies that ν = ∞ for rooted forests but ν < ∞
for unrooted forests, as we have shown by explicit calculations in Examples
12.6 and 12.7. Recall that this means that there is a phase transition and
condensation for high m/n in the unrooted case but not in the rooted case.

More generally, (12.45) shows that simply generated random forests un-
der weak assumptions have the same power-law behaviour of the weight
sequence with β = 3/2 as the special case of (unordered) rooted forests in
Example 12.6. Thus ν =∞ and there is no phase transition. (At least not
in the range m = O(n) that we consider. Pavlov [96] show a phase transition
at m = Θ(n2).)

Example 12.11 (unlabelled forests). Consider, as Pavlov [97], rooted forests
consisting of n rooted unlabelled unordered trees, assuming that the trees,
or equivalently the roots, are labelled 1, . . . , n, but otherwise the nodes are
unlabelled. A uniformly random forest of this type with m nodes can be
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seen as balls-in-boxes with the weight sequence (tk), where tk is the num-
ber of unlabelled unordered rooted trees with k nodes. In this case there
is no simple formula for the generating function Φ(z), but there is a func-

tional equation, from which it can be shown that tk ∼ c1k
−3/2ρ−k, where

ρ ≈ 0.3382 as usual is the radius of convergence of Φ(z) and c1 ≈ 0.4399, see
Otter [92] or, e.g., Drmota [33, Section 3.1.5]. Furthermore, Φ(ρ) = 1; thus

(tkρ
k) gives an equivalent probability weight sequence with tkρ

k ∼ c1k
−3/2

as k →∞. The asymptotic behaviour of the weight sequence is thus the
same as for labelled rooted forests in Example 12.6, and more generally for
Galton–Watson forests (under weak conditions) in Example 12.8, and we
expect the same type of asymptotic behaviour in spite of the fact that the
unlabelled forest is not simply generated; this is seen in detail in Pavlov [96]
for the size of the largest tree. In particular, we have ν = ∞ by Exam-
ple 12.10 and (12.46), and thus there is no phase transition at finite λ.

Similarly, Bernikovich and Pavlov [12] considered unrooted forests con-
sisting of n unordered trees labelled 1, . . . , n with a total of m unlabelled
nodes. These are described by the weight sequence (ťk) where ťk is the num-
ber of unrooted unlabelled unordered trees with k nodes. Again, there is no
no simple formula for the generating function Φ̌(z) :=

∑
k ťkz

k, but there

is the relation Φ̌(z) = Φ(z) − 1
2Φ(z)2 + 1

2Φ(z2) found by Otter [92], which

leads to the asymptotic formula ťk ∼ c2k
−5/2ρ−k, where ρ is as above and

c2 ≈ 0.5347, see also Drmota [33, Section 3.1.5]. In this case, (ťkρ
k/Φ̌(ρ))

gives an equivalent probability weight sequence which is ∼ (c2/Φ̌(ρ))k−5/2

as k →∞, which is the same type of asymptotic behaviour as for the weight
sequence for labelled unrooted forests in Example 12.7; we thus expect the
same type of asymptotic behaviour as for those forests. In particular, ν <∞
by Example 12.10; a numerical calculation gives ν := ρΦ̌′(ρ)/Φ̌(ρ) ≈ 2.0513,
see Bernikovich and Pavlov [12].

Note that both types of “unlabelled” forests considered here have the n
trees labelled 1, . . . , n (but the individual nodes are not labelled). Com-
pletely unlabelled forests cannot be described by balls-in-boxes (as far as we
know), since the number of (non-isomorphic) ways to label the trees depends
on the forest.

Example 12.12 (the backgammon model). The model with wk = 1/k! for
k > 1 as in Example 12.1, but w0 > 0 arbitrary, was considered by Ritort
[100] and Franz and Ritort [41, 42], who called it the backgammon model.
We have

Φ(t) = w0 +

∞∑
k=1

tk

k!
= et + w0 − 1 (12.47)

and

Ψ(t) =
tet

Φ(t)
=

t

1 + (w0 − 1)e−t
. (12.48)
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Thus ρ = ν =∞. The equation Ψ(τ) = λ can be written

(τ − λ)eτ = (w0 − 1)λ, (12.49)

and the solution can be written

τ = λ+W
(
(w0 − 1)λe−λ

)
= λ− T

(
(1− w0)λe−λ

)
, (12.50)

where W (z) is the Lambert W function [26] defined by W (z)eW (z) = z
and T (z) is the tree function in (12.22) (analytically extended to all real
z < e−1); note that W (z) = −T (−z) by (12.24), see [26].

The canonical probability weight sequence (11.13) is, using (12.48) and
Ψ(τ) = λ,

πk =
τk

Φ(τ)k!
=
λτk−1e−τ

k!
=
λ

τ
· τ

ke−τ

k!
, k > 1, (12.51)

and π0 = λτ−1e−τw0.

Example 12.13 (random permutations and recursive forests). Consider
permutations of {1, . . . ,m} with exactly n cycles. We want to list the cycle
lengths in some order; for convenience, we consider all possible orders and
define a cycle-labelled permutation to be a permutation with the cycles la-
belled 1, . . . , n, in arbitrary order. Given a cycle-labelled permutation with
exactly n cycles, let yi be the length of the i:th cycle. Then (y1, . . . , yn) is an
allocation in Bm,n with each yi > 1, and for each such (y1, . . . , yn) ∈ Bm,n,
the number of cycle-labelled permutations with yi elements in cycle i is(

m

y1, . . . , yn

) n∏
i=1

(yi − 1)! = m!

n∏
i=1

1

yi
, (12.52)

since there are (y − 1)! cycles with y given elements. Consequently, a uni-
formly random permutation of {1, . . . ,m} with exactly n cycles (listed in
random order, say) corresponds to a random allocation Bm,n defined by the
weight sequence

wk =
1

k
, k > 1, and w0 = 0. (12.53)

Note that here, as in Example 12.6, w0 = 0, and Remark 11.8 applies with
α = 1.

The number of permutations with n (unlabelled) cycles is by (12.52)

m!Z(m,n)/n!, (12.54)

where we divide by n! in order to ignore the labelling above.
The same balls-in-boxes model with wk = 1/k, k > 1, also describes

random recursive forests, see Pavlov and Loseva [98].
We have

Φ(t) =

∞∑
k=1

tk

k
= − log(1− t) (12.55)
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with radius of convergence ρ = 1 and

Ψ(t) :=
tΦ′(t)

Φ(t)
=

t

−(1− t) log(1− t)
, (12.56)

so ν = Ψ(1) =∞, cf. Example 12.10 (β = 1).
The equivalent probability weight sequences are by Lemma 4.1 given by

pk =
xk

k| ln(1− x)|
, 0 < x < 1, (12.57)

with probability generating function Φ(xz)/Φ(x) = log(1− xz)/ log(1− x).
This distribution is called the logarithmic distribution. See further Kolchin,
Sevast’yanov and Chistyakov [77] and Kolchin [76].

By Remark 11.8, we obtain results on random permutations with m cy-
cles as m/n → λ ∈ [1,∞), see for example Kazimirov [71]. However, it is
of greater interest to consider random permutations without constraining
the number of cycles. This can be done using methods similar to the ones
used here, but is outside the scope of the present paper; see e.g. Kolchin,
Sevast’yanov and Chistyakov [77], Kolchin [76] and Arratia, Barbour and
Tavaré [7]. Note that even if we condition on the number of cycles, a typical
random permutation of {1, . . . ,m} has about logm cycles, so we are inter-
ested in the case n ≈ logm and thus m/n→∞, which we do not considered
here.

Other random objects that can be decomposed into components can be
studied similarly, for example random mappings [76]; our results apply only
to random objects with a given number of components (in some cases), but
similar methods are useful for the general case; see Kolchin [76] and Arratia,
Barbour and Tavaré [7].

13. Preliminaries

Proof of Lemma 3.1. (i): Since Φ′(t) =
∑∞

k=0 kwkt
k−1 has the same radius

of convergence ρ as Ψ, and Φ(t) > w0 > 0 for t > 0, it is immediate that Ψ is
well-defined, finite and continuous for t ∈ [0, ρ). Furthermore, if 0 < t < ρ,
then tΨ′(t) is by (4.10) the variance of a non-degenerate random variable,
and thus tΨ′(t) > 0. Hence Ψ(t) is increasing, completing the proof of (i).

(ii): If Φ(ρ) = ∞, the claim is just the definition of Ψ(ρ) in Section 2.
(Note that the existence of the limit follows from (i).) We may thus assume
Φ(ρ) < ∞; then t ↗ ρ implies Φ(t) → Φ(ρ) < ∞ and Φ′(t) → Φ′(ρ) 6 ∞
by monotone convergence, and thus

Ψ(t) :=
tΦ′(t)

Φ(t)
→ ρΦ′(ρ)

Φ(ρ)
= Ψ(ρ).

(iii): The case ρ = 0 is trivial, and the case ρ > 0 follows from (i) and
(ii).
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(iv): For any ` > 0,

Ψ(t)− ` =

∑∞
k=0(k − `)wktk∑∞

k=0wkt
k

>

∑`−1
k=0(k − `)wktk∑∞

k=0wkt
k

. (13.1)

If ρ <∞ and Φ(ρ) =∞, we thus have,

Ψ(t)− ` > O(1)

Φ(t)
→ 0 as t↗ ρ,

so Ψ(ρ)− ` > 0. Since ` is arbitrary, this shows Ψ(ρ) =∞, proving (iv).
(v): If ρ =∞, choose ` with w` > 0. Then (13.1) implies

Ψ(t)− ` >
−`
∑`−1

k=0wkt
k

w`t`
→ 0 as t→∞,

so Ψ(∞)− ` > 0. Hence, Ψ(∞) > sup{` : w` > 0} = ω.
Conversely,

Ψ(t) =

∑ω
k=0 kwkt

k∑ω
k=0wkt

k
6 ω for all t ∈ [0, ρ),

so Ψ(ρ) 6 ω, completing the proof of (v).
Finally, (3.9) follows from (i) and (ii). �

Remark 13.1. Alternatively, the fact that Ψ(t) is increasing can also be
seen as follows: Let 0 < a < b < ρ and let Y be a random variable with
distribution P(Y = k) = wka

k/Φ(a) (cf. Lemma 4.2). Then Ψ(a) = EY
and Ψ(b) = E

(
Y (b/a)Y

)
/E(b/a)Y , so Ψ(a) 6 Ψ(b) is equivalent to the

correlation inequality E
(
Y (b/a)Y

)
> EY E(b/a)Y , which says that the two

random variables f(Y ) := Y and g(Y ) := (b/a)Y are positively correlated;
it is well-known that this holds (as long as the expectations are finite) for
any two increasing functions f and g and any Y , see [50, Theorem 236]
where the result is attributed to Chebyshev, and it is easy to see that, in
fact, strict inequality holds in the present case. (The latter inequality is an
analogue of Harris’ correlation inequality [51] for variables Y with values in
a discrete cube {0, 1}N ; in fact, the inequalities have a common extension
to variables with values in RN . Cf. also the related FKG inequality, which
extends Harris’ inequality; see for example [48] where also its history is
described.)

For a third proof that Ψ(t) is increasing, note that (3.7) shows that Ψ is
(strictly) increasing if and only if log Φ(ex) is (strictly) convex, which is an
easy consequence of Hölder’s inequality, (See e.g. [31, Lemma 2.2.5(a)] and
note that Φ(ex) =

∑∞
k=0 e

kxwk is the moment generating function of (wk)
in the case that (wk) is a probability weight sequence.)

Lemma 3.1 shows that Ψ is a bijection [0, ρ]→ [0,Ψ(ρ)] = [0, ν], so it has
a well-defined inverse Ψ−1 : [0, ν]→ [0, ρ]. We extend this inverse to [0,∞)
as follows.
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Lemma 13.2. For x > 0 define τ = τ(x) ∈ [0,∞] by

τ(x) := sup{t 6 ρ : Ψ(t) 6 x}. (13.2)

Then τ(x) is the unique number in [0, ρ] such that Ψ(τ(x)) = x when x 6
ν, and τ(x) = ρ when x > ν. Furthermore, the function x 7→ τ(x) is
continuous, and, for any x > 0,

Ψ(τ(x)) = min(x, ν). (13.3)

If x < ω, then 0 6 τ(x) <∞ and 0 < Φ(τ(x)) <∞. On the other hand, if
x > ω, then τ(x) = Φ(τ(x)) =∞.

Proof. By Lemma 3.1 and the definition (3.10), Ψ is an increasing continuous
bijection [0, ρ] → [0,Ψ(ρ)] = [0, ν]; thus if 0 6 x 6 ν, there exists a unique
Ψ−1(x) ∈ [0, ρ] with Ψ(Ψ−1(x)) = x, and (13.2) yields τ(x) = Ψ−1(x). Since
Ψ is a continuous bijection of one compact space onto another, its inverse
Ψ−1 : [0, ν]→ [0, ρ] is continuous too; thus x 7→ τ(x) = Ψ−1(x) is continuous
on [0, ν]. Furthermore, (13.3) holds for x 6 ν.

If x > ν = Ψ(ρ), then (13.2) yields τ(x) = ρ, and thus Ψ(τ(x)) = Ψ(ρ) =
ν, so (13.3) holds in this case too.

Combining the two cases we see that x 7→ τ(x) is continuous on [0,∞),
and that (13.3) holds.

Now suppose that x < ω and τ(x) = ∞. Since τ(x) 6 ρ we then have
ρ = ∞, and Lemma 3.1(v) yields Ψ(τ(x)) = Ψ(ρ) = ω > x, contradicting
(13.3). Thus τ(x) < ∞ when x < ω. Furthermore, if Φ(τ(x)) = ∞, then
τ(x) = ρ, since Φ(t) < ∞ for t < ρ, and thus Φ(ρ) = ∞. If further
x < ω, and thus ρ = τ(x) < ∞ as just shown, then Lemma 3.1(iv) would
give Ψ(τ(x)) = Ψ(ρ) = ∞, again contradicting (13.3) since x < ∞. Thus
Φ(τ(x)) <∞ when x < ω.

Conversely, if x > ω, then ω < ∞, so Φ(t) is a polynomial and ρ = ∞.
Lemma 3.1(v) shows that Ψ(ρ) = ω 6 x, so (13.2) yields τ(x) = ρ = ∞,
whence also Φ(τ(x)) = Φ(∞) =∞. �

Next, we investigate when Z(m,n) > 0. We say than an allocation
(y1, . . . , yn) of m balls in n boxes is good if it has positive weight, i.e., if
yi ∈ supp(w) for every i. Thus, Z(m,n) > 0 if and only if there is a good
allocation in Bm,n; in this case, the random allocation Bm,n is defined and
is always good.

Provided m is not too small or too large, the m and n for which good
allocations exist are easily characterised; the following lemma shows that a
simple necessary condition also is sufficient. (The exact behaviour for very
small m is complicated. The largest m such that Z(m,n) = 0 for all n is
called the Frobenius number of the set supp(w); it is a well-known, and in
general difficult, problem to compute this, see e.g. [10]. The case when m
is close to ωn (with finite ω) is essentially the same by the symmetry in
Remark 11.10.)

Lemma 13.3. Suppose that w0 > 0.
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(i) If Z(m,n) > 0, then span(w) | m and 0 6 m 6 ωn.
(ii) If ω <∞, then there exists a constant C (depending on w) such that

if span(w) | m and C 6 m 6 ωn− C, then Z(m,n) > 0.
(iii) If ω =∞, then for each C ′ <∞, there exists a constant C (depend-

ing on w and C ′) such that if span(w) | m and C 6 m 6 C ′n, then
Z(m,n) > 0.

Proof. (i): Z(m,n) > 0 if and only if m =
∑n

i=1 yi for some yi with wyi > 0,
i.e., yi ∈ supp(w). This implies 0 6 yi 6 ω and span(w) | yi for each i, and
the necessary conditions in (i) follow immediately.

(ii): We may for convenience assume that span(w) = 1, see Remark 11.9;
then, by (3.3), supp(w)\{0} is a finite set of integers with greatest common
divisor 1. Thus, by a well-known theorem by Schur, see e.g. [109, 3.15.2] or
[40, Proposition IV.2], there is a constant C1 such that every integer m > C1

can be written as a finite sum m =
∑

i yi with yi ∈ supp(w) (repetitions
are allowed); i.e. we have a good allocation of m balls in some number `(m)
boxes. Choose one such allocation for each m ∈ [C1, C1 + ω), and let C2 be
the maximum number of boxes in any of them.

If C1 6 m 6 ωn−C2ω, let a := b(m−C1)/ωc. Then m−aω ∈ [C1, C1+ω),
and has thus a good allocation in at most C2 boxes. We add a boxes with
ω balls each, and have obtained a good allocation of m balls using at most

C2 + a = C2 + b(m− C1)/ωc 6 C2 + b(ωn− C2ω − C1)/ωc 6 n
boxes. Hence we may add empty boxes and obtain a good allocation in Bm,n.
(Recall that 0 ∈ supp(w).) Thus Z(m,n) > 0 when C1 6 m 6 ωn− C2ω.

(iii): We may again assume span(w) = 1. Let K be a large integer and

consider the truncated weight sequence w(K) = (w
(K)
k ) defined by

w
(K)
k :=

{
wk, k 6 K,

0, k > K;
(13.4)

we assume that K ∈ supp(w) and that K is so large that K > C ′ + 1

and span(w(K)) = span(w) = 1. Then ω(w(K)) = K, and (ii) shows that

for some C3, if C3 6 m 6 Kn − C3, then Z(m,n; w) > Z(m,n; w(K)) > 0.
Hence, if C3 6 m 6 C ′n and Z(m,n) = 0, then Kn−C3 < m 6 C ′n 6 (K−
1)n, and thus n < C3, whence m < C ′C3. Consequently, if C ′C3 6 m 6 C ′n,
then Z(m,n) > 0. �

Remark 13.4. In the case ω = ∞, it is not always true that there is a
constant C such that Z(m,n) > 0 whenever m > C. For example, suppose
that wk = 1 when k = 0 or k = j! for some j > 0, and wk = 0 otherwise.
Then Z(m,n) = 0 when m = (n+ 1)!− 1 and n > 2.

Remark 13.5. Lemma 13.3 is easily modified for the case w0 = 0; if α :=
min{k : wk > 0} as in Remark 11.8, then the necessary condition (i) is
αn 6 m 6 ωn and span(w) | (m−αn), and again this is sufficient if m stays
away from the boundaries.
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14. Proofs of Theorems 11.4–11.7

We now prove the theorems in Section 11, which we for the reader’s
convenience repeat first.

Theorem 11.4. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n→ λ
with 0 6 λ < ω.

(i) If λ 6 ν, let τ be the unique number in [0, ρ] such that Ψ(τ) = λ.
(ii) If λ > ν, let τ := ρ.

In both cases, 0 6 τ <∞ and 0 < Φ(τ) <∞. Let

πk :=
wkτ

k

Φ(τ)
, k > 0. (11.13)

Then (πk)k>0 is a probability distribution, with expectation

µ = Ψ(τ) = min(λ, ν) (11.14)

and variance σ2 = τΨ′(τ) 6∞. Moreover, for every k > 0,

Nk(Bm,n)/n
p−→ πk. (11.15)

Theorem 11.6. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n 6 C
for some C < ω.

Define the function τ : [0,∞)→ [0,∞] by τ(x) := sup{t 6 ρ : Ψ(t) 6 x}.
Then τ(x) is the unique number in [0, ρ] such that Ψ(τ(x)) = x when x 6 ν,
and τ(x) = ρ when x > ν; furthermore, the function x 7→ τ(x) is continuous.
We have 0 6 τ(m/n) <∞ and 0 < Φ(τ(m/n)) <∞, and for every k > 0,

Nk(Bm,n)

n
− wk(τ(m/n))k

Φ(τ(m/n))

p−→ 0. (11.17)

Furthermore, for any C < ω, this holds uniformly as n→∞ for all m =
m(n) with m/n 6 C.

Theorem 11.7. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n→ λ
where 0 6 λ < ω, and let (πk)k>0 be as in Theorem 11.4. Then, for every
` > 1 and y1, . . . , y` > 0,

P(Y
(m,n)

1 = y1, . . . , Y
(m,n)
` = y`)→

∏̀
i=1

πyi . (11.18)

In other words, for every fixed `, the random variables Y1, . . . , Y` converge
jointly to independent random variables with the distribution (πk)k>0.

We begin with some lemmas. First we state and prove a version of the
local central limit theorem (for integer-valued variables) that is convenient
for our application below. We will need it for a triangular array, where the
variables we sum depend on n.
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We define the span of an integer-valued random variable to be the span
of its distribution, defined as in (3.2).

Lemma 14.1. Let ξ and ξ(1), ξ(2), . . . be integer-valued random variables

with ξ(n) d−→ ξ as n→∞, and let S
(n)
n :=

∑n
i=1 ξ

(n)
i , where ξ

(n)
i are inde-

pendent copies of ξ(n). Suppose further that ξ is non-degenerate, with span
d and finite variance σ2 > 0, and that supn E |ξ(n)|3 < ∞. If d > 1, we

assume for simplicity that d | ξ and d | ξ(n) for each n.
Let m = m(n) be a sequence of integers that are multiples of d, and

assume that E ξ(n) = m(n)/n. Then, as n→∞,

P(S(n)
n = m) =

d+ o(1)√
2πσ2n

. (14.1)

Proof. The proof uses standard arguments, see e.g. Kolchin [76, Theorem

1.4.2]; we only have to check uniformity in ξ(n) of our estimates.

If the span d > 1, we may divide ξ, ξ(n) and m by d, and reduce to the
case d = 1. Hence we assume in the proof that span(ξ) = 1.

Let ϕ(t) := E eitξ and ϕn(t) := E eitξ(n) be the characteristic functions of

ξ and ξ(n). Further, let ϕ̃n(t) := e−itm/nϕn(t) be the characteristic function

of the centred random variable ξ(n) − E ξ(n) = ξ(n) −m/n.

Then S
(n)
n has characteristic function ϕn(t)n, and thus, by the inversion

formula and a change of variables,

P(S(n)
n = m) =

1

2π

∫ π

−π
e−imtϕn(t)n dt =

1

2π

∫ π

−π
ϕ̃n(t)n dt

=
1

2π
√
n

∫ π
√
n

−π
√
n
ϕ̃n(x/

√
n)n dx

=
1

2π
√
n

∫ ∞
−∞

ϕ̃n(x/
√
n)n1

{
|x| < π

√
n
}

dx. (14.2)

Let σ2
n be the variance of ξ(n). Since E |ξ(n)|3 are uniformly bounded,

σ2
n <∞; moreover, the random variables ξ(n) are uniformly square integrable

and it follows from ξ(n) d−→ ξ that σ2
n → σ2. (See e.g. Gut [49, Theorems

5.4.2 and 5.4.9] for this standard argument.) In particular, σ2/2 6 σ2
n 6 2σ2

for all sufficiently large n; we consider in the remainder of the proof only
such n.

Since ϕ̃n(t) is the characteristic function of ξ(n)−E ξ(n) which has mean 0
and, by assumption, an absolute third moment that is uniformly bounded,
we have by a standard expansion (see e.g. [49, Theorems 4.4.1])

ϕ̃n(t) = 1− 1
2σ

2
nt

2 +O(E |ξ(n)|3|t|3) = 1− 1
2σ

2
nt

2 +O(|t|3), (14.3)

uniformly in all n and t. In particular, for any fixed real x,

ϕ̃n(x/
√
n) = 1− σ2

nx
2

2n
+O(n−3/2) = 1− σ2x2 + o(1)

2n
, (14.4)
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and thus

ϕ̃n(x/
√
n)n → e−σ

2x2/2. (14.5)

We are aiming at estimating the integral in (14.2) by dominated convergence,
so we also need a suitable bound that is uniform in n.

We write (14.3) as ∣∣∣ϕ̃n(t)− (1− 1
2σ

2
nt

2)
∣∣∣ 6 C1|t|3. (14.6)

Let δ := min{σ−1, σ2/8C1} > 0. Then, if |t| 6 δ, recalling our assumption
σ2/2 6 σ2

n 6 2σ2, we have 1− 1
2σ

2
nt

2 > 1− σ2t2 > 0 and, by (14.6),

|ϕ̃n(t)| 6 1− 1
2σ

2
nt

2 + C1|t|3 6 1− 1
4σ

2t2 + C1δt
2 6 1− 1

8σ
2t2. (14.7)

For δ 6 |t| 6 π we claim that there exists n0 and η > 0 such that if
n > n0 and δ 6 |t| 6 π, then

|ϕ̃n(t)| 6 1− η. (14.8)

In fact, if this were not true, then there would exist sequences nk > k and
tk ∈ [δ, π] (by symmetry, it suffices to consider t > 0) such that |ϕnk(tk)| =
|ϕ̃nk(tk)| > 1 − 1/k. By considering a subsequence, we may assume that

tk → t∞ as k →∞ for some t∞ ∈ [δ, π]. Since ξn
d−→ ξ, ϕnk(t) → ϕ(t)

uniformly for |t| 6 π, and thus ϕnk(tk)→ ϕ(t∞). It follows that |ϕ(t∞)| = 1
for some t∞ ∈ [δ, π], but this is impossible when span(ξ) = 1, as is well-

known (and easily seen from E eit∞(ξ−ξ′) = |ϕ(t∞)|2 = 1, where ξ′ is an
independent copy of ξ). This contradiction shows that (14.8) holds.

We can combine (14.7) and (14.8); we let c1 := min{σ2/8, η/π2} and
obtain, for n > n0,

|ϕ̃n(t)| 6 1− c1t
2 6 exp(−c1t

2), |t| 6 π,
and thus

|ϕ̃n(x/
√
n)|n 6 exp(−c1x

2), |x| 6 π
√
n.

This justifies the use of dominated convergence in (14.2), and we obtain by
(14.5)

2π
√
nP(S(n)

n = m) =

∫ ∞
−∞

ϕ̃n(x/
√
n)n1

{
|x| < π

√
n
}

dx

→
∫ ∞
−∞

e−σ
2x2/2 dx =

√
2π/σ2,

which yields (14.1). (Recall that we have assumed d = 1.) �

Remark 14.2. A simple modification of the proof shows that the result still
holds if the condition E ξ(n) = m(n)/n is relaxed to m(n) = nE ξ(n)+o(

√
n).

Furthermore, for any m = m(n), P(S
(n)
n = m) 6 1

2π

∫ π
−π |ϕ̃n(t)|n dt, and it

follows by the proof above that

P(S(n)
n = m) 6

d+ o(1)√
2πσ2n

, (14.9)
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uniformly in all m ∈ Z.
Moreover, both Lemma 14.1 and the remarks above hold, with only mi-

nor modifications in the proof, also if the condition supn E |ξ(n)|3 < ∞ is

relaxed to uniform square integrability of ξ(n). In particular, if ξ(n) = ξ, this
assumption is not needed at all; then the assumption σ2 < ∞ is the only
moment condition that we need. (This is the classical local central limit
theorem for discrete distributions, see e.g. Gnedenko and Kolmogorov [46,
§ 49] or Kolchin [76, Theorem 1.4.2].)

We use Lemma 14.1 to obtain lower bounds of the (rather weak) type
exp(o(n)) for P(Sn = m) in the case of a probability weight sequence, for
suitable m. We treat the cases ρ > 1 and ρ = 1 separately.

Lemma 14.3. Let w be a probability weight sequence with 0 < w0 < 1 and
ρ > 1. Let ξ1, ξ2, . . . be i.i.d. random variables with distribution w and let
Sn :=

∑n
i=1 ξi.

Assume that m = m(n) are integers that are multiples of d := span(w),
and that m(n)/n→ E ξ1. Then

P(Sn = m) = Z(m,n) = eo(n).

Proof. Let ξ := ξ1 and λ := E ξ = Φ′(1) = Ψ(1). Since ρ > 1, we have
ν > Ψ(1) = λ. Thus, by assumption, m/n → λ < ν, so m/n < ν for all
large n; we consider in the sequel only such n. By Lemma 3.1 we may then
define τn ∈ [0, ρ) by Ψ(τn) = m/n. Since Ψ−1 is continuous on [0, ν), and
Ψ(1) = E ξ = λ, we have

τn = Ψ−1(m/n)→ Ψ−1(λ) = 1 as n→∞. (14.10)

Let ξ(n) have the conjugate distribution

P(ξ(n) = k) =
τkn

Φ(τn)
wk, k > 0; (14.11)

by Lemma 4.2 this is a probability distribution with expectation

E ξ(n) = Ψ(τn) = m/n. (14.12)

The conditions of Lemma 14.1 are easily verified: Since τn → 1 by (14.10),

we have P(ξ(n) = k) → wk = P(ξ = k) and thus ξ(n) d−→ ξ. Furthermore,
taking any τ∗ ∈ (1, ρ) and considering only n that are so large that τn < τ∗,

E |ξ(n)|3 =

∞∑
k=0

k3 τkn
Φ(τn)

wk 6
1

Φ(0)

∞∑
k=0

k3τk∗wk <∞.

Furthermore, if d = span(ξ), then wk > 0 =⇒ d | k by (3.3); thus d | ξ and

d | ξ(n) (a.s.). Lemma 14.1 thus applies, and if w(n) denotes the distribution

of ξ(n) in (14.11), then by (11.5) and (14.1),

Z(m,n; w(n)) = P
( n∑
i=1

ξ
(n)
i = m

)
∼ d√

2πσ2n
, (14.13)
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where σ2 := Var ξ. By (11.9), we have Z(m,n; w(n)) = Φ(τn)−nτmn Z(m,n),
and thus, recalling that τn → 1 < ρ and hence Φ(τn)→ Φ(1) = 1,

P(Sn = m) = Z(m,n) = τ−mn Φ(τn)nZ(m,n; w(n))

= exp
(
−m log τn + n log Φ(τn) + logZ(m,n; w(n))

)
= exp

(
o(n)

)
. �

Lemma 14.4. Let w be a probability weight sequence with 0 < w0 < 1 and
ρ = 1. Let ξ1, ξ2, . . . be i.i.d. random variables with distribution w and let
Sn :=

∑n
i=1 ξi.

Assume that m = m(n) are integers that are multiples of d := span(w),
and that m(n)/n→ λ <∞ with λ > E ξ1. Then

P(Sn = m) = eo(n).

Proof. Let K be a large integer and consider the truncated weight sequence

w(K) = (w
(K)
k ) defined by, as in (13.4),

w
(K)
k :=

{
wk, k 6 K,

0, k > K,
(14.14)

having generating function ΦK(t) =
∑K

k=0wkt
k, and the corresponding

ΨK(t) := tΦ′K(t)/ΦK(t). We assume that K is so large that span(w(K)) =
span(w), and that K > k for some k > λ with wk > 0. (Such k > λ ex-

ists since ρ < ∞.) Thus the weight sequence w(K) has, by Lemma 3.1(v),

ν(w(K)) = ΨK(∞) = ω(w(K)) > λ. Hence, by Lemma 3.1 again, there
exists τK ∈ [0,∞) such that ΨK(τK) = λ. Thus the probability distribution

π(K) = (π
(K)
k ) defined by

π
(K)
k :=

τkK
ΦK(τK)

w
(K)
k (14.15)

has expectation λ. Since this distribution has finite support it has radius
of convergence ρK = ∞; furthermore, m/n → λ by assumption. Hence

Lemma 14.3 applies to π(K) and yields

Z(m,n;π(K)) = eo(n). (14.16)

By (11.9) and (14.15),

Z(m,n;π(K)) = ΦK(τK)−nτmKZ(m,n; w(K)). (14.17)

Moreover, Z(m,n; w) > Z(m,n; w(K)) since wk > w
(K)
k for each k. Hence,

by (14.16) and (14.17),

Z(m,n; w) > Z(m,n; w(K)) = τ−mK ΦK(τK)nZ(m,n;π(K))

= τ−mK ΦK(τK)neo(n). (14.18)

This holds for every large fixed K.
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If 0 < t < ρ = 1, then ΦK(t) → Φ(t) and Φ′K(t) → Φ′(t) as K →∞,
so ΨK(t) → Ψ(t) < Ψ(1) = E ξ1 6 λ. Hence, for large K, ΨK(t) < λ =
ΨK(τK), so τK > t. Consequently, lim infK→∞ τK > 1.

On the other hand, if t > ρ = 1, let ` := dλe+ 1 > λ, and assume K > `.
Then

ΨK(t) =

∑K
k=0 kwkt

k∑K
k=0wkt

k
>

∑K
k=` `wkt

k∑K
k=0wkt

k
= `−

∑`−1
k=0 `wkt

k

ΦK(t)
→ ` > λ, (14.19)

as K →∞, since ΦK(t) → Φ(t) = ∞. Hence, for large K, ΨK(t) > λ =
ΨK(τK), and thus τK < t. Consequently, lim supK→∞ τK 6 1.

Combining these upper and lower bounds, we have

τK → 1, as K →∞.

If we take t < 1, we thus have for large K, τK > t and hence ΦK(τK) >
ΦK(t). Thus, lim infK→∞ΦK(τK) > limK→∞ΦK(t) = Φ(t) for every t < 1,
so

lim inf
K→∞

ΦK(τK) > Φ(1) = 1.

Given any ε > 0, we may thus take K so large that τK < eε and ΦK(τK) >
e−ε. Then (14.18) yields

Z(m,n; w) > e−εm−εn+o(n) > e−εm−2εn

for large n. Since ε is arbitrary and m = O(n), this shows Z(m,n; w) >
eo(n), and the result follows since Z(m,n) 6 1 for any probability weight
sequence by (11.5). �

We next prove Theorems 11.4 and 11.6. Theorem 11.6 follows easily from
Theorem 11.4, so it may seem natural to prove Theorem 11.4 first. However,
our proof of Theorem 11.4 uses in one case Theorem 11.6 (for another case).
We will therefore first show that Theorem 11.6 follows from Theorem 11.4,
and then show Theorem 11.4.

Proof of Theorem 11.6 from Theorem 11.4. We prove that Theorem 11.4 for
some weight sequence (wk) implies Theorem 11.6 for the same weights. The
assertions about τ follow from Lemma 13.2, so we turn to (11.17).

Consider a subsequence of (m(n), n). It suffices to show that every such
subsequence has a subsubsequence such that (11.17) holds. (See e.g. [49,
Section 5.7], [65, p. 12] or [15, Theorem 2.3] for this standard argument.)

Since m/n 6 C by assumption, we can select a subsubsequence such that
m/n→ λ for some λ 6 C < ω. Then Theorem 11.4 applies and thus (along
the subsubsequence),

Nk(Bm,n)

n
− wk(τ(λ))k

Φ(τ(λ))
=
Nk(Bm,n)

n
− πk

p−→ 0. (14.20)
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Furthermore, since m/n → λ and x 7→ τ(x) is continuous, τ(m/n) → τ(λ)
(along the subsubsequence); hence

wk(τ(m/n))k

Φ(τ(m/n))
− wk(τ(λ))k

Φ(τ(λ))
→ 0. (14.21)

Combining (14.20) and (14.21), we see that (11.17) holds along the subsub-
sequence, which as said above completes the proof of (11.17).

That (11.17) holds uniformly is, in fact, automatic since we have shown
it for an arbitrary m(n) (although we stated it for emphasis): Let Xm,n

denote the left-hand side of (11.17), and let ε > 0. Choose m(n) as the
integer m ∈ [0, Cn] that maximises P(|Xm,n| > ε). Since (11.17) says that
P(|Xm(n),n| > ε)→ 0, we have supm6Cn P(|Xm,n| > ε)→ 0. �

Proof of Theorem 11.4. First, Lemma 13.2 shows that τ defined by (i) and
(ii) is well-defined and equals τ(λ) defined in Lemma 13.2; since λ < ω we
have τ <∞ and Φ(τ) <∞. Further, (13.3) yields

Ψ(τ) = min(λ, ν). (14.22)

Since τ < ∞ and Φ(τ) < ∞, πk is well-defined by (11.13); furthermore,
by Lemma 4.2 and (14.22), (πk) is a probability distribution with mean and
variance as asserted.

We now turn to proving (11.15), the main assertion. We study three cases
separately.

Case (a): τ > 0. Then π = (πk) is a probability weight sequence equivalent
to w = (wk), so we may replace (wk) by (πk) without changing Bm,n. Note
that this changes ρ and τ to ρ(π) = ρ(w)/τ and τ(π) = τ(w)/τ = 1 by
(4.4) and (4.5). We may thus assume that (wk) equals the probability weight
sequence (πk), and that ρ > τ = 1. By (14.22), then Ψ(1) = min(λ, ν).

We employ the notation of Example 11.2. Note that by (11.14),

E ξ1 = Ψ(1) = min(λ, ν) 6 λ. (14.23)

Moreover, if ρ > 1, then ν = Ψ(ρ) > Ψ(1) by Lemma 3.1, so (14.22) shows
that in this case,

E ξ1 = Ψ(1) = λ. (14.24)

The allocation (ξ1, . . . , ξn) (with a random sum Sn) consists of n i.i.d.
components, so

Nk(ξ1, . . . , ξn) =

n∑
i=1

1{ξi = k} ∼ Bi(n, πk) (14.25)

has a binomial distribution. For every k and ε > 0, we have by Chernoff’s
inequality, see e.g. [65, Theorem 2.1 or Remark 2.5],

P
(
|Nk(ξ1, . . . , ξn)− nπk| > εn

)
6 exp(−cεn), (14.26)

for some constant cε > 0 depending on ε.
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We condition on Sn = m, recalling that

Bm,n
d
=
(
(ξ1, . . . , ξn) | Sn = m

)
. (14.27)

When ρ > 1 we apply Lemma 14.3, using m/n → λ and (14.24), and
when ρ = 1 we apply Lemma 14.4, using (14.23). In both cases we obtain
P(Sn = m) = exp(o(n)) and thus by (14.27),

P
(
|Nk(Bm,n)− nπk| > εn

)
= P

(
|Nk(ξ1, . . . , ξn)− nπk| > εn | Sn = m

)
6

P
(
|Nk(ξ1, . . . , ξn)− nπk| > εn

)
P(Sn = m)

6 exp
(
−cεn+ o(n)

)
→ 0.

Since ε is arbitrary, this shows that

Nk(Bm,n)

n
− πk

p−→ 0

as asserted, which completes the proof when τ > 0.

Case (b): τ = 0 and ρ > 0. We write Nk for Nk(Bm,n). By (11.13) we

have π0 = 1 and πk = 0 for k > 0; hence, (11.15) says that N0/n
p−→ 1 and

Nk/n
p−→ 0 for k > 0.

Since τ < ρ, we are in case (i), so λ = Ψ(τ) = Ψ(0) = 0. In other words,
m/n→ 0. The result is trivial (and deterministic) in this case. We have

1

n

∞∑
k=1

Nk 6
1

n

∞∑
k=1

kNk =
m

n
→ λ = 0. (14.28)

Hence Nk/n→ 0 = πk for every k > 1. Moreover, (14.28) also implies

N0

n
=
n−

∑∞
k=1Nk

n
→ 1 = π0, (14.29)

which completes the proof when τ = 0 < ρ.

Case (c): ρ = 0. We write again Nk for Nk(Bm,n), recalling that this is
a random variable. In this case ν = 0 and τ = ρ = 0 for every λ > 0. By
(11.13) we thus have π0 = 1 and πk = 0 for k > 0; hence, as in case (b), we

have to show that N0/n
p−→ 1 and Nk/n

p−→ 0 for k > 0. By assumption,
m/n converges, so the sequence m/n is bounded; let C be a large constant
such that m/n 6 C. Further, let K be a large integer; we assume K > 2C
and (for simplicity) wK > 0. (Note that such K exist since ω = ∞ when
ρ = 0.)

We say that a box is small if it contains at most K balls, and large
otherwise. Let N ′ :=

∑K
0 Nk be the number of small boxes and M ′ :=∑K

0 kNk the number of balls in them. Note first that by our assumptions,
m/n 6 C < K/2. Hence,

m > m−M ′ =
∞∑
K+1

kNk > K
∞∑
K+1

Nk = K(n−N ′) > 2m

n
(n−N ′). (14.30)
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Thus, n−N ′ 6 n/2 and N ′ > n/2; in particular N ′ →∞. Moreover,

0 6
M ′

N ′
6

m

n/2
6 2C < K. (14.31)

The weight w(y) in (11.2) factorizes as the product over the small boxes
times the product over the large boxes. Thus, if we condition on M ′ and N ′,
and moreover on the set of the N ′ boxes that are small, then the allocations
of the small boxes and the large boxes are independent; moreover, the allo-
cations to the small boxes form a random allocation of the type BM ′,N ′ for

the truncated weight sequence w(K) given by (13.4) above. By assumption,

wK > 0, and thus the truncated sequence has ω(K) := ω(w(K)) = K.

The truncated weight sequence w(K) has a polynomial generating function
Φ(K)(t) =

∑K
0 wkt

k with an infinite radius of convergence ρ(K) = ∞. We
have already proved Theorem 11.4 in this case, and thus Theorem 11.6
also holds in this case, by the proof above. Applying Theorem 11.6 to
the truncated weight sequence and the allocations of small boxes we see
that there exists a continuous function τK : [0,K) → [0,∞) such that,
conditioned on (M ′, N ′),

Nk

N ′
− wk(τK(M ′/N ′))k

Φ(K)
(
τK(M ′/N ′)

) p−→ 0, k 6 K. (14.32)

Moreover, (14.32) holds uniformly in all (M ′, N ′) by Theorem 11.6 and
(14.31). Hence, denoting the left-hand side of (14.32) by X, we have for
every ε > 0 P(|X| > ε |M ′, N ′) 6 δ(n), for some function δ(n)→ 0. Taking
the expectation, it follows that also P(|X| > ε) 6 δ(n)→ 0, and thus (14.32)
holds also unconditionally. Thus,

Nk

N ′
=

wk(τK(M ′/N ′))k

Φ(K)
(
τK(M ′/N ′)

) + op(1), k 6 K. (14.33)

By (14.31), M ′/N ′ 6 2C, and thus, using Lemma 13.2 and 2C < K =

ω(w(K)), τK(M ′/N ′) 6 τK(2C) <∞. Hence, with C1 := τK(2C),

w0 6 Φ(K)(τk(M
′/N ′)) 6 Φ(K)(C1) = C2,

say. Taking k = 0 in (14.33) we now find

N0

N ′
=

w0

Φ(K)
(
τK(M ′/N ′)

) + op(1) >
w0

C2
+ op(1). (14.34)

Since N ′ > n/2 this shows that there exists c1 > 0 (for example c1 :=
w0/(3C2)) such that w.h.p.

N0

n
> c1. (14.35)

It follows further from (14.34) that we can invert (14.33) for k = 0 (since
x 7→ x−1 is continuous for x > 0); thus

N ′

N0
=

Φ(K)
(
τK(M ′/N ′)

)
w0

+ op(1). (14.36)
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Multiplying (14.33) and (14.36) we find the simpler relation

Nk

N0
=
wk
w0

(τK(M ′/N ′))k + op(1), k 6 K. (14.37)

Let ` := min{k > 0 : wk > 0} be the smallest non-zero index with positive
weight, and define a random variable by

τ∗ :=

(
w0N`

w`N0

)1/`

. (14.38)

It follows from (14.37), with k = `, that τ∗ = τK(M ′/N ′) + op(1). Conse-
quently, (14.37) yields

Nk

N0
=
wk
w0
τk∗ + op(1), k 6 K. (14.39)

We have so far worked with a fixed, large K. However, the definition
(14.38) does not depend on the choice of K, and since K may be chosen
arbitrarily large, we see that, in fact, (14.39) holds for every k > 0, with the
same (random) τ∗.

Fix again K > 0, and sum (14.39) for k 6 K. This yields

n

N0
>

K∑
0

Nk

N0
=

K∑
0

wk
w0
τk∗ + op(1) =

Φ(K)(τ∗)

w0
+ op(1). (14.40)

Recall that N0/n > c1 w.h.p. by (14.35). We thus have from (14.40)

Φ(K)(τ∗) 6 w0
n

N0
+ op(1) 6 w0/c1 + 1 (14.41)

w.h.p. By assumption, ρ = 0, so Φ(t) =∞ for every t > 0. Hence, for every

ε > 0 we have Φ(K)(ε) → Φ(ε) = ∞ as K → ∞, so we may choose K with

Φ(K)(ε) > w0/c1 + 1. Then (14.41) shows that τ∗ < ε whp; since ε > 0 is
arbitrary, this says that

τ∗
p−→ 0.

We substitute this in (14.39), and obtain Nk/N0
p−→ 0 for every k > 1;

hence also
Nk/n

p−→ 0, k > 1. (14.42)

Finally, we return to (14.30), and see that

K(n−N ′) 6 m 6 Cn. (14.43)

Let ε > 0 and choose K > C/ε; then (14.43) yields n − N ′ < εn and thus
N ′ > (1− ε)n. Further, by (14.42),

N0 = N ′ −
K∑
1

Nk = N ′ + op(n) > (1− ε)n+ op(n),

so w.h.p. N0 > (1− 2ε)n. This shows that N0/n
p−→ 1, which together with

(14.42) completes the proof in the case ρ = 0. �

This completes the proof of Theorem 11.4, and thus also of Theorem 11.6.
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Proof of Theorem 11.7. Conditioned on the numbers Nk = Nk(Bm,n), k =
0, 1, . . . , the numbers Y1, . . . , Yn are obtain by placing N0 0’s, N1 1’s, . . . ,
in (uniformly) random order; thus the conditional probability is

P(Y1 = y1, . . . , Y` = y` | N0, N1, . . . ) =
∏̀
i=1

Nyi − ci
n− i+ 1

=
∏̀
i=1

Nyi +O(1)

n+O(1)
,

(14.44)
where ci := |{j < i : yj = yi}|. By Theorem 11.4, this product converges

in probability to
∏`
i=1 πyi as n→∞, and the result follows by taking the

expectation (using dominated convergence). �

15. Trees and balls-in-boxes

The proofs of the results for random trees are based on a connection
with the balls-in-boxes model. This connection is well-known, see e.g. Otter
[93], Dwass [36], Kolchin [76], Pitman [99], but for completeness we give full
proofs.

We consider a fixed weight sequence w = (wk) and the corresponding
random trees Tn and random allocations Bm,n; we write as above Bm,n =

(Y1, . . . , Yn) = (Y
(m,n)

1 , . . . , Y
(m,n)
n ).

We begin with some deterministic considerations. The idea is to regard
the outdegrees of the nodes of a tree T as an allocation; we regard the nodes
as both balls and boxes, and if v is a node, we put the children of v as balls
in box v. There are two complications, which will be dealt with in detail
below: we have to specify an ordering of the nodes and we will not obtain
all allocations.

Let T be a finite tree, with |T | = n. Take the nodes in some prescribed
order v1, . . . , vn, for definiteness we use the depth-first order (this is the
lexicographic order on V∞), and list the outdegrees as d1 = d+(v1), . . . , dn =
d+(vn). We call this the degree sequence of T and denote it by Λ(T ) :=
(d1, . . . , dn). Note that the tree T can be reconstructed from (d1, . . . , dn),
so T is determined by Λ(T ) = (d1, . . . , dn).

By (2.2), d1 + · · ·+dn = n−1, so (d1, . . . , dn) can be seen as an allocation
of n− 1 balls in n boxes: Λ(T ) = (d1, . . . , dn) ∈ Bn−1,n. Consequently, Λ is
an injective map Tn → Bn−1,n. Note also that Λ preserves the weight:

w(T ) = w(Λ(T )) (15.1)

by the definitions (2.3) and (11.2). However, not every allocation corre-
sponds to a tree, so Λ is not onto. We begin by characterizing the image
Λ(Tn). We use a simple and well-known extension of (2.2).

Lemma 15.1. Let T be a tree and T ′ a subtree with the same root. Let
∂T ′ := {v ∈ V (T ) \ V (T ′) : v ∼ w for some w ∈ T ′} be the set of nodes
outside T ′ with a parent inside it. Then,∑

v∈T ′
d+
T (v) = |T ′|+ |∂T ′| − 1. (15.2)
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Proof. The set of children of the nodes in T ′ consists of
(
V (T ′) \ {o}

)
∪

∂T ′. �

Lemma 15.2. A sequence (d1, . . . , dn) ∈ Nn0 is the degree sequence of a tree
T ∈ Tn if and only if

k∑
i=1

di > k, 1 6 k < n, (15.3)

n∑
i=1

di = n− 1. (15.4)

Of course, (15.4) is just the requirement that (d1, . . . , dn) ∈ Bn−1,n.

Proof. For any k 6 n, the nodes v1, . . . , vk form a subtree Tk of T , and
Lemma 15.1 yields

k∑
i=1

d+
T (vi) = |∂Tk|+ k − 1, (15.5)

which yields (15.3) since |∂Tk| > 1 when k < n.
Conversely, if (d1, . . . , dn) satisfies (15.3)–(15.4), a tree with degree se-

quence (d1, . . . , dn) is easily constructed. (We construct the tree by assign-
ing degrees in depth-first order. First, v1 is the root and gets d1 children.
Next, v2 is the first child of the root and gets d2 children. If d2 > 0, then
v3 is the first child of v2, but if d2 = 0, we backtrack and let v3 be the
second child of v1; in any case, v3 gets d3 children, and so on. The point
is that (15.3) assures that the construction will not stop before we have n
nodes.) �

The amazing fact is that for any allocation in Bn−1,n, exactly one of
its cyclic shifts satisfies (15.3). (In particular, exactly 1/n of all allocations
satisfy (15.3).) To see this, it is simplest to consider the sequence (di−1)ni=1;
we state a more general result that we will use later, see e.g. Takács [105],
Wendel [108], Pitman [99].

Lemma 15.3. Let x1, . . . , xn ∈ {−1, 0, 1, . . . } with x1 + · · ·+ xn = −r 6 0.

For j ∈ Z, let x
(j)
1 , . . . , x

(j)
n be the cyclic shift defined by x

(j)
i := xi+j with the

index taken modulo n, and consider the corresponding partial sums S
(j)
k :=∑k

i=1 x
(j)
i , k = 0, . . . , n. Then there are exactly r values of j ∈ {1, . . . , n}

such that

S
(j)
k > −r, 0 6 k < n. (15.6)

Note that S
(j)
0 = 0 and S

(j)
n = −r for every i. The condition (15.6) thus

says that the walk S
(j)
0 , . . . , S

(j)
n first reaches −r at time n. The case r = 0

is trivial: since S
(j)
0 = 0, (15.6) then is never satisfied for k = 0.
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Proof. We extend the definition of xj for all j ∈ Z by taking the index
modulo n; thus xj+n = xj . We further define Sk for all k ∈ Z by S0 = 0 and

Sk−Sk−1 = xk, k ∈ Z; thus Sk =
∑k

i=1 xi when k > 0 and Sk = −
∑0

i=k+1 xi

when k < 0. Then Sk+n = Sk − r for all k ∈ Z, and S
(j)
k = Sk+j − Sj .

Let further
Mk := min

−∞<i6k
Si = min

k−n<i6k
Si;

note that Mk is finite and Mk+n = Mk − r. Moreover, Mk+1 6 Mk and
Mk+1 −Mk is 0 or −1, since Sk+1 = Sk + xk+1 > Sk − 1. We have

S
(j)
k > −r, for 0 6 k < n ⇐⇒ Sk+j − Sj > −r, for 0 6 k < n

⇐⇒ Sk+j + r > Sj , for 0 6 k < n

⇐⇒ Sk+j−n > Sj , for 0 6 k < n

⇐⇒ Si > Sj , for j − n 6 i < j

⇐⇒ Mj−1 > Sj

⇐⇒ Mj−1 > Mj .

In each interval of n integers, M decreases by r in steps of 1, so there are
exactly r steps down, which completes the proof. �

Corollary 15.4. If (d1, . . . , dn) ∈ Bn−1,n, then exactly one of the n cyclic
shifts of (d1, . . . , dn) is the degree sequence Λ(T ) of a tree T ∈ Tn.

Proof. Let xi := di− 1. Then
∑k

i=1 xi =
∑k

i=1 di− k, so (15.3) is equivalent

to
∑k

i=1 xi > 0 for k < n, which for the shifted sequence is (15.6) with r = 1;
further,

∑n
i=1 xi = n− 1−n = −1. Hence the result follows by Lemma 15.3

with r = 1. �

We now use our fixed weight sequence (wk). We begin with the partition
function for simply generated trees. This was proved (in the probability
weight sequence case, which is no real loss of generality) by Otter [93], see
also Dwass [36]; an algebraic proof uses the Lagrange inversion formula
[79], see e.g. Boyd [19] and Drmota [33, Theorem 2.11]; Kolchin [76] gives a
different proof by induction. See also Pitman [99] where the relation between
different approaches is discussed.

Theorem 15.5.

Zn =
1

n
Z(n− 1, n).

Proof. By Corollary 15.4, the mapping (T, j) 7→ Λ(T )(j), where (j) denotes a
cyclic shift as in Lemma 15.3, is a bijection of Tn×{1, . . . , n} → Bn−1,n. Con-
sequently, by (11.4), (15.1) and (2.5), since the weight w(y) is not changed
by cyclic shifts,

Z(n− 1, n) =
∑
T∈Tn

n∑
j=1

w
(
Λ(T )(j)

)
=
∑
T∈Tn

nw(Λ(T )) =
∑
T∈Tn

nw(T ) = nZn.

�
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Corollary 15.6. Suppose that w0 > 0 and ω(w) > 2, with d := span(w)
> 1. If Zn > 0, then n ≡ 1 (mod d). Conversely, for some n0 (depending
on w), if n ≡ 1 (mod d) and n > n0, then Zn > 0.

Proof. By Theorem 15.5, Zn > 0 ⇐⇒ Z(n− 1, n) > 0. The result follows
from Lemma 13.3. �

In the same way we can compute various probabilities for the random tree
Tn. We begin with the root degree d+(o); note that for any tree T , v1 is the
root o, so d+(o) = d+(v1) = d1.

Lemma 15.7. For any d > 0 and n > 2,

P(d+
Tn(o) = d) =

n

n− 1
dP(Y

(n−1,n)
1 = d). (15.7)

Thus, the distribution of the root degree d+
Tn(o) of Tn is the size-biased dis-

tribution of Y
(n−1,n)

1 .

Lemma 15.7 is a special case of Lemma 15.9 below, but we prefer to study
this simpler case first because it shows the main ideas in the proof without
the complications (notational and others) in the more general version.

Proof. Consider an allocation (d1, . . . , dn) ∈ Bn−1,n; if d1 = d, then d2, . . . , dn
is an allocation in Bn−1−d,n−1. Furthermore, by Lemma 15.2, an allocation
(d2, . . . , dn) ∈ Bn−1−d,n−1 is obtained by dropping the first term from the
degree sequence of a tree T ∈ Tn with d1 = d if and only if

d+
k∑
i=2

di > k, 1 6 k < n, (15.8)

or, equivalently,

k∑
i=1

di+1 > k + 1− d, 0 6 k < n− 1.

We use Lemma 15.3 again, now with xi = di+1 − 1 and r = d and see
that for any (d2, . . . , dn) ∈ Bn−1−d,n−1, exactly r = d of the n − 1 cyclic
shifts of d2, . . . , dn satisfy (15.8). Thus, by considering all trees T with
d1 = d and the n − 1 cyclic shifts of d2, . . . , dn, we obtain each allocation
(d1, . . . , dn) ∈ Bn−1,n with d1 = d exactly r = d times. (It is possible that
some shifts of (d2, . . . , dn) coincide, but this does not matter.) Consequently,
using (2.4) and (11.3), and recalling d+(o) = d1,

(n− 1)Zn P(d+
Tn(o) = d) = (n− 1)

∑
T∈Tn: d1(T )=d

w(T )

= d
∑

(d1,...,dn)∈Bn−1,n: d1=d

w
(
(d1, . . . , dn)

)
= dZ(n− 1, n)P(Y1 = d).

This yields the result by Theorem 15.5. �
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Remark 15.8. More explicitly we have

Z(n− 1, n)P(Y
(n−1,n)

1 = d) =
∑

(d1,...,dn)∈Bn−1,n: d1=d

w
(
(d1, . . . , dn)

)
=

∑
(d2,...,dn)∈Bn−1−d,n−1

wdw
(
(d2, . . . , dn)

)
= wdZ(n− 1− d, n− 1),

and thus

P(d+
Tn(o) = d) = dwd

n

n− 1
· Z(n− 1− d, n− 1)

Z(n− 1, n)
. (15.9)

Proof of Theorem 7.10. We have P(Y
(n−1,n)

1 = d) → πd by Theorem 11.7
(with m = n− 1 and λ = 1), and (7.9) follows from Lemma 15.7.

The space N0 is compact, so every sequence of random variables in it is
tight, and therefore has a subsequence converging in distribution, see [15,

Section 6]. It follows from (7.9) that if d+
Tn(o)

d−→ X along a subsequence,
then P(X = k) = kπk for every k ∈ N0, and thus P(X = ∞) = 1 −∑∞

k=0 kπk = 1−µ. Consequently, X
d
= ξ̂ so d+

Tn(o)
d−→ ξ̂ for every convergent

subsequence, which means that the entire sequence converges to ξ̂, see [15,
Theorem 2.3]. �

This proves the part of Theorem 7.1 that describes the root degree. It
remains to consider all other nodes. This will be done by similar arguments.
We begin with a generalization of Lemma 15.7.

Lemma 15.9. Let T ′ ∈ Tf be a fixed finite subtree of the Ulam–Harris tree
U∞, let ` := |T ′| be its size and let v1, . . . , v` be its nodes in depth-first order,
and let d′1, . . . , d

′
` be its degree sequence. (I.e., d′i = d+

T ′(vi).) Suppose that
d1, . . . , d` ∈ N0 and that di > d′i for every i. Then, for every n > `,

P
(
d+
Tn(vi) = di for i = 1, . . . , `

)
=

(∑̀
i=1

di − `+ 1

)
n

n− `
P
(
Y

(n−1,n)
i = di for i = 1, . . . `

)
. (15.10)

Note that d+
T (vi) > d′i for i = 1, . . . , ` implies that T ⊃ T ′.

Proof. We have earlier used the depth-first order of the nodes to define the
degree sequence, but many other orders could be used. In this proof, we
consider only trees T that contain the given T ′ as a subtree, and then we
choose the order which first takes the nodes of T ′ in depth-first order (this
is v1, . . . , v`), and then the remaining nodes of T in depth-first order; let
Λ′(T ) be the degree sequence in this order.

Let An be the set of trees T ∈ Tn with d+
T (vi) = di for all i (which

implies T ⊃ T ′). If T ∈ An, then the degree sequence Λ′(T ) thus begins
with the given d1, . . . , d`; furthermore, it satifies (15.3)–(15.4). Conversely,
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every sequence beginning with the given d1, . . . , d` that satifies (15.3)–(15.4)
is the degree sequence Λ′(T ) of a unique tree in An. Note also that (15.3) is

automatically satisfied for k < `, since then di > d′i for i 6 k and
∑k

i=1 d
′
i > k

by Lemma 15.2 applied to T ′.
LetD := d1+· · ·+d`. Consider a sequence (d1, . . . , dn) ∈ Bn−1,n beginning

with the given d1, . . . , d`, and let xi := d`+i − 1, for i = 1, . . . , n − `. Then
(d1, . . . , dn) satisfies (15.3) if and only if

D +
k∑
i=1

(xi + 1) > `+ k

for k = 0, . . . , n− `− 1, which is equivalent to

k∑
i=1

xi > −(D − `), 0 6 k < n− `.

Furthermore,

n−∑̀
i=1

xi =

n∑
`+1

di − (n− `) = (n− 1−D)− (n− `) = −(D − `+ 1).

Lemma 15.3 with r = D − `+ 1 thus shows that of the n− ` cyclic permu-
tations of d`+1, . . . , dn, exactly D− `+ 1 yield a degree sequence Λ′(T ) of a
tree T ∈ An. In other words, if we take the degree sequences Λ′(T ) for all
trees T ∈ An and make these n − ` permutations of each of them, then we
obtain every allocation y = (y1, . . . , yn) ∈ Bn−1,n with yi = di, i = 1, . . . , `,
exactly D − `+ 1 times each. Consequently,

(n− `)Zn P(Tn ∈ An) = (n− `)
∑
T∈An

w(T ) =
∑
T∈An

(n− `)w(Λ′(T ))

=
∑

y∈Bn−1,n: yi=di for i6`

(D − `+ 1)w(y)

= (D − `+ 1)Z(n− 1, n)P(Yi = di for i 6 `).

The result follows by Theorem 15.5. �

Remark 15.10. Arguing as in Remark 15.8, we obtain from Lemma 15.9

the explicit formula, generalizing (15.9), with D :=
∑`

i=1 di and other nota-
tions as above,

P
(
d+
Tn(vi) = di for i = 1, . . . , `

)
=

n

n− `
(D − `+ 1)

wd1 · · ·wd`Z(n−D − 1, n− `)
Z(n− 1, n)

. (15.11)

Remark 15.11. Note that Lemma 15.9 (or (15.11)) shows that the proba-
bility remains exactly the same if we permute d1, . . . , d`, provided that the
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permuted sequence (dσ(i)) still is allowed, i.e., dσ(i) > d′i for all i 6 `. How-
ever, if the latter condition fails for some i, then the probability typically
becomes 0. (This is an interesting case of a symmetry that is not complete.)

For example, considering only the root o and its first child 1, we have

P(d+
Tn(o) = d and d+

Tn(1) = d′) = P(d+
Tn(o) = d′ and d+

Tn(1) = d)

whenever d, d′ > 1; however, if, say, d > 1 and d′ = 0, then the right-hand
side is 0 while the left-hand side in general is not.

Remark 15.12. Lemma 15.9 extends with minor modifications (mainly
notational) to arbitrary finite rooted subtrees T ′ of U∞ (not necessarily
satisfying (6.1)). We omit the details.

16. Proof of Theorem 7.1

For convenience, we first repeat the theorem.

Theorem 7.1. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 2.

(i) If ν > 1, let τ be the unique number in [0, ρ] such that Ψ(τ) = 1.
(ii) If ν < 1, let τ := ρ.

In both cases, 0 6 τ <∞ and 0 < Φ(τ) <∞. Let

πk :=
τkwk
Φ(τ)

, k > 0; (7.1)

then (πk)k>0 is a probability distribution, with expectation

µ = Ψ(τ) = min(ν, 1) 6 1 (7.2)

and variance σ2 = τΨ′(τ) 6 ∞. Let T̂ be the infinite modified Galton–
Watson tree constructed in Section 5 for the distribution (πk)k>0. Then

Tn
d−→ T̂ as n→∞, in the topology defined in Section 6.

Furthermore, in case (i), µ = 1 (the critical case) and T̂ is locally finite

with an infinite spine; in case (ii) µ = ν < 1 (the subcritical case) and T̂
has a finite spine ending with an explosion.

Proof. First, as in the proof of Theorem 11.4, Lemma 13.2 shows that τ de-
fined by (i) and (ii) is well-defined and equals τ(1) defined in Lemma 13.2;
since 1 < 2 6 ω we have τ < ∞ and Φ(τ) < ∞. Further, (13.3) yields
Ψ(τ) = min(1, ν). Hence, by Lemma 4.2, (πk) is a probability distribution
with mean and variance as asserted. (This is a special case of the corre-
sponding claims in Theorem 11.4, with λ = 1. We have λ = 1 here since we
relate the random trees to allocations with m = n− 1, and thus m/n→ 1.)

The claims in the final paragraph are obvious from (7.2) and the con-
struction in Section 5.

We turn to the main assertion, Tn
d−→ T̂ . Since T is a compact metric

space, any sequence of random trees in T is tight, and has thus a convergent
subsequence. (See e.g. [15, Section 6].) In particular, this holds for Tn.
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Consider a limiting random tree T in T such that Tn
d−→ T along some

subsequence. We will show that then T d
= T̂ , regardless of the subsequence;

this implies Tn
d−→ T̂ for the full sequence, which then completes the proof.

We have defined T in Section 6 such that T ⊂ NV∞0 using the embedding

T 7→ (d+
T (v))v∈V∞ . In order to show T d

= T̂ , it thus suffices to show that the

distributions agree on cylinder sets, i.e., that
(
d+(v1), . . . , d+(v`)

)
∈ N`0 has

the same distribution for T and T̂ , for any finite set V = {v1, . . . , v`} ⊂ V∞.

Since N`0 is a countable set, this is equivalent to

P
(
d+
T (v1) = d1, . . . , d

+
T (v`) = d`

)
= P

(
d+

T̂
(v1) = d1, . . . , d

+

T̂
(v`) = d`

)
,

(16.1)
for any finite set V = {v1, . . . , v`} ⊂ V∞ and any d1, . . . , d` ∈ N0.

It thus suffices to show (16.1). Furthermore, given any finite set V ⊂ V∞,
we may enlarge it to a finite set V satisfying (6.2)–(6.4), i.e., a set that is
the node set of some finite tree in Tf . It thus suffices to show (16.1) for
V = V (T ′) with T ′ ∈ Tf .

We make one more reduction. Suppose that V = V (T ′) with T ′ ∈ Tf

and that (16.1) contains a condition d+(vi) = di with di < d+
T ′(vi). Let

v := vi and let u be the last child of v in T ′; thus (recalling the notation in
Section 6) u = vj for some integer j = d+

T ′(v) > di. By (6.5), any tree T ∈ T

with d+
T (v) = di has d+

T (u) = 0, and further (e.g. by (6.5) and induction)

d+
T (s) = 0 for every descendant s of u. Thus, letting T ′u denote the subtree

of T ′ rooted at u, for any s ∈ T ′u, the event {d+

T̂
(v) = di and d+

T̂
(s) > 0}

is impossible and has probability 0; furthermore, the same holds for T ,
i.e., P

(
d+
T (v) = di and d+

T (s) > 0
)

= 0. Consequently, if (16.1) contains

a condition d+(vj) = dj with vj ∈ T ′u and dj > 0, then both sides are
trivially 0. On the other hand, if dj = 0 for all vj ∈ T ′u, then the conditions
d+(vj) = dj are redundant in (16.1) and may be deleted, so we may replace
T ′ by the smaller tree with T ′u removed. Repeating this pruning, if necessary,
we see that it suffices to show (16.1) for V = V (T ′) when T ′ ∈ Tf is a finite
tree and di > d

+
T ′(vi) for every i.

Recall that di in (16.1) may be infinite. We study three different cases
separately.

Case (a): Every di <∞. This is the case treated in Lemma 15.9; we take
the limit as n→∞ in (15.10) and obtain by Theorem 11.7 (with m = n− 1

and λ = 1 < ω(w)), letting again D :=
∑`

i=1 di,

P
(
d+
Tn(vi) = di for i = 1, . . . , `

)
→ (D − `+ 1)

∏̀
i=1

πdi .
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Since we have assumed Tn
d−→ T along a subsequence, this yields

P
(
d+
T (vi) = di for i = 1, . . . , `

)
= (D − `+ 1)

∏̀
i=1

πdi . (16.2)

Now consider the modified Galton–Watson tree T̂ . (Recall its construc-

tion in Section 5.) If the tree T̂ has d+

T̂
(vi) = di < ∞ for all vi ∈ T ′, then

the spine has to extend outside T ′. The first point on the spine outside T ′

is a node in ∂T ′ (regarding T ′ as a subtree of T̂ ). The condition d+

T̂
(vi) = di

for vi ∈ T ′ determines the boundary ∂T ′ of T ′ in T̂ , which thus not depend

on T̂ , and Lemma 15.1 shows that |∂T ′| = D − `+ 1.

Fix a node u ∈ ∂T ′, and consider the event Eu that the spine of T̂ passes
through u and that d+

T̂
(vi) = di for i = 1, . . . , `. The event Eu thus specifies

the nodes in T ′ that are special in the construction of T̂ (viz. the nodes on the
path from o to u), and for each special node it specifies which of its children
will be special; furthermore it specifies the number of children for each node
in T ′, special or not. Recall that the probability that a special node has
d < ∞ children, with a given one of them being special, is πd, just as the
probability that a normal node has d children. Thus, by independence, for

every u ∈ ∂T ′, P(Eu) =
∏`
i=1 πdi . This probability thus does not depend on

u, so summing over the D − `+ 1 nodes u ∈ ∂T ′ we obtain

P
(
d+

T̂
(vi) = di for i = 1, . . . , `

)
=
∑
u∈∂T ′

P(Eu) = (D − `+ 1)
∏̀
i=1

πdi ,

which together with (16.2) shows (16.1) in this case. (Cf. Remark 5.7 for a
similar argument.)

Case (b): Exactly one di =∞. Suppose that dj =∞ and di <∞ for i 6= j.
Define, for 0 6 k 6∞,

Ak := {T ∈ T : d+
T (vi) = di for i 6= j and d+

T (vj) = k}.

We thus want to show P(T ∈ A∞) = P(T̂ ∈ A∞). We define further

A>K :=
⋃

K6k6∞
Ak,

and note that since Tn
d−→ T (along a subsequence), we have (along the

subsequence), for any finite K,

P(Tn ∈ A>K)→ P(T ∈ A>K). (16.3)

We define also (for finite k) the analogous

Bk := {(y1, . . . , yn) ∈ Bn−1,n : yj = k and yi = di for i 6 ` with i 6= j}.
Then Lemma 15.9 can be written, with D′ :=

∑
i 6=j di, for k <∞,

P(Tn ∈ Ak) = (k +D′ − `+ 1)
n

n− `
P(Bn−1,n ∈ Bk). (16.4)
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Consider, for simplicity, k > k0 := maxi 6=j di. Then (14.44) shows that,
with Ni = Ni(Bn−1,n),

P(Bn−1,n ∈ Bk) = EP(Bn−1,n ∈ Bk | N0, N1, . . . ) = E
(
Nk

n

∏
i 6=j

Ndi +O(1)

n+O(1)

)

= E
(
Nk

n

∏
i 6=j

Ndi

n
+O

(Nk

n2

))
.

(The implicit constants in the O’s in this proof may depend on ` and
d1, . . . , d`, but not on n or k.) Consequently, by (16.4),

P(Tn ∈ Ak) =
(
k +O(1)

)(
(1 +O(n−1)

)
E
(
Nk

n

∏
i 6=j

Ndi

n
+O

(Nk

n2

))

=
(
1 +O(k−1)

)
E
(
kNk

n

∏
i 6=j

Ndi

n

)
+O

(
E
(kNk

n2

))
.

Summing over k > K, we obtain for any K > k0, using
∑∞

k=0 kNk = n− 1
for any allocation Bn−1,n,

P(Tn ∈ A>K) =
∞∑
k=K

P(Tn ∈ Ak)

=
(
1 +O(K−1)

)
E
(∑

k>K kNk

n

∏
i 6=j

Ndi

n

)
+O

(
E
(∑

k>K kNk

n2

))

=
(
1 +O(K−1)

)
E
(
n− 1−

∑
k<K kNk

n

∏
i 6=j

Ndi

n

)
+O(n−1).

(16.5)

By Theorem 11.4, for any fixed K, as n→∞,

n− 1−
∑

k<K kNk

n

∏
i 6=j

Ndi

n

p−→
(
1−

∑
k<K

kπk
)∏
i 6=j

πdi .

By dominated convergence, the expectation converges to the same limit, and
thus (16.3) and (16.5) yield, for K > k0,

P(T ∈ A>K) =
(
1 +O(K−1)

)(
1−

∑
k<K

kπk

)∏
i 6=j

πdi . (16.6)

Finally, let K →∞ to obtain

P(T ∈ A∞) =
(

1−
∑
k<∞

kπk

)∏
i 6=j

πdi = (1− µ)
∏
i 6=j

πdi . (16.7)

Now consider T̂ . If d+

T̂
(vj) = dj = ∞, then the spine ends with an

explosion at vj . This fixes the spine, and the event that d+

T̂
(vi) = di for

i 6= j then means, just as in case (a) when we considered a specific Eu, that
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we have specified the number of children to be di for these nodes, and for
the special nodes (except vj) we have also specified which child is special.
The probability of this is πdi for each i 6= j, and the probability that the
special node vj has an infinite number of children is, by (5.2), 1−µ. Hence,
by independence,

P(T̂ ∈ A∞) = (1− µ)
∏
i 6=j

πdi , (16.8)

which together with (16.7) shows P(T ∈ A∞) = P(T̂ ∈ A∞), which is (16.1)
in this case.

Case (c): More than one di = ∞. By the definition of the modified

Galton–Watson tree T̂ , there is at most one node with infinite degree, so in
this case,

P
(
d+

T̂
(vi) = di for i = 1, . . . , `

)
= 0.

This means that the sum of these probabilities for all sequences (d1, . . . , dn)
with at most one infinite value is 1. But we have shown that for such
sequences, the probability is the same for T as for T̂ , so the probabilities
for T for these sequences also sum up to 1. Consequently, if more than one
di =∞, then

P
(
d+
T (vi) = di for i = 1, . . . , `

)
= 0

too, which shows (16.1) in this case.
This shows that (16.1) holds for any v1, . . . , vm such that {v1, . . . , vm} =

V (T ′) where T ′ ∈ Tf is a finite tree and (d1, . . . , dn) is any sequence in Nm0
with di > d+

T ′(vi) for every i. As discussed above, this implies (16.1) in full

generality and thus T d
= T̂ , which shows that Tn

d−→ T̂ . �

17. Proofs of Theorems 7.11 and 7.12

We begin by stating another version of the correspondence between simply
generated trees and the balls-in-boxes model.

Lemma 17.1. We may couple Tn and Bn−1,n such that the degree sequence
Λ(Tn) is a cyclic shift of Bn−1,n, and, conversely, Bn−1,n is a uniformly
random cyclic shift of Λ(Tn).

Proof. Let Bn−1,n = (Y1, . . . , Yn) and let (Yσ(1), . . . , Yσ(n)) be the unique
cyclic shift of (Y1, . . . , Yn) that is the degree sequence of a tree in Tn, see

Corollary 15.4. Then (Yσ(1), . . . , Yσ(n))
d
= Λ(Tn), as a consequence of Corol-

lary 15.4 and the invariance of the weight w(Y1, . . . , Yn) under cyclic shifts.
Consequently, we may couple Bn−1,n and Tn such that (Yσ(1), . . . , Yσ(n)) =
Λ(Tn), and the result follows. �

Proof of Theorem 7.11. We use the coupling in Lemma 17.1. Then Nd in
Theorem 7.11 equals Nd(Bn−1,n) in Theorem 11.4, and thus (7.12) follows
by (11.15).
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We obtain (7.11) as a simple consequence of (7.12), using P(d+
Tn(v) =

d | Nd) = Nd/n and thus P(d+
Tn(v) = d) = ENd/n, cf. the proof of Theo-

rem 11.7. Alternatively, we can arrange so that d+
Tn(v) = Y1, and the result

then follows by Theorem 11.7. �

Proof of Theorem 7.12. We use again the coupling in Lemma 17.1. Let T be
a fixed tree of size ` and let its degree sequence be (d̄1, . . . , d̄`). Recall that
we have defined the degree sequence using depth-first search. It follows that
if a tree has degree sequence (d1, . . . , dn) and a node v is visited as node vj
in the depth-first search, then the subtree rooted at v has degree sequence
(dj , . . . , dk), where we stop when this is a degree sequence of a tree, i.e.,
when it satisfies the condition in Lemma 15.2. In particular, the subtree
rooted at v equals T if and only if (dj , . . . , dj+`−1) = (d̄1, . . . , d̄`). (Clearly,
this is impossible if j > n− `+ 1, since then a tree would be completed with
less size than `.)

Consequently, NT equals the number of substrings (d̄1, . . . , d̄`) in (Y1, . . . , Yn),
regarded as a cyclic sequence. In other words, if we let Ij be the indicator
of the event (Yj , . . . , Yj+`−1) = (d̄1, . . . , d̄`), where we define Yi := Yi−n for
i > n, then

NT =

n∑
j=1

Ij . (17.1)

In particular, taking the expectation and using the rotational symmetry,

P(Tn;v = T ) =
1

n
ENT = E I1 = P

(
(Y1, . . . , Y`) = (d̄1, . . . , d̄`)

)
,

and thus Theorem 11.7 yields

P(Tn;v = T )→
∏̀
i=1

πd̄i = P(T = T ),

which proves (7.13).
In order to show the stronger result (7.14), we condition as in the proof

of Theorem 11.7 on N0, N1 . . . and obtain, see (14.44),

E(Ij | N0, N1, . . . ) = P
(
(Y1, . . . , Y`) = (d̄1, . . . , d̄`) | N0, N1, . . .

)
=
∏̀
i=1

Nd̄i
− ci

n− i+ 1
=
∏̀
i=1

Nd̄i

n
+O

(
1

n

)
, (17.2)

where ci := |{j < i : d̄j = d̄i}|. If |j − k| > ` and |j − k ± n| > ` (i.e., j and
k have distance at least `, regarded as point on a circle of length n), then
similarly, with c′i := |{j 6 ` : d̄j = d̄i}|,

E(IjIk | N0, N1, . . . ) =
∏̀
i=1

Nd̄i
− ci

n− i+ 1

∏̀
i=1

Nd̄i
− ci − c′i

n− `− i+ 1
,
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and it follows that

Cov(Ij , Ik | N0, N1, . . . ) = O(1/n). (17.3)

For j and k of distance less than `, we use the trivial

|Cov(Ij , Ik | N0, N1, . . . )| 6 1. (17.4)

There are less than n2 pairs (j, k) of the first type and O(n) pairs of the
second type, and thus by (17.1) and (17.3)–(17.4),

Var(NT | N0, N1, . . . ) =
n∑
j=1

n∑
k=1

Cov(Ij , Ik | N0, N1, . . . ) = O(n).

Consequently, NT /n − E(NT /n | N0, N1, . . . )
p−→ 0, and thus by (17.1),

(17.2) and Theorem 11.4,

NT

n
= E

(NT

n

∣∣∣ N0, N1, . . .
)

+ op(1) =
∏̀
i=1

Nd̄i

n
+ op(1)

p−→
∏̀
i=1

πd̄i = P(T = T ). �

18. Asymptotics of the partition functions

We have a simple asymptotic result for the partition function Z(m,n) (to
the first order in the exponent, at least if ρ > 0):

Theorem 18.1. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with span(w) |
m, m→∞ and m/n→ λ where 0 6 λ < ω, and let τ be as in Theorem 11.4.

(i) If ρ > 0, then

1

n
logZ(m,n)→ log Φ(τ)− λ log τ ∈ (−∞,∞). (18.1)

(ii) If ρ = 0 and λ > 0, then

1

n
logZ(m,n)→∞. (18.2)

In both cases, the result can be written

1

n
logZ(m,n)→ log inf

06t6ρ

Φ(t)

tλ
= log inf

06t<∞

Φ(t)

tλ
6∞. (18.3)

If 0 6 λ 6 ν and ρ > 0, the limit can also be written log Φ(τ)−Ψ(τ) log τ .
The formula (18.1) is shown by a physicists’ proof by Bialas, Burda and

Johnston [14].

Remark 18.2. If λ = 0, then τ = 0, and we interpret the right-hand side
of (18.1) as log Φ(0) = logw0; this is in accordance with (18.3).

It is easily seen that the result holds, with this limit, also in the rather
trivial case when m is bounded, provided Z(m,n) > 0.
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Remark 18.3. If ω <∞, then the result holds also when λ = ω, provided
Z(m,n) > 0, if we let τ = ∞ as in Remark 11.10 and interpret the right-
hand side of (18.1) as the limit value logwω, which again is in accordance
with (18.3). This follows from Remark 18.2 by the symmetry argument in
Remark 11.10.

Remark 18.4. Using the function τ(x) defined in Theorem 11.6, the re-
sult (18.1) can also be written, using the continuity of τ(x) and an extra
argument (which we omit) when λ = 0,

logZ(m,n) = n log Φ(τ(x))−m log τ(x) + o(n) (18.4)

or, equivalently,

Z(m,n) = Φ(τ(x))nτ(x)−meo(n). (18.5)

As in Theorem 11.6, it suffices here that m/n 6 C < ω (and m→∞).

Proof of Theorem 18.1. Note that the assumptions imply that Z(m,n) > 0
(at least for n, and thus m, large) by Lemma 13.3. The equivalence between
(18.1)–(18.2) and (18.3) follows from (11.16).

(i): Assume first λ > 0. Since ρ > 0 and λ > 0, we then have τ > 0.
Thus w = (wk) is equivalent to π = (πk), and Lemma 11.3 yields

Z(m,n) = Z(m,n; w) = Φ(τ)nτ−mZ(m,n;π).

We saw in the proof of Theorem 11.4, case (a), that Lemmas 14.3 and 14.4
yield Z(m,n;π) = exp(o(n)), and thus

Z(m,n) = exp
(
n log Φ(τ)−m log τ + o(n)

)
,

which yields (18.1).
It remains to consider the case λ = 0. Then m/n → 0, and we may

assume m < n/2. In any allocation of m balls, there are at most m non-
empty boxes. Let us mark 2m boxes, including all non-empty boxes. For
each choice of the marked boxes, we have in them an allocation in Bm,2m,
and only empty boxes outside; since there are

(
n

2m

)
choices of marked boxes,

Z(m,n) 6

(
n

2m

)
wn−2m

0 Z(m, 2m). (18.6)

On the other hand, any allocation of m balls in 2m boxes can be extended
to an allocation in Bm,n with the last n− 2m boxes empty; thus

Z(m,n) > wn−2m
0 Z(m, 2m). (18.7)

We have, by Stirling’s formula, using m/n→ λ = 0,

1

n
log

(
n

2m

)
6

1

n
log
( en

2m

)2m
=

2m

n
log

e

2
− 2m

n
log

m

n
→ 0. (18.8)

Moreover, by the case λ > 0 just proved, we have from (18.1) logZ(m, 2m) =
O(m) = o(n). Consequently, (18.6)–(18.8) yield

logZ(m,n) = (n− 2m) logw0 + o(n) = n logw0 + o(n),
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showing (18.1) in the case λ = 0.
(ii): As in the proof of Lemma 14.4, we use the truncated weight sequence

w(K) defined in (14.14), where K is so large that span(w(K)) = span(w) and

ω(w(K)) > λ, and we let again ΦK and ΨK be the corresponding functions

for w(K) and define τK by ΨK(τK) = λ.
For any t > 0, ΦK(t) → Φ(t) = ∞ as K → ∞, and thus (14.19) holds,

showing that for large K, ΨK(t) > λ and thus τK < t. Since t is arbitrary,

this shows that τK → 0 as K →∞. Applying (i) to w(K) and its partition
function ZK we obtain, for every large K,

lim inf
n→∞

1

n
logZ(m,n) > lim

n→∞

1

n
logZK(m,n) = log ΦK(τK)− λ log τK

> logw0 − λ log τK .

As K →∞, τK → 0 so the right-hand side tends to∞, which completes the
proof. �

Remark 18.5. The case ρ = 0 and λ = 0 is excluded from Theorem 18.1;
in this case, almost anything can happen. To see this, note first that by
(18.6)–(18.8), if m/n→ λ = 0, then

1

n
logZ(m,n) = logw0 +

1

n
logZ(m, 2m) + o(1). (18.9)

Furthermore, by Theorem 18.1(ii), 1
m logZ(m, 2m) → ∞ as m→∞, and

hence m/ logZ(m, 2m)→ 0. We can choose m = m(n)→∞ with m/n→ 0
so rapidly that m/n � m/ logZ(m, 2m); then 1

n logZ(m, 2m) → 0 and

(18.9) yields 1
n logZ(m,n)→ logw0 = log Φ(0).

We can also choosem withm/n→ 0 so slowly thatm/n� m/logZ(m, 2m);
then 1

n logZ(m, 2m)→∞ and (18.9) yields 1
n logZ(m,n)→∞.

Moreover, we can choose m(n) oscillating between these two cases, and
then lim inf 1

n logZ(m,n) = log Φ(0) and lim sup 1
n logZ(m,n) =∞, and we

can arrange so that every number in [log Φ(0),∞) is a limit point of some
subsequence.

For many weight sequences with ρ = 0, one can choose m(n) such that
1
n logZ(m,n)→ a for any given a ∈ [log Φ(0),∞]. For example for wk = k!
as in Example 10.8, we have by [64] and Theorem 15.5 Z(n − 1, n) ∼ en!
and it follows, arguing similarly to (18.6) and (18.7), that 1

m logZ(m, 2m) =

logm + O(1), so taking m ∼ an/ log n, we obtain 1
n logZ(m,n) → a by

(18.9).
However, if wk increases very rapidly, it may be impossible to obtain

convergence of the full sequence to a limit different from log Φ(0) or ∞, so
we can only achieve convergence of subsequences. For example, if w0 = 1 and
wk+1 > Z(k, 2k)2, then Z(k+1, 2(k+1)) > wk+1 > Z(k, 2k)2, and it follows
easily from (18.9) that lim sup 1

n logZ(m,n) > 2 lim inf 1
n logZ(m,n).

We apply Theorem 18.1 to simply generated trees.
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Theorem 18.6. Let w = (wk)k>0 be any weight sequence with w0 > 0 and
wk > 0 for some k > 2. Suppose that n → ∞ with n ≡ 1 (mod span(w)),
and let τ be as in Theorem 7.1. Then

1

n
logZn → log Φ(τ)− log τ = log inf

06t<∞

Φ(t)

t
∈ (−∞,∞].

The limit is finite if ρ > 0, and +∞ if ρ = 0.

Proof. An immediate consequence of Theorems 15.5 and 18.1. �

For probability weight sequences, Theorem 18.6 can be expressed as fol-
lows, cf. Remark 7.9.

Theorem 18.7. Let T be a Galton–Watson tree with offspring distribution
ξ, and assume that P(ξ = 0) > 0 and P(ξ > 1) > 0. Suppose that n → ∞
with n ≡ 1 (mod span(ξ)), and let τ be as in Theorem 7.1. Then

1

n
logP(|T | = n)→ log Φ(τ)− log τ = log inf

06t<∞

Φ(t)

t
∈ (−∞, 0].

If E ξ = 1, or if E ξ < 1 and ρ = 1, then the limit is 0; otherwise it is
strictly negative. In other words, P(|T | = n) decays exponentially fast in the
supercritial case (then τ < 1) and in the subcritical case with ρ > 1 (then
τ > 1), but only subexponentially in the critical case and in the subcritical
case with ρ = 1 (then τ = 1).

Proof. We have P(|T | = n) = Zn, see Section 2, and we apply Theo-
rem 18.6. Since now (wk) is a probability weight sequence, we have ρ > 1
and inf06t<∞Φ(t)/t 6 Φ(1)/1 = 1, with equality if and only if τ = 1,
see Remark 7.4. The final claims follow using the definition of τ in Theo-
rem 7.1. �

When ρ > 0 and λ > 0 (which are equivalent to τ > 0), we can also
prove stronger “local” versions of Theorems 18.1 and 18.6, showing that the
partition function behaves smoothly for small changes in m or n.

Theorem 18.8. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n→ λ
where 0 < λ < ω, and let τ be as in Theorem 11.4. If ρ > 0, then, for every
fixed k ∈ Z such that span(w) | k,

Z(m+ k, n)

Z(m,n)
→ τ−k. (18.10)

Proof. For any k > 0, by (11.2)–(11.4),

P(Y1 = k) =
wkZ(m− k, n− 1)

Z(m,n)
, (18.11)

and thus
P(Y1 = k)

P(Y1 = 0)
=
wkZ(m− k, n− 1)

w0Z(m,n− 1)
.
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Since Theorem 11.7 yields

P(Y1 = k)

P(Y1 = 0)
→ πk

π0
= τk

wk
w0
,

we see (replacing n by n+ 1) that (18.10) holds when −k ∈ supp(w). Fur-
thermore, the set of k ∈ Z such that (18.10) holds for any allowed sequence
m(n) is easily seen to be a subgroup of Z (since we may replace m by m±k′
for any fixed k′). Consequently, by (3.3), this set contains every multiple of
span(w). �

Theorem 18.9. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n→ λ
where 0 6 λ < ω, and let τ be as in Theorem 11.4. Then,

Z(m,n+ 1)

Z(m,n)
→ Φ(τ). (18.12)

Proof. By (18.11) with k = 0 and Theorem 11.7,

w0Z(m,n− 1)

Z(m,n)
= P(Y1 = 0)→ π0 =

w0

Φ(τ)
,

and the result follows since w0 6= 0. �

For trees we have a corresponding result:

Theorem 18.10. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
wk > 0 for some k > 2. If ρ > 0 and span(w) = 1, then

Zn+1

Zn
→ Φ(τ)

τ
.

Proof. By Theorems 15.5 and 18.8–18.9,

Zn+1

Zn
=

nZ(n, n+ 1)

(n− 1)Z(n− 1, n)
=

n

n− 1
· Z(n, n+ 1)

Z(n, n)
· Z(n, n)

Z(n− 1, n)
→ Φ(τ)τ−1.

�

We assumed here span 1 for convenience only; if span(w) = d, we instead
obtain, by a similar argument, Zn+d/Zn → (Φ(τ)/τ)d.

In the case ν > 1 and σ2 = τΨ′(τ) < ∞ (which is automatic if ν > 1),
i.e. our case Iα, Theorem 18.6 can be sharpened substantially as follows, see
Otter [93], Meir and Moon [85], Kolchin [76], Drmota [33].

Theorem 18.11. Let w = (wk), τ and σ2 be as in Theorem 7.1, and let
d := span(w). If ν > 1 and σ2 <∞, then, for n ≡ 1 (mod d),

Zn ∼
d√

2πσ2
· Φ(τ)nτ1−n

n3/2
= d

√
Φ(τ)

2πΦ′′(τ)

(
Φ(τ)

τ

)n
n−3/2. (18.13)
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Proof. Replacing (wk) by (πk) and using (4.3), we see that it suffices to
consider the case of a probability weight sequence with τ = Φ(τ) = 1. By
Theorem 15.5, (11.5) and (8.1), in this case the result is equivalent to

P(Sn = n− 1) ∼ d√
2πσ2n

,

which is the local central limit theorem in this case, see e.g. Kolchin [76,
Theorem 1.4.2] or use Lemma 14.1 and Remark 14.2. �

There is a corresponding improvement of Theorem 18.1.

Theorem 18.12. Let w = (wk), m = m(n), τ amd σ2 be as in Theo-
rem 11.4, and let d := span(w). If 0 < λ < ν, or λ = ν and σ2 <∞, then,
for m = λn+ o(

√
n) with m ≡ 0 (mod d),

Z(m,n) ∼ d√
2πσ2n

Φ(τ)nτ−m. (18.14)

Proof. Again it suffices to consider the case of a probability weight sequence
with τ = Φ(τ) = 1; this time using (11.9). In this case the result is by (11.5)
equivalent to

P(Sn = m) ∼ d√
2πσ2n

,

which again is the local central limit theorem and follows e.g. by Lemma 14.1
and Remark 14.2. �

Remark 18.13. The asymptotic formula (18.14) holds for arbitrary m =
m(n) with 0 < c 6 m/n 6 C < ω and m ≡ 0 (mod d), and either C < ν
or C = ν and Φ′′(ρ) < ∞ (which means that Ψ′(ρ) < ∞ and thus the
distribution (11.13) has finite variance for τ = ν), provided τ is replaced
by τ(m/n) given by Ψ(τ(m/n)) = m/n. (Cf. Theorem 11.6.) The proof is
essentially the same (as in the proof of Theorem 11.6, it suffices to consider
subsequences where m(n)/n converges); we omit the details.

In the case ν = λ (ν = 1 in the tree case) and σ2 = ∞, we have no
general results but we can obtain similar more precise versions of Theorems
18.6 and 18.1 in the important case of a power-law weight sequence, Exam-
ple 12.10. (We need 1 < α 6 2 here; if α 6 1, then ν = ∞ > λ, and if
α > 2, then σ2 <∞ so Theorems 18.11 and 18.12 apply, see Example 12.10
with β = α+ 1. Note also that span(w) = 1.) The case λ > ν is treated in
Theorem 19.34 and Remark 19.35.

Theorem 18.14. Suppose for some c > 0 and α with 1 < α 6 2,

wk ∼ ck−α−1 as k →∞. (18.15)

(i) If ν = 1, then,

Zn ∼
Φ(1)1/α

c1/αΓ(−α)1/α|Γ(−1/α)|
Φ(1)nn−1−1/α, when 1 < α < 2, (18.16)
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and

Zn ∼
(Φ(1)

πc

)1/2
Φ(1)nn−3/2(log n)−1/2, when α = 2. (18.17)

(ii) If m = νn+ o(n1/α), then

Z(m,n) ∼ Φ(1)1/α

c1/αΓ(−α)1/α|Γ(−1/α)|
Φ(1)nn−1/α, when 1 < α < 2,

(18.18)

and

Z(m,n) ∼
(Φ(1)

πc

)1/2 Φ(1)n√
n log n

, when α = 2. (18.19)

Proof. This time, we did not assume w0 > 0, but we may do so without loss
of generality in the proof. In fact, if w0 = 0, then ν > 1, so in (i) we always
have w0 > 0, and in (ii) we can reduce to the case w0 > 0 by the method in
Remark 11.8.

(i) follows from Theorem 15.5 and (ii), taking m = n−1; hence it suffices
to prove (18.18)–(18.19).

We have ρ = 1, and in the usual notation λ = ν and thus τ = ρ = 1.
We reduce to the probability weight sequence case by dividing each wk by
Φ(1) (which changes c to c/Φ(1)). Let ξ be a random variable with the
distribution (πk) = (wk). Then E ξ = ν. Furthermore, (18.15) yields

P(ξ > k) =

∞∑
l=k

wl ∼ cα−1k−α. (18.20)

Hence ξ is in the domain of attraction of an α-stable distribution, see Feller
[39, Section XVII.5]. More precisely, if we first consider the case 1 < α < 2,
then there exists an α-stable random variable Xα such that

Sn − nν
n1/α

d−→ Xα. (18.21)

(The distribution of Xα is given by (19.93) and (19.113) below.) Moreover,
a local limit law holds, see e.g. Gnedenko and Kolmogorov [46, § 50], Ibrag-
imov and Linnik [54, Theorem 4.2.1] or Bingham, Goldie and Teugels [16,
Corollary 8.4.3], which says

P(Sn = `) = n−1/α
(
g
(`− nν
n1/α

)
+ o(1)

)
, (18.22)

uniformly for all integers `, where g is the density function of Xα. In par-
ticular,

Z(m,n) = P(Sn = m) ∼ n−1/αg(0). (18.23)

The results in [39, Sections XVII.5–6] show, if we keep track of the constants
(see e.g. [63] for calculations), that

g(0) = (cΓ(−α))−1/α|Γ(−1/α)|−1, (18.24)
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and (18.18) follows.
In the case α = 2, [39, Section XVII.5] similarly yields

Sn√
n log n

d−→ N(0, c/2); (18.25)

again a local limit theorem holds by [54, Theorem 4.2.1] or [16, Corollary
8.4.3], and thus

P(Sn = `) =
1√

n log n

(
g
( `− nν√

n log n

)
+ o(1)

)
, (18.26)

uniformly in ` ∈ Z, where now g(x) is the density function (πc)−1/2e−x
2/c

of N(0, c/2). In particular,

Z(m,n) = P(Sn = m) ∼ 1√
n log n

g(0) =
1√

n log n
· 1√

πc
, (18.27)

which proves (18.19). �

Remark 18.15. The proof shows that (18.15) can be relaxed to (18.20)
together with span(w) = 1.

Example 18.16. Let F u
m,n be the number of labelled unrooted forests with

m labelled nodes and n labelled trees, see Example 12.7. Using the weights
wk = kk−2/k! and w̃k = e−kwk ∼ (2π)−1/2k−5/2, we have by (12.35) and
(11.9)

F u
m,n = m!Z(m,n; w) = m! emZ(m,n; w̃). (18.28)

At the phase transition m = 2n, Theorem 18.14 applies to w̃ with α = 3/2.

We have c = (2π)−1/2 and, by (12.36), Φ(1) = Φ(ρ) = 1/2. Hence (18.18)
yields, after simplifications,

F u
2n,n

2n!
= Z(2n, n; w) = e2nZ(2n, n; w̃) ∼ 2−2/33−1/3

Γ(1/3)
e2n2−nn−2/3. (18.29)

(The constant can also be written 2−5/331/6π−1Γ(2/3).) A more general
result is proved by the same method by Britikov [20]. Flajolet and Sedgewick
[40, Proposition VIII.11], show (18.29) by a different method (although there
is a computational error in the constant given in the result there).

We end this section by considering the behaviour of the generating func-
tion Z(z) :=

∑∞
n=1 Znz

n. The following immediate corollary of Theo-
rem 18.6 was shown by Otter [93], see Minami [89] and, for ν > 1, Flajolet
and Sedgewick [40, Proposition IV.5]. See also also Remark 7.5.

Corollary 18.17. Let (wk)k>0 and τ be as in Theorem 7.1, and let ρZ be
the radius of convergence of the generating function Z(z) :=

∑∞
n=1 Znz

n.
Then ρZ = τ/Φ(τ). �

Moreover, by (7.6), Z(ρZ) = τ < ∞. Since the generating function
Z(z) has non-negative coefficients, it follows that Z(z) is continuous on the
closed disc |z| 6 ρZ , and |Z(z)| 6 τ there. If we, for simplicity, assume that
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span(w) = 1, then |Z(z)| < |Z(ρZ)| = τ for |z| 6 ρZ , z 6= ρZ . Since |Z| < τ
implies

|Φ(Z)− ZΦ′(Z)| =
∣∣∣∣w0 −

∞∑
k=1

(k − 1)wkZ
k

∣∣∣∣ > w0 −
∞∑
k=1

(k − 1)wk|Z|k

> w0 −
∞∑
k=1

(k − 1)wkτ
k = Φ(τ)− τΦ′(τ) = 0,

it follows that Φ(Z)−ZΦ′(Z) 6= 0 if Z = Z(z) with |z| = ρZ , z 6= ρZ ; hence
the implicit function theorem and (3.13) show that Z(z) has an analytic
continuation to some neighbourhood of z. Consequently, Z then can be
extended across |z| = ρZ everywhere except at z = ρZ . (If span(w) = d,

the same holds except at z = ρZe
2πij/d, j ∈ Z.)

In our case Ia (ν > 1, or equivalently τ < ρ), much more is known: Z has
a square root singularity at ρZ with a local expansion of Z(z) as an analytic

function of
√

1− z/ρZ :

Z(z) = τ − b
√

1− z/ρZ + . . . , (18.30)

where, with σ2 := Var ξ given by (8.1),

b :=

√
2Φ(τ)

Φ′′(τ)
=
√

2
τ

σ
, (18.31)

see Meir and Moon [85], Flajolet and Sedgewick [40, Theorem VI.6] and
Drmota [33, Section 3.1.4 and Theorem 2.19]; in particular, Z then extends
analytically to a neighbourhood of ρ cut at the ray [ρ,∞). In fact, this
extends (in a weaker form) to the case ν > 1 and σ2 <∞ (case Iα): (18.30)

holds in a suitable region, with an error term o(
√

1− z/ρZ), see Janson [59].

Remark 18.18. In the case ν > 1, (18.30) and (18.31) yield another proof
of (18.13) by standard singularity analysis, see e.g. Drmota [33, Theorem
3.6] and Flajolet and Sedgewick [40, Theorem VI.6 and VII.2]; this argument
can be extended to the case ν > 1 and σ2 < ∞, see Drmota [33, Remark
3.7] and Janson [59, Appendix]. When ν > 1, an expansion with further
terms can also be obtained, see Minami [89] and Flajolet and Sedgewick [40,
Theorem VI.6].

In the other cases (σ2 = ∞ or ν < 1), the asymptotic behaviour of Z
at the singularity ρZ depends on the behaviour of Φ(z) at its singularity
ρ. It seems difficult to say anything detailed in general, so we study only a
few examples. We assume ν 6 1 and ω > 1; thus Lemma 3.1 implies that
ρ <∞, Φ(ρ) <∞ and Φ′(ρ) <∞. We assume also ρ > 0 and span(w) = 1.

Example 18.19. Suppose that 0 < ρ < ∞ and that Φ(z) has an analytic
extension to a sector Dρ,δ := {z : | arg(ρ − z)| < π/2 + δ and |z − ρ| < δ}
for some δ > 0, and that in this sector Dρ,δ, for some a 6= 0 and non-integer
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α > 1, and some f(z) analytic at ρ (which can be taken as a polynomial of
degree < α),

Φ(z) = f(z) + a(ρ− z)α + o
(
|ρ− z|α

)
, as z → ρ. (18.32)

(We have to have α > 1 since Φ′(ρ) < ∞. For α > 2 integer, see instead
Example 18.20.) If we assume that Φ has no further singularities on |z| = ρ,
this implies by singularity analysis, see Flajolet and Sedgewick [40, Section
VI.3],

wk ∼
a

Γ(−α)
k−α−1ρα−k, as k →∞. (18.33)

The converse does not hold in general, but can be expected if the weight
sequence is very regular. For example, (18.32) holds (in the plane cut at
[ρ,∞)) if wk = (k + 1)−β, k > 1, as in Example 10.7, with β = α + 1 > 2,
ρ = 1 and a = Γ(−α), see e.g. [40, Section VI.8].

Let F (Z) := Z/Φ(Z), so (3.13) can be written

F (Z(z)) = z. (18.34)

Since ν 6 1, we have τ = ρ, and thus by Corollary 18.17 and (7.6) ρZ =
F (τ) = F (ρ) and Z(ρZ) = ρ. Note that

F ′(ρ) =
Φ(ρ)− ρΦ′(ρ)

Φ(ρ)2
=

1−Ψ(ρ)

Φ(ρ)
=

1− ν
Φ(ρ)

. (18.35)

If ν < 1, then (18.35) yields F ′(ρ) > 0 and (18.34) shows that ρ − Z(z) ∼
F ′(ρ)−1(ρZ − z) as z → ρZ . Moreover, F is defined in a sector Dρ,δ, and its
image contains some similar sector DρZ ,δ′ (with 0 < δ′ < δ) such that Z(z)
extends analytically to DρZ ,δ′ by (18.34), and it follows easily by (18.34)
and (18.32) that in DρZ ,δ′ , with some f1(z) analytic at ρZ ,

Z(z) = f1(z) + a1(ρZ − z)α + o
(
|ρZ − z|α

)
, as z → ρZ , (18.36)

where

a1 = a
ρΦ(ρ)α−1

(1− ν)α+1
. (18.37)

As noted above, Z(z) has no other singularities on |z| = ρ, and singularity
analysis [40] applies and shows, using (18.33),

Zn ∼
a1

Γ(−α)
n−α−1ρα−nZ ∼ ρ

(1− ν)α+1
Φ(ρ)n−1wn. (18.38)

However, we will show in greater generality in Theorem 19.34 and Re-
mark 19.35 (by a straightforward reduction to the case ρ = 1 using (4.3))
that (18.33) always implies (18.38) when ν < 1, without any assumption
like (18.32) on Φ(z).

If ν = 1, we assume 1 < α < 2, since (18.32) with α > 2 implies Φ′′(ρ) <
∞ and thus σ2 < ∞, so (18.30) and Theorem 18.11 would apply. We now
have F ′(ρ) = 0, and (18.32)–(18.34) yield, in some domain DρZ ,δ′ ,

Z(z) = ρ−
(

Φ(ρ)

a

)1/α (
1− z

ρZ

)1/α
+ . . . . (18.39)
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Singularity analysis yields

Zn ∼
1

|Γ(−1/α)|

(
Φ(ρ)

a

)1/α

n−1−1/αρZ
−n. (18.40)

However, we have already proved in Theorem 18.14(i) (assuming ρ = 1,
without loss of generality) that (18.33) implies (18.40) in this case, without
any assumption like (18.32) on Φ(z).

Example 18.20. If α > 2 is an integer, (18.32) does not exhibit a singu-
larity. Instead we consider w with, for some f analytic at ρ,

Φ(z) = f(z) + a(ρ− z)α log(ρ− z) +O
(
|ρ− z|α

)
, (18.41)

as z → ρ in some sector Dρ,δ. This includes the case wk = (k + 1)−α−1, see
Flajolet and Sedgewick [40, Section VI.8].

In the case ν < 1, we obtain as above

Z(z) = f1(z) + a1(ρZ − z)α log(ρZ − z) +O
(
|ρZ − z|α

)
, (18.42)

as z → ρZ in some sector, with f1(z) analytic at ρZ and a1 given by (18.37).
We again obtain by singularity analysis

Zn ∼
ρ

(1− ν)α+1
Φ(ρ)n−1wn, (18.43)

which is another instance of (19.118).
In the case ν = 1, we consider only α = 2, since σ2 < ∞ if α > 2. Then

(18.41) yields (we have a < 0 in this case)

Z(z) = ρ−
(

2Φ(ρ)

−a

)1/2 (
1−z/ρZ

)1/2(− log (1− z/ρZ)
)−1/2

+ . . . . (18.44)

Singularity analysis [40, Theorems VI.2–3] gives another proof of (18.17) in
the special case (18.41) (again assuming ρ = 1, as we may).

Example 18.21. Define w by Φ(z) = w0 +
∑∞

j=0 2−2jz2j , for some w0 > 0;

thus supp(w) is the lacunary sequence {0} ∪ {2j}. Then ρ = 1, Φ(ρ) =
w0 + 4/3 and Φ′(ρ) = 2; hence ν = Ψ(ρ) = 2/(w0 + 4/3). The function Φ(z)
is analytic in the unit disc and has the unit circle as a natural boundary; it
cannot be extended analytically at any point. (See e.g. Rudin [101, Remark
16.4 and Theorem 16.6].)

Taking w0 > 2/3, we have ν < 1; hence, F ′(ρ) > 0 by (18.35). Thus
F maps the unit circle onto a closed curve Γ that goes vertically through
F (1) = ρz, and since F cannot be continued analytically across the unit cir-
cle, Z(z) cannot be continued analytically across the curve Γ. In particular,
Z(z) is not analytic in any sector DρZ ,δ′ .
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19. Largest degrees and boxes

Consider a random allocation Bm,n = (Y1, . . . , Yn) and arrange Y1, . . . , Yn
in decreasing order as Y(1) > Y(2) > . . . . Thus, Y(1) is the largest number of
balls in any box, Y(2) is the second largest, and so on.

By Lemma 17.1, we may also consider the random tree Tn by taking
m = n−1; then Y(1) is the largest outdegree in Tn, Y(2) is the second largest
outdegree, and so on.

As usual, we consider asymptotics as n→∞ and m/n→ λ. (Thus λ = 1
in the tree case.) We usually ignore the cases m/n→ 0 and m/n→∞; these
are left to the reader as open problems. (See e.g. Kolchin, Sevast’yanov and
Chistyakov [77], Kolchin [76], Pavlov [96] and Kazimirov [70] for examples
of such results.)

The results in Sections 7 and 11 suggest that Y(1) is small when λ < ν,
but large (perhaps of order n) when λ > ν, which is one aspect of the phase
transition at λ = ν. We will see that this roughly is correct, but that the
full story is somewhat more complicated.

We study the cases λ 6 ν and λ > ν separately; we also consider sep-
arately several subcases of the first case where we can give more precise
results.

We first note that the case ω <∞, when the box capacities (node degrees
in the tree case) are bounded is trivial: w.h.p. the maximum is attained in
many boxes.

Theorem 19.1. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
ω < ∞. Suppose that n → ∞ and m = m(n) with m/n → λ > 0. Then
Y(j) = ω w.h.p. for every fixed j.

Proof. Clearly, each Yi 6 ω, so Y(j) 6 Y(1) 6 ω.
We assume tacitly, as always, that Bm,n exists, i.e. Z(m,n) > 0, and

thus m 6 ωn, so λ 6 ω. By Theorem 11.4 if λ < ω, and Remark 11.10 if

λ = ω, Nω(Bm,n)/n
p−→ πω > 0. In particular, Nω(Bm,n)

p−→ ∞, and thus
P(Y(j) = ω)→ 1. �

19.1. The case λ 6 ν. In the case λ 6 ν, we show that, indeed, all Yi are
small. Theorems 19.2–19.3 yield (w.h.p.) a bound o(n) when λ = ν, and a
much stronger logarithmic bound O(log n) when λ < ν. (In the tree case,
we have λ = 1, so these are the cases ν = 1 and ν > 1.)

Example 19.27 shows that in general, the bound o(n) when λ = ν is es-
sentially best possible; at least, for any given ε > 0, we can have Y(1) > n1−ε

w.h.p. (We do not know precisely how fast Y(1) can grow; see Problem 19.31.)

Theorem 19.2. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n→ λ
where 0 6 λ <∞. If λ 6 ν, then Y(1) = op(n).

Equivalently, Y(1)/n
p−→ 0.
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Proof. The case λ = 0 is trivial, since Y(1)/n 6 m/n→ λ. The case λ = ω is
also trivial, since then ω <∞ and Y(1) 6 ω. As above, λ > ω is impossible.
Hence we may assume 0 < λ < ω and ν > λ > 0, which implies τ > 0, where
Ψ(τ) = λ, cf. Theorem 11.4. We may then for convenience replace (wk) by
the equivalent weight sequence (πk) in (11.13); we may thus assume that w
is a probability weight sequence with τ = 1, and thus ρ > τ = 1, and then
the corresponding random variable ξ has E ξ = λ.

By (18.11) and symmetry, for any k > 0,

P(Y(1) = k) 6 nP(Y1 = k) = n
wkZ(m− k, n− 1)

Z(m,n)
. (19.1)

Furthermore, wk = πk = P(ξ = k) 6 1 and, using Example 11.2, Z(m,n) =

P(Sn = m) = eo(n) by Lemma 14.3 (ρ > 1) or 14.4 (ρ = 1). We turn to
estimating Z(m− k, n− 1).

Let 0 < ε < λ, and define τε by Ψ(τε) = λ− ε. Since Ψ(τ) = λ, we have
0 < τε < τ = 1.

For each n, choose k = k(n) ∈ [εn,m] such that Z(m − k, n − 1) is
maximal. We have ε 6 k/n 6 m/n → λ; choose a subsequence such that
k/n converges, say k/n→ γ with ε 6 γ 6 λ. Then, along the subsequence,
(m− k)/(n− 1)→ λ− γ.

By Theorem 18.1 (and Remark 18.2, ignoring the trivial case Z(m−k, n−
1) = 0), using τε < 1, γ > ε and (11.16),

1

n
logZ(m− k, n− 1)→ log inf

t>0

Φ(t)

tλ−γ
6 log inf

06t6τε

Φ(t)

tλ−γ

6 log inf
06t6τε

Φ(t)

tλ−ε
= log

Φ(τε)

τλ−εε

=: cε,

say, where Remark 11.5 shows that, since τε 6= 1,

cε < log
(
Φ(1)/1λ−ε

)
= 0. (19.2)

We have shown that

lim sup
n→∞

1

n
logZ(m− k, n− 1) 6 cε (19.3)

for k = k(n) and any subsequence such that k/n converges; it follows that
(19.3) holds for the full sequence. In other words,

logZ(m− k, n− 1) 6 cεn+ o(n) (19.4)

for our choice k = k(n) that maximises the left-hand side, and thus uniformly
for all k ∈ [εn,m]. Using (19.4) and, as said above, Lemma 14.4 in (19.1)
we obtain, recalling (19.2),

P(Y(1) > εn) =

m∑
k=εn

P(Y(1) = k) 6 mnecεn+o(n)eo(n) = ecεn+o(n) → 0.

In other words, for any ε > 0, Y(1) < εn w.h.p., which is equivalent to
Y(1) = op(n). �
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The following logarithmic bound when λ < ν is essentially due to Meir
and Moon [86] (who studied the tree case).

Theorem 19.3. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
wk > 0 for some k > 1. Suppose that n→∞ and m = m(n) with m/n→ λ.
Assume 0 < λ < ν, and define τ ∈ (0, ρ) by Ψ(τ) = λ.

(i) Then τ < ρ and

Y(1) 6
1

log(ρ/τ)
log n+ op(log n). (19.5)

(ii) In particular, if ρ =∞, then Y(1) = op(log n).

(iii) If further w
1/k
k → 1/ρ as k →∞, then, for every fixed j > 1,

Y(j)

log n

p−→ 1

log(ρ/τ)
. (19.6)

Recall that 1/ρ = lim supk→∞w
1/k
k , see (3.5), so the extra assumption

w
1/k
k → 1/ρ as k →∞ in (iii) holds unless the weight sequence is rather

irregular. (The proof shows that the assumption can be weakened to P(ξ >
k)1/k → τ/ρ.)

It is not difficult to show Theorem 19.3 directly, but we prefer to postpone
the proof and use parts of the more refined Theorem 19.7 below, in order
to avoid some repetitions of arguments. Further results, under additional
assumptions, are given in Sections 19.3–19.4.

We conjecture that Theorem 19.3 holds also for λ = 0. Since then τ = 0,
this means the following. (This seems almost obvious given the result for
positive λ in Theorem 19.3, where the constant 1/ log(ρ/τ) → 0 as λ → 0
and thus τ → 0, but there is no general monotonicity and we leave this as
an open problem.)

Conjecture 19.4. If ρ > 0 and m/n→ 0, then Y(1) = op(log n).

19.2. The subcase σ2 <∞. In the case σ2 := Var ξ <∞ (which includes
the case λ < ν), there is a much more precise result, which says that, simply,
the largest numbers Y(1), Y(2) . . . asymptotically have the same distribution
as the largest elements in the i.i.d. sequence ξ1, . . . , ξn. (Provided we choose
the distribution of ξ correctly, and possibly depending on n, see below for
details.) In other words, the conditioning in Example 11.2 then has asymp-
totically no effect on the largest elements of the sequence. (When σ2 = ∞
this is no longer necessarily true, however, as we shall see in Example 19.27.)

In order to state this precisely, we now assume that ω = ∞ (see Theo-
rem 19.1 otherwise) and 0 < λ 6 ν, and define as usual τ by Ψ(τ) = λ, and
let ξ be a random variable with the distribution in (11.13).

If m/n 6 ν, we further define τn by Ψ(τn) = m/n, and let ξ(n) be the
random variable with the distribution in (14.11). We will only use τn and

ξ(n) in the case λ < ν, so m/n→ λ < ν and τn really is defined (at least for

large n); furthermore τn → τ < ρ and ξ(n) d−→ ξ.
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We further let ξ1, . . . , ξn and (when λ < ν) ξ
(n)
1 , . . . , ξ

(n)
n be i.i.d. sequences

of copies of ξ and ξ(n), respectively, and we arrange them in decreasing order

as ξ(1) > . . . > ξ(n) and ξ
(n)
(1) > . . . > ξ

(n)
(n) . Finally, we introduce the counting

variables, for any subset A ⊆ N0,

NA := |{i 6 n : Yi ∈ A}|, (19.7)

NA := |{i 6 n : ξi ∈ A}|, (19.8)

N
(n)
A := |{i 6 n : ξ

(n)
i ∈ A}|. (19.9)

(NA and NA also depend on n, but as usual, we for simplicity do not show

this in the notation.) Note that NA and N
(n)
A simply have binomial distri-

butions NA ∼ Bi(n,P(ξ ∈ A)) and N
(n)
A ∼ Bi(n,P(ξ(n) ∈ A)).

We have

Y(j) 6 k ⇐⇒ N[k+1,∞) < j, (19.10)

and similarly for ξ(j) and ξ
(n)
(j) . Thus it is elementary to obtain asymptotic

results for the maximum ξ(1) of i.i.d. variables, and more generally for ξ(j)

and ξ
(n)
(j) , see e.g. Leadbetter, Lindgren and Rootzén [82].

We introduce three different probability metrics to state the results. For
discrete random variables X and Y with values in N0 (the case we are
interested in here), we define the Kolmogorov distance

dK(X,Y ) := sup
x∈N0

|P(X 6 x)− P(Y 6 x)| (19.11)

and the total variation distance

dTV(X,Y ) := sup
A⊆N0

|P(X ∈ A)− P(Y ∈ A)|. (19.12)

In order to treat also the case with variables tending to∞, we further define
the modified Kolmogorov distance

d̃K(X,Y ) := sup
x∈N0

|P(X 6 x)− P(Y 6 x)|
1 + x

. (19.13)

For d̃K, we also allow random variables in N0, i.e., we allow the value ∞.
(Furthermore, the definitions of dK and dTV and the results for them in the
lemma below extend to random variables with values in Z. The definitions
extend further to random variables with values in R for dK, and in any space
for dTV, but not all properties below hold in this generality.)

Note that these distances depend only on the distributions L(X) and
L(Y ), so d(L(X),L(Y )) might be a better notation, but we find it convenient
to allow both notations, as well as the mixed d(X,L(Y )).

It is obvious that the three distances above are metrics on the space of
probability measures on N0 (or on N0).

We collect a few simple, and mostly well-known, facts for these three
metrics in a lemma; the proofs are left to the reader.
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Lemma 19.5. (i) For any random variables X and Y with values in N0,

d̃K(X,Y ) 6 dK(X,Y ) 6 dTV(X,Y ).

(ii) For any X and X1, X2, . . . with values in N0,

Xn
d−→ X ⇐⇒ dTV(Xn, X)→ 0 ⇐⇒ dK(Xn, X)→ 0

⇐⇒ d̃K(Xn, X)→ 0.

(iii) For any X and X1, X2, . . . with values in N0,

Xn
d−→ X ⇐⇒ d̃K(Xn, X)→ 0.

In particular,

Xn
p−→∞ ⇐⇒ d̃K(Xn,∞)→ 0.

(iv) For any Xn and X ′n with values in N0, d̃K(Xn, X
′
n) → 0 ⇐⇒∣∣P(Xn 6 x)− P(X ′n 6 x)

∣∣→ 0 for every fixed x > 0.
(v) For any Xn and X ′n, dTV(Xn, X

′
n)→ 0 ⇐⇒ there exists a coupling

(Xn, X
′
n) with Xn = X ′n w.h.p. (We denote this also by Xn

d
≈ X ′n.)

(vi) The supremum in (19.12) is attained, and the absolute value sign is
redundant. In fact, if A := {i : P(X = i) > P(Y = i)}, then dTV(X,Y ) =
P(X ∈ A)− P(Y ∈ A).

(vii) For any X and Y with values in N0,

dTV(X,Y ) =
∑
x∈N0

(
P(X = x)−P(Y = x)

)
+

= 1
2

∑
x∈N0

|P(X = x)−P(Y = x)|.

�

Remark 19.6. The three metrics are, by Lemma 19.5(ii), equivalent in the
usual sense that they define the same topology, but they are not uniformly
equivalent. For example, if Xn ∼ Po(n), X ′n := 2bXn/2c (i.e., Xn rounded
down to an even integer) and X ′′n := X ′n + 1, then dK(X ′n, X

′′
n) → 0 as

n→∞, but dTV(X ′n, X
′′
n) = 1.

We define Po(∞) as the distribution of a random variable that equals ∞
identically.

After all these preliminaries, we state the result (together with some sup-
plementary results). There are really two versions; it turns out that for

general sequences m(n), we have to use the random variables ξ(n), with

E ξ(n) = m(n)/n exactly tuned to m(n), but under a weak assumption we

can replace ξ(n) by ξ and obtain a somewhat simpler statement, which we
choose as our main formulation. (This goes back to Meir and Moon [87], who
proved (i) in the tree case, assuming λ < ν; see also Kolchin, Sevast’yanov
and Chistyakov [77, Theorem 1.6.1] and Kolchin [76, Theorem 1.5.2] for Y(1)

in the special case in Example 12.1.)
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Theorem 19.7. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
ω = ∞. Suppose that n → ∞ and m = m(n) with m = λn + o(

√
n) where

0 < λ 6 ν, and use the notation above. Suppose further that σ2 := Var ξ <
∞. (This is redundant when λ < ν.)

(i) If (possibly for n in a subsequence) h(n) are integers such that
nP (ξ > h(n))→ α, for some α ∈ [0,∞], then

N[h(n),∞) := |{i : Yi > h(n)}| d−→ Po(α).

(ii) If h(n) are integers such that nP (ξ > h(n))→ 0, then w.h.p. Y(1) <
h(n).

(iii) If h(n) are integers such that nP (ξ > h(n)) → ∞, then, for every
fixed j, w.h.p. Y(j) > h(n).

(iv) For any sequence h(n), d̃K

(
N[h(n),∞), N [h(n),∞)

)
→ 0.

(v) For every fixed j, dK

(
Y(j), ξ(j)

)
→ 0.

(vi) dTV

(
Y(1), ξ(1)

)
→ 0.

If λ < ν, the condition m = λn + o(
√
n) can be weakened to m/n =

λ+ o(1/ log n).
Moreover, if λ < ν, then the results hold for any m = m(n) with m/n→

λ, provided ξ is replaced by ξ(n), N by N
(n)

and ξ(j) by ξ
(n)
(j) .

Remark 19.8. In the version with ξ(n), we do not need λ at all. By con-
sidering subsequences, it follows that it suffices that 0 < c 6 m/n 6 C < ν.
(Cf. Theorem 11.6.) Furthermore, this version extends to the case λ = ν
and m/n 6 ν, but we have ignored this case for simplicity.

Problem 19.9. Is Theorem 19.7 (in the ξ(n) version) true also for λ = 0 <
ν?

The total variation approximation in (vi) is stronger than the Kolmogorov
distance approximation in (v), and our proof is considerably longer, but for
many purposes (v) is enough. We conjecture that total variation approxi-
mation holds for every Y(j), and not just for Y(1); presumably this can be
shown by a modification of the proof for Y(1) below, but we have not checked
the details and leave this as an open problem. Furthermore, we believe that
the result extends to the joint distribution of finitely many Y(j). (The cor-
responding result in (v), using a multivariate version of the Kolmogorov
distance, is easily verified by the methods below.)

Problem 19.10. Does dTV

(
Y(j), ξ(j)

)
→ 0 hold for every fixed j, under the

assumptions of Theorem 19.7?

Proof of Theorem 19.7. As in the proof of Theorem 19.2, we may replace
(wk) by the equivalent weight sequence (πk) in (11.13). We may thus assume
that w is a probability weight sequence with τ = 1, and thus ρ > τ = 1,
and the corresponding random variable ξ has E ξ = λ. We consider first
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the version with ξ, assuming m = λn + o(
√
n), and discuss afterwards the

modifications for ξ(n).
We begin by looking again at (18.11):

P(Y1 = k) =
wkZ(m− k, n− 1)

Z(m,n)
. (19.14)

When m = λn + o(
√
n), we may apply Lemma 14.1 and Remark 14.2 and

thus, with d := span(w),

Z(m,n) = P(Sn = m) =
d+ o(1)√

2πσ2n
. (19.15)

Moreover, by (14.9), for any k,

Z(m− k, n− 1) = P(Sn−1 = m− k) 6
d+ o(1)√

2πσ2n
. (19.16)

Consequently, (19.14) yields, uniformly for all k,

P(Y1 = k) 6 (1 + o(1))wk = (1 + o(1))P(ξ = k). (19.17)

In particular, we may sum over k > K and obtain, for any K = K(n),

P(Y1 > K) 6 (1 + o(1))P(ξ > K). (19.18)

Since, by assumption, E ξ2 <∞, we have P(ξ > K) = o(K−2) as K →∞.
Hence, for every fixed δ > 0, P(ξ > δ

√
n) = o(n−1). It follows that there

exists a sequence δn → 0 such that P(ξ > δn
√
n) = o(n−1). Consequently,

defining B(n) := δn
√
n, we have B(n) = o(

√
n) and

P(ξ > B(n)) = o(n−1), (19.19)

and thus, by (19.18) and symmetry,

P(Y(1) > B(n)) 6 nP(Y1 > B(n)) = n
(
1 + o(1)

)
P(ξ > B(n)) = o(1).

(19.20)
Hence, Y(1) < B(n) w.h.p.

Similarly, P(ξ(1) > B(n)) 6 nP(ξ1 > B(n)) = o(1), so ξ(1) < B(n) w.h.p.
(i): Write, for convenience, N := N[h(n),B(n)], and note that w.h.p. Y(1) 6

B(n) and then N = N[h(n),∞). (We assume for simplicity h(n) 6 B(n);
otherwise we let N := 0, leaving the trivial modifications in this case to the
reader.)

Moreover, for k 6 B(n) = o(
√
n), we have (m − k) − (n − 1)λ = o(

√
n),

and thus Remark 14.2 shows that, for any k = k(n) 6 B(n),

Z(m− k, n− 1) = P(Sn−1 = m− k) =
d+ o(1)√

2πσ2n
. (19.21)

Since we here may take k = k(n) that maximises or minimises this for k 6
B(n), it follows that (19.21) holds uniformly for all k 6 B(n). Consequently,
by (19.14), (19.15) and (19.21),

P(Y1 = k) = (1 + o(1))wk = (1 + o(1))P(ξ = k), (19.22)
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uniformly for all k 6 B(n). By the assumption and (19.19), this yields

EN = n

B(n)∑
k=h(n)

P(Y1 = k) = n

B(n)∑
k=h(n)

(
1 + o(1)

)
P(ξ = k)

=
(
1 + o(1)

)
nP
(
h(n) 6 ξ 6 B(n)

)
=
(
1 + o(1)

)
n
(
P(ξ > h(n))− P(ξ > B(n))

)
→ α.

Similarly, again using the symmetry as well as Lemma 14.1 and Re-
mark 14.2,

EN(N − 1) = n(n− 1)P
(
Y1, Y2 ∈ [h(n), B(n)]

)
= n(n− 1)

B(n)∑
k1,k2=h(n)

P(Y1 = k1 and Y2 = k2)

= n(n− 1)

B(n)∑
k1,k2=h(n)

wk1wk2Z(m− k1 − k2, n− 2)

Z(m,n)

= n(n− 1)

B(n)∑
k1,k2=h(n)

P(ξ = k1)P(ξ = k2)
(
1 + o(1)

)
=
(
1 + o(1)

)
n2
(
P(ξ > h(n))− P(ξ > B(n))

)2
→ α2.

Moreover, the same argument works for any factorial moment E(N)` and

yields E(N)` → α` for every ` > 1. If α <∞, we thus obtain N
d−→ Po(α)

by the method of moments, and the result follows, since N = N[h(n),∞)

w.h.p.
If α =∞, this argument yields

E(N)` ∼
(
nP(ξ > h(n))

)` →∞ (19.23)

for every ` > 1, and we make a thinning: Let A be a constant and let
q := A/

(
nP(ξ > h(n))

)
; then q → A/α = 0. We consider only n that are

so large that q < 1. We then randomly, and independently, mark each box
with probability q. Let N ′ be the random number of marked boxes i such
that Yi ∈ [h(n), B(n)] . Then, for every ` > 1, using (19.23),

E(N ′)` = (n)`q
` P
(
Y1, . . . , Y` ∈ [h(n), B(n)]

)
= q` E(N)` → A`. (19.24)

Consequently, by the method of moments, N ′
d−→ Po(A). In particular, this

shows, for every fixed x,

P(N < x) 6 P(N ′ < x)→ P(Po(A) < x),

which can be made arbitrarily small by taking A large. Hence, P(N < x)→
0 for every fixed x, i.e., N

p−→∞ and thus N[h(n),∞)
p−→∞, as we claim in

this case.
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(ii): Part (i) applies with α = 0, and yields N[h(n),∞)
p−→ 0, which means

N[h(n),∞) = 0 w.h.p. Thus Y(j) < h(n) w.h.p. by (19.10).

(iii): Part (i) applies with α =∞, and yields N[h(n),∞)
p−→∞. Thus, for

every fixed j, by (19.10), P(Y(j) < h(n)) = P(N[h(n),∞) < j)→ 0.
(iv): Suppose not. Then there exists a sequence h(n) and an ε > 0 such

that, for some subsequence,

d̃K

(
N[h(n),∞), N [h(n),∞)

)
> ε. (19.25)

We may select a subsubsequence such that nP(ξ > h(n)) → α for some

α ∈ [0,∞]; then d̃K

(
N[h(n),∞),Po(α)

)
→ 0 by (i) and Lemma 19.5(iii). More-

over, along the same subsubsequence, N [h(n),∞) ∼ Bi
(
n,P(ξ > h(n)

) d−→
Po(α), by the standard Poisson approximation for binomial distributions

(and rather trivially if α =∞); hence d̃K

(
N [h(n),∞),Po(α)

)
→ 0. The trian-

gle inequality yields d̃K

(
N[h(n),∞), N [h(n),∞)

)
→ 0 along the subsubsequence,

which contradicts (19.25). This contradiction proves (iv).
(v): Suppose not. Then, by (19.11), there is an ε > 0 and a subsequence

such that for some h(n),∣∣P(Y(j) 6 h(n))− P(ξ(j) 6 h(n))
∣∣ > ε. (19.26)

However, by (19.10), (19.13) and (iv),∣∣P(Y(j) 6 h(n))−P(ξ(j) 6 h(n))
∣∣

=
∣∣P(N[h(n)+1,∞) 6 j − 1)− P(N [h(n)+1,∞) 6 j − 1)

∣∣
6 jd̃K

(
N[h(n)+1,∞), N [h(n)+1,∞)

)
→ 0,

which contradicts (19.26). This contradiction proves (v).
(vi): Let A = A(n) := {i : P(Y(j) = i) > P(ξ(j) = i)}; thus, see

Lemma 19.5(vi),

dTV(Y(j), ξ(j)) = P(Y(j) ∈ A)− P(ξ(j) ∈ A). (19.27)

Let δ > 0. For each n, we partition N0 into a finite family P = {Jl}Ll=1 of
intervals as follows. First, each i ∈ N0 with P(ξ(1) = i) > δ/2 is a singleton
{i}; note that there are at most 2/δ such i. The complement of the set of

these i consists of at most 2/δ+ 1 intervals J̃k (of which one is infinite). We

partition each such interval J̃k further into intervals Jl with P(ξ(1) ∈ Jl) 6 δ
by repeatedly chopping off the largest such subinterval starting at the left
endpoint. Since only points with P(ξ(1) = i) < δ/2 remain, each such interval

Jl except the last in each J̃k satisfies P(ξ(1) ∈ Jl) > δ/2. Hence, our final
partition {Jl} contains at most 2/δ + 1 intervals Jl with P(ξ(1) ∈ Jl) < δ/2,
while the number of intervals Jl with P(ξ(1) ∈ Jl) > δ/2 is clearly at most
2/δ. Consequently, L, the total number of intervals, is at most 4/δ + 1.

We write Jl = [al, bl]. We say that an interval Jl ∈ P is fat if P(ξ(1) ∈
Jl) > δ, and thin otherwise. Note that by our construction, a fat interval is
a singleton {al}.
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Next, fix a large number D. We say that an interval Jl = [al, bl] ∈ P is
good if nP(ξ > al) 6 D, and bad otherwise.

For any interval Jl,∣∣P(Y(1) ∈ Jl)− P(ξ(1) ∈ Jl)
∣∣ 6 2dK(Y(1), ξ(1)) = o(1) (19.28)

by (v).
Let Al := A ∩ Jl. Thus A is the disjoint union

⋃
lAl. (A, Jl and Al

depend on n.)
We note that if Jl is fat, then Jl is a singleton, and either Al = Jl or

Al = ∅; in both cases we have, using (19.28),

P(Y(1) ∈ Al)− P(ξ(1) ∈ Al) 6 2dK(Y(1), ξ(1)) = o(1). (19.29)

We next turn to the good intervals. We claim that, uniformly for all good
intervals Jl, as n→∞,

P(Y(1) ∈ Al) 6 eδe
D
P(ξ(1) ∈ Al) + o(1). (19.30)

As usual, we suppose that this is not true and derive a contradiction. Thus,
assume that there is an ε > 0 and, for each n in some subsequence, a good
interval Jl = [al, bl] (depending on n) such that

P(Y(1) ∈ Al) > eδe
D
P(ξ(1) ∈ Al) + ε. (19.31)

If Jl is fat, then (19.31) contradicts (19.29) for large n, so we may assume
that Jl is thin, i.e., P(ξ(1) ∈ Jl) 6 δ.

Let Ac
l := Jl \ Al and Bl := [bl + 1,∞). Let αn := nP(ξ ∈ Al), βn :=

nP(ξ ∈ Bl) and γn := nP(ξ ∈ Ac
l ). The assumption that Jl is good implies

that αn + βn + γn = nP(ξ > al) 6 D. By selecting a subsubsequence we
may assume that αn → α, βn → β and γn → γ for some real α, β, γ with

α + β + γ 6 D. Then (i) shows that NBl
d−→ Po(β); moreover, the proof

extends easily (using joint factorial moments) to show that NAl
d−→ Po(α),

NBl
d−→ Po(β) and NAc

l

d−→ Po(γ), jointly and with independent limits.

Similarly, by the method of moments or otherwise (this is a standard Pois-

son approximation of a multinomial distribution), NAl
d−→ Po(α), NBl

d−→
Po(β) and NAc

l

d−→ Po(γ), jointly and with independent limits.
Note that

Y(1) ∈ Al =⇒ NAl > 1 and NBl = 0.

Conversely,

NAl > 1 and NBl = NAc
l

= 0 =⇒ Y(1) ∈ Al.
The corresponding results hold for ξ(1). Thus,

P(Y(1) ∈ Al) 6 P(NAl > 1, NBl = 0)→ P
(
Po(α) > 1

)
P
(
Po(β) = 0

)
(19.32)

and

P(ξ(1) ∈ Al) > P(NAl > 1, NBl = NAc
l

= 0)
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→ P
(
Po(α) > 1

)
P
(
Po(β) = 0

)
P
(
Po(γ) = 0

)
. (19.33)

Since P
(
Po(γ) = 0

)
= e−γ , (19.32)–(19.33) yield

P(Y(1) ∈ Al)− eγ P(ξ(1) ∈ Al) 6 o(1). (19.34)

Moreover, NJl = NAl +NAc
l

d−→ Po(α+ γ), and thus

P(ξ(1) ∈ Jl) = P(NJl > 1, NBl = 0) > P(NJl = 1, NBl = 0)

→ (α+ γ)e−α−γe−β. (19.35)

We are assuming that Jl is thin, i.e., P(ξ(1) ∈ Jl) 6 δ, and thus (19.35)

yields (α+ γ)e−α−γe−β 6 δ and consequently

γ 6 α+ γ 6 δeα+β+γ 6 δeD.

Hence, (19.34) implies

P(Y(1) ∈ Al) 6 eδe
D
P(ξ(1) ∈ Al) + o(1),

which contradicts (19.31). This contradiction shows that (19.30) holds uni-
formly for all good intervals.

It remains to consider the bad intervals.
Let J` = [a`, b`] be the rightmost bad interval. If J` is fat we use (19.29)

and if J` is thin we use (19.28) which gives

P(Y(1) ∈ A`) 6 P(Y(1) ∈ J`) 6 P(ξ(1) ∈ J`) + o(1) 6 δ + o(1).

In both cases,

P(Y(1) ∈ A`) 6 P(ξ(1) ∈ A`) + δ + o(1). (19.36)

Finally, let A∗ be the union of the remaining bad intervals. Then A∗ =
[0, a` − 1] and by (v),

P(Y(1) ∈ A∗) = P(Y(1) < a`) 6 P(ξ(1) < a`) + o(1). (19.37)

Furthermore, recalling nP(ξ > a`) > D since J` is bad,

P(ξ(1) < a`) = P(N [a`,∞) = 0) =
(
1− P(ξ > a`)

)n
6 e−nP(ξ>a`) 6 e−D.

(19.38)
We obtain by summing (19.30) for all good intervals together with (19.36)

and (19.37), recalling that the number of intervals is bounded (for a fixed
δ) and using (19.38),

P(Y(1) ∈ A) =
∑
l

P(Y(1) ∈ Al)

6 eδe
D
∑
l

P(ξ(1) ∈ Al) + o(1) + δ + P(ξ(1) < a`)

6 eδe
D
P(ξ(1) ∈ A) + o(1) + δ + e−D.
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Consequently,

dTV(Y(1), ξ(1)) = P(Y(1) ∈ A)− P(ξ(1) ∈ A)

6
(
eδe

D − 1
)
P(ξ(1) ∈ A) + δ + e−D + o(1)

6
(
eδe

D − 1
)

+ δ + e−D + o(1),

and thus

lim sup
n→∞

dTV(Y(1), ξ(1)) 6
(
eδe

D − 1
)

+ δ + e−D. (19.39)

Letting first δ → 0 and then D → ∞, we obtain dTV(Y(1), ξ(1)) → 0,
which proves (vi).

This completes the proof of the version with ξ and the assumption m =
λn + o(n1/2). Now remove this assumption, but assume λ < ν and thus
τ < ρ. We consider only n with 0 < m/n < ν and thus 0 < τn < ρ. Denote

the distribution (14.11) of ξ(n) by w(n) (this is a probability weight sequence

equivalent to w) and let S
(n)
n := ξ

(n)
1 + · · · + ξ

(n)
n . Then, by Example 11.2

applied to w(n), in analogy with (19.14) (and equivalent to it by (11.9)),

P(Y1 = k) =
w

(n)
k Z(m− k, n− 1; w(n))

Z(m,n; w(n))
=
Z(m− k, n− 1; w(n))

Z(m,n; w(n))
P(ξ(n) = k).

(19.40)
Furthermore, for any y > 0, using (14.13),

P(Y(1) > y) 6 nP(Y1 > y) = nP
(
ξ

(n)
1 > y

∣∣ S(n)
n = m

)
6 nP

(
ξ

(n)
1 > y

)
P
(
S(n)
n = m

)−1

6 nP(ξ(n) > y) ·O(n1/2). (19.41)

Choose τ∗ ∈ (τ, ρ). Then, for s > 0 and n so large than τn < τ∗, by (4.11),

P(ξ(n) > y) 6 e−sy
Φ(esτn)

Φ(τn)
6 e−sy

Φ(esτ∗)

Φ(0)
. (19.42)

Choosing s > 0 with es < ρ/τ∗, we thus find P(ξ(n) > y) = O(e−sy) and, by
(19.41),

P(Y(1) > y) = O
(
n3/2e−sy

)
.

We now define B(n) := 2s−1 log n, and obtain

P(Y(1) > B(n)) = O
(
n3/2e−sB(n)

)
= O

(
n−1/2

)
→ 0. (19.43)

Hence, Y(1) < B(n) w.h.p. Similarly, using (19.42) again,

P(ξ(n) > B(n)) = o(n−1) (19.44)

and thus P(ξ
(n)
(1) > B(n)) 6 nP(ξ(n) > B(n))→ 0, so ξ(1) < B(n) w.h.p.

We have shown that (19.19) (with ξ(n)) and (19.20) hold. Moreover,

Lemma 14.1 yields, see (14.13) again, Z(m,n; w(n)) ∼ d/(2πσ2n)1/2, and for
k 6 B(n) = O(log n), the same argument yields also, using Remark 14.2,
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Z(m − k, n − 1; w(n)) ∼ d/(2πσ2n)1/2, because m − k − (n − 1)E ξ(n) =

m− k − (n− 1)m/n = −k +m/n = o(n1/2). Consequently, (19.40) yields

P(Y1 = k) =
(
1 + o(1)

)
P(ξ(n) = k), (19.45)

uniformly for k 6 B(n).

We can now argue exactly as above, using ξ(n), ξ
(n)
(j) and N

(n)
A , which

proves this version of the theorem.
Finally, if λ < ν and m/n = λ + o(1/ log n), then τn := Ψ−1(m/n) =

τ+o(1/ log n), because Ψ−1 is differentiable on (0, ν). Since we are assuming
τ = 1 and Φ(τ) = 1 in the proof, we thus have, uniformly for all k 6 B(n) =
O(log n),

P(ξ(n) = k) =
τkn

Φ(τn)
wk =

(
1 + o(1)

)
wk =

(
1 + o(1)

)
P(ξ = k). (19.46)

Since also P(ξ(n) > B(n)) = o(n−1) and P(ξ > B(n)) = o(n−1), it follows

that nP(ξ(n) > h(n)) → α ⇐⇒ nP(ξ > h(n)) → α, and thus we may in

(i)–(iii) replace ξ(n) by ξ again. Finally, (iv)–(vi) follow as above in this case
too. �

Proof of Theorem 19.3. Recall that λ < ν ⇐⇒ τ < ρ by Lemma 3.1. We
have ν > λ > 0, so ρ > 0, and τ > 0. Thus 1 < ρ/τ 6∞.

(i): Fix a > 1/ log(ρ/τ). Choose b with e1/a < b < ρ/τ . Then 0 6 1/ρ <
(bτ)−1. Choose c with 1/ρ < c < (bτ)−1.

Since lim supk→∞w
1/k
k = 1/ρ < c, we have w

1/k
k < c for large k, and then,

defining τn and ξ(n) by (14.10)–(14.11),

P(ξ(n) = k) =
τkn

Φ(τn)
wk 6

(cτn)k

Φ(0)
. (19.47)

As n→∞, cτn → cτ < b−1. Let h := ba log nc. For large n, (19.47) applies
for k > h, and cτn < b−1 < 1, and then

P(ξ(n) > h) 6
∞∑
k=h

(cτn)k

Φ(0)
6
∞∑
k=h

b−k

w0
= O

(
b−h
)

= O
(
n−a log b

)
Since a log b > 1, thus nP(ξ(n) > h) → 0, and Theorem 19.7(ii) yields
Y(1) 6 h 6 a log n w.h.p.

(ii): If ρ =∞, then (i) applies with ρ/τ =∞ and thus 1/ log(ρ/τ) = 0.
(iii): If ρ =∞, the result follows by (ii), so we may assume 1 = τ < ρ <

∞. Let a := 1/ log(ρ/τ) and 0 < ε < 1. The upper bound Y(j) 6 Y(1) 6
(a+ ε) log n w.h.p. follows from (i), and it remains to find a matching lower
bound.
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Let k := d(1− ε)a log ne. Then, since τn → τ ,

logP(ξ(n) = k) = logwk + k log τn − log Φ(τn)

= −k(log ρ+ o(1)) + k(log τ + o(1)) +O(1)

= −k log(ρ/τ) + o(k) = −(1− ε+ o(1)) log n

and thus

nP(ξ(n) > k) > nP(ξ(n) = k) = nε+o(1) →∞.
By Theorem 19.7(iii) (and the last sentence in Theorem 19.7), this implies
w.h.p.

Y(j) > k > (1− ε)a log n

This completes the proof, since we can take ε arbitrarily small. �

Specialising Theorem 19.7 to the tree case (m = n − 1), we obtain the
following. (Recall that σ2 <∞ is automatic when ν > 1.)

Corollary 19.11. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
wk > 0 for some k > 2, and let ξ have the distribution given by (πk) in
(7.1). Suppose that ν > 1 and σ2 := Var ξ < ∞. Then, as n→∞, for the
largest degrees Y(1) > Y(2) > . . . in Tn, dTV(Y(1), ξ(1)) → 0 and, for every
fixed j, dK(Y(j), ξ(j))→ 0.

Proof. The case ω =∞ is a special case of Theorem 19.7, with λ = 1.
The case ω < ∞ is trivial: for every fixed j, Y(j) = ω w.h.p. by Theo-

rem 19.1, and, trivially, ξ(j) = ω w.h.p. �

The comparison with ξ(j) in Theorem 19.7 and Corollary 19.11 is appeal-
ing since ξ(j) is the j:th largest of n i.i.d. random variables. For applications
it is often convenient to modify this a little by taking a Poisson number of
variables instead.

Consider an infinite i.i.d. sequence ξ1, ξ2, . . . , let as above ξ(j) be the j:th

largest among the first n elements of the sequence and define ξ̃(j) as the j:th
largest among the first N(n) elements ξ1, . . . , ξN(n), where N(n) ∼ Po(n) is
a random Poisson variable independent of ξ1, ξ2, . . . .

Lemma 19.12. W.h.p. ξ̃(j) = ξ(j) and thus dTV(ξ̃(j), ξ(j)) → 0 as n→∞
for every fixed j > 1.

Proof. Let n± := bn ± n2/3c, and let ξ−(j) be the j:th largest of ξ1, . . . , ξn− .

By symmetry, the positions of the j largest among ξ1, . . . , ξn are uniformly
random (we resolve any ties in the ordering at random); thus the probability
that one of them has index > n− is at most j(n − n−)/n = o(1). Hence,
w.h.p. all j are among ξ1, . . . , ξn− , and then ξ(j) = ξ−(j).

Furthermore, w.h.p. n− 6 N(n) 6 n+, and a similar argument (using

conditioning on N(n)) shows that w.h.p. ξ̃(j) = ξ−(j). Hence, w.h.p. ξ(j) =

ξ−(j) = ξ̃(j). Now use Lemma 19.5(v). �
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We can thus replace ξ(j) by ξ̃(j) in Theorem 19.7 and Corollary 19.11. (We

can similarly replace ξ
(n)
(j) by ξ̃

(n)
(j) defined in the same way.) The advantage is

that, by standard properties of the Poisson distribution, the corresponding
counting variables

Ñk := |{i 6 N(n) : ξ = k}|

are independent Poisson variables with Ñk ∼ Po(nP(ξ = k)). We similarly

define Ñ[k,∞) :=
∑∞

l=k Ñl ∼ Po
(
nP(ξ > k)

)
.

Remark 19.13. An equivalent way to express this is that the multiset
Ξn := {ξi : i 6 N(n)} is a Poisson process on N0 with intensity measure Λn
given by Λn{k} = nP(ξ = k).

We thus have (exactly), for any j and k,

P(ξ̃(j) 6 k) = P
(
Ñ[k+1,∞) < j

)
= P

(
Po(nP(ξ > k)) < j

)
; (19.48)

in particular

P(ξ̃(1) 6 k) = e−nP(ξ>k). (19.49)

This gives the following special case of Theorem 19.7. (There is a similar

version with ξ(n).)

Corollary 19.14. Suppose that w0 > 0 and ω = ∞. Suppose further that
n → ∞ and m = m(n) with m = λn + o(

√
n) where 0 < λ 6 ν, and that

either λ < ν or σ2 := Var ξ <∞. Then, uniformly in all k > 0,

P(Y(j) 6 k) = P
(
Po(nP(ξ > k)) < j

)
+ o(1) (19.50)

for each fixed j > 1; in particular

P(Y(1) 6 k) = e−nP(ξ>k) + o(1). (19.51)

Proof. Immediate by Theorem 19.7(v), Lemma 19.12 and (19.48)–(19.49).
�

Remark 19.15. Since Ñ[h(n),∞) > j ⇐⇒ ξ̃(j) > h(n), it follows easily
from Lemmas 19.12 and 19.5(iv) that for any sequence h(n),

d̃K

(
N [h(n),∞), Ñ[h(n),∞)

)
→ 0. (19.52)

Hence, Theorem 19.7(iv) is equivalent to d̃K

(
N[h(n),∞), Ñ[h(n),∞)

)
→ 0, and

thus

d̃K

(
N[h(n),∞),Po

(
nP(ξ > h(n))

))
→ 0. (19.53)

This is another, essentially equivalent, way to express the results above.



SIMPLY GENERATED TREES AND RANDOM ALLOCATIONS 103

19.3. The subcase λ < ν. When λ < ν, we have τ < ρ and the random
variable ξ has some finite exponential moment, cf. Section 8; hence the
probabilities πk decrease rapidly. Theorem 19.7 and Corollary 19.14 show
that Y(1) (and each Y(j)) has its distribution concentrated on k such that
P(ξ > k) is of the order 1/n. If the decrease of πk is not too irregular, this
implies strong concentration of Y(1), with, rougly speaking, Y(1) ≈ k when
P(ξ > k) ≈ 1/n. To make this precise, we define three versions of a suitable
such estimate k = k(n). Let, as above, πk = P(ξ = k) = τkwk/Φ(τ) and let

Πk := P(ξ > k) =
∞∑
l=k

πl. (19.54)

Define

k1(n) := max{k : πk > 1/n}, (19.55)

k2(n) := max{k : Πk > 1/n}, (19.56)

k3(n) := max{k :
√

ΠkΠk+1 > 1/n}. (19.57)

Note that k1(n) 6 k2(n) and k2(n)− 1 6 k3(n) 6 k2(n).
We consider the typical case when wk+1/wk converges as k →∞. We

assume implicitly that wk+1/wk is defined for all large k; thus wk > 0 and
ω =∞. If wk+1/wk → a as k →∞, then (3.5) yields ρ = 1/a; hence ρ =∞
if a = 0 and 0 < ρ <∞ if a > 0.

Theorem 19.16. Suppose that w0 > 0 and that wk+1/wk → a < ∞ as
k →∞. Suppose further that n→∞ and m = m(n) with m = λn+ o(

√
n)

where 0 < λ < ν.

(i) Then, for each j > 1,

Y(j) = k1(n) +Op(1) = k2(n) +Op(1) = k3(n) +Op(1).

(ii) If a = 0, then, moreover, w.h.p.,

|Y(j) − k1(n)| 6 1, |Y(j) − k2(n)| 6 1, Y(j) ∈ {k3(n), k3(n) + 1}.

Proof. (i): We have, as said above, ρ = 1/a > 0. Furthermore, since λ < ν,
we have τ < ρ and thus, as k →∞,

πk+1

πk
= τ

wk+1

wk
→ τa =

τ

ρ
< 1. (19.58)

It follows from (19.58) and (19.54), using dominated convergence, that, as
k →∞,

Πk

πk
=
∞∑
i=0

πk+i

πk
→

∞∑
i=0

(τa)i =
1

1− τa
. (19.59)

If ` is chosen such that (τa)` < 1 − τa, then (19.59) and (19.58) imply
Πk+`/πk → (τa)`/(1 − τa) < 1 as k →∞, and thus, for large k, Πk+` <
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πk < Πk; hence, for large n, k1(n) 6 k2(n) 6 k1(n) + `. Thus, recalling that
|k2(n)− k3(n)| 6 1,

k1(n) = k2(n) +O(1) = k3(n) +O(1). (19.60)

Furthermore, (19.58) and (19.59) yield also

Πk+1

Πk
→ τa < 1. (19.61)

By (19.56), nΠk2(n) > 1 > nΠk2(n)+1. This and (19.61) imply that if Ω(n) is
any sequence with Ω(n)→∞, then nΠk2(n)−Ω(n) →∞ and nΠk2(n)+Ω(n) →
0. Consequently, recalling the definition (19.54), by Theorem 19.7(ii)–(iii)
(or by Corollary 19.14) w.h.p. Y(j) > k2(n)−Ω(n) and Y(j) < k2(n) + Ω(n).
Since Ω(n) → ∞ is arbitrary, this yields Y(j) = k2(n) + Op(1). (See e.g.
[62].) The result follows by (19.60).

(ii): When a = 0, (19.59) yields Πk ∼ πk, (19.58) yields πk+1/πk → 0 and
(19.61) yields Πk+1/Πk → 0 as k →∞. It follows easily from (19.55)–(19.57)
that nΠk1(n)−1 → ∞, nΠk1(n)+2 → 0, nΠk2(n)−1 → ∞, nΠk2(n)+2 → 0,
nΠk3(n) → ∞, nΠk3(n)+2 → 0, and the results follow by Theorem 19.7(ii)–
(iii). �

If a = 0, i.e. wk+1/wk → 0 as k →∞, thus Y(1) is asymptotically concen-
trated at one or two values. (This was shown, in the tree case, by Meir and
Moon [88], after showing concentration to at most three values in [87]; see
also Kolchin, Sevast’yanov and Chistyakov [77], Kolchin [76] and Carr, Goh
and Schmutz [21] for special cases.) If a > 0, we still have a strong concen-
tration, but not to any finite number of values as is seen by Theorem 19.19
below.

We consider two important examples, where we apply this to random
trees, so m = n−1 and λ = 1. (Recall that Y(1) then is the largest outdegree
in Tn. The largest degree is w.h.p. Y(1) + 1, since w.h.p. it is not attained at
the root, e.g. because the root degree is Op(1) by Theorem 7.10; this should
be kept in mind when comparing with results in other papers.)

Example 19.17. For uniform random labelled ordered rooted trees, we have
by Example 10.1 ξ ∼ Ge(1/2) with πk = 2−k−1 and thus P(ξ > k) = 2−k.
Hence Y(1) has asymptotically the same distribution as the maximum of n
i.i.d. geometrically distributed random variables, which is a simple and well-
studied example, see e.g. Leadbetter, Lindgren and Rootzén [82]. Explicitly,
Corollary 19.14 applies and (19.51) yields, uniformly in k > 0,

P(Y(1) 6 k) = e−n2−k−1
+ o(1). (19.62)

(This was, essentially, shown by Meir and Moon [87].)
One way to express this is to introduce a random variable W with the

Gumbel distribution

P(W 6 x) = e−e
−x
, −∞ < x <∞. (19.63)
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Then (19.62) yields, uniformly for k ∈ Z,

P(Y(1) 6 k) = P
(
W < (k + 1) log 2− log n

)
+ o(1)

= P
(W + log n

log 2
< k + 1

)
+ o(1)

= P
(⌊W + log n

log 2

⌋
6 k

)
+ o(1). (19.64)

In other words, extending dK to Z-valued random variables,

dK

(
Y(1), b(W + log n)/ log 2c

)
→ 0. (19.65)

Thus, the maximum degree Y(1) can be approximated (in distribution) by
b(W + log n)/ log 2c = bW/ log 2 + log2 nc. Hence Y(1) − log2 n is tight but
no asymptotic distribution exists; Y(1) − log2 n can be approximated by
bW/ log 2 + log2 nc− log2 n = bW/ log 2 + {log2 n}c− {log2 n} (where we let
{x} := x − bxc denote the fractional part of x), which shows convergence
in distribution for any subsequence such that {log2 n} converges to some
α ∈ [0, 1], but the limit depends on α. See further Janson [60, in particular
Lemma 4.1 and Example 4.3].

In the same way we see that Y(j) can be approximated in distribution by
bWj/ log 2 + log2 nc where Wj has the distribution

P(Wj 6 x) = P(Po(e−x) < j) =

j−1∑
i=0

e−ix

i!
e−e

−x
, −∞ < x <∞, (19.66)

with density function e−jxe−e
−x
/(j − 1)!; further Wj

d
= − log Vj , where Vj

has the Gamma distribution Gamma(j, 1). (Cf. Leadbetter, Lindgren and
Rootzén [82, Section 2.2] for the relation between the distributions of ξ(j)

and ξ(1) in the i.i.d. case.)

Example 19.18. For uniform random labelled unordered rooted trees, we
have by Example 10.2 ξ ∼ Po(1) with πk = e−1/k!. We have wk+1/wk → 0,
so Theorem 19.16(ii) applies and shows that Y(1) is concentrated on at most
two values, as proved by Kolchin [76, Theorem 2.5.2]; see also Meir and
Moon [88] and Carr, Goh and Schmutz [21].

Explicitly, (19.51) yields (treating the rather trivial case n > k1/2 · k!
separately)

P(Y(1) < k) = e−ne
−1/k!(1+O(1/k)) + o(1) = e−ne

−1/k! + o(1) (19.67)

which by Stirling’s formula yields

P(Y(1) < k) = exp
(
−elogn−(k+ 1

2
) log k+k−log(e

√
2π)
)

+ o(1) (19.68)

uniformly in k > 1, cf. Carr, Goh and Schmutz [21]. It follows easily from
Stirling’s formula, or from (19.68), that k1(n), k2(n), k3(n) ∼ log n/ log logn,
and more precise asymptotics can be found too; cf. [90], [87], [21].
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In fact, the simple Example 19.17 is typical for the case wk+1/wk → a > 0
as k →∞; then Y(1) always has asymptotically the same distribution as
the maximum of i.i.d. geometric random variables, provided we adjust the
number of these variables according to w. We state some versions of this in
the next theorem. For simplicity we consider only the maximum Y(1), and
leave the extensions to Y(j) for general fixed j to the reader.

Theorem 19.19. Suppose that w0 > 0 and that wk+1/wk → a as k →∞,
with 0 < a < ∞. Suppose further that n → ∞ and m = m(n) with m =
λn+ o(

√
n) where 0 < λ < ν.

Let q := τa = τ/ρ < 1. Let k(n) be any sequence such that πk(n) =
Θ(1/n); equivalently, k(n) = k1(n) + O(1), and let N = N(n) be integers
such that

N ∼
nπk(n)q

−k(n)

1− q
=
nwk(n)a

−k(n)

Φ(τ)(1− q)
. (19.69)

(i) Let η1, . . . , ηN be i.i.d. random variables with a geometric distribution
Ge(1− q), i.e., P(ηi = k) = (1− q)q−k, k > 0. Then

Y(1)
d
≈ max

i6N
ηi. (19.70)

(ii) Let W have the Gumbel distribution (19.63). Then

Y(1)
d
≈ bW/ log(1/q) + log1/qNc. (19.71)

(iii) Let bn := nπk(n); thus bn = Θ(1). Then

Y(1) − k(n)
d
≈
⌊(
W + log(bn/(1− q))

)
/ log(1/q)

⌋
. (19.72)

Thus Y(1)−k(n) is tight, and converges for every subsequence such that
bn converges.

Hence Y(1)−k(n) converges for every subsequence such that bn converges,
but the limit depends on the subsequence so Y(1) − k(n) does not have a
limit distribution. (For the distributions that appear as subsequence limits,
see Janson [60, Examples 4.3 and 2.7].) Note that necessarily k(n) → ∞
and thus N →∞ as n→∞.

We show first a simple lemma, similar to Lemma 19.5.

Lemma 19.20. Let Xn and X ′n be integer-valued random variables and
suppose that there exists a sequence of integers k(n) such that Xn − k(n) is
tight. (Equivalently: Xn = k(n)+Op(1).) Then the following are equivalent:

(i) P(Xn 6 k(n) + `)− P(X ′n 6 k(n) + `)→ 0 for each fixed ` ∈ Z;
(ii) dK(Xn, X

′
n)→ 0;

(iii) Xn
d
≈ X ′n, i.e., dTV(Xn, X

′
n)→ 0.
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Proof. By considering Xn−k(n) and X ′n−k(n) we may assume that k(n) =
0. Let ε > 0. Since Xn is tight, there exists L such that P(|Xn| > L) < ε
for every n. Suppose that (i) holds. Then

dTV(Xn, X
′
n) =

∞∑
`=−∞

(
P(Xn = `)− P(X ′n = `)

)
+

6
L∑

`=−L

(
P(Xn = `)− P(X ′n = `)

)
+

+ P(|Xn| > L) 6 o(1) + ε.

This shows (iii). The implications (iii) =⇒ (ii) and (ii) =⇒ (i) are trivial.
�

Proof of Theorem 19.19. By (19.58), πk+1/πk → q as k →∞, and it follows
from (19.55) that nπk1(n) ∈ [1, q−1 + o(1)]. It follows further that πk(n) =

Θ(1/n) ⇐⇒ k(n) = k1(n) + O(1), as asserted, and then πk(n)q
−k(n) ∼

πk1(n)q
−k1(n); thus we may replace k(n) by k1(n) in (19.69).

(i): For each fixed ` ∈ Z, by (19.59), (19.58) and (19.69),

nP(ξ > k(n) + `) = nΠk(n)+` ∼ nπk(n)+`/(1− q) ∼ nπk(n)q
`/(1− q)

∼ Nqk(n)+` = N P(η1 > k(n) + `); (19.73)

furthermore, this is Θ(1). Hence, (19.51) yields

P
(
Y(1) < k(n) + `

)
= e−nP(ξ>k(n)+`) + o(1) = e−N P(η1>k(n)+`) + o(1)

=
(
1− P(η1 > k(n) + `)

)N
+ o(1)

= P
(
max
i6N

ηi < k(n) + `
)

+ o(1),

and (19.70) follows by Lemma 19.20, since Y(1) − k1(n) is tight by Theo-
rem 19.16.

(ii): As in (19.64), uniformly in k ∈ Z,

P
(

max
i6N

ηi < k
)

=
(
1− qk

)N
= e−Nq

k
+ o(1)

= P
(
W < k log(1/q)− logN

)
+ o(1)

= P
(⌊

W + logN

log(1/q)

⌋
< k

)
+ o(1). (19.74)

Hence, dTV

(
maxi6N ηi, bW/ log(1/q) + log1/qNc

)
→ 0, and (19.71) follows

from (19.70) and Lemma 19.20.
(iii): By (19.69), log1/qN = k(n) + log1/q(bn/(1− q)) + o(1), and (19.72)

follows easily from (19.71), using Lemma 19.20 and the fact that W is ab-
solutely continuous. �

Remark 19.21. For later use we note that Theorem 19.19, as other results,
extends to the case w0 = 0 by the argument in Remark 11.8; we now have
to assume λ > α := min{k : wk > 0}. The extension of Theorem 19.19(i) is
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perhaps more subtle that other applications of this argument since N will
change by a factor ∼ qα, but (ii) and (iii) are straightforward, and then (i)
follows by (19.74) and Lemma 19.20.

If the weight sequence is very irregular, Y(1) can fail to be concentrated
even in the case λ < ν.

Example 19.22. Let `j := 22j and S := {`j}j>1. Let wk = 2−k if k ∈
S, wk = 0 if k > 2 and k /∈ S, and choose w0 :=

∑
k∈S(k − 1)wk and

w1 := 1 −
∑

k∈S kwk. Then (wk) is a probability weight sequence with
µ :=

∑∞
k=0 kwk = 1. Furthermore, ρ = 2, Φ(ρ) =∞ and, by Lemma 3.1(iv),

ν := Ψ(ρ) = ∞. Choose m = n − 1 (the tree case); thus λ = 1 < ν and
τ = 1 so (πk) = (wk).

Note that `j+1 = `2j . If n = 2`j , then P(ξ > `j) ∼ 2−`j = n−1,

P(ξ > `j+1) ∼ 2−`j+1 � n−1 and P(ξ > `j−1) ∼ 2−`j−1 � n−1; hence

it follows from (19.51) that for the subsequence n = 2`j with j ∈ S,
P(Y(1) < `j+1) → 1, P(Y(1) < `j) → e−1 and P(Y(1) < `j−1) → 0. Thus,

along this subsequence, P(Y(1) = `j) → 1 − e−1 and P(Y(1) = `j−1) → e−1,

i.e., P
(
Y(1) = log2 n

)
→ 1− e−1 and P

(
Y(1) = log

1/2
2 n

)
→ e−1.

19.4. The subcase wk+1/wk → 0 as k →∞. We have seen in Theo-
rem 19.16 that when wk+1/wk → 0 as k →∞, the maximum Y(1) is asymp-
totically concentrated at one or two values. We shall see that for “most”
(in a sense specified below) values of n, Y(1) is concentrated at one value,
but there are also rather large transition regions where Y(1) takes two values
with rather large probabilities.

We have, as said before Theorem 19.16, ω =∞ and ρ =∞. Furthermore,
by Lemma 3.1(v), ν =∞.

We define

nk := b1/πkc, (19.75)

noting that nk+1/nk ∼ πk/πk+1 → ∞ as k →∞; in particular, nk+1 > nk
(for large k, at least). The results above then can be stated as follows.

Theorem 19.23. Suppose that w0 > 0 and that wk+1/wk → 0 as k →∞.
Suppose further that n → ∞ and m = m(n) with m = λn + o(

√
n) where

0 < λ <∞.

(i) Consider n in a subsequence such that for some k(n) and some x ∈
(0,∞), n/nk(n) → x. Then

P
(
Y(1) = k(n)− 1

)
→ e−x,

P
(
Y(1) = k(n)

)
→ 1− e−x.

(ii) Let Ωk → ∞ as k →∞. If n→∞ with n /∈
⋃∞
k=1[Ω−1

k nk,Ωknk],
then, for k(n) such that nk(n) < n < nk(n)+1,

P
(
Y(1) = k(n)

)
→ 1.
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Proof. (i): Along the subsequence, using (19.54), (19.59) and (19.75),

nP(ξ > k(n)) = nΠk(n) ∼ nπk(n) ∼
n

nk(n)
→ x. (19.76)

Hence, (19.51) yields P(Y(1) 6 k(n) − 1) → e−x. Furthermore, by (19.76)
and (19.61), nP(ξ > k(n)) → 0 and nP(ξ > k(n) − 1) → ∞; hence (19.51)
yields P(Y(1) 6 k(n))→ 1 and P(Y(1) 6 k(n)− 2)→ 0.

(ii): We may assume Ωk > 1. Then the assumptions imply Ωk(n)nk(n) <

n < Ω−1
k(n)+1nk(n)+1, where k(n) → ∞ and thus Ωk(n) → ∞ as n→∞.

Hence, similarly to (19.76),

nP
(
ξ > k(n)

)
∼ n

nk(n)
> Ωk(n) →∞,

nP
(
ξ > k(n) + 1

)
∼ n

nk(n)+1
< Ω−1

k(n)+1 → 0,

and the result follows by (19.51). �

Roughly speaking, the values of n such that Y(1) takes two values with
significant probabilities thus form intervals around each nk, of the same
length on a logarithmic scale; between these intervals, Y(1) is concentrated
at one value.

Example 19.24. Consider again uniform random labelled unordered rooted
trees, as in Example 19.18. We have nk = bk!/ec. In this case, it is simpler
to redefine nk := k!; Theorem 19.23(ii) is unaffected but (i) is modified to

P
(
Y(1) = k(n)− 1

)
→ e−x/e, (19.77)

P
(
Y(1) = k(n)

)
→ 1− e−x/e. (19.78)

Cf. Carr, Goh and Schmutz [21].

Remark 19.25. We have for simplicity considered only the maximum value
Y(1) in Theorem 19.23. It is easily seen, by minor modifications in the
proof, that for any fixed j, in (ii) also Y(j) = k(n) w.h.p., while in (i)
Y(j) ∈ {k(n)−1, k(n)} w.h.p., but the two probabilities have limits depending
on j; in fact, the number of j such that Y(j) = k(n) converges in distribution
to Po(x). We omit the details.

To make the statement about “most” n precise, recall that the upper
and lower densities of a set A ⊆ N are defined as lim supn→∞ a(n)/n and
lim infn→∞ a(n)/n, where a(n) := |{i 6 n : i ∈ A}|; if they coincide, i.e.,
if the limit limn→∞ a(n)/n exists, it is called the density. Similarly, the
the logarithmic density of A is limn→∞

1
logn

∑
i6n, i∈A

1
i , when this limit ex-

ists, with upper and lower logarithmic densities defined using lim sup and
lim inf. It is easily seen that if a set has a density, then it also has a logarith-
mic density, and the two densities coincide. (The converse does not hold.)
Furthermore, define

p∗n := max
k

P(Y(1) = k).
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It follows from Theorem 19.16 that the second largest probability P(Y(1) =
k) is 1 − p∗n + o(1). Thus, for n in a subsequence, Y(1) is asymptotically
concentrated at one value if and only if p∗n → 1; if p∗n stays away from 1,
Y(1) takes two values with large probabilities.

Theorem 19.26. Suppose that w0 > 0 and that wk+1/wk → 0 as k →∞.
Suppose further that n → ∞ and m = m(n) with m = λn + o(

√
n) where

0 < λ <∞.

(i) If 1
2 < a < 1, then the set {n : p∗n < a} has upper density

log a
1−a/ log 1

1−a > 0 and lower density 0.

(ii) There exists a subsequence of n with upper density 1 and logarithmic
density 1 such that p∗n → 1.

Note that the upper density in (i) can be made arbitrarily close to 1 by
taking a close to 1. This was observed by Carr, Goh and Schmutz [21] for
the case in Example 19.24. (However, they failed to remark that the lower
density nevertheless is 0.)

Proof. (i): Let b1 := − log a and b2 := − log(1 − a); thus 0 < b1 < b2 <
∞. Then max(e−x, 1 − e−x) < a ⇐⇒ x ∈ (b1, b2), and it follows from
Theorem 19.23 (and a uniformity in x implicit in the proof) that for any
ε > 0, if n ∈

⋃
k[(b1 + ε)nk, (b2 − ε)nk], then p∗n < a for large n, while if

n /∈
⋃
k[(b1 − ε)nk, (b2 + ε)nk], then p∗n > a for large n. Since nk+1/nk → 0

as k →∞, it is easily seen that for any b′1, b
′
2 with 0 < b′1 < b′2 < ∞,⋃

k[b
′
1nk, b

′
2nk] has upper density (b′2 − b′1)/b′2 and lower density 0; it follows

by taking b′j := bj ± ε and letting ε→ 0 that the set {n : p∗n < a} has upper

density (b1 − b2)/b2 and lower density 0.
(ii): Let Ωk be an increasing sequence with Ωk ↗ ∞ so slowly that

log Ωk = o(log(nk/nk−1)). LetA :=
⋃
k[Ω
−1
k nk,Ωknk]. By Theorem 19.23(ii),

p∗n → 1 as n→∞ with n /∈ A, so it suffices to prove that A has lower density
0 and logarithmic density 0.

It is easily seen that for the upper logarithmic density of A, it suffices to
consider n ∈ {bΩknkc}, which gives

lim sup
k→∞

∑k
j=1

∑Ωjnj

i=Ω−1
j nj

1/i

log(Ωknk)
6 lim sup

k→∞

∑k
j=1

(
2 log Ωj +O(1)

)∑k
j=1 log(nj/nj−1)

→ 0.

Hence the logarithmic density exists and is 0.
The lower density is at most, considering the subsequence bΩ−1

k nkc,

lim inf
k→∞

a(Ω−1
k nk)

Ω−1
k nk

6 lim inf
k→∞

Ωk−1nk−1

Ω−1
k nk

= lim
k→∞

Ωk−1Ωk

nk/nk−1
= 0,

since Ωk−1 6 Ωk < (nk/nk−1)1/3 for large k. (Alternatively, it is a general
fact that the lower density is at most the (lower) logarithmic density, for
any set A ⊆ N.) �
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19.5. The subcase λ = ν and σ2 =∞. We give two examples of the case
λ = ν and σ2 = ∞. (In both examples, we may assume that ν = 1 and
m = n− 1, so the examples apply to simply generated random trees.) The
first example shows that Theorem 19.7 does not always hold if σ2 =∞; the
second shows that it sometimes does.

Example 19.27. Let 1 < α < 2 and let (wk) be a probability weight
sequence with w0 > 0 and wk ∼ ck−α−1 as k →∞, for some c > 0. (This
is as in Example 12.10 with β = α + 1 ∈ (2, 3). If (wk) is not a probability
weight sequence, we may replace c by c′ := c/Φ(1).) We have ρ = 1, and
thus ν = Ψ(1) =

∑
kwk < ∞. (We may obtain any desired ν > 0, for

example ν = 1, by adjusting the first few wk.)
We consider the case m = νn+O(1); thus m/n→ λ = ν. (This includes

the tree case m = n − 1 in the case ν = 1. Actually, it suffices to assume
m = νn+ o(n1/α).) Then τ = 1 = ρ, and πk = wk.

The random variable ξ thus satisfies E ξ = λ = ν. Note that σ2 := Var ξ =
∞. (This is the main reason for taking 1 < α < 2; if we take α > 2, then
σ2 <∞ and Theorem 19.7 applies.) Furthermore,

P(ξ > k) =

∞∑
l=k

wl ∼ cα−1k−α. (19.79)

As in the proof of Theorem 18.14, there exists by [39, Section XVII.5] a
stable random variable Xα (satisfying (19.93) and (19.113)) such that

Sn − nν
n1/α

d−→ Xα; (19.80)

moreover, by [46, § 50], the local limit law (18.22) holds uniformly for all
integers `. Note that the density function g is bounded and uniformly con-
tinuous on R, and that g(0) > 0 by (18.24). (In fact, g(x) > 0 for all x. See
also [39, Section XVII.6] for an explicit formula for g as a power series; Xα

is, after rescaling, the extreme case γ = 2− α, in the notation there.)
By (19.14) and (18.22),

P(Y1 = k) =
wk P(Sn−1 = m− k)

P(Sn = m)
= wk

g(−k/n1/α) + o(1)

g(0) + o(1)

= wk
g(−k/n1/α) + o(1)

g(0)
, (19.81)

uniformly in k > 0.
For a non-negative function f on [0,∞), define

Xf
n :=

n∑
i=1

f(Yi/n
1/α). (19.82)

In particular, if f is the indicator 1{a 6 x 6 b} of an interval [a, b], we write

Xa,b
n and have in the notation of (19.7)

Xa,b
n := |{i 6 n : an1/α 6 Yi 6 bn

1/α}| = N[an1/α,bn1/α]. (19.83)



112 SVANTE JANSON

Suppose that f is either the indicator of a compact interval [a, b] ⊂ (0,∞),
or a continuous function with compact support in (0,∞) (or, more gener-
ally, any Riemann integrable function with support in a compact interval in
(0,∞)). Then, using (19.81) and dominated convergence,

EXf
n = n

∞∑
k=0

f(k/n1/α)P(Y1 = k) = n
∞∑
k=0

f(k/n1/α)wk
g(−k/n1/α) + o(1)

g(0)

= n1+1/α

∫ ∞
0

f(bxn1/αc/n1/α)wbxn1/αc
g(−bxn1/αc/n1/α) + o(1)

g(0)
dx

→
∫ ∞

0
f(x)cx−α−1 g(−x)

g(0)
dx. (19.84)

In the special case when f(x) = 1{a 6 x 6 b} with 0 < a < b < ∞, we
further similarly obtain,

EXa,b
n (Xa,b

n − 1) = n(n− 1)
∑
k,j>0

f(k/n1/α)f(j/n1/α)P(Y1 = k, Y2 = j)

= n(n− 1)
∑
k,j>0

f(k/n1/α)f(j/n1/α)wkwl
P(Sn−2 = m− k − j)

P(Sn = m)

→ c2

∫ ∞
0

∫ ∞
0

f(x)f(y)x−α−1y−α−1 g(−x− y)

g(0)
dx dy

= c2

∫ b

a

∫ b

a
x−α−1y−α−1 g(−x− y)

g(0)
dx dy

and, more generally, for any ` > 1,

E(Xa,b
n )` → c`

∫ b

a
· · ·
∫ b

a

∏̀
i=1

x−α−1
i

g(−x1 − · · · − x`)
g(0)

dx1 · · · dx`. (19.85)

For each such interval [a, b], this integral is bounded by CR` for all ` > 1,
for some C and R (depending on a and b), and it follows by the method

of moments that Xa,b
n

d−→ Xa,b
∞ , where Xa,b

∞ is determined by its factorial
moments

E(Xa,b
∞ )` = c`

∫ b

a
· · ·
∫ b

a

∏̀
i=1

x−α−1
i

g(−x1 − · · · − x`)
g(0)

dx1 · · · dx`. (19.86)

(It follows that Xa,b
∞ has a finite moment generating function, so the method

of moment applies.) Furthermore, joint convergence for several intervals
holds by the same argument. It follows also (by some modifications or by

approximation with step functions; we omit the details) that Xf
n

d−→ Xf
∞

for every continuous f > 0 with compact support and some Xf
∞.

Let Ξn be the multiset {Yi/n1/α : Yi > 0}, regarded as a point process
on (0,∞). (I.e., formally we let Ξn be the discrete measure

∑
i:Yi>0 δYi/n1/α .

See e.g. Kallenberg [68] or [69] for details on point processes, or Janson [57,
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§ 4] for a brief summary.) The convergence Xf
n

d−→ Xf
∞ for every continuous

f > 0 with compact support in (0,∞) implies, see [68, Lemma 5.1] or [69,
Lemma 16.15 and Theorem 16.16], that Ξn converges in distribution, as a
point process on (0,∞), to some point process Ξ on (0,∞). The distribution

of Ξ is determined by (19.86), where Xa,b
∞ is the number of points of Ξ in

[a, b]. By (19.86) or (19.84), the intensity measure is given by

EΞ = cg(0)−1x−α−1g(−x) dx. (19.87)

We can also consider infinite intervals. Let a > 0. Then, using again
(19.14) and noting that

∑∞
k=−∞ P(Sn−1 = m− k) = 1,

EXa,∞
n = n

∑
k>an1/α

P(Y1 = a) = n
∑

k>an1/α

wk
P(Sn−1 = m− k)

P(Sn = m)

6 nC1(an1/α)−α−1

∑
k>an1/α P(Sn−1 = m− k)

P(Sn = m)

6 C1a
−α−1n−1/α 1

n−1/α(g(0) + o(1))

6 C2a
−α−1. (19.88)

By Fatou’s lemma, (19.88) implies EXa,∞
∞ 6 C2a

−α−1 <∞. Hence, Xa,∞
∞ <

∞ a.s. for every a > 0, and we may order the points in Ξ in decreasing order
as

Ξ = {ηj}Jj=1 with η1 > η2 > . . . . (19.89)

(Here J = X0,∞
∞ 6 ∞ is the random number of points in Ξ. We shall see

that J =∞ a.s.)
The bound (19.88) is uniform in n, and tends to 0 as a→∞. It follows,

see [57, Lemma 4.1], that if we regard Ξn and Ξ as point processes on [0,∞],

the convergence Ξn
d−→ Ξ on (0,∞) implies the stronger result

Ξn
d−→ Ξ on [0,∞]. (19.90)

The points in Ξn, ordered in decreasing order, are Y(1)/n
1/α > Y(2)/n

1/α >
. . . . If we extend (19.89) by defining ηj := 0 when j > J , the convergence
(19.90) of point processes on [0,∞] is by [57, Lemma 4.4] equivalent to joint
convergence of the ranked points, i.e.

Y(j)/n
1/α d−→ ηj , j > 1 (jointly). (19.91)

We claim that each ηj > 0 a.s., and thus J = X0,∞
∞ = ∞ a.s. Suppose

the opposite: P(ηj = 0) = δ > 0 for some j. Then, for every ε > 0,

lim inf P(Y(j)/n
1/α < ε) > P(ηj < ε) > δ, and it follows that there exists

a sequence εn → 0 such that P(Y(j)/n
1/α < εn) > δ/2 for all n. We may

assume that εnn
1/α → ∞. Let A > 0 and take (for large n) an := εn and

bn :=
(
ε−αn − αc−1A

)−1/α
. Then an, bn → 0. For k 6 bnn

1/α = o(n1/α),
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(18.22) implies P(Sn−1 = m − k)/P(Sn = m) → 1, and the argument in
(19.84)–(19.85) yields, for each ` > 1,

E
(
Xan,bn
n

)
`
∼

n bnn1/α∑
k=ann1/α

wk

`

∼
(
c

∫ bn

an

x−α−1 dx

)`
=
(
cα−1

(
a−αn − b−αn

))`
= A`. (19.92)

Hence, Xan,bn
n

d−→ Po(A); in particular,

δ/2 6 P(Y(j)/n
1/α < εn) 6 P(Xan,bn

n < j)→ P(Po(A) < j).

Taking A large enough, we can make P(Po(A) < j) < δ/2, a contradiction
which proves our claim.

We have shown that (19.91) holds with ηj > 0. Furthermore, since the
intensity (19.87) is absolutely continuous, each ηj has an absolutely contin-

uous distribution. Hence Y(1), and every Y(j), is of the order n−1/α, with a
continuous limit distribution ηj (and thus no strict concentration at some

constant times n−1/α).

Note that if we consider i.i.d. variables ξ1, . . . , ξn, then {ξi/n1/α : ξi > 0}
converges (as is easily verified) to a Poisson process on [0,∞] with intensity
cx−α−1 dx. This intensity differs from the intensity of Ξ in (19.87), and,

since g(−x) → 0 as x → ∞, it is easy to see that ξ(1)/n
1/α and Y(1)/n

1/α

have different limit distributions. Thus, Theorem 19.7 does not hold in this
case. (However, Y(1) and ξ(1) are of the same order n−1/α.) Note also that, as
an easy consequence of (19.86), the limiting point process Ξ in this example
is not a Poisson process.

Remark 19.28. The distribution of the limiting point process Ξ in Ex-
ample 19.27 is in principle determined by (19.86) and its extension to joint

convergence for several Xai,bi
∞ . This can be made more explicit as follows.

(See  Luczak and Pittel [83] for similar calculations.)
It follows from Feller [39, Section XVII.5], see e.g. [63] for detailed calcu-

lations, that Xα has the characteristic function

ϕ(t) = exp
(
cΓ(−α)(−it)α

)
, t ∈ R. (19.93)

(Note that Γ(−α) > 0 and Re(−it)α < 0 for t 6= 0 since 1 < α < 2.) The
inversion formula gives

g(x) =
1

2π

∫ ∞
−∞

e−ixtϕ(t) dt =
1

2π

∫ ∞
−∞

e−ixt+cΓ(−α)(−it)α dt, (19.94)
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and (19.86) yields

E(Xa,b
∞ )` =

1

2πg(0)
c`
∫ b

a
· · ·
∫ b

a

∏̀
j=1

x−α−1
j

∫ ∞
−∞

∏̀
j=1

eixjtϕ(t) dt dx1 · · · dx`

=
1

2πg(0)

∫ ∞
−∞

(
c

∫ b

a
x−α−1eitx dx

)`
ϕ(t) dt. (19.95)

In particular, E(Xa,b
∞ )` = O(C`) for some C < ∞ (with C depending on a

but not on b). Hence, Xa,b
∞ has probability generating function, convergent

for all complex z,

E zX
a,b
∞ = E

∞∑
`=0

(
Xa,b
∞
`

)
(z − 1)`

=
∞∑
`=0

(z − 1)`

`!
· 1

2πg(0)

∫ ∞
−∞

(
c

∫ b

a
x−α−1eitx dx

)`
ϕ(t) dt

=
1

2πg(0)

∫ ∞
−∞

exp
(

(z − 1)c

∫ b

a
x−α−1eitx dx

)
ϕ(t) dt. (19.96)

We can here let b→∞, so (19.96) holds for b =∞ too. In particular, taking

z = 0, we obtain, using (19.91), the limit distribution of Y(1)/n
1/α as

P(η1 6 x) = P(Xx,∞
∞ = 0)

=
1

2πg(0)

∫ ∞
−∞

exp
(
−c
∫ ∞
a

x−α−1eitx dx
)
ϕ(t) dt

=
1

2πg(0)

∫ ∞
−∞

exp
(
−c
∫ ∞
a

x−α−1eitx dx+ cΓ(−α)(−it)α
)

dt

=
1

2πg(0)

∫ ∞
−∞

exp
(
c
(∫ a

0
x−α−1

(
eitx − 1− itx

)
dx− a−α

α
− it

a1−α

α− 1

))
dt,

(19.97)

where the last equality holds because

Γ(−α)uα =

∫ ∞
0

x−α−1
(
e−ux − 1 + ux

)
du (19.98)

when Reu > 0 and 1 < α < 2.
Furthermore, by extending (19.86) to joint factorial moments for several

(disjoint) intervals, it follows similarly, for step functions f , that the random
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variable Xf
∞ =

∑∞
j=1 f(ηj) satisfies

E eX
f
∞ =

1

2πg(0)

∫ ∞
−∞

exp
(
c

∫ ∞
0

(
ef(x) − 1

)
x−α−1eitx dx

)
ϕ(t) dt

=
1

2πg(0)

∫ ∞
−∞

exp
(
c

∫ ∞
0

(
ef(x) − 1

)
x−α−1eitx dx+ cΓ(−α)(−it)α

)
dt

=
1

2πg(0)

∫ ∞
−∞

exp
(
c
(∫ ∞

0
x−α−1

(
ef(x)+itx − 1− itx

)
dx
))

dt.

(19.99)

By taking limits, (19.99) extends to, e.g., any bounded measurable f with

compact support in (0,∞]. Since E esX
f
∞ = E eX

sf
∞ for s ∈ R, this formula

determines (in principle) the distribution of each Xf
∞ and thus of Ξ.

Example 19.29. Let (wk) be as in Example 19.27 but with α = 2, i.e.,
wk ∼ ck−3 as k →∞, for some c > 0. (Example 12.10 with β = 3.) We still
have (19.79); further, ρ = 1, and thus ν = Ψ(1) =

∑
kwk < ∞. (We may

again obtain any desired ν > 0, for example ν = 1, by adjusting the first
few wk.)

As in Example 19.27. we consider the case m = νn+O(1), including the
tree case m = n − 1 when ν = 1. Thus, again, m/n → λ = ν, τ = 1 = ρ,
πk = wk, and the random variable ξ satisfies E ξ = λ = ν, while σ2 :=
Var ξ =∞.

As in the proof of Theorem 18.14, we have the central limit theorem
(18.25), and the local limit law (18.26) holds uniformly for all integers `.

Choose B(n) := n1/2 log logn = o(
√
n log n). Then, by (18.26),

Z(m,n) = P(Sn = m) =
g(0) + o(1)√

n log n
(19.100)

and, uniformly for all k 6 B(n),

Z(m− k, n− 1) = P(Sn−1 = m− k) =
g(0) + o(1)√

n log n
. (19.101)

Hence, by (19.14), (19.22) holds. Furthermore, (18.26) yields also, since
g(0) = maxx∈R g(x),

Z(m− k, n− 1) = P(Sn−1 = m− k) 6
g(0) + o(1)√

n log n
, (19.102)

uniformly for all k > 0; hence (19.14) implies that (19.17)–(19.18) hold.
For our B(n) we have by (19.79)

P(ξ > B(n)) = O(B(n)−2) = o(n−1), (19.103)

so (19.19) holds, and thus (19.20) holds.
The proof of Theorem 19.7 now holds without further modifications; hence

the conclusions of Theorem 19.7 holds for this example, although σ2 =∞.
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Note that in Example 19.27, although the asymptotic distributions of Y(1)

and ξ(1) are different, they are still of the same order of magnitude. We do
not know whether this is true in general. This question can be formulated
more precisely as follows.

Problem 19.30. In the case λ = ν, do Theorem 19.7(ii)–(iii) hold also
when σ2 =∞?

In any case, we can ask about the possible rates of growth of Y(1), for
example as follows, where we for definiteness consider the tree case m = n−1
(and thus λ = 1).

Problem 19.31. For which sequences ω(n) does there exist a weight se-
quence with ν = 1 such that, with m = n− 1, Y(1) > ω(n) w.h.p.?

As remarked earlier, the answer is positive for ω(n) = n1−ε, for any ε > 0,
as shown by Example 19.27 with α < 1/(1− ε).

19.6. The case λ > ν. We turn to the case λ > ν. Then, as briefly
discussed in Section 11, the asymptotic formula for the numbers Nk in
Theorem 11.4 accounts only for

∑∞
k=0 kπkn = µn = νn balls, so there

are m − νn ≈ (λ − ν)n balls missing. A more careful treatment of the
limits show that the explanation is that Theorem 11.4 really implies that
the “small” boxes (i.e., those with rather few balls) have a total of about∑∞

k=0 kπkn = µn = νn balls, while the remaining ≈ (λ− ν)n balls are in a
few “large” boxes. One way to express this precisely is the following simple
result.

Lemma 19.32. Let w = (wk)k>0 be a weight sequence with w0 > 0 and
ω =∞. Suppose that n→∞ and m = m(n) with m/n→ λ where ν < λ <
∞.

(i) For any sequence Kn →∞,∑
k6Kn

kNk > νn+ op(n) and
∑
k>Kn

kNk 6 (λ− ν)n+ op(n).

(ii) There exists a sequence Ωn →∞ such that for any sequence Kn →∞
with Kn 6 Ωn we have∑
k6Kn

kNk = νn+ op(n) and
∑
k>Kn

kNk = (λ− ν)n+ op(n).

Proof. The two statements in each part are equivalent, since
∞∑
k=0

kNk = m = λn+ o(n). (19.104)

(i): For every fixed `, Theorem 11.4 implies

1

n

∑
k6`

kNk
p−→
∑
k6`

kπk. (19.105)
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Let ε > 0. Since
∑∞

k=0 kπk = ν < ∞, there exists ` such that
∑

k6` kπk >
ν − ε, and (19.105) implies that w.h.p.

1

n

∑
k6`

kNk > ν − ε.

Since ε is arbitrary, this implies
∑

k6Kn kNk > νn+ op(n).

(ii): For each fixed `,
∑

k6` kπk <
∑∞

k=0 kπk = ν, and thus (19.105)
implies P(

∑
k6` kNk > νn)→ 0. Hence, there exists an increasing sequence

of integers n` such that if n > n`, then P
(∑

k6` kNk > νn
)
< 1/`. Now

define Ωn = ` for n` 6 n < n`+1. Then
∑

k6Ωn
kNk 6 νn w.h.p., which

together with (i) yields (ii). �

Consider the “large” boxes. One obvious possibility is that there is a
single “giant” box with ≈ (λ − ν)n balls; more formally, (λ − ν)n + op(n)
balls (a “monopoly”). Applying Lemma 19.32(i) with Kn = o(n), we see
that for every ε > 0, w.h.p. there are then less than εn balls in all other
boxes with more than Kn balls each; thus, either Y(2) 6 Kn or Y(2) < εn.
Consequently, this case is defined by

Y(1) = (λ− ν)n+ op(n), (19.106)

Y(2) = op(n). (19.107)

Equivalently, Y(1)/n
p−→ λ − ν and Y(2)/n

p−→ 0. This thus describes con-
densation of the missing balls to a single box.

We will see in Theorem 19.34 that, indeed, this is the case for the impor-
tant example of weights with a power-law. Another, more extreme example
is Example 10.8, wk = k!, where ν = 0, see Example 19.36.

However, if (wk) is very irregular, (19.106)–(19.107) do not always hold.
Examples 19.37 and 19.38 give examples where, at least for a subsequence,

either Y(2)/n
p−→ a > 0, so there are at least two giant boxes with order n

balls each (an “oligopoly”), or Y(1)/n
p−→ 0, so there is no giant box with

order n balls, and the missing (λ − ν)n balls are distributed over a large
number (necessarily → ∞ as n→∞) of boxes, each with a large but o(n)
number of balls.

Example 19.33. We consider Example 12.10; wk ∼ ck−β as k →∞. If
β 6 2, then ν =∞, see (12.46), and thus λ < ν and Theorems 19.3 and 19.7
apply. We are interested in the case λ > ν, so we assume β > 2. In this
case, Jonsson and Stefánsson [67] showed (for the case of random trees) that
when λ > ν we have the simple situation with condensation to a single giant
box. We state this in the next theorem, which also includes further, more
precise, results. (Note that the case λ < ν is covered by Theorems 19.3
and 19.7, with Y(1) of order log n; the case λ = ν is studied in Examples
19.27 and 19.29 for 2 < β 6 3, and is covered by Theorem 19.7 when β > 3;
in both cases Y(1) is of order n−1/(β−1) = o(n).)
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Theorem 19.34. Suppose that wk ∼ ck−β as k →∞ for some c > 0 and
β > 2. Then ν < ∞. Suppose further m/n → λ > ν. Let α := β − 1 > 1
and c′ := c/Φ(1).

(i) The random allocation Bm,n = (Y1, . . . , Yn) has largest components

Y(1) = (λ− ν)n+ op(n), (19.108)

Y(2) = op(n). (19.109)

(ii) The partition function is asymptotically given by

Z(m,n) ∼ c(λ− ν)−βΦ(1)n−1n1−β. (19.110)

(iii) Furthermore,

(
Y(1), Y(2), . . . , Y(n)

) d
≈
(
m−

n−1∑
i=1

ξi, ξ
′
(1), . . . , ξ

′
(n−1)

)
, (19.111)

where ξ′(1), . . . , ξ
′
(n−1) are the n−1 i.i.d. random variables ξ1, . . . , ξn−1,

with distribution (πk), ordered in decreasing order.

(iv) Y(1) = m− νn+Op(n1/α) and

n−1/α
(
m− νn− Y(1)

) d−→ Xα, (19.112)

where Xα is an α-stable random variable with Laplace transform

E e−tXα = exp
(
c′Γ(−α)tα

)
, Re t > 0. (19.113)

(v) Y(2) = Op(n1/α) and

n−1/αY(2)
d−→W, (19.114)

where W has the Fréchet distribution

P(W 6 x) = exp
(
−c
′

α
x−α

)
, x > 0. (19.115)

(vi) More generally, for each j > 2, Y(j) = Op(n1/α) and

n−1/αY(j)
d−→Wj , (19.116)

where Wj has the density function

c′x−α−1

(
c′α−1x−α

)j−2

(j − 2)!
exp
(
−c′α−1x−α

)
, x > 0, (19.117)

and c′α−1W−αj ∼ Γ(j − 1, 1).

Note that πk = wk/Φ(1) and that Γ(−α) > 0 in (19.113).
Part (iii) shows that Y(2), . . . , Y(n) asymptotically are as order statistics of

n− 1 i.i.d. random variables ξi; thus the giant box absorbs the dependency
between the variables Y1, . . . , Yn introduced by the conditioning in (11.7).
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Remark 19.35. Jonsson and Stefánsson [67] considered only trees, and thus
m = n−1 and λ = 1, and then showed the tree versions of (i) and (ii). (They
further showed Theorem 7.1 when wk ∼ ck−β.) In the tree case (i) says that
the random tree Tn has w.h.p. a node of largest degree (1−ν)n+o(n), while
all other nodes have degrees o(n); further, by Theorem 15.5, (ii) becomes

Zn ∼ c(1− ν)−βΦ(1)n−1n−β ∼ (1− ν)−βΦ(1)n−1wn. (19.118)

Proof of Theorem 19.34. We may assume that w0 > 0 by the argument in
Remark 11.8. Furthermore, using (11.9) for (ii), by dividing wk (and c) by
Φ(1), we may assume that (wk) is a probability weight sequence, and thus
Φ(1) = 1. For λ > ν we have τ = ρ = 1, and thus then πk = wk.

(i): Φ(t) has radius of convergence ρ = 1, and since β > 2, Φ(1) =∑
k wk <∞ and ν = Φ′(1)/Φ(1) <∞.
Consider as in Example 11.2 i.i.d. random variables ξ1, . . . , ξn with dis-

tribution (πk) = (wk) and mean µ = ν.
Fix a small ε > 0. We assume that ε < λ− ν.
By the law of large numbers, Sn−1/n

p−→ µ = ν. We may thus find a
sequence δn → 0 such that |Sn−1 − nν| 6 nδn w.h.p.

Since m/n− ν − δn → λ− ν > ε, we have m− νn− δnn > εn for large n;
we consider only such n.

We separate the event Sn = m into four disjoint cases (subevents):

E1 : Exactly one ξi > εn, and that ξi satisfies |ξi − (m− νn)| 6 δnn.
E2 : Exactly one ξi > εn, and that ξi satisfies |ξi − (m− νn)| > δnn.
E3 : ξi > εn for at least two i ∈ {1, . . . , n}.
E4 : All ξi 6 εn.

We shall show that E1 is the dominating event. We define also the events

E1i : Sn = m, |ξi − (m− νn)| 6 δnn and ξj 6 εn for j 6= i.
E∗1i : Sn = m, |ξi − (m− νn)| 6 δnn.
E∗2i : Sn = m, |ξi − (m− νn)| > δnn, ξi > εn.
Dij : Sn = m, ξi > εn, ξj > εn.

Then E1 is the disjoint union
⋃n
i=1 E1i, so by symmetry

P(E1) = nP(E11). (19.119)

Furthermore, for any i,

E1i ⊆ E∗1i ⊆ E1i ∪
⋃
j 6=i
Dij

and thus, again using symmetry,

P(E∗11) > P(E11) > P(E∗11)− nP(D12). (19.120)
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Using the fact that |k− (m−νn)| 6 δnn implies wk ∼ ck−β ∼ c(λn−νn)−β,
together with |Sn−1 − nν| 6 δnn w.h.p., we obtain

P(E∗11) =
∑

|k−(m−νn)|6δnn

P(ξ1 = k, Sn = m)

=
∑

|k−(m−νn)|6δnn

P(ξ1 = k)P(Sn−1 = m− k)

=
∑

|k−(m−νn)|6δnn

c(λ− ν)−βn−β
(
1 + o(1)

)
P(Sn−1 = m− k)

= c(λ− ν)−βn−β P
(
|Sn−1 − nν| 6 δnn

)(
1 + o(1)

)
= c(λ− ν)−βn−β

(
1 + o(1)

)
. (19.121)

Similarly, allowing the constants Ci here and below to depend on ε,

P(E∗2i) =
∑

|k−(m−νn)|>δnn, k>εn

P(ξi = k, Sn = m)

6 C1(εn)−β
∑

|k−(m−νn)|>δnn, k>εn

P(Sn−1 = m− k)

6 C2n
−β P

(
|Sn−1 − νn| > δnn

)
= o
(
n−β

)
. (19.122)

For any i and j, by symmetry,

P(Dij) = P(ξn > εn, ξn−1 > εn, Sn = m)

=
∑
k>εn

P(ξn = k)P(Sn−1 = m− k, ξn−1 > εn)

6 C3(εn)−β
∑
k>εn

P(Sn−1 = m− k, ξn−1 > εn)

6 C3(εn)−β P(ξn−1 > εn) 6 C4(εn)1−2β. (19.123)

Hence, (19.120) and (19.121) yield

P(E11) = c(λ− ν)−βn−β + o
(
n−β

)
+O

(
n2−2β

)
= c(λ− ν)−βn−β + o

(
n−β

)
and hence, by (19.119),

P(E1) = c(λ− ν)−βn1−β + o
(
n1−β). (19.124)

Furthermore, (19.122) yields

P(E2) 6
n∑
i=1

P(E∗2i) = nP(E∗21) = o
(
n1−β), (19.125)

and (19.123) also yields

P(E3) 6
∑
i<j

P(Dij) 6 n2 P(D12) = O
(
n3−2β

)
= o
(
n1−β). (19.126)
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It remains to estimate P(E4). We define the truncated variables ξ̄i :=
ξi1{ξi 6 εn} and S̄n :=

∑n
i=1 ξ̄i. Thus E4 ⊆ {S̄n = m} and hence, for

every real s,

P(E4) 6 e−sm E esS̄ = e−sm
(
E esξ̄1

)n
. (19.127)

Let s := a log n/n, for a constant a > 0 chosen later. Then,

E esξ̄1 = 1 + sE ξ̄1 +

εn∑
k=1

πk
(
esk − 1− sk

)
6 1 + sν + C5

2β/s∑
k=1

k−βs2k2 + C5

εn∑
k=2β/s

k−βesk. (19.128)

We have, treating the cases 2 < β < 3, β = 3 and β > 3 separately, using
s→ 0,

2β/s∑
k=1

s2k2−β 6 C6s
2 max

(
1, (2β/s)3−β, log(2β/s)

)
= o(s).

Furthermore, for k > 2β/s,

k−βesk

(k + 1)−βes(k+1)
=
(

1 +
1

k

)β
e−s 6 eβ/k−s 6 es/2−s = e−s/2.

Hence, the final sum in (19.128) is dominated by a geometric series∑
k6bεnc

(bεnc)−βesbεnce−s(bεnc−k)/2 6 C7s
−1n−βesεn = C7s

−1n−βeaε logn.

If we assume aε 6 β − 2, the sum is thus 6 C8n
1−β+aε 6 C8n

−1 = o(s).
Consequently, (19.128) yields

E esξ̄1 6 1 + sν + o(s) 6 exp
(
sν + o(s)

)
and thus (19.127) yields

P(E4) 6 exp
(
−sm+nsν+o(ns)

)
= exp

(
−ns(λ−ν+o(1))

)
= n−a(λ−ν)+o(1).

(19.129)
We choose first a := β/(λ− ν) and then ε < (β − 2)/a, and see by (19.129)

that then P(E4) = n−β+o(1) = o
(
n1−β). Combining (19.124), (19.125),

(19.126) and (19.129), we find

P(Sn = m) = P(E1) + o
(
n1−β) = c(λ− ν)−βn1−β + o

(
n1−β), (19.130)

and, in particular, P(E1 | Sn = m) → 1. Consequently, by conditioning on
Sn = m we see that w.h.p. |Y(1)−(m−νn)| 6 δnn and Y(2) 6 εn. Since ε can
be chosen arbitrarily small, this completes the proof of (19.108)–(19.109).

(ii): Z(m,n) = P(Sn = m), so (19.110) follows from (19.130), since we
assume Φ(1) = 1.
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(iii): Since E1 ⊆ {Sn = m} and P(E1 | Sn = m)→ 1,

(Y1, . . . , Yn)
d
=
(
(ξ1, . . . , ξn) | Sn = m

) d
≈
(
(ξ1, . . . , ξn) | E1

)
. (19.131)

When we consider the ordered variables Y(1), . . . , Y(n), we may by symmetry
condition on E1n instead of E1. Note that E1n is the event (ξ1, . . . , ξn) ∈ A,
where A is the set{

(x1, . . . , xn) : xj 6 εn for j 6 n− 1, xn = m−
n−1∑
i=1

xi,
∣∣∣n−1∑
i=1

xi−νn
∣∣∣ 6 δnn}.

Since (x1, . . . , xn) ∈ A implies |xn−(m−νn)| 6 δnn, we then have, similarly
to (19.121),

P(ξn = xn) ∼ cx−βn ∼ c(m− νn)−β ∼ c(λ− ν)−βn−β.

Furthermore, x1, . . . , xn−1 determine xn by
∑n

1 xi = m. It follows that,
uniformly for all (x1, . . . , xn) ∈ A,

P
(
(ξ1, . . . , ξn) = (x1, . . . , xn)

)
=
(
1 + o(1)

)
c(λ− ν)−βn−β P

(
(ξ1, . . . , ξn−1) = (x1, . . . , xn−1)

)
=
(
1 + o(1)

)
c(λ− ν)−βn−β P

(
(ξ1, . . . , ξn−1,m− Sn−1) = (x1, . . . , xn)

)
.

Hence, since the factor c(λ− ν)−βn−β is a constant for each n,(
(ξ1, . . . , ξn) | E1n

) d
≈
(
(ξ1, . . . , ξn−1,m− Sn−1) | Ẽn

)
, (19.132)

where Ẽn is the event{
(ξ1, . . . , ξn−1,m−Sn−1) ∈ A

}
=
{
ξj 6 εn for j 6 n− 1,

∣∣Sn−1−νn
∣∣ 6 δnn}.
(19.133)

If Ẽn holds, then m−Sn−1 > m−νn− δnn > εn (for large n), so the largest
variable among ξ1, . . . , ξn−1,m − Sn−1 is m − Sn−1. Hence, ordering the
variables, we obtain using (19.131)–(19.132)(

Y(1), . . . , Y(n)

) d
≈
(
(m− Sn−1, ξ

′
(1), . . . , ξ

′
(n−1)) | Ẽn

)
. (19.134)

Finally, observe that |Sn−1 − νn| 6 δnn w.h.p. and

P
(
ξj > εn for some j 6 n− 1

)
6 nP(ξ1 > εn) = O

(
n2−β)→ 0.

Hence, P(Ẽn)→ 1, and thus(
(m− Sn−1, ξ

′
(1), . . . , ξ

′
(n−1)) | Ẽn

) d
≈
(
m− Sn−1, ξ

′
(1), . . . , ξ

′
(n−1)

)
. (19.135)

The result (19.111) follows from (19.134) and (19.135).

(iv): By (iii), m − nν − Y(1)
d
≈
∑n−1

i=1 ξi − nν, and (19.112) follows by
standard results on domains of attraction for stable distributions, see e.g.
Feller [39, Section XVII.5].
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(v): By (iii), Y(2)
d
≈ ξ′(1), and (19.114) follows by standard results on the

maximum of i.i.d. random variables, as in e.g. Leadbetter, Lindgren and
Rootzén [82]: using P(ξ > x) ∼ cα−1x−α as x→∞, we have

P(Y(1) 6 xn
1/α) = P(ξ′(1) 6 xn

1/α) + o(1) = P(ξ 6 xn1/α)n−1 + o(1)

=
(
1− (cα−1 + o(1))(xn1/α)−α

)n−1
+ o(1)

→ exp
(
−cα−1x−α

)
.

(vi): Similar, cf. Leadbetter, Lindgren and Rootzén [82, Section 2.2]. �

Example 19.36. If we take wk = k!, then ν = ρ = 0. Consider the tree
case m = n − 1. By Example 10.8, translating to balls-in-boxes, w.h.p.
there are N1 boxes with 1 ball each and a single box with the remaining

n−1−N1 balls, while all other boxes are empty; furthermore, N1
d−→ Po(1)

so N1 = Op(1). Hence, Y(1) = n+Op(1) and Y(2) 6 1 w.h.p.
If we take wk = k!α with 0 < α < 1, and still m = n − 1, then by

Example 10.9 and [64], Y(1) = n + Op(n1−α) = n + op(n) and Y(2) 6 b1/αc
w.h.p.

If we take wk = k!α with α > 1, and still m = n−1, then by Example 10.9,
w.h.p. there is a single box containing all n− 1 balls; thus Y(1) = n− 1 and
Y(2) = 0 w.h.p.

In particular, (19.106)–(19.107) hold, with λ = 1 and ν = 0, for all three
cases. We guess that the same is true for any λ < ∞, but we have not
checked the details.

Example 19.37. We consider the tree case m = n−1. Let S := {k0, k1, . . . }
be an infinite set with k0 = 0, k1 = 1, k2 = 2, and kj for j > 3 chosen
recursively as specified below. Let wk = (k + 1)−4 for k ∈ S, and wk = 0
otherwise; thus, supp(w) = S. (S = N0 gives Example 10.7 with β = 4.)
Then ρ = 1 and

ν = Ψ(1) =

∑∞
k=0 kwk∑∞
k=0wk

6

∑∞
k=0 k(k + 1)−4

w0
= ζ(3)− ζ(4) < 0.2 < 1;

(19.136)
thus τ = ρ = 1.

To begin with, we require that kj > jkj−1 for j > 3. Take n = kj . A
good allocation of n− 1 balls in n boxes has at most kj−1 balls in any box,
since n− 1 < kj , so

Y(1) 6 kj−1 6 kj/j = n/j. (19.137)

Hence, for n in the subsequence {kj}, the random allocation Bn−1,n has
Y(1) = o(n).

Next, suppose that k0, . . . , kj−1 are given, and let w(kj−1) be w truncated
at kj−1 as in (13.4); for ease of notation we denote the corresponding gener-

ating function by Φj(t) :=
∑j−1

i=0 wkit
ki and write Ψj(t) := tΦ′j(t)/Φj(t) and
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Zj(m,n) := Z(m,n; w(kj−1)). Note that (19.136) applies to each Ψj too,
and thus

Ψj(1) < 0.2. (19.138)

Take n = 3kj (where kj is not yet determined). A good allocation with
n − 1 balls has at most 2 boxes with kj balls, and for the remaining boxes

the weights w and w(kj−1) coincide. We thus obtain

Z(3kj − 1, 3kj) = Zj(3kj − 1, 3kj) + 3kjwkjZj(2kj − 1, 3kj − 1)

+

(
3kj
2

)
w2
kj
Zj(kj − 1, 3kj − 2). (19.139)

Let the three terms on the right-hand side be A0, A1, A2, where Ai corre-
sponds to the case when i boxes have kj balls. The generating function Φj

is a polynomial, with radius of convergence ρj = ∞ and, by Lemma 3.1,

νj := Ψj(∞) = ω(w(kj−1)) = kj−1 > 2. Define τ, τ ′ and τ ′′ by Ψj(τj) = 1,
Ψj(τ

′
j) = 2/3, Ψj(τ

′′
j ) = 1/3. Since Ψj(1) < 1/3 by (19.138), we have

1 < τ ′′j < τ ′j < τj <∞.

Theorem 18.1 applies to each term Ai in (19.139), with λ = 1, 2
3 ,

1
3 , re-

spectively; hence, as kj →∞,

logA0 = 3kj log
Φj(τj)

τj
+ o(kj), (19.140)

logA1 = 3kj log
Φj(τ

′
j)

(τ ′j)
2/3

+ o(kj), (19.141)

logA2 = 3kj log
Φj(τ

′′
j )

(τ ′′j )1/3
+ o(kj). (19.142)

By (11.16) and τ ′′j > 1,

Φj(τj)

τj
6

Φj(τ
′′
j )

τ ′′j
<

Φj(τ
′′
j )

(τ ′′j )1/3

and
Φj(τ

′
j)

(τ ′j)
2/3
6

Φj(τ
′′
j )

(τ ′′j )2/3
<

Φj(τ
′′
j )

(τ ′′j )1/3
.

Hence, the constant multiplying kj is larger in (19.142) than in (19.140) and
(19.141), so by choosing kj large enough, we obtain A2 > jA1 and A2 > jA0,
and thus

P(B3kj−1,3kj has 2 boxes with kj balls) =
A2

A0 +A1 +A2
> 1− 2

j
. (19.143)

This constructs recursively the sequence (kj) and thus S and w, and
(19.143) shows that for n in the subsequence (3kj)j , Bn−1,n w.h.p. has 2
boxes with n/3 balls each.

By Lemma 17.1, it follows that, for this subsequence, Tn w.h.p. has 2
nodes with outdegrees n/3.
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To summarise, we have found a weight sequence with 0 < ν < 1 such
that, with m = n− 1, for one subsequence

Y(1)/n→ 0 (19.144)

and for another subsequence w.h.p.

Y(1) = Y(2) = n/3. (19.145)

Hence, neither (19.106) nor (19.107) holds. (It is easy to modify the con-
struction such that for every ` > 1, there is a subsequence with Y(1) = · · · =
Y(`) = n/(`+ 1).)

Example 19.38. Let S := {0} ∪ {2i : i > 0}. We will construct a weight
sequence w recursively with support supp(w) = S and ρ = 0. Let w0 = 1.

Let i > 0. If w0, . . . , w2i−1 are fixed and we let w2i → ∞, then for every
m with 2i 6 m < 2i+1 and every n,

P(Bm,n contains a box with 2i balls)→ 1. (19.146)

Hence, we can recursively choose w2i so large that, for every i > 0, if 2i 6
m < 2i+1 and 2i 6 n 6 22i, then, by (11.3),

P(Bm,n contains a box with 2i balls) > 1− i−1. (19.147)

We further take w2i > (2i)!; thus ρ = 0 and ν = 0.
Consider the tree case, m = n − 1. Thus λ = 1. If 2i < n 6 2i+1, then

(19.147) applies and shows that Bn−1,n w.h.p. contains a box with 2i balls,
so w.h.p.

Y(1) = 2blog2(n−1)c = 2dlog2 ne−1. (19.148)

Hence, Y(1)/n w.h.p. is a (non-random) value that oscillates between 1
2 and 1,

depending on the fractional part {log2 n} of log2 n. Consequently, (19.106)
holds for subsequences such that 0 6= {log2 n} → 0, but not in general.

Moreover, conditioned on the existence of a box with 2i balls, the re-
mainder of the allocation is a random allocation Bm−2i,n−1 of the remaining

m− 2i balls in n− 1 boxes. For example, if n = 2i+1, so m = 2i+1 − 1, we
have m − 2i = 2i − 1, and we can apply (19.147) again (with i − 1) to see
that w.h.p. Y(2) = 2i−1 = n/4. Continuing in the same way we see that for

n in the subsequence (2i), we have, for each fixed j, w.h.p.

Y(j) = 2−jn. (19.149)

Hence neither (19.106) nor (19.107) holds in this case.
Similar results follow easily for other subsequences. For example, for n in

the subsequence (br2ic)i>1, where 1
2 < r < 1 and r has the infinite binary

expansion r = 2−`1 + 2−`2 + . . . , with 1 = `1 < `2 < . . . , we have w.h.p.
Y(j) = 2−`idn/re for each fixed j.

Example 19.39. Let again m = n − 1, so λ = 1. Taking wk = k! for
k ∈ supp(w) = {0}∪{i! : i > 0}, we obtain an example with ρ = 0 and thus
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ν = 0 such that Y(1)/n → 0 for some subsequences, for example for n = i!
(since then Y(1) 6 (i− 1)!).

Problem 19.40. Is Y(1)/n
p−→ 0 possible when 0 < ν < λ? Example 19.37

shows that this is possible for a subsequence, but we conjecture that it is not
possible for the full sequence, and, a little stronger, that there always is some
ε > 0 and some subsequence along which Y(1) > εn w.h.p.

Problem 19.41. Is Y(1)/n
p−→ 0 possible when λ > ν = 0? (Example 19.39

shows that this is possible for a subsequence.)

We expect that bad behaviour as in the examples above only can occur
for quite irregular weight sequences, but we have no general result beyond
Theorem 19.34. We formulate two natural problems.

Problem 19.42. Suppose that wk > wk+1 for all (large) k. Does this imply
that (19.106)–(19.107) hold when λ > ν?

Problem 19.43. Suppose that wk+1/wk → ∞ as k →∞. (Hence, ρ = 0
and ν = 0.) Does this imply that (19.106)–(19.107) hold when λ > ν?

19.7. Applications to random forests. We give some applications of the
results above to the size of the largest tree(s) in different types of random
forests witn n trees and m > n nodes. We consider only the case m/n→ λ
with 1 < λ < ∞; for simplicity we further assume that m = λn + O(1),
although this can be relaxed and, moreover, the general case m/n→ λ can
be handled by using λn := m/n and the corresponding τn := τ(λn) as in
Theorem 11.6; for details and for results in the cases m = n + o(n) and
m/n→∞, see Pavlov [94, 95, 96, 97], Kolchin [76],  Luczak and Pittel [83],
Kazimirov and Pavlov [72] and Bernikovich and Pavlov [12].

The random forests considered here are described by balls-in-boxes with
weight sequences with w0 = 0 and w1 > 0, see Section 12. As usual, we
use (without further comments) the argument in Remark 11.8 to extend
theorems above to the case w0 = 0. (See Remark 19.21.)

We first consider random rooted forests as in Example 12.6. We have

wk =
kk−1

k!
∼ 1√

2π
k−3/2ek, as k →∞, (19.150)

and thus wk+1/wk → e as k →∞. (Alternatively, we may use w̃k :=

e−kwk ∼ (2π)−1/2k−3/2, see (12.30)–(12.31) and Example 12.10.) Since
ν =∞, see Examples 12.6 and 12.10, λ < ν and Theorem 19.19 applies for
any λ ∈ (1,∞).

We have a = e and thus, by (12.28),

q := τe =
λ− 1

λ
e1/λ ∈ (0, 1) (19.151)

and, consequently,

log(1/q) = − log q = − log
(

1− 1

λ

)
− 1

λ
> 0. (19.152)
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As k →∞, by (12.22), (12.27) and (19.150),

πk =
wkτ

k

Φ(τ)
=

λ

λ− 1
wkτ

k ∼ (2π)−1/2 λ

λ− 1
k−3/2qk. (19.153)

It follows that πk(n) = Θ(1/n) for

k(n) =
log n− 3

2 log log n

log(1/q)
+O(1), (19.154)

and then (19.69) yields

N ∼ n λ√
2π(λ− 1)(1− q)

k(n)−3/2 ∼ λ log3/2(1/q)√
2π(λ− 1)(1− q)

n log−3/2 n.

(19.155)
Consequently, Theorem 19.19(ii) yields the following theorem for the maxi-
mal tree size Y(1); this is due to Pavlov [94, 96] (in a slightly different formu-
lation), who also gives further results. We further use Theorem 19.16(i) to
give a simple estimate for the size Y(j) of the j:th largest tree. (More precise
limit results for Y(j) are also easily obtained from (19.50).)

Theorem 19.44. For a random rooted forest, with m = λn + O(1) where
1 < λ <∞,

Y(1)
d
≈

⌊
log n− 3

2 log log n+ log b+W

log(1/q)

⌋
, (19.156)

where W has the Gumbel distribution (19.63) and

b :=
λ log3/2(1/q)√

2π(λ− 1)(1− q)
(19.157)

with q given by (19.151)–(19.152).
Furthermore, Y(j) = Y(1) +Op(1) for each fixed j. �

Next, let us, more generally, consider a random simply generated forest
as in Example 12.8, defined by a weight sequence w. Then the tree sizes in
the random forest are distributed as balls-in-boxes with the weight sequence
(Zk)

∞
k=0, where Zk is the partition function (2.5) for simply generated trees

with weight sequence w (and Z0 = 0).
We assume that ν(w) > 1; thus there exists τ1 > 0 such that Ψ(τ1) = 1,

and then w′ := (τk1wk/Φ(τ1))k is an equivalent probability weight sequence
with expectation 1, see Lemma 4.2. (τ1 is the same as τ in Theorem 7.1,
but here we need to consider several different τ ’s so we modify the nota-
tion.) This probability weight sequence w′ defines the same random forest,
which thus can be realized as a conditioned critical Galton–Watson forest.
Recall from (4.10) and Theorem 7.1 that the probability distribution w′ has
variance σ2 = τ1Ψ′(τ1); we assume that σ2 is finite, which always holds if
ν(w) > 1 and thus τ1 < ρ(w). We further assume, for simplicity, that w
has span 1. We then have the following generalization of Theorem 19.44,
see Pavlov [95, 96], where also further results are given.
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Theorem 19.45. Consider a simply generated random forest defined by a
weight sequence w, and assume that m = λn + O(1) where 1 < λ < ∞.
Suppose that ν(w) > 1 and span(w) = 1. Define τ1 > 0 by Ψ(τ1) = 1, and
assume that σ2 := τ1Ψ′(τ1) < ∞ (this is automatic if ν(w) > 1). Define
further τ2 > 0 by

Ψ(τ2) = 1− 1/λ (19.158)

and let

q :=
τ2

Φ(τ2)
· Φ(τ1)

τ1
. (19.159)

Then 0 < q < 1 and

Y(1)
d
≈

⌊
log n− 3

2 log log n+ log b+W

log(1/q)

⌋
, (19.160)

where W has the Gumbel distribution (19.63) and

b :=
τ1 log3/2(1/q)

τ2

√
2πσ2(1− q)

. (19.161)

Furthermore, Y(j) = Y(1) +Op(1) for each fixed j.

Proof. Replace w by the equivalent probability weight sequence w̃ = (w̃k)
with w̃k := τk2wk/Φ(τ2). This probability weight sequence has expectation
Ψ(τ2) < 1 by (4.9), and using it we realize the random forest as a conditioned

subcritical Galton–Watson forest. The partition function Z̃k for w̃ is by (4.3)
and Theorem 18.11,

Z̃k =
τk−1

2

Φ(τ2)k
Zk ∼

1√
2πσ2

τk−1
2

Φ(τ2)k
· Φ(τ1)k

τk−1
1

k−3/2. (19.162)

Moreover, by (2.6), (Z̃k) is the distribution of the size of a Galton–Watson
process with offspring distribution w̃. Since this offspring distribution is

subcritical with expectation Ψ(τ2) < 1, the size distribution (Z̃k) has finite
mean

∞∑
k=0

kZ̃k =
1

1−Ψ(τ2)
= λ, (19.163)

by our choice of τ2.
The sizes of the trees in the random forest are distributed as balls-in-boxes

with the weight sequence (Z̃k), see Example 12.8. We apply Theorem 19.19,

translating wk to Z̃k. By (19.162),

Z̃k+1/Z̃k → a :=
τ2

Φ(τ2)
· Φ(τ1)

τ1
, as k →∞. (19.164)

Note further that (with this weight sequence (Z̃k)) τ in Theorem 19.19 is

chosen such that the equivalent probability weight sequence
(
τkZ̃k/Z̃(τ)

)
has expectation λ. We have already constructed (Z̃k) such that it is a
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probability weight sequence with this expectation, see (19.163); hence we
have τ = 1 and q = a, which yields (19.159).

As in (19.154), πk(n) = Z̃k(n) = Θ(1/n) for

k(n) =
log n− 3

2 log log n

log(1/q)
+O(1), (19.165)

and then (19.69) yields, by (19.162),

N ∼ n τ1√
2πσ2τ2(1− q)

k(n)−3/2 ∼ τ1 log3/2(1/q)

τ2

√
2πσ2(1− q)

n log−3/2 n. (19.166)

The result (19.160) now follows from Theorem 19.19(ii). Finally, again,
Theorem 19.16(i) gives the estimate for Y(j). �

Example 19.46. Consider a random ordered rooted forest. This is obtained
by the weight sequence wk = 1, see Example 12.8, and we have by (10.1)–
(10.2) Φ(t) = 1/(1 − t) and Ψ(t) = t/(1 − t). Hence, τ1 = 1/2 and σ2 = 2
(see Example 10.1); furthermore, (19.158) is τ2/(1 − τ2) = 1 − 1/λ, which
has the solution

τ2 =
λ− 1

2λ− 1
. (19.167)

Consequently, Theorem 19.45 says that (19.160) holds, with the parameters
q and b given by, see (19.159) and (19.161),

q =
τ2(1− τ2)

τ1(1− τ1)
= 4τ2(1− τ2) =

4λ(λ− 1)

(2λ− 1)2
= 1− 1

(2λ− 1)2
(19.168)

and

b =
(2λ− 1)3

4
√
π(λ− 1)

log3/2(1/q). (19.169)

Example 19.47. The random rooted unlabelled forest in Example 12.11
is described by a weight sequence that also satisfies wk ∼ c1k

−3/2ρ−k as
k →∞, and we thus again obtain (19.160), although the parameters q and
b now are implicitly defined using the generating function of the number of
unlabelled rooted trees, see Pavlov [97].

Example 19.48. For the random recursive forest in Example 12.13, we
have

wk = k−1, k > 1. (19.170)

Thus Theorem 19.19 applies with a = 1 and q = τ ∈ (0, 1) given by

q

(1− q)| log(1− q)|
= λ, (19.171)

see (12.56). (Recall that ν = ∞, so we can take any λ > 1 here.) In this

case, see (12.55), πk(n) = k(n)−1qk(n)/| log(1− q)| = Θ(1/n) for

k(n) =
log n− log logn

log(1/q)
+O(1), (19.172)
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cf. (19.154), and then (19.69) yields

N ∼ log(1/q)

(1− q)| log(1− q)|
n log−1 n. (19.173)

Consequently, Theorem 19.19(ii) yields

Y(1)
d
≈
⌊

log n− log log n+ log b+W

log(1/q)

⌋
, (19.174)

where W has the Gumbel distribution (19.63) and, using (19.171),

b :=
log(1/q)

(1− q)| log(1− q)|
=
λ log(1/q)

q
. (19.175)

We thus obtain a result similar to the cases above, but with a different
coefficient for log log n in (19.174). See Pavlov and Loseva [98] for further
results.

If we consider the random unrooted forest in Example 12.7, we find differ-
ent results. In this case, the tree sizes are described by balls-in-boxes with
the weight sequence wk = kk−2/k!, k > 1 (and w0 = 0). Alternatively, we
can use the probability weight sequence (12.40)

w̃k := 2wke
−k =

2kk−2e−k

k!
, (19.176)

which by Stirling’s formula satisfies (12.41)

w̃k ∼
2√
2π
k−5/2, as k →∞. (19.177)

Since we now have ν = 2 < ∞, see Examples 12.7 and 12.10, there is a
phase transition at λ = 2. We show in the theorem below that for λ < 2
we have a result similar to Theorems 19.44 and 19.45 with maximal tree
size Y(1) = Op(log n), but for λ > 2 there is a unique giant tree with size of
order n. At the phase transition, with m/n→ 2, the result depends on the
rate of convergence of m/n; if, for example, m = 2n exactly, the maximal

size is of order n2/3; see further  Luczak and Pittel [83], where precise results
for general m = m(n) are given. (By the proof below, (iii) in the following
theorem holds as soon as m/n→ λ > 2, but (i) and (ii) are more sensitive.)

Theorem 19.49. Consider a random unrooted forest, and assume that m =
λn+O(1) where 1 < λ <∞.

(i) If 1 < λ < 2, let

q := 2
λ− 1

λ
e2/λ−1. (19.178)

Then 0 < q < 1 and

Y(1)
d
≈

⌊
log n− 5

2 log log n+ log b+W

log(1/q)

⌋
, (19.179)
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where W has the Gumbel distribution (19.63) and

b :=
λ2 log5/2(1/q)

2
√

2π(λ− 1)(1− q)
(19.180)

Furthermore, Y(j) = Y(1) +Op(1) for each fixed j.
(ii) If λ = 2, then

Y(j)/n
2/3 d−→ ηj (19.181)

for each j, where ηj > 0 are some random variables. The distribution

of η1 is given by (19.97) with α = 3/2 and c = (2/π)1/2.

(iii) If 2 < λ <∞, then Y(1) = (λ− 2)n+Op(n2/3). More precisely,

n−2/3
(
m− 2n− Y(1)

) d−→ X, (19.182)

where X is a 3
2 -stable random variable with Laplace transform

E e−tX = exp
(25/2

3
t3/2
)
, Re t > 0. (19.183)

For j > 2, Y(j) = Op(n2/3), and n−2/3Y(j)
d−→ Wj where W2 has

the Fréchet distribution

P(W2 6 x) = exp
(
− 23/2

3
√
π
x−3/2

)
, x > 0. (19.184)

and, more generally, Wj has the density function (19.117) with c′ =

(2/π)1/2 and α = 3/2.

Note that the exponents 3
2 , 1 and 5

2 in (19.150), (19.170) and (19.177)
appear as coefficients of log log n in (19.156), (19.174) and (19.179), respec-
tively.

Proof. (i): This is very similar to the proofs of Theorems 19.44 and 19.45.
We use wk = kk−2/k!. Then, as for rooted forests and (19.150) above,
wk+1/wk → e as k →∞. Further, τ is given by (12.38), and thus q := τe is
given by (19.178). It follows, cf. (19.154) and (19.177), that πk(n) = Θ(1/n)
for

k(n) =
log n− 5

2 log log n

log(1/q)
+O(1), (19.185)

and then (19.69) yields

N ∼
nwk(n)e

−k(n)

Φ(τ)(1− q)
∼ n λ2

2
√

2π(λ− 1)(1− q)
k(n)−5/2

∼ λ2 log5/2(1/q)

2
√

2π(λ− 1)(1− q)
n log−5/2 n. (19.186)

Hence Theorem 19.19(ii) yields (19.179).
(ii): We use the equivalent probability weight sequence (w̃k) given by

(19.176). By (19.177), it satisfies the assumptions in Example 19.27 with
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α = 3/2 and c = (2/π)1/2; thus (19.181) follows from (19.91), and (19.97)
in Remark 19.28 applies.

(iii): We use again the probability weight sequence (w̃k) and apply The-

orem 19.34. We have c′ = c = (2/π)1/2 by (19.176), and thus c′Γ(−3/2) =

c′ 43Γ(1/2) = 25/2/3 and c′/α = 23/2/(3
√
π). �

Example 19.50. The random unrooted unlabelled forest (with labelled
trees) in Example 12.11 is described by another weight sequence that sat-

isfies wk ∼ ck−5/2ρ−k as k →∞, and we thus obtain a result similar to
Theorem 19.49, although the parameters differ (they can be obtained from
the generating function of the number of unlabelled trees); in particular, the
phase transition appears when λ is ν ≈ 2.0513, see Bernikovich and Pavlov
[12] for details.

We do not know any corresponding results for random completely unla-
belled forests (n unlabelled trees consisting of m unlabelled nodes); as said
in Example 12.11, they cannot be described by balls-in-boxes.

20. Large nodes in simply generated trees with ν < 1

In the tree case with ν < 1, the results in Section 19.6 show condensation
in the form of one or, sometimes, several nodes with very large degree,
together making up the “missing mass” of about (1−ν)n. On the other hand,
Theorem 7.1 shows concentration in a somewhat different form, with a limit

tree T̂ having exactly one node of infinite degree. This node corresponds to
a node with very large degree in Tn for n large but finite. How large is the
degree? Why do we only see one node with very large degree in Theorem 7.1,
but sometimes several nodes with large degrees above (Examples 19.37 and
19.38)?

The latter question is easily answered: recall that the convergence in

Theorem 7.1 means convergence of the truncated trees (“left balls”) T
[m]
n ,

see Lemma 6.3; thus we only see a small part of the tree close to the root,
and the two pictures above are reconciled: if m is large but fixed, then in
the set V (T ) ∩ V [m] of nodes, there is with probability close to 1 exactly
one node with very large degree. (There may be several nodes with very
large degree in the tree, but for any fixed m, w.h.p. at most one of them
is in V [m].) Of course, to make this precise, we would have to define “very
large”, for example as below using a sequence Ωn growing slowly to ∞
as in Lemma 19.32, but we are at the moment satisfied with an intuitive
description.

To see how large the “very large” degree is, let us first look at the root.
Lemma 15.7 says that the distribution of the root degree is the size-biased
distribution of Y1. We can write (15.7) as

P(d+
Tn(o) = d) =

d

n− 1

n∑
i=1

P(Yi = d) =
d

n− 1

n∑
j=1

P(Y(j) = d); (20.1)
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hence the distribution of the root degree can be described by: sample
(Y1, . . . , Yn) and then take Y(1) with probability Y(1)/(n−1), Y(2) with prob-
ability Y(2)/(n− 1), . . . .

In particular, if Y(1) = (1− ν)n+ op(n), then (20.1) implies

P(d+
Tn(o) = Y(1)) = 1− ν + o(1), (20.2)

and comparing with Theorem 7.10 we see that w.h.p. either the root degree is
small (more precisely, Op(1)), or it is the maximum outdegree Y(1). However,
we also see that if Y(1) is not (1 − ν)n + op(n), then this conclusion does

not hold; for example, in Example 19.38 for n in the subsequence (2i) where
(19.149) holds for each fixed j,

P(d+
Tn(o) = 2−jn)→ 2−j . (20.3)

In the case ν = 0, we only have to consider the root, since the node

with infinite degree in T̂ always is the root, but for 0 < ν < 1, the node

with infinite degree in T̂ may be somewhere else. We shall see that it
corresponds to a node in Tn with a large degree having (asymptotically)
the same distribution as the root degree just considered, conditioned to be
“large”.

To make this precise, let Ωn →∞ be a fixed sequence which increases so
slowly that Lemma 19.32(ii) holds. We say that an outdegree d+(v) is large
if it is greater than Ωn; we then also say that the node v is large. (Note that
by Lemma 19.32(ii), w.h.p. at least one large node exists.) For each n, let

D̃n by a random variable whose distribution is the size-biased distribution
of a large outdegree, i.e. of (Y1 | Y1 > Ωn):

P(D̃n = k) =
k P(Y1 = k)∑
l>Ωn

l P(Y1 = l)
=

kENk∑
l>Ωn

lENl
=

kENk

(1− ν + o(1))n
,

(20.4)

for k > Ωn and P(D̃n = k) = 0 otherwise. Equivalently, in view of

Lemma 15.7, D̃n has the distribution of the root degree d+
Tn(o) conditioned to

be greater than Ωn. See also (20.1), and note that if Y(1) = (1−ν)n+op(n),

then D̃n
d
≈ Y(1), i.e., we may take D̃n = Y(1) w.h.p.; in this case (but not

otherwise) we thus have D̃n = (1− ν)n+ op(n).
Note that if Ω′n is another such sequence, similarly defining a random

variable D̃′n, then
∑

l>Ωn
l P(Y1 = l) ∼ (1− ν)n ∼

∑
l>Ω′n

l P(Y1 = l), and it

follows that D̃n
d
≈ D̃′n; hence the choice of Ωn will not matter below.

We claim that, w.h.p., the infinite outdegree in T̂ corresponds to an outde-

gree D̃n in Tn. To formalise this, recall from Section 6 that we may consider
our trees as subtrees of the infinite tree U∞ with node set V∞, and that
the convergence of trees defined there means convergence of each d+(v), see

(6.6). Let T̂ be the random infinite tree defined in Section 5; we are in case

(T2), and thus T̂ has a single node v with outdegree d+

T̂
(v) =∞. We assume
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that D̃n and T̂ are independent, and define the modified degree sequence

d̃+

T̂
(v) :=

{
d+

T̂
(v), d+

T̂
(v) <∞,

D̃n, d+

T̂
(v) =∞.

(20.5)

We thus change the single infinite value to the finite D̃n, leaving all other

values unchanged. (Note that d̃+

T̂
(v) may depend on n, since D̃n does.) We

then have the following theorem.

Theorem 20.1. For any finite set of nodes v1, . . . , v` ∈ V∞,(
d+
Tn(v1), . . . , d+

Tn(v`)
) d
≈
(
d̃+

T̂
(v1), . . . , d̃+

T̂
(v`)

)
. (20.6)

Proof. Let ε > 0, and let v∗ denote the unique node in T̂ with d+

T̂
(v∗) =∞.

By increasing the set {v1, . . . , v`}, we may assume that it equals V [m] (see

Section 6) for some m, and that m is so large that P(v∗ ∈ V [m]) > 1 − ε.
We may then find K <∞ such that

P
(
d+

T̂
(v) ∈ (K,∞) for some v ∈ V [m]

)
< ε.

Since Tn
d−→ T̂ by Theorem 7.1, we may by the Skorohod coupling theorem

[69, Theorem 4.30] assume that the random trees are coupled such that

Tn → T̂ a.s., and thus d+
Tn(v) → d+

T̂
(v) a.s. for every v. Then, for large

n, with probability > 1 − 3ε, v∗ ∈ V [m], d+
Tn(v) = d+

T̂
(v) = d̃+

T̂
(v) 6 K

for all v ∈ V [m] \ {v∗}, and d+
Tn(v∗) → d+

T̂
(v∗) = ∞. We may assume that

Ωn → ∞ so slowly that furthermore P(d+
Tn(v∗) 6 Ωn) 6 ε. (Recall that we

may change Ωn without affecting the result (20.6).)
Let n be so large that also Ωn > m and Ωn > K. It follows from

Lemma 15.9 that for each choice of v′ ∈ V [m] and numbers d(v) for v ∈
V [m] \ v′, and k > Ωn,

P
(
d+
Tn(v) = d(v) for v ∈ V [m] \ {v′} and d+

Tn(v′) = k
)

=
(
k +O(1)

)
C({d(v)}, v′, n)P(Y1 = k)

for some constant C({d(v)}, v′, n) > 0 not depending on k; hence, by (20.4),

P
(
d+
Tn(v′) = k | d+

Tn(v) = d(v) for v ∈ V [m] \ {v′} and d+
Tn(v′) > Ωn

)
=
(
1 + o(1)

) k P(Y1 = k)∑
k>Ωn

k P(Y1 = k)
=
(
1 + o(1)

)
P(D̃n = k).

There is only a finite number of choices of v′ and (d(v))v∈V [m]\{v′}, and it

follows that we may choose the coupling of Tn and T̂ above such that also

d+
Tn(v∗) = D̃n w.h.p.; thus, with probability > 1− 4ε+ o(1), d+

Tn(v) = d̃+

T̂
(v)

for all v ∈ V [m].
The result follows since ε > 0 is arbitrary. �
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We give some variations of this result, where we replace d̃+

T̂
(v) by the

degree sequences of some random trees obtained by modifying T̂ . (Note

that d̃+

T̂
(v) is not the degree sequence of a tree.)

First, let T̂1n be the random tree obtained by pruning the tree T̂ at the

node v∗ with infinite outdegree, keeping only the first D̃n children of v∗.

Then T̂1n is a locally finite tree, and, in fact, it is a.s. finite. The random

tree T̂1n can be constructed as T̂ in Section 5, starting with a spine, and
then adding independent Galton–Watson trees to it, but now the number of
children of a node in the spine is given by a finite random variable ξ̌n with
the distribution

P(ξ̌n = k) = P(ξ̂ = k) + P(ξ̂ =∞)P(D̃n = k) = kπk + (1− ν)P(D̃n = k).
(20.7)

The nodes not in the spine (the normal nodes) have offspring distribution
(πk) as before. (This holds also for the following modifications.)

The spine in T̂1n stops when we obtain ξ̂ = ∞, but we may also define

another random tree T̂2n by continuing the spine to infinity; this defines a
random infinite but locally finite tree having an infinite spine; each node in
the spine has a number of children with the distribution in (20.7), and the

spine continues with a uniformly randomly chosen child. Equivalently, T̂2n

can be defined by a Galton–Watson process with normal and special nodes
as in Section 5, but with the offspring distribution for special nodes changed
from (5.2) to (20.7).

Finally, let Ŷn by a random variable with the size-biased distribution of
Y1:

P(Ŷn = k) =
k P(Y1 = k)

(n− 1)/n
=
kENk

n− 1
, (20.8)

recalling that
∑

k kNk = n− 1; cf. (20.1) and (20.4). (Thus Ŷn
d
= d+

Tn(o) by

Lemma 15.7 and (20.1).) Define the infinite, locally finite random tree T̂3n by
the same Galton–Watson process again, but now with offspring distribution

Ŷn for special nodes. (This does not involve D̃n or Ωn.) Thus T̂3n also has
an infinite spine.

We then have the following version of Theorem 20.1, where we also use
the metric δ1 on Tlf defined by

δ1(T1, T2) := 1/ sup
{
m > 1 : d+

T1
(v) = d+

T2
(v) for v ∈ V [m]

}
. (20.9)

Theorem 20.2. For j = 1, 2, 3, and any finite set of nodes v1, . . . , v` ∈ V∞,(
d+
Tn(v1), . . . , d+

Tn(v`)
) d
≈
(
d̃+

T̂jn
(v1), . . . , d̃+

T̂jn
(v`)

)
. (20.10)

Equivalently, there is a coupling of Tn and T̂jn such that δ1(Tn, T̂jn)→ 0 as
n→∞.
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Proof. If Ωn > m we have D̃n > m and then the branches of T̂ pruned to

make T̂1n are all outside V [m], and thus d+

T̂1n
= d̃+

T̂
defined in (20.5) for all

v ∈ V [m]. Thus the result for T̂1n follows from Theorem 20.1.
Next, for any given m, and for any endpoint x of the spine of T̂1n, the

probability that the continuation in T̂2n of the spine contains some node in

V [m] is less than m/Ωn = o(1); thus, w.h.p. T̂1n and T̂2n are equal on any

V [m].
Finally, Lemma 20.3 below implies that we can couple T̂2n and T̂3n such

that they w.h.p. agree on each V (m); then T̂1n and T̂3n are w.h.p. equal on
each V [m]. �

Lemma 20.3. ξ̌n
d
≈ Ŷn.

Proof. For each fixed k, P(ξ̌n = k) = kπk as soon as Ωn > k, and P(Ŷn =
k)→ kπk by (20.8) and Theorem 11.7. Hence,

|P(ξ̌n = k)− P(Ŷn = k)| → 0. (20.11)

By (20.7), (20.4) and (20.8), uniformly for k > Ωn,

P(ξ̌n = k) = kπk + (1− ν)
k P(Y1 = k)

1− ν + o(1)
= kπk +

(
1 + o(1)

)
P(Ŷn = k);

hence∑
k>Ωn

|P(ξ̌n = k)−P(Ŷn = k)| 6
∑
k>Ωn

(
kπk+o(1)P(Ŷn = k)

)
=
∑
k>Ωn

kπk+o(1).

(20.12)
Further, for any fixed K,

Ωn∑
k=K+1

(
P(ξ̌n = k)− P(Ŷn = k)

)
+
6

Ωn∑
k=K+1

P(ξ̌n = k) =

Ωn∑
k=K+1

kπk. (20.13)

Using Lemma 19.5(vii) together with (20.11) for k 6 K, (20.12) and (20.13)
we obtain

dTV(ξ̌n, Ŷn) =

∞∑
k=1

(
P(ξ̌n = k)− P(Ŷn = k)

)
+
6

∞∑
k=K+1

kπk + o(1). (20.14)

Since K is arbitrary and
∑∞

1 kπk <∞, it follows that dTV(ξ̌n, Ŷn)→ 0. �

21. Further results and problems

21.1. Level widths. Let, as in Remark 5.6, lk(T ) denote the number of
nodes with distance k to the root in a rooted tree T .

If ν > 1, then T̂ is a locally finite tree so all level widths lk(T̂ ) are finite. It
follows easily from the characterisation of convergence in Lemma 6.2 that,

in this case, the functional lk is continuous at T̂ , and thus Theorem 7.1
implies (see Billingsley [15, Corollary 1, p. 31])

lk(Tn)
d−→ lk(T̂ ) <∞ (21.1)
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for each k > 0.
On the other hand, if ν < 1, then T̂ has a node with infinite outdegree;

this node has a random distance L− 1 to the root, where L as in Section 5

is the length of the spine, and thus lL(T̂ ) =∞.
In the case 0 < ν < 1, we have π0 < 1 and P(ξ > 1) = 1 − π0 > 0,

so for any j, there is a positive probability that the Galton–Watson tree
T has height at least j, and it follows that of the infinitely many copies
of T that start in generation L, a.s. infinitely many will survive at least

until generation L + j. Consequently, a.s., lk(T̂ ) = ∞ for all k > L, while

lk(T̂ ) <∞ for k < L. It follows easily from Lemma 6.3, that in this case too,

for each k > 0, the mapping lk : T→ N0 is continuous at T̂ . Consequently,

lk(Tn)
d−→ lk(T̂ ) 6∞, k = 0, 1, . . . , (21.2)

with P(lk(T̂ ) < ∞) = P(L > k) = νk. (Recall that µ = ν in this case by
(7.2).)

When ν = 0, however, (21.2) does not always hold. By Example 5.1,

T̂ is an infinite star, with l1(T̂ ) = ∞ and lk(T̂ ) = 0 for all k > 2. By

Theorem 7.10, l1(Tn) = d+
Tn(o)

d−→ ξ̂
d
= l1(T̂ ), so (21.2) holds for k = 1 (and

trivially for k = 0) in the case ν = 0 too (with l1(T̂ ) = ∞). However, by

Example 10.8, if wk = k!, then l2(Tn)
d−→ Po(1), so l2(Tn) does not converge

to l2(T̂ ) = 0. Similarly, by Example 10.9, if j > 2 and wk = k!α with
0 < α < 1/(j − 1), then the number of paths of length j attached to the

root in Tn tends to ∞ (in probability), so lj(Tn)
p−→∞, while lj(T̂ ) = 0.

Turning to moments, we have for the expectation, by (5.8), E lk(T̂ ) =∞
if 0 < ν < 1 or σ2 =∞; in this case (21.1)–(21.2) and Fatou’s lemma yield

E lk(Tn)→ E lk(T̂ ) =∞.

If ν > 1 and σ2 < ∞, then (5.7) yields E lk(T̂ ) = 1 + kσ2 < ∞. In this
case, for each fixed k, the random variables lk(Tn), n > 1, are uniformly in-

tegrable, and thus (21.1) implies E lk(Tn)→ E lk(T̂ ), see Janson [59, Section
10]. (In the case ν > 1, this was shown already by Meir and Moon [85].)
Consequently, for any w with ρ > 0 and any fixed k,

E lk(Tn)→ E lk(T̂ ) 6∞. (21.3)

(When ρ = 0, this is not always true, by the examples above.)
For higher moments, there remains a small gap. Let r > 1. When

0 < ν < 1, (21.3) trivially implies E lk(Tn)r → E lk(T̂ )r = ∞, so sup-

pose ν > 1. Then, by (5.2), E ξ̂r = E ξr+1, so if E ξr+1 = ∞, then

E l1(T̂ )r =∞; moreover, each lk(T̂ ), k > 1, stochastically dominates ξ̂ (con-

sider the offspring of the k:th node on the spine), and thus E lk(T̂ )r = ∞
for every k > 1. Consequently, again immediately by Fatou’s lemma and

(21.2), E lk(Tn)r → E lk(T̂ )r = ∞. The only interesting case is thus when
E ξr+1 < ∞. If r > 1 is an integer, it was shown in [59, Theorem 1.13]
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that E ξr+1 < ∞ implies that E lk(Tn)r, n > 1, are uniformly bounded for
each k > 1. We conjecture that, moreover, lk(Tn)r, n > 1, are uniformly
integrable, which by (21.1) would yield the following:

Conjecture 21.1. For every integer r > 1 and every k > 1, if ν > 0, then

E lk(Tn)r → E lk(T̂ )r 6∞. (21.4)

We further conjecture that this holds also for non-integer r > 0.

One thus has to consider the case E ξr+1 < ∞ only, and the result from
[59] implies that (21.4) holds if E ξr+2 < ∞, since then E lk(Tn)brc+1 are
uniformly bounded.

21.2. Asymptotic normality. In Theorem 7.11, we proved that Nd, the

number of nodes of outdegree d in the random tree Tn, satisfies Nd/n
p−→ πd.

In our case Iα (ν > 1 or ν = 1 and σ2 <∞), Kolchin [76, Theorem 2.3.1]
gives the much stronger result that the random variable Nd is asymptotically
normal, for every d > 0:

Nd − nπd√
n

d−→ N(0, σ2
d), (21.5)

with

σ2
d := πd

(
1− πd −

(d− 1)2πd
σ2

)
. (21.6)

(In fact, Kolchin [76] gives a local limit theorem which is a stronger version
of (21.5).)

Under the assumption ξ3 < ∞, Janson [55, Example 3.4] gave another
proof of (21.5), and showed further joint convergence for different d, with
asymptotic covariances, using Ik := 1{ξ = k},

σ2
kl = Cov(Ik, Il)−

Cov(Ik, ξ) Cov(Il, ξ)

Var ξ
= πkδkl−πkπl−

(k − 1)(l − 1)πkπl
σ2

.

(21.7)
Moreover, Janson [55] showed that if E |ξ|r < ∞ for every r (which in

particular holds when ν > 1 since then τ < ρ and ξ has some exponen-
tial moment), then convergence of all moments and joint moments holds in
(21.5); in particular

ENk = nπk + o(n) and Cov(Nk, Nl) = nσ2
kl + o(n). (21.8)

In the case ν > 1, Minami [89] and Drmota [33, Section 3.2.1] have
given other proofs of the (joint) asymptotic normality using the saddle point
method; Drmota [33] shows further the stronger moment estimates

ENd = nπd +O(1) and VarNd = nσ2
d +O(1). (21.9)

Problem 21.2. Do these results hold in the case ν = 1, σ2 < ∞ without
extra moment conditions? Do they extend to the case ν = 1, σ2 =∞? What
happens when 0 6 ν < 1?
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Problem 21.3. Extend this to the more general case of balls-in-boxes as in
Theorem 11.4. (We guess that the case 0 < λ < ν is easy by the methods in
the references above, in particular [55] and [33, Section 3.2.1], but we have
not checked the details.)

Problem 21.4. Extend this to the subtree counts in Theorem 7.12.

21.3. Height and width. We have studied the random trees Tn without
any scaling. Since our mode of convergence really means that we consider
only a finite number of generations at a time, we are really looking at the
base of the tree, with the first generations. The results in this paper thus
do not say anything about, for example, the height and width of Tn. (Recall
that if T is a rooted tree, then the height H(T ) := max{k : lk(T ) > 0}, the
maximum distance from the root, and the width W (T ) := maxk{lk(T )}, the
largest size of a generation.) However, there are other known results.

In the case ν > 1, σ2 <∞ (the case Iα in Section 8), it is well-known that
both the height H(Tn) and the width W (Tn) of Tn typically are of order

√
n;

more precisely,

H(Tn)/
√
n

d−→ 2σ−1X, (21.10)

W (Tn)/
√
n

d−→ σX, (21.11)

where X is some strictly positive random variable (in fact, X equals the
maximum of a standard Brownian excursion and has what is known as a
theta distribution), see e.g. Kolchin [76], Aldous [4], Chassaing, Marckert
and Yor [25], Janson [59] and Drmota [33]. There are also results for a
single level giving an asymptotic distribution for lk(n)(Tn)/

√
n when the

level k(n) ∼ a
√
n for some a > 0, see Kolchin [76, Theorem 2.4.5].

Since the variance σ2 appears as a parameter in these results, we cannot
expect any simple extensions to the case σ2 =∞, and even less to the case
0 6 ν < 1. Nevertheless, we conjecture that (21.10) and (21.11) extend
formally at least to the case ν = 1 and σ2 =∞:

Conjecture 21.5. If ν = 1 and σ2 =∞, then H(Tn)/
√
n

p−→ 0.

Conjecture 21.6. If ν = 1 and σ2 =∞, then W (Tn)/
√
n

p−→∞.

Problem 21.7. Does ν < 1 imply that H(Tn)/
√
n

p−→ 0?

Problem 21.8. Does ν < 1 imply that W (Tn)/
√
n

p−→∞?

Furthermore, still in the case ν > 1, σ2 < ∞, Addario-Berry, Devroye
and Janson [1] have shown sub-Gaussian tail estimates for the height and
width

P(H(Tn) > x
√
n) 6 Ce−cx

2
, (21.12)

P(W (Tn) > x
√
n) 6 Ce−cx

2
, (21.13)
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uniformly in all x > 0 and n > 1 (with some positive constants C and
c depending on π and thus on w). In view of (21.11), we cannot expect
(21.13) to hold when σ2 = ∞ (or when ν < 1), but we see no reason why
(21.12) cannot hold; (21.10) suggests that H(Tn) typically is smaller when
σ2 =∞.

Problem 21.9. Does (21.12) hold for any weight sequence w (with C and
c depending on w, but not on x or n)?

It follows from (21.10)–(21.11) and (21.12)–(21.13) that EH(Tn)/
√
n and

EW (Tn)/
√
n converge to positive numbers. (In fact, the limits are

√
2π/σ

and
√
π/2σ, see e.g. Janson [61], where also joint moments are computed.)

Problem 21.10. What are the growth rates of EH(Tn) and EW (Tn) when
σ2 =∞ or ν < 1?

21.4. Scaled trees. The results (21.10)–(21.11), as well as many other re-
sults on various asymptotics of Tn in the case ν > 1, σ2 < ∞, can be seen
as consequences of the convergence of the tree Tn, after rescaling in a suit-
able sense in both height and width by

√
n, to the continuum random tree

defined by Aldous [3, 4, 5], see also Le Gall [80]. (The continuum random
tree is not an ordinary tree; it is a compact metric space.) This has been
extended to the case σ2 = ∞ when π is in the domain of attraction of a
stable distribution, see e.g. Duquesne [34] and Le Gall [80, 81]; the limit is
now a different random metric space called a stable tree.

Problem 21.11. Is there some kind of similar limiting object in the case
ν < 1 (after suitable scaling)?

21.5. Random walks. Simple random walk on the infinite random tree T̂
has been studied by many authors in the critical case ν > 1, in particular
when σ2 < ∞, see e.g. Kesten [74], Barlow and Kumagai [9], Durhuus,
Jonsson and Wheater [35], Fujii and Kumagai [43], but also when σ2 =∞,
see Croydon and Kumagai [30] (assuming attraction to a stable law).

A different approach is to study simple random walk on Tn and study
asymptotics os n→∞. For example, by rescaling the tree one can obtain
convergence to a process on the continuum random tree (when σ2 <∞) or
stable tree (assuming attraction to a stable law), see Croydon [28, 29].

For ν < 1, the simple random walk on T̂ does not make sense, since the
tree has a node with infinite degree. Nevertheless, it might be interesting
to study simple random walk on Tn and find asymptotics of interesting
quantities as n→∞.

21.6. Multi-type conditioned Galton–Watson trees. It seems likely
that there are results similar to the ones in Section 7 for multi-type Galton–
Watson trees conditioned on the total size, or perhaps on the number of
nodes of each type, and for corresponding generalizations of simply gener-
ated random trees. We are not aware of any such results, however, and leave
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this as an open problem. (See Kurtz, Lyons, Pemantle and Peres [78] for
related results that presumably are useful.)

22. Different conditionings for Galton–Watson trees

One of the principal objects studied in this paper is the conditioned
Galton–Watson tree (T | |T | = n), i.e. a Galton–Watson tree T condi-
tioned on its total size being n; we then let n→∞. This is one way to
consider very large Galton–Watson trees, but there are also other similar
conditionings. For comparison, we briefly consider two possibilities; see fur-
ther Kennedy [73] and Aldous and Pitman [6]. We denote the offspring
distribution by ξ and its probability generating function by Φ(t).

22.1. Conditioning on |T | > n. If E ξ 6 1, i.e., in the subcritical and
critical cases, |T | <∞ a.s. and thus T conditioned on |T | > n is a mixture
of (T | |T | = N) = TN for N > n. It follows immediately from Theorem 7.1

that (T | |T | = N)
d−→ T̂ as n→∞.

If E ξ > 1, i.e., in the supercritical case, on the other hand, the event
|T | =∞ has positive probability, and the events |T | > n decrease to |T | =
∞. Consequently,

(T | |T | > n)
d−→ (T | |T | =∞), (22.1)

a supercritical Galton–Watson tree conditioned on non-extinction.

Remark 22.1. When T is supercritical, the conditioned Galton–Watson
tree (T | |T | =∞) in (22.1) can be constructed by a 2-type Galton–Watson

process, somewhat similar to the construction of T̂ in Section 5: Let q :=
P(|T | < ∞) < 1 be the extinction probability, which is given by Φ(q) = q.
Consider a Galton–Watson process T with individuals of two types, mortal
and immortal, where a mortal gets only mortal children while an immortal
may get both mortal and immortal children. The numbers ξ′ of mortal and
ξ′′ of immortal children are described by the probability generating functions

Exξ
′
yξ
′′

= Φm(x) := Φq(x) = Φ(qx)/q (22.2)

for a mortal and

Exξ
′
yξ
′′

= Φi(x) :=
Φ(qx+ (1− q)y)− Φ(qx)

1− q
(22.3)

for an immortal (with the children coming in random order). Note that the
subtree started by a mortal is subcritical (since Φ′m(1) = Φ′(q) < 1, cf. (4.9)),
and thus a.s. finite, while every immortal has at least one immortal child
(since Φi(x, 0) = 0) and thus the subtree started by an immortal is infinite.
It is easily verified that T conditioned on non-extinction equals this random
tree T started with an immortal, while T conditioned on extinction equals
T started with a mortal. (See Athreya and Ney [8, Section I.12], where this
is stated in a somewhat different form.)
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One important difference from T̂ is that T does not have a single spine;
started with an immortal it has a.s. an uncountable number of infinite paths
from the root.

Note that T̂ in the critical case can be seen as a limit case of this con-
struction. If we let q ↗ 1, which requires that we really consider a sequence
of different distributions with generating functions Φ(n)(t)→ Φ(t), then tak-
ing the limits in (22.2)–(22.3) gives for the limiting critical distribution the
offspring generating functions Φm(x) = Φ(x) and Φi(x, y) = yΦ′(x), which
indeed are the generating functions for the offspring distributions in Sec-
tion 5 in the critical case (with mortal = normal and immortal = special),

since Exξ̂−1y = yΦ′(x) = Φi(x, y) by (5.4).

22.2. Conditioning on H(T ) > n. To condition on the height H(T ) being
at least n is the same as conditioning on ln(T ) > 0, i.e., that the Galton–
Watson process survives for at least n generations.

If E ξ > 1, i.e., in the supercritical case, the events ln(T ) > 0 decrease to
|T | =∞. Consequently,

(T | H(T ) > n) = (T | ln(T ) > 0)
d−→ (T | |T | =∞), (22.4)

exactly as when conditioning on |T | > n in (22.1). By Remark 22.1, the
limit equals T , started with an immortal.

In the subcritical and critical cases, the following result, proved by Kesten
[74] (at least for E ξ = 1, see also Aldous and Pitman [6]), shows convergence
to the size-biased Galton–Watson tree T ∗ in Remark 5.7.

Theorem 22.2. Suppose that µ := E ξ 6 1. Then, as n→∞,

(T | H(T ) > n) = (T | ln(T ) > 0)
d−→ T ∗. (22.5)

Proof. Let rn := P(ln(T ) > 0), the probability of survival for at least n
generations. Then rn → 0 as n→∞. Fix ` > 0 and a tree T with height
`. Conditioned on T (`) = T , the remainder of the tree consists of l`(T )
independent branches, each distributed as T , and thus, for n > `,

P(T (`) = T | H(T ) > n) =
P(T (`) = T and H(T ) > n)

P(H(T ) > n)

=
P(T (`) = T )

(
1− (1− rn−`)l`(T )

)
P(H(T ) > n)

. (22.6)

Let T
(`)
f be the set of finite trees of height `. Summing (22.6) over T ∈ T

(`)
f

yields 1, and thus

P(H(T ) > n) =
∑
T∈T(`)

f

P(T (`) = T )
(
1− (1− rn−`)l`(T )

)
(22.7)
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Dividing by rn−`, and noting that for any N > 1,
(
1− (1− r)N

)
/r ↗ N as

r ↘ 0, we find by monotone convergence

P(H(T ) > n)

rn−`
=
∑
T∈T(`)

f

P(T (`) = T )
1− (1− rn−`)l`(T )

rn−`

→
∑
T∈T(`)

f

P(T (`) = T )l`(T ) = E l`(T ) = µ`. (22.8)

Hence, by (22.6) and (5.11),

P(T (`) = T | H(T ) > n) ∼ P(T (`) = T )l`(T )rn−`
P(H(T ) > n)

→ P(T (`) = T )l`(T )

µ`
= P(T ∗(`) = T ). (22.9)

Thus, (T | H(T ) > n)(`) d−→ T ∗(`), and the result follows by (6.9). �

Note that if E ξ = 1, then T ∗ = T̂ , see Remark 5.7, so the limits in The-
orems 7.1 and 22.2 of T conditioned on |T | = n and H(T ) > n have the

same limit. However, in the subcritical case E ξ < 1, T ∗ 6= T̂ ; moreover, T ∗
differs also from the limit in Theorem 7.1, which is T̂ for a conjugated dis-
tribution, and the same is true in the supercritical case. Hence, as remarked
by Kennedy [73], conditioning on |T | = n and H(T ) > n give similar results
(in the sense that the limits as n→∞ are the same) in the critical case, but
quite different results in the subcritical and supercritical cases. Similarly,
conditioning on |T | > n and H(T ) > n give quite different results in the
subcritical case. Aldous and Pitman [6] remarks that the two different limits
as n→∞ both can be intuitively interpreted as “T conditioned on being
infinite”, which shows that one has to be careful with such interpretations.
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(2008), pp. 8–95.

[44] J. Geiger, Elementary new proofs of classical limit theorems for Galton–
Watson processes. J. Appl. Probab. 36 (1999), no. 2, 301–309.

[45] J. Geiger & L. Kauffmann, The shape of large Galton–Watson trees
with possibly infinite variance. Random Struct. Alg. 25 (2004), no. 3,
311–335.

[46] B. V. Gnedenko & A. N. Kolmogorov, Limit Distributions for Sums
of Independent Random Variables. Gosudarstv. Izdat. Tehn.-Teor. Lit.,
Moscow–Leningrad, 1949 (Russian). English transl.: Addison-Wesley,
Cambridge, Mass., 1954.

[47] G. R. Grimmett, Random labelled trees and their branching networks.
J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 2, 229–237.

[48] G. R. Grimmett, The Random-Cluster Model, Springer, Berlin, 2006.
[49] A. Gut, Probability: A Graduate Course. Springer, New York, 2005.
[50] G. H. Hardy, J. E. Littlewood & G. Pólya, Inequalities. 2nd ed., Cam-
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