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Abstract

Wilf’s Sixth Unsolved Problem asks for any interesting properties of the set of
partitions of integers for which the (nonzero) multiplicities of the parts are all different.
We refer to these as Wilf partitions. Using f(n) to denote the number of Wilf partitions,
we establish lead-order asymptotics for ln f(n).
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Dedicated to the memory of Herbert S. Wilf (1931–2012).

1 The Problem

Herbert S. Wilf was an expert in many areas of combinatorics. Besides writing numerous
papers and books, he was a friend and mentor to many colleagues. Herb often asked in-
triguing questions that opened up whole new areas of investigation. In the later years of his
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†M. D. Ward’s research was supported by NSF Science & Technology Center grant CCF-0939370.

1



life, he posted a set of eight Unsolved Problems on his webpage Wilf (2010). At the time
of Herb’s death in January 2012, only one of these problems was solved (the third problem:
see Ward (2010)). In this paper, we discuss Wilf’s sixth “Unsolved Problem.”

Distinct multiplicities Wilf (2010)
Let T (n) be the set of partitions of n for which the (nonzero) multiplicities of its parts are
all different, and write f(n) = |T (n)|. See Sloane’s sequence A098859 for a table of values.
Find any interesting theorems about f(n). The mapping that sends a partition of n to
another partition of n in which the roles of parts and multiplicities are interchanged is a
well defined involution on T (n), which is how I arrived at the study of this problem.

2 Definitions

We refer to partitions in which the (nonzero) multiplicities of the parts are all different as
Wilf partitions.

Define
Mr := {(m1,m2, . . . ,mr) : mk are distinct positive integers},

and

Pr := {(p1, p2, . . . , pr) : pk are distinct positive integers with p1 < · · · < pr}.

Then the set of Wilf partitions of n is

T (n) :=
⋃
r≥1

{(m,p) : m = (m1, . . . ,mr); p = (p1, . . . , pr); m1p1 + · · ·+mrpr = n}.

We write p(n, r) for the number of partitions of n into r parts, and d(·) to denote the
divisor function, i.e., d(n) is the number of divisors of n.

Wilf defines f(n) = |T (n)| and then asks to find anything interesting about T (n).

3 Main Result

Theorem 3.1. Let f(n) denote the number of partitions of n with distinct (nonzero) mul-
tiplicities. Then

ln f(n) ∼ 61/3

3
n1/3 lnn ∼ (6n)1/3 ln[(6n)1/3] as n→∞.

The theorem will be established by matching upper and lower bounds for ln f(n) in
Lemmas 4.2 and 4.3 below.

In Figure 1, we plot the values of

ln f(n)

(6n)1/3 ln[(6n)1/3]

for 31 ≤ n ≤ 508.
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Figure 1: Plot of the values of ln f(n)

(6n)1/3 ln[(6n)1/3]
for 31 ≤ n ≤ 508.

4 Proofs

Lemma 4.1. The number r of distinct multiplicities in a Wilf partition of n is at most
(6n)1/3.

Proof. For a given positive integer r, the smallest possible n admitting a Wilf partition
with r distinct multiplicities is obtained by taking:

• multiplicity m1 = r for part p1 = 1;

• multiplicity m2 = r − 1 for part p2 = 2;

• multiplicity m3 = r − 2 for part p3 = 3;

• ...

• multiplicity mr = 1 for part pr = r.

This yields

n =
r∑
i=1

(r + 1− i)i =
1

6
r3 +

1

2
r2 +

1

3
r.

Hence r ≤ (6n)1/3. This completes the proof of Lemma 4.1.

Lemma 4.2. An upper bound for ln f(n) is

ln f(n) ≤ (1 + o(1))
61/3

3
n1/3 lnn.

Proof. For each Wilf partition of n, put the terms in decreasing order according to the values
of the products mipi. If two terms are equal, break the tie by writing in decreasing order of
the multiplicities. This gives a canonical way to write the Wilf partitions. For instance,

27 = 8 + 3 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1
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can be written as

27 = (1× 8) + (7× 1) + (3× 2) + (2× 3) = m1p1 +m2p2 +m3p3 +m4p4.

Notice that the products are, respectively 8, 7, 6, 6. The ordering of the two terms each
with product 6 was decided by writing those terms in decreasing order of the multiplicities.

With this representation in mind, it follows that the number f(n, r) of Wilf partitions
of n with r distinct multiplicities is no larger than

p(n, r)× [max{d(j) : 1 ≤ j ≤ n}]r.

Severin Wigert (1907) [see also (Hardy and Wright, 1960, Th. 317, Chap. XVIII.1)]
showed that

lim sup
n→∞

ln d(n)

(lnn)/(ln lnn)
= ln 2.

Therefore, there exists a constant C such that, provided n is sufficiently large, f(n, r) is no
larger than

p(n, r)× max
3≤j≤n

{
exp

(
rC

ln j

ln ln j

)}
= p(n, r)× exp

(
rC

lnn

ln lnn

)
. (1)

Since by Lemma 4.1 we have r ≤ (6n)1/3 if f(n, r) > 0, the second factor here does
not contribute to the lead-order logarithmic asymptotics for f(n). Now we utilize Exercise
7.2.1.4-34 in Knuth (2005), which concerns p(n, r) and is stated (in our notation) for r ≤ n1/3;
but Knuth’s argument is easily checked to hold also for r ≤ (cn)1/3 for any constant c.
Choosing c = 6 we find, for all r ≤ (6n)1/3,

p(n, r) = O

(
nr−1

r!(r − 1)!

)
≤ exp

[
(1 + o(1))(1/3)(6n)1/3 lnn

]
as n → ∞, and then (1) yields the same estimate for f(n, r). The proof of Lemma 4.2 is
completed by a summation over r ≤ (6n)1/3.

Lemma 4.3. A lower bound for ln f(n) is

ln f(n) ≥ (1 + o(1))
61/3

3
n1/3 lnn.

Proof. Let a < 61/3, and let K be a fixed large integer. Let b := ban1/3/Kc and divide
the interval [1, Kb] ⊆ [1, an1/3] into K equal parts I1, . . . , IK . Consider only permutations
(p1, . . . , pKb) of [1, Kb] that map Ij into IK+1−j for every j ∈ {1, . . . , K}. For such permuta-
tions, if

a = [6(1− 2ε)]1/3,

and if K is large enough (depending on ε but not on n), then
∑

i ipi < (1 − ε)n, and we
obtain (if n is large enough) a Wilf partition by taking i parts of size pi for each 2 ≤ i ≤ Kb
and a single part of size n−

∑Kb
i=2 ipi.

Thus the number of Wilf partitions of n is at least

b!K = exp [Kb(ln b+O(1))] = exp
[
an1/3(lnn1/3 +O(1))

]
= exp

[(a
3

+ o(1)
)
n1/3 lnn

]
.

This completes the proof of Lemma 4.3, since we may take a arbitrarily close to 61/3.
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5 Open Problems

We have found the first-order asymptotic description of ln f(n), but lower-order terms of
ln f(n) remain unknown. A Herculean task would be to find the first-order asymptotic
description of f(n) itself. As a much simpler task, David S. Newman has mentioned that it
would be nice to have a proof that f(n) is nondecreasing.

5.1 An involution

Wilf (2010) mentions a mapping on T (n) in which the roles of parts and multiplicities are
interchanged. We let σn denote this mapping. Hence, σn((m,p)) is

(pπ,mπ) = ((pπ(1), . . . , pπ(r)), (mπ(1), . . . ,mπ(r))),

where π is the permutation making mπ(1) < · · · < mπ(r). For instance, two partitions of 83
are

83 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 4 + 4 + 4 + 4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5

and
83 = 4 + 4 + 4 + 4 + 7 + 12 + 12 + 12 + 12 + 12.

More succinctly, we can write these partitions as elements of T (83) as ((7, 4, 12), (1, 4, 5))
and ((4, 1, 5), (4, 7, 12)). Then we have

σ83 : ((7, 4, 12), (1, 4, 5)) 7→ ((4, 1, 5), (4, 7, 12)),

and, reversing the roles of the multiplicities and partitions, we have

σ83 : ((4, 1, 5), (4, 7, 12)) 7→ ((7, 4, 12), (1, 4, 5)).

Switching the roles of the parts and multiplicities again, we get back to the original partition,
so σn is seen to be an involution. Note that σn has order 2 on most elements of T (n), but
σn has order 1 on some elements. In particular, σn fixes every (m,p) for which mi = pi for
all i, for example,

σ65 : ((2, 5, 6), (2, 5, 6)) 7→ ((2, 5, 6), (2, 5, 6));

but there are also other examples, such as

σ10 : ((1, 2, 3), (3, 2, 1)) 7→ ((1, 2, 3), (3, 2, 1)).

It is an open problem to find (asymptotics for) the number of fixed points of σn.
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