HIGHER MOMENTS OF BANACH SPACE VALUED
RANDOM VARIABLES

SVANTE JANSON AND STEN KAIJSER

ABSTRACT. We define the k:th moment of a Banach space valued ran-
dom variable as the expectation of its k:th tensor power; thus the mo-
ment (if it exists) is an element of a tensor power of the original Banach
space.

We study both the projective and injective tensor products, and their
relation. Moreover, in order to be general and flexible, we study three
different types of expectations: Bochner integrals, Pettis integrals and
Dunford integrals.

One of the problems studied is whether two random variables with
the same injective moments (of a given order) necessarily have the same
projective moments; this is of interest in applications. We show that
this holds if the Banach space has the approximation property, but not
in general.

Several sections are devoted to results in special Banach spaces, in-
cluding Hilbert spaces, C(K) and D[0,1]. The latter space is non-
separable, which complicates the arguments, and we prove various pre-
liminary results on e.g. measurability in DJ[0, 1] that we need.

One of the main motivations of this paper is the application to
Zolotarev metrics and their use in the contraction method. This is
sketched in an appendix.

1. INTRODUCTION

Let X be a random variable with values in a Banach space B. To avoid
measurability problems, we assume for most of this section for simplicity
that B is separable and X Borel measurable; see Section 3 for measurability
in the general case. Moreover, for definiteness, we consider real Banach
spaces only; the complex case is similar.

If E||X]| < oo, then the mean E X exists as an element of B (e.g. as a
Bochner integral § X d P, see Section 5). Suppose now that we want to define
the k:th moments of X for some k > 2, assuming for simplicity E | X ||* < oo.
If B is finite-dimensional, then the second moment of X is a matrix (the
covariance matrix, if X is centred), and higher moments are described by
higher-dimensional arrays of joint moments of the components. In general, it
is natural to define the k:th moment of X using tensor products, see Section 4
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for details: X®* is a random element of the projective tensor product B®k,
and we define the projective k:th moment of X as the expectation E X®* e
B®* (when this expectation exists, e.g. if E|X|* < o0); we denote this

moment by E X®*_ In particular, the second moment is E X2 = E(X®X) e
B®B. .

An alternative is to consider the injective tensor product B®k and the
injective k:th moment E X®F ¢ B®*,

Another alternative is to consider weak moments, i.e., joint moments of
the real-valued random variables z*(X) for * € B* (the dual space). The
weak k:th moment thus can be defined as the function

(zf,....zf) = E(z](X) -+ 25 (X)) € R, (1.1)

assuming that this expectation always exists (which holds, for example, if
E|X|* < o). Note that the weak k:th moment is a k-linear form on B*.

The purpose of the present paper is to study these moments and their re-
lations in detail, thus providing a platform for further work using moments
of Banach space valued random variables. In particular, we shall give suffi-
cient, and sometimes necessary, conditions for the existence of moments in
various situations.

One example of our results on relations between the different moments is
that, at least in the separable case, the weak k:th moment is equivalent to
the injective moment. (See Theorem 6.10 for a precise statement.)

We study also the problem of moment equality: if Y is a second random
variable with values in B, we may ask whether X and Y have the same k:th
moments, for a given k and a given type of moment. (Assume for example
that B | X|*,E|Y]||* < oo so that the moments exist.) This problem, for the
second moment, appears for example in connection with the central limit
theorem for Banach space valued random variables, see e.g. [42, Chapter 10]
where weak moments are used. (In particular, a B-valued random variable
X is said to be pregaussian if EX = 0 and there exists a Gaussian B-valued
random variable Y such that X and Y have the same weak second moments. )
This problem is also important when proving convergence in distribution of
some Banach space valued random variables using a Zolotarev metric, see
Appendix B. (The Zolotarev metrics are, for example, often used when
applying the contraction method for sequences of random variables with
a suitable recursive structure, see e.g. Neiniger and Sulzbach [49]. This
applications is one of the main motivations of the present paper.)

As an example of results obtained in later sections, let us consider this
problem of moment equality further. In particular, we want to compare the
property that X and Y have the same k:th moment for the different types
of moments. (For simplicity, we assume as above that E||X ¥, E |Y|* < oo,
so the moments exist.)

Since the dual space of B®* is the space of bounded k-linear forms on B
(see Section 4), it follows (by Section 5) that the k:th projective moments
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E X® and EY®F are equal if and only if
Ea(X,...,X)=Ea(Y,...,Y), a € L(B*;R), (1.2)

where L(B¥;R) denotes the space of bounded k-linear forms on B. (See
Corollary 6.17.)

Moreover, by the definition of weak moments, X and Y have the same
weak k:th moments if and only if

E(z}(X) - 2i(X)) =E(z}(Y) -2 (Y)), xi,.. ., xp e B*.  (1.3)

We shall see gCorollary @.12) that this holds if and only if the injective

moments E X® and EY®* are equal.

For any xf,...,x; € B*, the mapping (z1,...,2;) — xf(x1) -z} ()
is a bounded k-linear form on B, and thus (1.3) is a special case of (1.2).
Consequently, (1.2) = (1.3), i.e., if X and Y have the same projective
moments, then they have the same weak (and injective) moments. Does the
converse hold? (This question is of practical importance in applications of
the contraction method, see Appendix B.) We show that this problem is
non-trivial, and deeply connected to the approrimation property of Banach
spaces. (See Section 8 for definitions and proofs.) In particular, we have the
following results.

Theorem 1.1. If B is a separable Banach space with the approximation
property and X and Y are random variables in B such that B | X||*, E||Y|*F <
oo, then (1.2) and (1.3) are equivalent, i.e., X and Y have the same pro-
jective k:th moments if and only if they have the same weak k:th moments.

Theorem 1.2. There exists a separable Banach space B and bounded ran-
dom wvariables X and Y in B such that, for k = 2, (1.3) holds but not
(1.2).

In Theorem 1.2, we may further require B to be reflexive.

Note that all classical Banach spaces have the approximation property
(for example, P, co, LP(u), C(K), and any Banach space with a basis), and
that counterexamples are notoriously difficult to find. In fact, the approxi-
mation property was formulated and studied by Grothendieck [32, 33], but
it took almost 20 years until a Banach space without the approximation
property was found by Enflo [26]. Hence, it is unlikely that such spaces will
appear in applications, and Theorem 1.1 ought to apply to any separable
Banach space B that will be used in practice. (Note, however, that the
non-separable Banach space B(H) of bounded operators in a Hilbert space
lacks the approximation property, see Szankowski [61].)

In applications, B is often a function space, for example C[0,1]. In this
case, we can weaken the condition for equality of moments further, by con-
sidering only point evaluations in (1.3). This yields the following result,
stated here more generally for C'(K) where K is a compact metric space.
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Theorem 1.3. Let B = C(K) where K is a compact metric space, and
let X and Y be random variables in C(K) such that E|X|*, E|Y||* < co.
Then (1.2) is equivalent to (1.3), and further to

E(X(t1) - X(tx) =E(Y(t1)--- Y (tk)), t1,...,tp € K. (1.4)

In this case it is thus enough to study joint moments of X (¢), and the k:th
moment of X is described by the real-valued function E(X (¢) --- X (t)) on
K*. We shall further see that if k = 2, the integrability conditions can be
weakened to sup;c | X (t)]? < 00 and sup;c |V (#)|? < o0 (Theorem 11.23).

Remark 1.4. A standard polarisation argument, as in the proof of Theo-
rem 18.8, shows that (1.3) is equivalent to

E(z*(X)") =E(z*(Y)"),  2*e B* (1.5)

In other words, the weak k:th moments of X and Y are equal if and only
x*(X) and x2*(Y) have the same k:th moments for every z* € B*. Hence
we can use (1.5) instead of (1.3) in the results above. In contrast, in (1.4),
it is essential to allow different ¢1,...,¢; and joint moments.

We have so far, for simplicity, assumed that B is separable. The same
definitions apply in the non-separable case, but there are then technical
complications (concerning measurability) that complicate both statements
and proofs, and our results are less complete in this case.

The space DJ0, 1] is a non-separable Banach space that is important in
applications. We treat D[0, 1] in detail in Sections 13-16; by special argu-
ments we obtain essentially the same results as in the separable case. In
particular, we shall see (Theorem 16.13) that Theorem 1.3 holds also for
B = D[0, 1], with the usual measurability condition in D[0,1].

For the reader’s convenience (and our own), we have in Section 2 collected
some notation used in this paper, and in Sections 3-5 preliminaries on mea-
surability, tensor products and integration in Banach spaces. (There are no
new results in these sections.)

The main definitions of the moments are given in Section 6, together
with various results giving sufficient, and sometimes necessary, conditions
for their existence. (Some simple examples are given in Section 7.) We
give simple sufficient conditions that are enough for many applications, but
we also give more precise results. We try to be as precise as possible, and
therefore we use three different types of integrability (Bochner, Pettis and
Dunford, see Section 5) in the definition of the projective and injective mo-
ments, leading to six different cases that we treat in detail. (The multitude
of cases may be bewildering, and contributes to the length of the paper.
The reader is recommended to concentrate on separable Banach spaces and
Bochner integrals at the first reading; this is enough for many applications.
However, for e.g. applications to D[0, 1], this is not enough which is one
motivation for considering also Pettis and Dunford integrals.)

The approximation property is defined and used in Section 8.
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Sections 9-16 study special Banach spaces: Hilbert spaces in Section 9;
LP(u) in Section 10; C(K) (where K is a compact space) in Section 11 (with
emphasis on the separable case, when K is metrizable); ¢o(.S) in Section 12
(with emphasis on the non-separable case); and finally, as said above, D[0, 1]
in Sections 13-16, where Sections 13-15 contain various preliminary results
on e.g. the dual space and maximal ideal space as well as measurability and
separability of random variables in D[0, 1]. In these sections we give many
results on existence of moments of the different types for random variables
in these spaces.

In the final two sections we consider the collection of moments of all
orders. Section 17 shows that, under certain conditions, the moments de-
termine the distribution, and Section 18 treats the problem whether conver-
gence of the moments for a sequence of random variables implies convergence
in distribution. We give both positive and negative results.

The appendices discuss two well-known constructions related to moments.

Appendix A describes the construction of a Hilbert space (the reproducing
Hilbert space) connected to a B-valued random variable; we show that this
is closely related to the injective second moment.

Appendix B describes the Zolotarev metrics and their connection to pro-
jective moments; as said above this is a major motivation for the present
paper.

Throughout we usually try to give as general results as possible. We also
give various counterexamples showing limitations of the results, especially in
the non-separable case; these (and many technical remarks) can be skipped
at the first reading. Some open problems are stated explicitly or implicitly.
(As is often the case with integration in Banach spaces, cf. e.g. [29], the
non-separable case is much more complicated than the separable case and
several open problems remain.)

For completeness we include some known results that we need, with or
without proof; we try to give references in both cases, but omit them for
some results or arguments that we regard as standard. (The absence of a
reference thus does not imply that the result is new.) We believe that many
other results are new.

Acknowledgement. We thank Joe Diestel, Ralph Neininger, Oleg Reinov,
Viggo Stoltenberg-Hansen and Henning Sulzbach for helpful comments.

2. NOTATIONS

We will use the following standard notations, usually without comment.

L(By,...,Bg; B') is the space of bounded k-linear maps By x - -+ x By —
B’. In particular, with B’ = R, we have the space of bounded k-linear forms.
When By = --- = By, = B we also write L(B"*; B').

B* denotes the dual space of the Banach space B, i.e., the space L(B;R)
of bounded linear functionals B — R. If x € B and z* € B*, we use the
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notations x*(x) and {z*, ), or {x,z*), as synonyms. We write z* 1 By, for
a subset By € B, if (x*,x) = 0 for every x € Bj.

We use several standard Banach spaces in our results and examples; for
convenience we recall their definitions here.

For any set S and p € [1,0), ¢P(S) is the Banach space of all functions
S — R such that the norm | f|lmsy := (Dyeq |F(5)[P)V7 is finite. (We are
mainly interested in the cases p = 1,2.) Further, /*(S) is the Banach space
of all bounded functions S — R, with the norm | f]s(s) 1= supseg |f(s)]-
We use sometimes the notation fs for f(s), in particular when S = N.

We define the support of f as supp(f) := {s: f(s) # 0}, and note that if
feP(S), with p < oo, then supp(f) is countable even if S is uncountable.

¢o(S) is the space of all function f : S — R such that {s: |f(s)| > €} is
finite for each € > 0; this is a closed subspace of £*, and is thus a Banach
space with the inherited norm | flcysy := [ fllex(s) := supses [f(s)]. Note
that every element of cy(S) has countable support.

es denotes the function es(t) := 1{t = s} that is 1 at s and 0 everywhere
else (defined for ¢ in some set S, which will be clear from the context).

Let coo(S) be the space of all functions f : S — R with supp(f) finite;
this is the linear span of {es : s € S}. Then coo(S) S ¢o(S) € ¢°(S), and
coo(S) is dense in ¢p(S). Hence co(S) is the closed linear span in ¢*(S) of
the functions {es : s € S}. It follows that

co0(S)* = co(S)* = £'(9),

with the standard pairing {f,g) = > s f(5)g(s).
When S = N, we write just /£ and cy.

LP(S), where S = (S, S, i) is a measure space and p € [1,00), is the space
of all measurable functions f : S — R such that {¢|f[P < oo (as usual
identifying functions that are equal a.e.).

C(K), where K is a compact topological space, is the space of all con-
tinuous functions f : K — R, with the norm supg |f|. (We are particulary
interested in C[0,1].)

For a compact set K, M(K) is the Banach space of all signed Borel
measures on K. By the Riesz representation theorem, the dual C(K)*
can be identified with the subspace M,(K) of M(K) consisting of regular
measures; see e.g. [12, Theorem 7.3.5], [22, Theorem IV.6.3] or [13, Theorem
II1.5.7]. (If e.g. K is compact and metrizable, then every signed measure is
regular, so C(K)* = M(K), see [12, Propositions 7.1.12, 7.2.3, 7.3.3].)

DJ0, 1] denotes the linear space of functions [0,1] — R that are right-
continuous with left limits, see e.g. [6, Chapter 3]. The norm is supyg 11 | f|-
See further Section 13.

ds denotes the Dirac measure at s, as well as the corresponding point
evaluation f — f(s) seen as a linear functional on a suitable function space.

(Q, F,P) denotes the underlying probability space where our random vari-
ables are defined; w denotes an element of 2. We assume that (2, F,P) is
complete.
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We let E denote the upper integral of a, possibly non-measurable, real-
valued function on €Q:

EY :=inf{EZ:Z > Y and Z is measurable}. (2.1)

(If Y is measurable, then EY = EY.) In particular, if X is B-valued, then
E|X| < oo if and only if there exists a positive random variable Z with
|X| <Z and EZ < .

The exponent k is, unless otherwise stated, an arbitrary fixed integer
> 1, but the case k = 1 is often trivial. For applications, k = 2 is the most
important, and the reader is adviced to primarily think of that case.

3. MEASURABILITY

A B-valued random variable is a function X : Q@ — B defined on some
probability space (€2, F,P). (As said above, we assume that the probability
space is complete.) We further want X to be measurable, and there are
several possibilities to consider; we will use the following definitions.

Definition 3.1. Let X : Q — B be a function on some probability space
(Q, F,P) with values in a Banach space B.

(i) X is Borel measurable if X is measurable with respect to the Borel
o-field B on B, i.e., the o-field generated by the open sets.

(ii) X is weakly measurable if X is measurable with respect to the o-field
B, on B generated by the continuous linear functionals, i.e., if {z*, X)
is measurable for every z* € B*.

(iii) X is a.s. separably valued if there exists a separable subspace B; € B
such that X € B; a.s.

(iv) X is weakly a.s. separably valued if there exists a separable subspace
B; € B such that if z* € B* and z* L By, then z*(X) =0 a.s.

(v) X is Bochner measurable if X is Borel measurable and a.s. separably
valued.

Remark 3.2. X is Bochner measurable if and only if X is Borel measurable
and tight, i.e., for every € > 0, there exists a compact subset K < B such
that P(X € K) > 1 — ¢, see [6, Theorem 1.3]. (This is also called Radon.)
Some authors use the name strongly measurable. Moreover, X is Bochner
measurable if and only if there exists a sequence X, of measurable simple
functions 2 — B such that X,, » X a.s., see [22, I11.2.10 and III.6.10-14].
(This is often taken as the definition of Bochner measurable.) See further
[42, Chapter 2.1].

The name scalarly measurable is sometimes used for weakly measurable.

Some authors (e.g. [22]) let “measurable” mean what we call Bochner
measurable, so care should be taken to avoid misunderstandings.

If B is separable, there is no problem. Then every X is trivially a.s.
separably valued; moreover, it is easy to see that B, = B. Hence every
weakly measurable X is measurable, and the notions in (i), (ii) and (v)
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are equivalent. This extends immediately to a.s. separably valued random
variables in an arbitrary Banach space:

Theorem 3.3 (Pettis, [22, I11.6.10-11)). If X is a.s. separably valued, then
X is Borel measurable (and thus Bochner measurable) if and only if X is
weakly measurable. ([

Remark 3.4. There is a converse, assuming some set theory hypotheses.
(See further Remark 9.13.) By [45] (see also [5, Appendix III]), if the car-
dinality of B is not real-measurable then every Borel measurable random
variable in B is a.s. separably valued. It follows, in particular, that if the
continuum hypothesis holds and furthermore there is no inaccessible car-
dinal, then every Borel measurable random variable in any Banach space
is a.s. separably valued. (These hypotheses are both consistent with the
usual ZFC set theory; see further Remark 9.13.) Hence, it can safely be
assumed that every Borel measurable random variable that will appear in
an application is a.s. separably valued. In other words, if we want to study
random variables that are not a.s. separably valued, then we cannot use
Borel measurability.

In view of this, we prefer to use separable Banach spaces, or at least
a.s. separably valued random variables, whenever possible. Many standard
Banach spaces are separable, for example LP[0,1] (1 < p < o0) and C]0, 1].
However, the non-separable space D[0,1] (see Section 13) is important for
applications, and it is easily seen (Theorem 15.11 below) that a D-valued
random variable X is a.s. separably valued if and only if there exists a
(non-random) countable set A < [0, 1] such that X a.s. has all its points
of discontinuity in A. In practical applications this means that a random
variable X € DJ0, 1] is a.s. separably valued if it has jumps at deterministic
places, but not if there are jumps at random places.

Example 3.5 (See [6, Section 15]). Let U ~ U(0,1) be a uniformly dis-
tributed random variable, and let X be the random element of D|0, 1] given
by X = 1y, i.e. X(t) = 1{U < t}. (This is the empirical distribution func-
tion of U, seen as a sample of size 1.) Since the functions 1, 1}, u € [0, 1], all
have distance 1 to each other, they form a discrete subset of D[0,1] and it
follows that X is not a.s. separably valued. In particular, X is not Bochner
measurable.

Moreover, if A is a non-measurable subset of [0, 1], then the set {1p, ] :
u € A} is a closed subset of DJ[0, 1], and thus a Borel set. If we take the
probability space (€2, F,P) where U and thus X are defined to be [0, 1] with
Lebesgue measure, and U (w) = w, then X~1(A4) = A ¢ F and, consequently,
X is not Borel measurable in D[0, 1]. (If we assume the continuum hypoth-
esis, X cannot be Borel measurable for any probability space (€2, F,P), see
Remark 3.4.)

On the other hand, X (¢) is measurable for each ¢, and by Pestman [51],
see Corollary 13.2 and Theorem 15.5 below, X is weakly measurable.
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Furthermore, it follows from [51] (or Corollary 13.2) also that if 2* € D*
and x* L C[0,1], then z*(1f,,1) = O for all but countably many wu; thus
z*(X) = 0 a.s. which shows that X is weakly a.s. separably valued. (Cf.
Theorem 15.13.)

Cf. also [62, Example 3-2-2] which studies essentially the same example
but as an element of L*[0,1].

Remark 3.6. If X is Borel measurable, then |X| is measurable, since
x > ||z|| is continuous. However, if X only is weakly measurable, then | X||
is not always measurable without additional hypotheses. (For this reason,
we will sometimes use the upper integral E|X|.) If X is weakly measurable
and a.s. separably valued, then | X| is measurable, e.g. by Theorem 3.3. (In
particular, there is no problem when B is separable.) Furthermore, if B has
the property that there exists a countable norm-determining set of linear
functionals, then every weakly measurable X in B has |X|| measurable;
D[0,1] is an example of such a space.

Remark 3.7. Several other forms of measurability may be considered, for
example using the Baire o-field (generated by the continuous functions B —
R) [62] or the o-field generated by the closed (or open) balls in B [20, 21], [6].
Note further that, in general, B,, is not the same as the o-field generated
by the weak topology. (In fact, B, equals the Baire o-field for the weak
topology [23], [62].) When B is separable, all these coincide with the Borel
o-field.

See also [23], [24], [42] and [62], where further possibilities are discussed.

4. TENSOR PRODUCTS OF BANACH SPACES

We give a summary of the definitions and some properties of the two
main tensor products of Banach spaces. We refer to e.g. Blei [8] or Ryan
[57] for further details. We consider the general case of the tensor product
of k different spaces. The tensor products we consider (both algebraic and
completed) are associative in a natural way; for example, B1 ® By ® Bs =
(B1 ® B2) ® Bs = B1 ® (B2 ® Bs), and the general case may be reduced to
tensor products of two spaces. (Many authors, including [57], thus consider
only this case.)

4.1. Algebraic tensor products. The algebraic tensor product of a finite
sequence of vector spaces B1, ..., By (over an arbitrary field) can be defined
in an abstract way as a vector space B; ® --- ® By with a k-linear map
By x - x By > B1® -+ ® By, written (x1,...2) = 21 ® - - ® xp, such

that if a : By x --- x By — A is any k-linear map, then there is a unique
linear map @ : B1 ® - - ® B, — A such that
a(r,...,xp) =a(r1 ® - ®xk). (4.1)

(All such spaces are naturally isomorphic, so the tensor product is uniquely
defined, up to trivial isomorphisms.)
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Several concrete constructions can also be given. One useful construction
is to let BE be the algebraic dual of B; and define B1®- - -® By, as a subspace
of the linear space of all k-linear forms on B§ X e X Bi; more precisely we
define 71 ® - - - ® x;. as the k-linear form on B§ X« X B,ﬁ defined by

and then define By ® - - - ® By, as the linear span of all z1 ® - - - ® .

We can modify this construction by replacing Bg by any subspace that
separates the points of B;. In particular, when each B; is a Banach space,
we can regard B1 ® - - - ® By as a subspace of the space of k-linear forms on
Bf x .-+ x Bj.

An element of B1®- - -® By, of the form z1®- - -®uy, is called an elementary
tensor. Note that not every element of B1®- - -® By, is an elementary tensor,
but every element is a finite linear combination of elementary tensors (in a
non-unique way).

A sequence of linear operators T; : A; — B; defines a unique linear map
Ti® QT Ai® - @A, > B ®--®By, such that T1 @ - - - @ Tjp (1 ®
e ®uag) =Tix1 ® - - ® Trxy for elementary tensors.

4.2. Completed tensor products. When By, ..., By are Banach spaces,
we can define several different (non-equivalent) norms on B1 ®- - -® By. For
each norm we then can take the completion of By ® --- & Bj, obtaining a
Banach space. We consider two cases (the two main cases) of completed
tensor products.

The projective tensor norm is defined on B; ® - - - ® By by

ule i= i (Y a1, - oz, u = Y0, @+ @my),  (43)
J

J

taking the infimum over all ways of writing u as a finite sum of elementary
tensors. The corresponding completed tensor product is called the projective
tensor product and is written B1®- @)Bk It is easily seen that every
uwe Bi®---®By, can be written (non-uniquely) as an absolutely convergent
infinite sum of elementary tensors: for any € > 0,

o0 o0
u= Y @@y with Y zyls, o feorle < 1+ ) ulx < o0
j=1 j=1
(4.4)
equivalently,

)
u = 2 )\jxlj & Ty with sz]”Bl <1, )\j >0 and
j=1
0
DN <A +e)|ulx <00 (4.5)
j=1
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The injective tensor norm is defined on B1 ® - - - ® By, by using (4.2) to
regard B1®- - -@ By, as a subspace of L(Bf, ..., Bf;R), the bounded k-linear
forms on B} x --- x B}, and taking the induced norm, i.e.,

Julle := sup(fu(=t, ... 2] : 2Tl gy, - - okl gy < 1) (4.6)

The corresponding completed tensor product is called the injective tensor
product and is written Bi® - - - ®By; note that this is simply the closure of
B ®---® By in L(BYf,...,B};R) and thus can be regarded as a closed
subspace of L(Bf,...,B};R).

For elementary tensors we have

71 ® - @k|r = |21 ® - - - @ ai|e = |21] By - - - |21 By, (4.7)

so the two norms coincide. (Any such norm on B; ® --- ® By is called a
crossnorm.) Moreover, it is easily seen that for any v € B] ® --- ® By,
|ule < |ullr; hence the identity map u — u extends to a canonical bounded
linear map (of norm 1)

L:B1®---®B) —» B1®--- Q@B (4.8)

with [¢/| < 1. Unfortunately, this map is not always injective; we return to
this problem in Section 8, where we shall see that this is the source of the
difference between (1.2) and (1.3).

Consider for simplicity the case k = 2. As said above, Bi®B; can be
seen (isometrically) as a subspace of L(B7, B5;R). Moreover, an elementary
tensor z1®x3 defines a bounded linear operator B — B by x] — zf(x1)x2,
and this extends by linearity to a mapping B; ® By — L(B7; Bs), which is
an isometry for the injective tensor norm (4.6). Hence, this mapping extends
to an isometric embedding of B1®Bsy as a subspace of the space L(B¥; By)
of bounded linear operators Bf — Bs. Explicitly, u € B1®Bs corresponds
to the operator T, : Bf — By given by

(Tyx™,y*) = {* @ y*, u), xz* € BY, y* € B3. (4.9)

(By symmetry, there is also an embedding into L(B3; By). If u € Bi®Bs
corresponds to the operator T3, : Bf — DBa, it also corresponds to T; : B5 —
Bi.)

When the mapping ¢ in (4.8) (with & = 2) is injective, we may regard
B1®Bs as a subspace of B1®Bs (with a generally different, larger, norm);
hence B1®Bs may be regarded as a certain space of operators Bf — By in
this case too.

Example 4.1. Suppose that By, ..., By, are finite-dimensional, and let {e;;};,
j € J;, beabasis of B; fort =1,...,k. It is easily seen that the elementary
tensors ey := e1j, @ -+ @ eyj,, with J := (j;); € 1_[?:1 Ji, form a basis of
B1®---® Byg.

Hence dim(B1®---® By) = Hle dim(B;) < oo. In particular, the tensor
product is complete for any norm, and thus Bl®- . -®Bk = Blé- . -(;)Bk =
B; ®---® By, as sets (although the norms generally differ).
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Using the basis (ey) s, any element of the tensor product may be written
as Y. jagey, where the coordinates ay are indexed by J € l_[le Ji, 80 it is
natural to consider the coordinates as a k-dimensional array. (A matrix in
the case k = 2.)

Example 4.2. Let H be a Hilbert space. The tensor products HQ®H and
H®H can be identified with the spaces of trace class operators and compact
operators on H, respectively, see Theorem 9.2; moreover, H ®H =~ (H QH )*.

In this case, another interesting choice of norm on H® H is the Hilbertian
tensor norm, given by the inner product {x1 ®x2,y1 ®y2) = {x1,y1 {x2,Y2);
the corresponding completed tensor product H ®2 H can be identified with
the space of Hilbert—Schmidt operators on H. (We will not use this tensor
product in the present paper.)

If T; : A; — B; are bounded linear operators, then 77 ®- - -®T}, is bounded
for both the projective norms and the injective norms, and extends thus
to bounded linear maps T1®---®Tk : A1®---®Ak - B1®---®Bk and
T)® - --@Tk AR - -®Ak — B1®- @Bk We note the following lemma,
which we for simplicity state for the case k = 2, although the result extends
to general k.

Lemma 4.3. If T : Ay — By and U : Ay — Bs are injective linear operators
between Banach spaces, then TQU : A1®As — B1®DB> is injective.

Proof. Consider first the case when A; = By and T = I, the identity op-
erator. We can regard A;®A4s and A;@Bs as subspaces of L(A7; Az) and
L(A¥; By) , and then I®U is the mapping L(A*; Ay) — L(A}; By) given by
S — US, which is injective when U is.

In general we factorize TQU = (T®I)(IQU) and note that both factors
TRI : A;®By — As®By and IQ U : A1®B; — A1®By are injective by the
first case and symmetry. ([

Remark 4.4. The same proof shows that if 7" and U are isometric em-
beddings, then so is T®U. (In other words, the injective tensor product is
injective [57, Section 6.1].)

Remark 4.5. Lemma 4.3 is in general not true for the projective tensor
product, see Example 8.7 and Remark 8.8.

The projective tensor product has instead the dual property that if 7" and
U are quotient mappings (i.e., onto), then so is TRU.

When considering the dual space of a completed tensor product, note that
B1 ®---® By, is a dense subspace (by definition); hence a continuous linear
functional is the same as a linear functional on B1®- - -® B}, that is bounded
for the chosen tensor norm. Furthermore, each such linear functional can by
(4.1) be identified with a k-linear form on Bj x --- x By. For the projective
tensor product, the definition (4.3) of the norm implies that all bounded
k-linear forms yield bounded linear functionals.
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Theorem 4.6 ([57, Theorem 2.9)). The dual (B1®---®By)* consists of
all bounded k-linear forms By x --- x By — R, with the natural pairing
(l, 11 ® - ®xky = alx1,...,Tk). O

For Bi®---®By, the dual space consists of a subset of all bounded k-
linear forms; these forms are called integral, and can be described as follows.
Let K; be the closed unit ball of B} with the weak™ topology; thus K; is a
compact space.

Theorem 4.7 ([57, Proposition 3.14]). If x € (B1®---®B})*, then there

exists a (non-unique) signed measure p € M(Kj % --- x Kp), with ||u]| = | x|,
such that
X1 ® - Qi) = f xf(zq) - xp(zg) dp(al, ..., 2f).  (4.10)
K1><~~~><Kk

Conversely, (4.10) defines a bounded linear functional for every signed mea-
sure pe M(Ky x -+ x Kg).

Proof. We have defined an embedding of B1 ®---® By, in L(By, ..., B};R)
by (4.2), and taking the restriction of the operators to Kj x --- x K}, gives
a linear map into C'(K; x --- x K}), which by the definition (4.6) of the
injective tensor norm is an isometry. Hence we can regard Bi® - - - ®Bj, as
a subspace of C (K7 x --- x K}), and the result follows by the Hahn—Banach
theorem together with the Riesz representation theorem. (]

An elementary tensor 27 ® --- @z} € B ® --- ® B} defines a k-linear
form on By x -+ x By by (x1,...,2x) = xf(x1) - - 2} (x)), and thus a linear
functional on B; ® - - - ® By by

@ ® - Qup,z1 Q- Qugy = xf(x1) - - -z (xk). (4.11)

By the definitions above, see (4.6) and (4.2), this linear functional extends
to a linear functional on B1® - - - @By, of norm |x¥| - - - | 2|, and it follows by
(4.3), linearity and continuity that every tensor u* € Bi"@) . @BZ defines a
linear functional on Bi®- - - @By, with norm at most ||u*||5, i.e., an integral
form on By x --- x By. In fact, by (4.4), the forms obtained in this way are
exactly the integral forms such that there is a representation (4.10) with a
discrete measure p. These forms are called nuclear forms on By x - -+ x By.
By (4.5), every nuclear form can be written as

o0
X = 2 Al @ @ xy; (4.12)
j=1

with A\; > 0, Z;’;l |Ajl < oo and [lzf;] < 1.
Remark 4.8. Let Z(By, ..., Bg) and N(By,..., Bi) be the spaces of inte-
gral and nuclear forms, respectively, on By x --- x By. Both Z(Bjy, ..., By)

and N(Bi,...,By) are Banach spaces (with the natural norms suggested
by their definitions, see [57]), and there is an inclusion N(By,...,By) C
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Z(Bi,...,B) with the inclusion mapping having norm at most 1. Fur-
thermore, there is a quotient mapping Bf@ . @)B: — N(Bi,...,Bg). In
general, none of these maps is an isomorphism, but there are important
cases when one or both are.

Remark 4.9. When k = 2 (bilinear forms), there are corresponding notions
for linear operators.

We say that an operator T : By — Bs is integral if the corresponding
bilinear form on By x B given by (x,y*) — (Tx,y*) is integral. Conversely,
a bilinear form a : B; x By — R is integral if and only if the corresponding
operator T : By — Bj given by (T'z,y) = a(z,y) is integral. (When Bs
is reflexive, these are obviously equivalent. In general, see [57, Proposition
3.22].)

Similarly, an operator T' : By — By is nuclear if (T'v,y*) = (u,z ®
y*) for some u € Bf ®By. When Bs is reflexive, this says precisely that
corresponding bilinear form on B; x Bj given by (x,y*) — (Tx,y*) is
nuclear.

5. VECTOR-VALUED INTEGRATION

We summarize the definitions of the main types of vector-valued integrals,
see e.g. [22], [18], [62] and [57] for details. In order to conform to the rest
of this paper, we use probabilistic language and consider the expectation
of a B-valued random variable X. (The definitions and results extend to
integrals of Banach space valued functions defined on arbitrary measure
spaces with only notational changes.)

The Bochner integral is a straightforward generalization of the Lebesgue
integral to Banach space valued functions. We have the following character-
ization [22, I11.2.22 and I11.6.9], cf. Theorem 3.3.

Theorem 5.1. A random variable X : (Q, F,P) — B is Bochner integrable
if and only if X is Bochner measurable and E | X|| < oo. O

As discussed in Section 3, Bochner measurable variables are not enough
for all applications. For a more general integral, suppose only that x*(X)
is integrable for every z* € B*. (In particular, X is weakly measurable.)
Then the linear map

Tx :z* — 2*(X) (5.1)
maps B* into L' (IP) and by the closed graph theorem, this map is bounded.
Hence z* — Ez*(X) = {2*(X)dP is a bounded linear map B* — R, i.e.,
an element of B**. This element is called the Dunford integral of X. We
can write the definition as

(EX,z*) = Ez*, X), (5.2)

noting that in general E X € B**,
In the special case that the Dunford integral EX € B, and moreover
(see Remark 5.3) E(X1g) € B for every event E (i.e., every measurable set
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E < Q), we say that E X is the Pettis integral of X. Note that the Pettis
integral by definition is an element of B. If X is Bochner integrable then
it is Pettis integrable (and Dunford integrable) and the integrals coincide,
but the converse does not hold. The examples below show that a Pettis
integrable function may fail to be Bochner integrable because of either in-
tegrability or measurability problems. (Talagrand [62, Chapter 5] and [59]
give characterisations of Pettis integrability, but they are not always easy
to apply; it seems that there is no simple necessary and sufficient condition.
See further e.g. [24] and [36].)

Remark 5.2. If B is reflexive, i.e. B** = B, then every Dunford integrable
function is trivially Pettis integrable (and conversely). However, we will not
find much use of this, since we will take integrals in tensor products B&k
or B®* see Section 6, and such tensor products are typically not reflexive,
even if B is reflexive, see for example Theorem 9.2, Example 7.2 and, more
generally, [57, Section 4.2].

Remark 5.3. Suppose that X is Dunford integrable. Then £X is Dunford
integrable for every bounded random variable &, i.e., for every £ € L®(P).
Moreover, the adjoint of the bounded linear map T : B* — L!(IP) given by
(5.1) is the map 1% : L®(P) — B** given by

T3¢ = E(€X). (5.3)

By definition, X is Pettis integrable if E(X1g) € B, i.e., if T%(1g) € B,
for every measurable set E; since the simple functions are dense in L®(P),
this is equivalent to 7% (§) = E({X) € B for every £ € L®(P). Hence, X is
Pettis integrable if and only if T% : L*(P) — B.

Remark 5.4. It follows that if X is Dunford integrable, then X is Pettis
integrable if and only if T : B* — L'(P) is weak*-weak continuous. (If
X is bounded, then T is always sequentially weak*-weak continuous by

dominated convergence; this is not enough, as shown by Examples 5.19
and 11.28.)

Remark 5.5. It follows easily from (5.2) that if X is Dunford integrable
and § € L®(P), then E((X) = E(£X) where & := E(§ | Fx), where Fx
is the sub-o-field of F generated by all {(z*, X), z* € B*. Hence, X is
Pettis integrable if and only if E({;X) € B for every Fx-measurable &;.
Each such & is a Borel function of a countable family ((z}, X));. It follows
that the question whether X is Pettis integrable or not depends only on the
distribution of X (or equivalently, the joint distribution of {x*, X), * € B*)
and not on the underlying probability space (92, F,P).

Remark 5.6. If X is a B-valued random variable and B is a closed subspace
of another Banach space Bj, then X can also be seen as a By-valued random
variable. It is easily verified (using the Hahn—-Banach theorem) that X is
Bochner, Dunford or Pettis integrable as a B-valued random variable if and
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only if it is so as a Bi-valued random variable, and the expectations E X in
B and B coincide in all cases.

By the definition (and discussion) above, X is Dunford integrable if and
only if 2* > 2*(X) is a bounded linear operator B* — L!(IP). If X is Pettis
integrable, then furthermore this operator is weakly compact, i.e., it maps
the unit ball into a relatively weakly compact subset of L!(IP), see [62], [36]
or [57, Proposition 3.7]. A subset of L'(P) is relatively weakly compact if
and only if it is uniformly integrable, see [22, Corollary IV.8.11 and Theorem
V.6.1], where we recall that a family {£,} of random variables is uniformly
integrable if

{SupaE |€a| < 00 and (5.4)

sup, E(1g|éa|) > 0 as P(E) — 0,

see e.g. [34, Section 5.4] or [38, Lemma 4.10]. This yields the following
necessary condition.

Theorem 5.7. If X is Pettis integrable, then the family {x*(X) : z* €
B*, |z*|| < 1} of (real-valued) random variables is uniformly integrable. [

The converse does not hold, see Examples 5.19 and 11.28, but Huff [36]
has shown that it holds if X is weakly a.s. separably valued. (In particular,
the converse holds when B is separable.)

Theorem 5.8 (Huff [36]). If {*(X) : z* € B*, ||z*|| < 1} is uniformly
integrable and X is weakly a.s. separably valued, then X is Pettis integrable.
O

Remark 5.9. Actually, Huff [36] uses a condition that he calls separable-
like; the definition given in [36] is somewhat stronger than weak a.s. sepa-
rability, but it seems likely that he really intended what we call weak a.s.
separability, and the proof in [36] uses only weak a.s. separability. See
also Stefansson [59] where weakly a.s. separably valued is called determined
by a separable subspace and said to be the same as Huff’s separable-like.
(Stefénsson [59, Theorem 2.8] has extended Theorem 5.8 by weakening the
condition of weak a.s. separability, replacing separable by weakly compactly
generated, but we shall not use his results, which seem more difficult to
apply in our situation.)

Corollary 5.10. If X is weakly measurable and weakly a.s. separably valued,
and further E|X|| < oo, then X is Pettis integrable.

Proof. There exists a measurable real-valued Z with | X|| < Z and E Z < o0.
If |2*| < 1, then |z*(X)| < | X|| £ Z, and thus {z*(X) : 2* € B*, |z*| < 1}
is uniformly integrable. O

Remark 5.11. Let 1 < p < o0 and assume that *(X) € LP(PP) for every

r* € B* i.e., that the map T : B* — L!(P) above maps B* into LP(P).
Then Tx : B* — LP(P) is bounded by the closed graph theorem and thus
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the adjoint T%, defined in Remark 5.3 as an operator L*(P) — B**, extends
to L(P), where g € [1,00) is the conjugate exponent given by 1/p+1/q = 1.
Furthermore, (5.3) holds for every ¢ € L4(P); note that z*(£X) = £x*(X) €
L'(P) by Holder’s inequality so £X is Dunford integrable.

If furthermore X is Pettis integrable, then T% : L*(P) — B by Re-
mark 5.3, and by continuity this extends to T% : LY(P) — B.

Note that if C' is the norm of Ty : B* — LP(P), then for every z* €
B* with |z*| < 1, Ejz*(X)|P = E|Tx(z*)|P < CP, which implies that
{z*(X) : |z*| < 1} is uniformly integrable [34, Theorem 5.4.2]. Hence, by
Theorem 5.8, if furthermore X is weakly a.s. separably valued, in particular
if B is separable, then X is Pettis integrable.

Example 5.12. The standard Brownian motion (the Wiener process) W (t)
is a random variable with values in C|[0,1]. W is easily seen to be Bochner
measurable (cf. Corollary 11.15) and E |W| < co; thus W is Bochner inte-
grable (and thus Pettis integrable). The operator T’y : C[0, 1|* = M|0, 1] —
L'(P) is given by

1
Tx(r) = Wy = | Wy au), (5.5)

Tx obviously maps C[0,1]* — LP(P) for any p < o0, since Sé W dp is Gauss-
ian. (In fact, E||W|P < o0 when p < 00.) The adjoint map T% : LY(P) — B,
which by Remark 5.11 is defined for every ¢ > 1, maps a random variable
¢ € LY(P) to the function in C|0, 1] given by

TXE(t) = (0, TxE) = (Tx 0, &) = (W(), & =E(EW(1).  (5.6)
Hence, (5.3) says that
E(EW)(t) = E(EW(1)). (5.7)
In particular, EW = 0, as is obvious by symmetry.

We also state another sufficient condition for Pettis integrability that only
applies in special Banach spaces.

Theorem 5.13 (Diestel and Uhl [18, Theorem 11.3.7]). Suppose that X is
Dunford integrable and a.s. separably valued, and that B does not contain a
subspace isomorphic to cyg. Then X is Pettis integrable. O

Example 5.14 below shows, using Remark 5.6, that the condition on B
in Theorem 5.13 also is necessary. (Hence, in some sense, Example 5.14
is the canonical example of a Dunford integrable variable that is not Pet-
tis integrable, at least in separable spaces where there is no measurability
problem.)

Example 5.14. Let N be a positive integer-valued random variable, and
consider the random variable X := ayen in ¢y, where e, € ¢y is the n:th
vector in the standard basis and a,, are some real numbers. Let p,, := P(N =
n). It is easily seen that then
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(i) X is Bochner integrable if and only if Y, |ppan| < co.
(ii) X is Dunford integrable if and only if sup |p,an| < 0.
(iii) X is Pettis integrable if and only if p,a, — 0 as n — 0.

The integral E X equals (ppay);; in all cases where it is defined. (Thus,
when X is Dunford integrable, E X € /* = ¢§* but in general E X does not
belong to c¢y.)

Example 5.15. Let X := ayen as in Example 5.14, but now regarded as
an element of B = (2. It is easily seen that then

(i) X is Bochner integrable if and only if >, | |ppan| < co.
(ii) X is Pettis or Dunford integrable if and only if >0, [ppan|? < .

(There is no difference between Dunford and Pettis since B is reflexive.)
The integral E X equals (p,a,);°_; in all cases where it is defined.

Example 5.16. Let again X := ayey as in Example 5.14, but now regarded
as an element of B = ¢!. In this case,

(i) X is Bochner integrable <= X is Pettis integrable <= X is
Dunford integrable <= Y. | |ppa,| < 0.
In fact, let x* = (sign(a,))P € £*° = (£1)*. Then (x*, X) = |ay], so if X is
Dunford integrable, then E |ay| < oo, which implies Bochner integrability.
The integral E X equals (ppa,)®

n=1*

Example 5.17. Examples 5.14-5.16 are examples of the following general
fact: Let N be a positive integer-valued random variable, with P(N = n) =
Pn, let (x,)°_; be a sequence in a Banach space B, and let X := zn. It
is then easy to see the following characterizations, see e.g. [57, Proposition
3.12 and Appendix B] and [17, Chapter IV and p. 44].

(i) X is Bochner integrable if and only if > | p,x, converges abso-
lutely.
(ii) X is Pettis integrable if and only if >, | p,x, converges uncondi-
tionally.
(iii) X is Dunford integrable if and only if the series Y, | pp@y is weakly
unconditionally Cauchy.

(This example is perhaps clearer if we do not restrict ourselves to probability
measures, and regard > ", ;, as the integral of the function n — z,, defined
on N equipped with counting measure. The sum converges as a Bochner
integral, Pettis integral or Dunford integral if and only if it is absolutely
summable, unconditionally summable or weakly unconditionally Cauchy,
respectively.)

Example 5.18. Let B = DJ0,1], and let, as in Example 3.5, X be the
random element of D[0,1] given by X = 1y}, where U ~ U(0,1). Then
X is not a.s. separably valued and thus not Bochner measurable; thus E X
does not exist as a Bochner integral. (X is also not Borel measurable, at
least typically, see Example 3.5.)
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On the other hand, it follows from Theorem 15.5 that X is weakly measur-
able, and since X is bounded, it is Dunford integrable. It is easily verified,
using Corollary 13.2 and Fubini’s theorem, that if 2* € D*, then

Elz*, X) = (¥, t),

where t denotes the identity function ¢ — t. Hence the Dunford integral
EX =t € D|0,1]. It is similarly seen that if E is any event, then the
Dunford integral E(X1g) is the function t — P({U < t} n E), which is
continuous and thus belongs to D. Hence, X is Pettis integrable.

By Remark 5.6, X is also Pettis integrable as a random variable in
L*[0, 1], since the hyperplane {f € D[0,1] : f(1—) = f(1)} in DJ0, 1] also
can be seen as a subspace of L*[0,1]. (Cf. [62, Example 4-2-4a)].)

To find examples of bounded Dunford integrable random variables that
are not Pettis integrable is more difficult and technical. Note that by The-
orem 5.8, such random variables cannot be weakly a.s. separably valued.
We give one example from Fremlin and Talagrand [29], omitting the (quite
complicated) details. See Example 11.28 for another example.

Example 5.19 (Fremlin and Talagrand [29]). Let Q = {0,1}* with the
infinite product measure p = (%(50 + %(51)00 (this is the Haar measure if we
regard 2 as the compact group Z3’), and let X : Q@ — (% be the inclusion.
Then X is a random variable with values in ¢*° such that the coordinates
X, are i.i.d. Be(1/2). It is shown in [29] and [62, Chapter 13] (by slightly
different arguments) that X is not weakly measurable on ) (with the prod-
uct o-field = the Borel o-field), but that the measure p can be extended to
a larger o-field making X weakly measurable. More precisely, it is easily
seen that (£*)* = (' @ cg, and if 2% € (1 < (£*)* is given by (a,) € £,
then z*(X) = >{° a, X,, where X,, as said above are i.i.d. Be(1/2); clearly
x*(X) is measurable in this case. The extension of p constructed in [29]
and [62] is such that x*(X) is a.s. constant if 2* € cg. Hence z*(X) is
measurable in this case too, and by linearity for every z* € (/*)*, so X is
weakly measurable. Moreover, the extension is such that in the particular
case that x* € cg- is a multiplicative linear functional, z*(X) = 1 a.s.

Consequently, using this extension of p, X is bounded and weakly mea-
surable, and thus Dunford integrable. However, if X had a Pettis integral
y=EX € (*, theny, =EX, = % for each n, since X,, ~ Be(%), and thus
y = (%, %, ...). However, if 2* is a multiplicative linear functional in cg,
then z*(y) = Ex*(X) = 1, a contradiction. Consequently, X is not Pettis
integrable.

By Theorem 5.8, X is not weakly a.s. separably valued.

To summarize, we have defined three types of integrals. The Bochner in-
tegral is the most convenient, when it exists, but the requirement of Bochner
measurablility is too strong for many applications in non-separable spaces.
The Pettis integral is more general, and will be our main tool in such cases;
it also requires only a weaker integrability condition. The Dunford integral
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is even more general, but in general it is an element the bidual B** instead
of B, which makes it less useful.

Note also that all three integrals are linear and behave as expected under
bounded linear operators: If T': B — By and X is integrable in one of these
senses, then T'X € Bj is integrable in the same sense, and E(TX) = T(E X)
(E(TX) = T**(E X) for Dunford integrals).

Remark 5.20. It can be shown that the space of Bochner integrable B-
valued random variables equals L' (P)®B [57, Example 2.19], while L} (P)®@B
is the completion of the space of Bochner measurable Pettis integrable B-
valued random variables [57, Proposition 3.13]. (If B is separable, this is by
Theorem 3.3 just the completion of the space of Pettis integrable random
variables; typically the latter space is not complete, so it is necessary to take
the completion.)

Remark 5.21. There are several further definitions of integrals of Banach
space valued functions, see for example [7], [35], [28], although only some
of these definitions work on a general probability space as required here
(for example the Birkhoff integral that lies between the Bochner and Pettis
integrals). These integrals too could be used to define moments as in the
next section, but we do not know of any properties of them that make them
more useful for our purposes than the three integrals defined above, so we
do not consider them.

6. MOMENTS

If B is a Banach space and X is a B-valued random variable, defined on
a probability space (£, F,P), and further k is a positive integer, we define
the projective k:th moment of X as the expectation E X®F = SX®kd]P’
whenever this expectation (integral) exists in the projective tensor product
B®%_ The expectation can here be taken in any of the three senses defined in
Section 5; hence we talk about the moment existing in Bochner sense, Pettis
sense or Dunford sense. Note that if the k:th moment exists in Bochner or
Pettis sense, then it is an element of B®E but if it exists in Dunford sense,
then it is an element of (B®*)** and may be outside B®*.

Similarly, we can regard X ®k as an element of the injective tensor product
B®* and take the expectation in that space. We thus define the injective
k:th moment of X as the expectation E X®F = SX®kd]P’ whenever this

expectation (integral) exists in the injective tensor product B®¥. Again,
this can exist in Bochner sense, Pettis sense or Dunford sense; in the first
two cases it is an element of B®* but in the third case it is an element of
(B®k)** .

Example 6.1. The first moment (projective or injective; there is no differ-
ence when k = 1) is the expectation E X, which is an element of B when it

exists in Bochner or Pettis sense, and an element of B** when it exists in
Dunford sense. The examples in Section 5 show some cases.
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We may for clarity or emphasis denote X ®k by X ®k when we regard it
as an element of B®* and by X Sk when we regard it as an element of B®k.
In particular, we distinguish between the projective and injective moments
by writing them as E X® ¢ B® and E X®k ¢ B&k, They are related by
the following simple result.

Theorem 6.2. If the projective k:th moment E X® ezists in one of the
senses above, then the injective k:th moment exists too, in the same sense,
and is given by

E X® = ,(E X®) ¢ p&* (6.1)
in the Bochner or Pettis case and
E X®F = ;**(E X®F) g (BOF)** (6.2)

in the Dunford case.

Proof. The identity map on B®* extends to the continuous linear map ¢ :
B®k _, &k O

We next consider the problem of deciding when these moments exist, in
the different senses. There are six different cases to consider. We shall see
(Theorem 6.7 and the examples in Section 7) that the conditions for exis-
tence differ for five of them, for both measurability and integrability reasons.
This multiplicity of cases may be bewildering, but in many applications there
is no problem. If B is separable (or X is a.s. separably valued) there is no
problem with measurability (Theorem 3.3) and if further E | X |* < oo, then
both moments exist in the strongest sense (Theorem 6.7), and thus in all
senses.

We begin by considering conditions for the existence of moments in the
strongest sense, i.e., as Bochner integrals.

Lemma 6.3. If X is Bochner measurable in B, then X®* is Bochner mea-

surable in B®k, for every k = 1. In particular, then a(X, ..., X) is measur-
able for any bounded k-linear form o € L(B*;R).

Proof. The (non-linear) mapping = — 2®F is continuous B — B®*. The
final claim follows by Theorem 4.6. U

Remark 6.4. There is no general corresponding result for weakly mea-
surable X in the projective tensor product B®¥¥ see Example 7.4. If B is
separable, or if X is a.s. separably valued, there is no problem since then
X is Bochner measurable by Theorem 3.3, but weak a.s. separability is
not enough by Example 7.4. Nevertheless, D0, 1] is an example of a non-
separable space where X®F is weakly measurable in the projective tensor
product for every weakly measurable X, see Corollary 15.9.

Lemma 6.5. The following are equivalent, for any k > 1
(i) X®k is a.s. separably valued in B®k,



22 SVANTE JANSON AND STEN KAIJSER

(i) X®* is a.s. separably valued in B®k,
(iii) X is a.s. separably valued in B.

Proof. (iii) = (i) as in the proof of Lemma 6.3 and (i) = (ii) since
¢ : B® — B®F is continuous. Hence it remains to prove (i) = (iii).

Let A be a separable subspace of B®* such that X®* € A a.s. Then there
exists a countable family of elementary tensors F = {e;1 ® --- ® e;r} such
that A is included in the closed linear span of F. Let By € B be the closed
linear span of {e;;};;. Then By is separable, and if z* L By, then 2*(e;;) = 0
for all ¢ and j, and thus £* ® --- ® z* L F'; by linearity and continuity, this
extends to the closed linear span of F', and thus 2* ® ---®@ 2™ 1L A.

Hence, if 2% € A, then (z*, z)* = ((2*)®*, 2®) = 0 and thus 2* L z for
every z* | Bj, which implies that x € B;. Consequently, X € B; a.s. O

Remark 6.6. Lemma 6.5 includes a partial converse to Lemma 6.3, consid-
ering only the a.s. separably valued condition. There is no complete converse
to Lemma 6.3 since X®? may be Bochner measurable even if X is not; this
happens even in the one-dimensional case B = R, as shown by the trivial ex-
ample when X is a non-measurable function such that X = +1 everywhere;
then X®2 = X2 = 1 is measurable. We will thus usually assume that X is
at least weakly measurable.

It is now easy to characterise when the moments exist as Bochner inte-
grals.

Theorem 6.7. Suppose that X is weakly measurable. Then the following
are equivalent.

(i) The projective moment E X®F ezists in Bochner sense.

(ii) The injective moment E X®* egists in Bochner sense.
(iii) E|X|* < 0 and X is a.s. separably valued.

Proof. By Theorem 5.1 and Lemma 6.5, (i) and (ii) both imply that X is a.s.
separably valued: Hence it suffices to consider the case when X is a.s. sepa-
rably valued, so by Theorem 3.3 X is Bochner measurable. By Lemma 6.3,

X®* is Bochner measurable, and the result follows by Theorem 5.1, since
| X2 por = [ XZE] par = 1 X% O

We turn to Dunford integrals. We first give a simple result on the exis-
tence of the weak k:th moment (1.1). Cf. Remark 5.11.

Lemma 6.8. Suppose that X is weakly measurable. Then the following are

equivalent.
(i) The weak k:th moment E(z}(X)---a}(X)) exists for every
wt,... at e B*.

(i) E|z*(X)F < oo for every a* € B*.
(iii) sup{E|z*(X)|*: |2*| < 1} < 0.
(iv) Tx : x* > 2*(X) is a bounded operator B* — LF(P).
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In this case, E|lz}(X)---x}(X)| is bounded for x}, ..., x} in the unit ball
of B*.

Proof. (i) < (ii): If (i) holds, then (ii) follows by choosing z} = --- =
x; = x*. The converse follows by Hélder’s inequality.

(iii) <= (iv): By definition.

(ii) <= (iv): If (ii) holds, then Tx : B* — LF(P) is bounded by the
closed graph theorem. The converse is trivial.

The final claim follows by (iii) and Holder’s inequality. O

In all cases we know, the existence of the weak k:th moment is equivalent
to the existence of the injective k:th moment in Dunford sense. We have,
however, failed to prove this in full generality and suspect that there are
counterexamples. We thus give a theorem with some technical sufficient
conditions, and leave it as an open problem whether the theorem holds
more generally. (This is, at least for bounded X, equivalent to whether X
weakly measurable implies X®* weakly measurable in B®¥¥; cf. Remark 6.4
which shows that this does not hold for the projective tensor product.)

We first state a lemma.

Lemma 6.9. Suppose that X is weakly measurable and a.s. separably valued.
Then {(x*, X ) is jointly measurable on B* x Q, where B* is given the Borel
o-field for the weak™ topology.

Proof. X is Bochner measurable by Theorem 3.3 and thus there is a sequence
X, of measurable simple random variables in B such that X,, — X a.s., see
Remark 3.2. Then each (z*, X,,) is jointly measurable on B* x €, and thus
{x*, X) is jointly measurable. O

Theorem 6.10. (i) If the injective k:th moment E X% egists in Dunford
sense, then the weak k:th moment E(z3(X)---2}(X)) exists for every
xy,...,x; € B*, and

E(2(X) -2} (X)) = (EX®* 2t @ @a}). (6.3)

Furthermore, sup{E |z*(X)|¥ : |2*| < 1} < oo.

(ii) Suppose that X is weakly measurable, and that one of the following ad-
ditional condition holds.
(a) B is separable.
(b) X is a.s. separably valued.
(c) Every integral k-linear form B* — R is nuclear.
Then the injective moment B X®F exists in Dunford sense if and only
if the weak k:th moment exists, i.c., if and only if E|z*(X)|* < oo for
every x* € B*.

Proof. (i): Directly from the definition of the Dunford integral, since ] ®

. -®x,’: is a continuous linear functional on B®k. The final claim follows by
Lemma 6.8.
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(ii): By (i) and Lemma 6.8, it remains to show that if the weak k:th mo-
ment exists, then y(X®F) is an integrable random variable, and in particular
measurable, for every y € (Bék)*. By Theorem 4.7, x is represented by a
signed measure € M(K*), where K is the closed unit ball of B*, and

X = [ a0 (X dulat ) (6.4)
Kk

(a) obviously is a special case of (b). If (b) holds, then {(z*, X) is jointly
measurable on B* x Q by Lemma 6.9. Hence, z7(X)---z}(X) is jointly
measurable on K* x 2, and thus we can take expectations in (6.4) and
apply Fubini’s theorem, yielding

me@v=f E(ef(X) -2} (X)) du(et, . al);  (6.5)

Kk
note that E|z}(X)---z}(X)| is bounded on K* by Lemma 6.8, so the double
integral is absolutely convergent.
If (c) holds, then the integral form x is nuclear and thus, by (4.12),

o0
X =D Al @ ®af, (6.6)

n=1

where A, =0, >0 | \,, < o0 and each z¥, € K. Consequently, using (4.11),

o0}
O6XB) = 30 Maat(X) -+, (X)), (6.7)
n=1
which is integrable by Lemma 6.8. Taking expectations in (6.7), we see that
(6.5) holds in this case too, now for the finite discrete measure

0
pi= 21 And(at o ot ). (6.8)

O

Remark 6.11. We do not know any characterization of the Banach spaces
B such that every integral k-linear form is nuclear. For & = 2, this can
be translated to operators B — B™; a sufficient condition then is that B*
has the Radon—Nikodym property and the approximation property, see [57,
Theorem 5.34].

Corollary 6.12. Suppose that X and Y are weakly measurable B-valued
random variables, and that one of the following conditions holds:

(a) B is separable.

(b) X andY are a.s. separably valued.

(c) Every integral k-linear form B* — R is nuclear.
Then (1.3) holds if and only EX®F = EY®*  with the injective k:th mo-
ments existing in Dunford sense. (In other words, the injective moment is
determined by the weak moment.)
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Proof. If E X®F = EY®* then the weak moments are equal by (6.3).

Conversely, suppose that the weak moments exist and are equal. By
Theorem 6.10, the injective moments E X®* and EY®* exist in Dunford
sense. Moreover, the proof of Theorem 6.10 shows that for any x € (B®*)*,
(6.5) holds for some signed measure p, which shows that if the weak moments
are equal, then

QGEX®) = EQ, XO) = EQu Y#) = (GEYEY)
for every x and thus E X® = EY®k i (Bék)**. O

Recall that B®* can be regarded as a subspace of L((B*)*; R), the bounded
k-linear forms on B*. This leads to the following interpretation of the in-
jective k:th moment when it exists in Pettis (or Bochner) sense, and thus
is an element of B®k , which again shows that the injective k:th moment is
essentially the same as the weak moment defined by (1.1).

Theorem 6.13. If X is a B-valued random variable such that the injective
k:th moment E X®F exists in Pettis sense, then E X®* € B®* is the k-linear
form on B*

(zF,....zf) = E(z1(X) - - - 23(X)).

Proof. When EX® ¢ p&k ig regarded as a k-linear form, its value at
(z¥,...,2¥) € (B*)¥ equals (E X® 2 ®---®x}), and the result follows by
(6.3). O

This yields a simpler version of Corollary 6.12, assuming that the moments
exist in Pettis sense.

Corollary 6.14. Suppose that X and Y are B-valued random variables
such that the injective k:th moments E X® and EY®F egist in Pettis sense.
Then (1.3) holds if and only EX®F = EY®F, (In other words, the injective
moment is determined by the weak moment.) ]

For the projective k:th moment in Dunford sense, there is a general similar
equivalence, now using arbitrary bounded k-linear forms on B. We have no
simple necessary and sufficient condition for the existence, but we give a
sufficient condition which is necessary in at least some cases (Example 7.1),
but not in others (Example 7.3).

Theorem 6.15. The following are equivalent.

(i) The projective moment E X®F exists in Dunford sense.
(ii) The moment Ea(X, ..., X) exists for every bounded k-linear form
a:BF > R.
In this case,
Ea(X,...,X)=(EX% a) (6.9)
for every a € L(B*;R).
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Moreover, if E|X|* < o0 and (X, ..., X) is measurable for every o €
L(B*;R), then (i) and (ii) hold.

Proof. The equivalence of (i) and (ii) is an immediate consequence of the

definition of the Dunford integral and Theorem 4.6, and so is (6.9).
Furthermore, |a(X,...,X)| < ||lof|X]|*. Hence, if E|X|* < oo, then (ii)

holds provided a(X, ..., X) is measurable. O

Remark 6.16. Although we use multilinear forms « in (1.2) and Theo-
rem 6.15, we are only interested in the values a(z,...,x) on the diagonal.
This restriction to the diagonal defines a function a(z) : B — R, which is
a quadratic form for & = 2, a cubic form for k = 3, etc., and (1.2) can be
expressed as Ea(X) = Ea(Y) for all such forms a.

Note also that it suffices to consider symmetric multilinear forms «, since
we always may replace a by its symmetrization.

Corollary 6.17. Suppose that X and Y are B-valued random wvariables.
Then (1.2) holds, with finite and well-defined expectations for every c, if
and only if the projective k:th moments EX® and EY®F exist in Dunford
sense and E X®F = EY®k,

Proof. An immediate consequence of Theorem 6.15, together with Theo-
rem 4.6. (]

The problem whether (1.2) and (1.3) are equivalent is thus reduced to
the problem whether E X®* = EY®* implies E X®* = EY®* at least if we
assume that the projective moments exist in Dunford sense, and that one
of the additional assumptions in Corollary 6.12 or 6.14 holds. By (6.2), it
then is sufficient that ** is injective. However, in applications we prefer
not to use the bidual (recall that tensor products typically are not reflexive,
even if B is reflexive, see Remark 5.2); we thus prefer to use moments in
Pettis or Bochner sense. For these moments, the question whether E X ®k —
EY® «— EX® = [EY®* (for arbitrary X and Y in a given Banach space
B) is by (6.1) almost equivalent to whether ¢ : BE¥ — B®F is injective; this
will be studied in Section 8.

Remark 6.18. We write “almost”, because E X®* is a symmetric tensor,
so we are really only interested in whether ¢ is injective on the subspace
of symmetric tensors in B¥¥ (i.e., on the symmetric tensor product). We
conjecture that ¢ is injective on this subspace if and only it is injective on
the full tensor product B®*, but as far as we know this question has not
been investigated and we leave it as an open problem.

We turn to considering conditions for the existence of moments in Pettis
sense. We only give a result for the injective moments, corresponding to
Theorem 6.10, since we do not know any corresponding result for projective
moments.
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Theorem 6.19. (i) If the injective k:th moment E X®* exists in Pettis
sense, then {|z*(X)|* : x* € B*, |«*| < 1} is uniformly integrable.

(ii) Suppose that X is weakly measurable, and that one of the following ad-
ditional condition holds.
(a) B is separable.
(b) X is a.s. separably valued.
(c) Ewery integral k-linear form B* — R is nuclear, and X®¥ is weakly

a.s. separably valued in B®kv.

Then the injective moment E X®* exists in Pettis sense if and only if
{|z*(X)|F : 2* € B*, |2*| < 1} is uniformly integrable.

Proof. (i): By Theorem 5.7, since {(x*)®* X®*) = z*(X)* and (z*)®* €
(B®%)* with norm |z*|%, < 1 when ||z*|px < 1.

(ii): We shall modify the proof of Theorem 6.10. Let x € (Bék)* with
x| < 1. As in the proof of Theorem 6.10, by Theorem 4.7 there exists a
signed measure € M (K*), where K is the closed unit ball of B*, such that
(6.4) holds; further ||u| = ||x|| < 1. Taking absolute values, and replacing p
by |u|, we obtain

‘X(X®k)‘ < L{Jx’f(X) (X)) dplat, . ag). (6.10)

If (a) or (b) holds, then {(z* X) is jointly measurable on B* x Q by
Lemma 6.9; thus we can take expectations in (6.10) and apply Fubini’s
theorem, yielding

E‘X(X@“)‘ < L{k Elz}(X) - zp(X)|du(a], ... 2f). (6.11)

If (c) holds, then the integral form x is nuclear and thus (6.6) holds, with
A =0, 30 A, < o0 and each z¥, € K. We do not know whether the
nuclear norm of x always equals the integral norm |y|| when (c) holds, but,
at least, the open mapping theorem implies that there exists a constant C
(possibly depending on B) such that we can choose a representation (6.6)
with >} A, < C. Then (6.7) holds, and taking absolute values and expecta-
tions we see that (6.11) holds in this case too, for the measure (6.8), which
satisfies [|ul| = >3, An < C.

Consequently, in both cases (6.11) holds, with |p| < C (where C =1 in
cases (a)—(b)). By the arithmetic-geometric inequality, (6.11) implies

1 k
S| < [ B( Dkt 0F) dutate)

k
1
-2 Bl COF duat .. ap)
=1

< Osupf{E|z*(X)|F : 2* € K}, (6.12)
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and applying (6.12) to 15X, for an arbitrary event FE € F, we obtain
E(1g|x(X®")|) = E[x(1eX®")| < C sup E(1g|z*(X)[F). (6.13)
z*eK

This holds for any x € (B®k)* with |x|| < 1. Hence, it follows from (6.12)-
(6.13) and the condition (5.4) for uniform integrability that if {|=*(X)[* :
o* € K} is uniformly integrable, then also {(x, X®) : y € (B®*)* |y| < 1}
is uniformly integrable. Furthermore, X ®k jg weakly a.s. separably valued,
by (a)—(b) and Lemma 6.5 or assumption in (c). The result now follows by
Theorem 5.8 applied to X ®k, O

Remark 6.20. Changing the norm in B to an equivalent one will not change
the tensor products B® and B®k (except for a change of norms), and the
existence (in any of the three senses above) and values of the moments E X &k
and E X®* will not be affected.

Remark 6.21. The moments behave as expected under linear transforma-
tions. If X is a B-valued random variable and T : B — Bj is a bounded
linear map into another Banach space Bj, then T X is a Bi-valued random
variable, which is [Borel, weakly, Bochner| measurable if X is. If the mo-
ment E X® or E X®* exists in any of the three senses above, then E(T X )®k
or E(TX )®k exists in the same sense; moreover, for moments in Bochner or
Pettis sense E(TX)®* = T®F(E X®*), and for moments in Dunford sense
IE(TX)@‘C = (T®k)**(IE X®k), and similarly for injective moments.

Remark 6.22. If X is a B-valued random variable and B is a closed sub-
space of another Banach space Bj, then X can also be seen as a Bi-valued
random variable. For the injective tensor product, then B®* is a closed
subspace of B®k , see Remark 4.4, and thus by Remark 5.6, the injective
moment E X ®k exists in B (or (B®k)**) in any of the three senses if and

only if it exists in B®k (or (B®k)**) in the same sense; moreover, then the
value of the moment in the two spaces coincide.

For the projective moments, the situation is more complicated since Re-
mark 4.4 does not hold for the projective tensor product. If we consider
moments in Bochner sense (and assume that X is weakly measurable), then

by Theorem 6.7 E X ®k exists in BEF if and only it exists in B?k. However,
for projective moments in Pettis sense, we can in general only say that if
the moment E X®F exists in BE , then it exists in B?k, and the values are
the same (by Remark 6.21 applied to the inclusion map); we shall see in
Example 7.3 that the converse does not hold. (And similarly for Dunford
sense, where we have to consider the biduals.) This shows that when con-
sidering projective moments of a Banach space valued random variable, we
may have to be careful to specify which Banach space we are using.

If B is a complemented subspace of Bj there is no problem: then there
is a bounded projection P : By — B, and it follows from Remark 6.21 that
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also the projective moments exist for X as a B-valued random variable if
and only if they exist for X as a Bj-valued random variable.

Remark 6.23. We may define moments also in other tensor products (not
considered in the present paper) in the same way; one example is to take the
Hilbertian tensor product in Example 4.2 when B is a Hilbert space. When
the projective k:th moment exists, these moments too are given by mapping
the projective k:th moment E X®* € B®* to the chosen tensor product as
in (6.1) or (6.2). This is one reason to take the projective k:th moment as
the standard k:th moment, when it exists.

Remark 6.24. It is possible to define mixed moments of random variables
X1, ..., X with values in possibly different Banach spaces By, . .., By in the
same way, by taking the expectation of X1 ® -+ ® X in Bi1®---®By, or
Bi®---®Bj. Analoguous results hold, but are left to the reader. In most
cases, we can consider X = (X1,..., X;) in the direct sum B := B1®---®By,
and take its moments (provided they exist); they contain the mixed moments
as components, and we are reduced to the case treated above of moments
of a single variable. For example, with k = 2, (B; @ B2)®? is the direct sum
of Bl@)Bl, Bl®B2, By®B; and BQ@BQ, and the components of E X®? in
these subspaces are E X®? E(X; ® X»), E(Xo® X;) and E X$?| where the
two mixed moments are the same, using the natural isomorphism B;®By =~

By®B;.

7. EXAMPLES

We give here some simple (counter)examples to illustrate the results
above. Further examples, more important for applications, are given later.

We let N be a positive integer-valued random variable, with p, = P(N =
n), and let U ~ U(0,1); we may suppose that U is the identity function
defined on [0,1] with Lebesgue measure. We use standard notations from
Section 2.

Example 7.1. Let B = H be a separable Hilbert space and let k = 2.

Let a € L(B?;R) be the inner product in H. Then a(X, X) = (X, X) =
| X|?. Hence, if the projective moment E X®? exists in Dunford sense, then,
by Theorem 6.15, E||X||?> < co. Furthermore, weak and Bochner measura-
bility are equivalent by Theorem 3.3, and it follows, using also Lemma 6.3,
that the projective second moment E X®? exists in Dunford sense if and
only if it exists in Bochner sense, and consequently if and only if it exists in
Pettis sense.

In this case, the projective second moment thus exists in any sense if and
only if X®? is measurable and E | X|> < co. In particular, the sufficient
condition in Theorem 6.15 is also necessary in this case.

Example 7.2. Specialize Example 7.1 to B = ¢? and let X = ayey for
some sequence (ap)7°. We have seen that:
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(i) The projective second moment E X2 exists, in any of the three
senses, if and only if E | X|? = E|ay|? = Y, pnaZ < 0.

The projective tensor product £2®@¢? can be seen as the space N (£?) of trace

class operators on £ (see Theorem 9.2), and E X ®2 i5 the diagonal operator
2:?:1 pnagzen ® ey.

The injective tensor product £2®¢? can, similarly, be seen as the space

K(£?) of compact operators in ¢2. A diagonal operator Y. bne, ® e, has

norm sup |b,|, and the subspace of diagonal operators in K (£?) is isomorphic

to cg. Since X ® X = a%\,e ~N ® ey belongs to this subspace, it follows from
Example 5.14 that

(i) E X%®? exists in Dunford sense <= supppa2 < 0.
(iii) E X®?2 exists in Pettis sense <= p,a2 — 0 as n — 0.
(iv) E X®? exists in Bochner sense < > | ppa? < 0.

E X%2 is, when it exists, the diagonal operator 3 p,a2e,®ey, just as the pro-
jective second moment. As usual, in the Dunford case, E X ®2 ¢ K@) =
B(#?) = L(£?;¢?). In fact, the diagonal operator Y. p,a2e, ® e, is compact,
fe. EX®2 ¢ K(£2), if and only if p,a2 — 0 as n — oo.

Example 7.3. Let B = L'[0,1]. Then B®&B = L'([0,1]?), see e.g. [63,
Theorem 46.2 and Exercise 46.5].

Let X := anry, where (a,)] is some sequence of real numbers and
r, € L'[0,1] are the Rademacher functions. Then X ® X = a?er Rry.

By Khintchin’s inequality [8, Theorem II.1] (which applies as well to r, ®
r, € LY([0,1]?), since these functions too can be seen as a sequence of
independent symmetric +1 random variables), the L'-norm and L?-norm
are equivalent on the closed linear span Rg of {r, ®r,} in L1([0,1]?). Since
X ® X € Ry, the expectation E(X ® X) in B&B = L'([0,1]?), in any of
the three senses, can just as well be computed in L2([0, 1]?). However, the
functions 7, ® 1, form an orthonormal sequence in L?, and there is thus an
isomorphism between Ry and ¢2, given by r, ® ry, > e Hence it follows
from Example 5.15 that the projective moment IEX®A2 exists in Bochner
sense if and only if E | X|? = Y pna? < oo, while E X®? exists in Dunford
or Pettis sense if and only if Y1p2at < oo.

For the injective moments, we use Remark 6.22. X lies in the closed linear
span R; of {r,} in L'[0,1], which by Khintchin’s inequality is isomorphic
to EQ; thus E X®X may be calculated in R1®R1 ~ (2%¢2. This brings us
back to Example 7.2, and thus (ii)—(iv) in Example 7.2 hold in the present
case too.

Note that if we consider X as an Rj-valued random variable, then Ex-
ample 7.2(i) shows that the projective moment E X®? exists in Pettis (or
Dunford) sense if and only if Y, ppaZ < oo. Hence, choosing p, and a,, such
that p,a2 = 1/n, we see that, although R; is a closed subspace of L]0, 1],

E X®2 exists in Pettis (or Dunford) sense if we regard X as a L![0, 1]-valued
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random variable, but not if we regard X as an Rj-valued random variable,
cf. Remark 6.22.

Example 7.4. Let B = ¢%[0,1] and let X := a(U)ey where a : [0,1] —
(0,1] is some given function. Then (X, f) = 0 a.s. for any f € £2[0,1], since
f has countable support, and thus X is weakly measurable and weakly a.s.
separably valued. Trivially, EX = 0 in Pettis sense. However, a subspace
A such that X € A a.s. has to contain e; for a.e. t € [0,1], and is thus not
separable. Consequently, X is not a.s. separably valued, and therefore not
Bochner integrable.

Furthermore, every integral bilinear form on a Hilbert space is nuclear
(Theorem 9.3 below), and thus by Theorem 6.10(ii)(c), E X%? exists in

Dunford sense; by (6.3), EX®? = 0. (By Theorem 9.9, E X®2? = 0 also in
Pettis sense.)

Let a € L(B?;R) be the inner product in B = ¢2[0,1]. Then a(X, X) =
(X, X) = |X|? = a(U)% If we assume that a is a non-measurable func-
tion (for Lebesgue measure on [0, 1]), then a(U) is non-measurable. Hence,
a(X, X) is non-measurable, and by Theorem 6.15, the projective moment
E X%2 does not exist in Dunford sense (and thus not in the other, stronger,
senses).

In particular, we see that although X is weakly measurable in B, X ® X
is not weakly measurable in B®B, since (o, X ® X) = (X, X) is not
measurable. (We use here Theorem 4.6.)

Furthermore, X ® X is not weakly a.s. separably valued in BB, by the
following argument. Suppose that A is a separable subspace of B&B. Then,
as in the proof of Lemma 6.5, there exists a countable family of elementary
tensors F' = {e;1 ® e;2} such that A is included in the closed linear span of
F. Let R := UZJ supp(e;;); then R < [0,1] is countable and if y € A, then
supp(y) € R x R. Define 8 € ((?®¢*)* by B(f,g) := Yyep f(t)g(t). Then
B(ei1,ei2) = 0 for all 4, and thus § L Fand 8 L A, but (X, X) =(X,X) =
a(U)? # 0 as.

Example 7.5. Let, as in Example 5.14, B = ¢p and X = anyen. Thus
E_ k ®k
X®F =g NEN -

Let A} < c%?k be the subspace of finite linear combinations of tensors
e%k; we claim that the closure of A} is the same in both the projective and
injective tensor products ¢2¥ and ¢¥* and that it equals Ay := {d1°0_| b,e®*
(bn)T € co}. (For the injective tensor product, this follows immediately from
Theorem 12.1, but the projective case is less obvious.) Since Ay obviously
is isomorphic to ¢y, it then follows from Example 5.14 that:

(i) EX ®k exists in Dunford sense <= E X®* exists in Dunford sense
— supppal < 0.

(i) EX ®k exists in Pettis sense <= E X®F exists in Pettis sense <=
prak — 0 asn — .



32 SVANTE JANSON AND STEN KAIJSER

(iii) E X®* exists in Bochner sense <= E X®* exists in Bochner sense
0 k
= D Pny < 0.

Hence there is no difference between projective and injective moments in
this example. (Cf. Example 7.2, where we see that Ag is the closure of A$§
also in 2&®¢2, but not in €2®€2.)

To verify the claim, consider for simplicity first & = 2, and let u =
2711/[:1 bpen e, € Aj. Recalling (4.3) and (4.6), and taking z] = =5 = e, in
the latter, we have immediately

lulx = fule = max |by]. (7.1)

For C = (Cl, N ,CM) with Cz = il, take V¢ = Zanl Cnbnen € ¢ and we 1=
27];/[:1 Cnén € co. Then, see (4.3) and (4.7),

[ve @ wellx = vclle lweleo = maxby]. (7.2)

Taking the average of ve @ w¢ over the 2M possible choices of ¢, we obtain
u, and thus

Jullr < max |bp |- (7.3)

Consequently, we have equahtles in (7.1), for any u € A°, which shows that
the closure in either ¢o®co or co®co is isomorphic to cg and equals As.

The argument extends to arbitrary k > 2 by letting the possible values of
Cn be the k:th roots of unity and considering v¢ ®w®k L (These vectors are
complex, but we can separate them into real and 1maginary parts, possibly
introducing a constant factor 2¥ in the norm estimate (7.3).)

Example 7.6. We say that a random variable X in a Banach space B is
weakly Gaussian if *(X) is Gaussian with mean 0 (for convenience) for
any z* € B*. To exclude cases such as Example 7.4 where x*(X) = 0 a.s.
(and thus is Gaussian) but X does not look very Gaussian, we say that X
is Gaussian if it is weakly Gaussian and a.s. separably valued. (By Theo-
rem 3.3, this is equivalent to weakly Gaussian and Bochner measurable.)

If X is (weakly) Gaussian, then z*(X) is Gaussian and thus has finite
moments of all orders, for any z* € B*. Thus Theorem 6.10(ii)(b) shows
that every injective moment E X®* exists in Dunford sense.

Moreover, if X is Gaussian, by [42, Lemma 3.1 and Corollary 3.2] (applied
to a suitable separable subspace By € B with X € By as.), |X|F < o
for every k. Hence, Theorem 6.7 shows that the projective and injective
moments E X®* and E X®* exist in Bochner sense for every k > 1

The odd moments vanish by symmetry.

The even injective moments can be expressed in terms of the second mo-
ment ¥ := E X®2 as follows. Consider first k¥ = 4. Then, by Theorem 6.13
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and Wick’s theorem [37, Theorem 1.28], E X ®1 ¢ B® is determined by
(X® ot ©a3 @ ®a) = E(o} ()5 (X)a(X)a}(X))
= E(2](X)23(X)) E(25(X)23(X)) + E(2](X)25(X)) E(z
+E(2](X)23(X)) E(2
= (8,21 @5 x(E, 23 @) + (5, 27 @ 23)(%, 75 @ 7)
+ (&, 2] @i XE, x5 @ 3 ).

N % D%
—~~
>
~—
8

This can be written as
EX®'=SQ% + 103 (S Q%) + 720 (@), (7.4)

where 7, denotes permuting the coordinates by the premutation o. There
are 24 permutations of {1,2, 3,4}, but 8 of these leave ¥ ® ¥ invariant, and
we may write (7.4) more symmetrically as E X®* = 3 Symm (X ® ¥), where
Symm means the symmetrization of the tensor by taking the average over
all permutations of the coordinates.

More generally, for any even k = 2¢, by the same argument,

E X% = (22@2 Symm ((E X®2)®€) e B%%, (7.5)
which generalizes the standard formula E ¢2¢ = %(Var €)! for a real-valued
centred Gaussian variable &. '

We conjecture that the corresponding formula for projective moments
holds too. If B has the approximation property, this follows by (7.5) and
Theorem 8.3 below, but we leave the general case as an open problem.

8. THE APPROXIMATION PROPERTY

Let Bi, Bo be Banach spaces. Recall that a finite rank operator F :
By — Bs is a continuous linear operator whose range has finite dimension;
equivalently, it is a linear operator that can be written as a finite sum
F(z) =3 x¥(x)y; for some z € B} and y; € Bs.

We say that a linear operator T : By — By is uniformly approximable by
finite rank operators if for every € > 0 there exists a finite rank operator
F : By — By such that |[T'— F| < e. Similarly, we say that a linear
operator T : B1 — By is approximable on compacts by finite rank operators
if for every compact set K < B; and every € > 0 there exists a finite rank
operator F': By — By such that sup{||Tx — Fz| : z € K} <e.

If B is a Banach space, then the following properties are equivalent; see
e.g. [43, Section 1.e] and [57, Chapter 4] for proofs. The Banach space B is
said to have the approximation property when these properties hold.

(i) The identity operator I : B — B is approximable on compacts by
finite rank operators.

(ii) For every Banach space Bj, every bounded operator T': B — Bj is
approximable on compacts by finite rank operators.
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(iii) For every Banach space Bj, every bounded operator T': By — B is
approximable on compacts by finite rank operators.

(iv) For every Banach space Bj, every compact operator T' : By — B is
uniformly approximable by finite rank operators.

(v) For every pair of sequences z,, € B and z} € B* n > 1, such that
Yo i lzalllzi] < oo and Y7, xk(x)z, = 0 for all € B, we have
D1 Th(an) = 0.

(vi) For every pair of sequences z,, € B and z € B* n > 1, such that
S0 lznllzk] < oo and >0, xk(z)x, = 0 for all z € B, we have
Y x, ®xf =0 in B®B*.

(vii) For every Banach space B; and every pair of sequences z, € B and
Yn € B1, n =1, such that 3.2 | |z ||yn] < o0 and Y0 a*(zn)yn = 0
for all z* € B*, we have Y, | 2, ®y, = 0 in B®B;.

Remark 8.1. The property dual to (iv), viz. that every compact operator
T : B — Bj is uniformly approximable by finite rank operators, for every
Banach space B, is not equivalent to the other properties; in fact, it is
equivalent to the approximation property of B*.

Moreover, it is known that if B* has the approximation property, then
B has the approximation property, but the converse does not hold. (See
Example 8.5 for a concrete example. There are also counterexamples that
are separable with a separable dual [43].)

We can reformulate conditions (vi) and (vii) as follows, recalling the
canonical injection ¢ in (4.8). (This is implicit in the references above, and
explicit in e.g. [61].)

Theorem 8.2. Let B be a Banach space. If B has the approximation prop-
erty, then the canonical mapping « : BB, — B®B is injective for every
Banach space Bj.

Conversely, if the canonical mapping ¢ : BRB* — B®B* is injective,
then B has the approzimation property.

Proof. Let u e B@)Bl; then v = Zle Tn ® Yy for some x, € B and y, € By
with 3% |zp|l|yn]| < 0. We can regard B®B; as space of bilinear forms

on B* x BY, and then, for any «* € B* and y* € B}

)@y = Y @t @)yt ) = v (X 2* @n)un )
n=1 n=1

Hence, ¢(u) = 0 if and only if | x*(2y)y, = 0 for every z* € B*.
Consequently, (vii) says precisely that, for any Bj, if u € B®B; and
t(u) = 0, then u = 0, i.e. that ¢ : B®B; — B®B, is injective.
Furthermore, (vi) is the special case B; = B*, and thus says that ¢ :
B&®B* — BXB* is injective. |
This can be extended to tensor products of several spaces. We state only
the case of tensor powers of a single space, which is the case we need.
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Theorem 8.3. If a Banach space B has the approzimation property, then
the canonical mapping 1 - B®* — B®* s injective.

Proof. We use induction in k. The case kK = 1 is trivial, and k£ = 2 is a
consequence of Theorem 8.2. For k > 3 we write ¢ : B®k _, B®k a5 the
composition

B® — BB&*k-1) _, pgpe*-1) _, pgpok-1) _ p&k

where the first map is injective by Theorem 8.2 and the second is injective
by induction and Lemma 4.3. U

Remark 8.4. The approximation property for B is not equivalent to ¢ :
B®B — BQ®B being injective. In fact, a counterexample by Pisier [52,
Theorem 10.6] shows that there exists an infinite-dimensional Banach space
B such that B®B = BB (with equivalent norms); moreover, this space B
lacks the approximation property.

The study of the approximation property was initiated by Grothendieck
[32, 33] who found most of the results above but did not know whether any
Banach spaces without the approximation property exist. The first coun-
terexample was found by Enflo [26], who constructed a separable, reflexive
Banach space B without the approximation property. A modification of the
counterexample given by Davie [15, 16], see also Lindenstrauss and Tzafriri
[43, Theorem 2.d.6], shows that B may be taken as a subspace of ¢y or of
¢P, for any 2 < p < 0. Another counterexample was found by Szankowski
[61], who showed that the space B(H) of bounded operators in an infinite-
dimensional Hilbert space does not have the approximation property.

On the other hand, it is easy to see that any Banach space with a
(Schauder) basis has the approximation property; this includes all classi-
cal examples of separable Banach spaces. (In fact, Enflo’s counterexample
[26] was also the first known separable Banach space without a basis.) There
are also many non-separable Banach spaces with the approximation prop-
erty. The list of Banach spaces with the approximation property includes,
for example, 7 (1 < p < ), ¢o, LP(p) (1 < p < 00, pu any measure), C(K)
(K a compact set).

Example 8.5. The tensor products 2R02 and (?®¢? have bases and thus
have the approximation property, see e.g. [57, Proposition 4.25 and Exercise
4.5]. As said in Example 4.2, see also Theorem 9.2, these spaces can be
identified with the spaces of trace class operators (= nuclear operators) and
compact operators in (2, respectively; moreover, (2®@(? ~ (€2®€2)*. How-
ever, ((2@(*)* can be identified with the space B(¢?) of bounded operators
in £2, which as just said does not have the approximation property [61].

We can now prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. By Theorem 6.7, the projective and injective mo-
ments £ X® EY® | X® REY®* exist in Bochner sense. If (1.3) holds,
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then EX® = EY®*k by Corollary 6.14. By (6.1), this can be written
uE X®k) = (E Y®k), and since Theorem 8.3 shows that ¢ is injective, we
have E X® = EY®*_ By Corollary 6.17, this yields (1.2).

The converse is trivial. (]

Remark 8.6. More generally, Theorem 8.3 implies that for any Banach
space B with the approximation property, if E X®* and EYy®*k (and thus
also EX® and EY@“) exist in Pettis sense and E X®F = EY@‘?, then
EX® = EY®* We do not know whether this remains valid if we only
assume that the moments exist in Dunford sense. (Theorem 11.23 is a
positive result in a special case.)

Proof of Theorem 1.2. Let By be a Banach space without the approximation
property and let B := By@Bg, with the norm ||(z, 2*)| g := max(|z|, |z*|).
By choosing By to be separable and reflexive, we obtain B separable and
reflexive too. We shall show that there exist bounded Bochner measurable
random variables X and Y in B such that, for £ = 2, (1.3) holds but not
(1.2).

Since By does not have the approximation property, by (v) above, there
exist sequences x,, € By and z} € B} with such that >, ||z, |[z%|| < o0 and
S wk(z)zy, =0 for all x € B, but Yo" | xk(x,) = 0. Let ay, := |z, |2},
so 0 < > a, < oo. We may eliminate all (z,,z}) with a, = 0, and
we may thus assume that a,, > 0 for each n. Define y,, := z,/||zy| € Bo,
yk =z} /|xk| € BE and py, 1= an/ D e _1 Q. Thus y, and y are unit vectors

and Z;O:l pn = 1. Furthermore, the properties of z,, and z} translate to

O
Z PnYp(2)yn =0 for every z € By, (8.1)
n=1
e8]
. Py (yn) # 0. (8:2)
n=1

Let N be a random positive integer with the distribution P(N = n) = py,
and let X and Y be the B-valued random variables
X = (yn,yn),
Y = (yn, —yN)-
Note that |X|| = |Y| = 1 a.s. Then, if o is any bounded bilinear form
B x B — R, then
a(XvX) = Oé((yN,O), (yN,O)) + Oé((yN,O), (O’y;k\f)) + Oé((O,y]*V), (yN,O))
+a((0,y%), (0,y%))
and similarly for Y. Hence,

Ea(X,X)-Ea(Y,Y) =2Ea((yn,0),(0,yx)) + 2Ea((0,yx), (yn, 0()8) .3)
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In particular, letting o be the bounded bilinear form a((z,2*), (y,y*)) :=
x*(y), we have by (8.2)

o0
Eo(X,X) —Ea(Y,Y) =2Ey%(yn) =2 > pnyii(yn) # 0.
n=1
Hence, (1.2) does not hold.
On the other hand, if z7,z5 € B*, then o} (x,2*) = 2 (z) + 2}*(z*) for
some z* € By and z}* € Bj*, i = 1,2. Hence,

E (o (v, 005 (0,5%)) = B (21 ()25 (wk) = 28" (E(:1 (uw)uk) ). (8:4)
However, the continuous linear functional

*®

y* o= E(zf (yN)y]*V) = Z P2t (Yn)yn € By
n=1

satisfies, for every x € By,

o8]
v ( anzl Yn)yn(x) = (Z Pay(@)yn) = 0

n=1

by (8.1). Thus y* = 0 and (8.4) yields
E (7 (yn,0)23(0, %)) = 25™(y*) = 0.

Interchanging x§ and z%, we see that also E(zF(0,y%)z5(yn,0)) = 0. Thus
(8.3) with a(x1, z2) := xf (z1)25 (x2) yields

E(z7(X)25(X)) - E(27 (YV)25(Y)) =0,
which shows that (1.3) holds. O
The counterexample in this proof has also other unpleasant consequences.

Example 8.7. Let the separable Banach space B and the random variables
X and Y be as in the proof of Theorem 1.2. By Corollaries 6.17 and 6.14,
E(X®X) # E(Y®Y) in B®? but E(X®X) = E(Y®Y) in B®?, where all
moments exist (in Bochner sense) by Theorem 6.7.

We can embed B as a closed subspace of a Banach space B; with the
approximation property, for example by the Banach—-Mazur theorem which
says that every separable Banach space can be embedded as a closed sub-
space of C[0,1]. Let i : B — B; denote the embedding.

We may regard X and Y also as Bj-valued random variables. Then the
injective second moment E(X C;)X ) in BC;)B is mapped by Z®Z to the injec-
tive second moment E(X®X) in Bi®B;, and it follows that E(XRX) =
E(Y(;)Y) also in BléBl, i.e., X and Y have the same injective second mo-
ments in Bj.

It follows from Theorem 8.3 (as in the proof of Theorem 1.1) that E(X®X)
IE(Y@Y) in Bl®B1, i.e., X and Y have the same projective second moments
in Bj although they have different projective second moments in B®B. This
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shows that if a Banach space valued random variable takes values in a sub-
space of the Banach space, we may have to be careful with in which space we
calculate the projective moments. (Note that Lemma 4.3 and Remark 4.4
show that there is no such problem for injective moments.)

Since i®i maps the second projective moments in BB to the second pro-
jective moments in Bi®Bj, we have shown that (i®i) E(X®X) = (i®i) E(Y®Y),
although E(X®X) # E(Y®Y). Consequently, i®i : BB — B1®B; is not
injective, see Remark 4.5.

Remark 8.8. A simplified version of the counterexample in Example 8.7,
without mentioning moments, is the following: let B be a subspace of a
Banach space Bj such that B; has the approximation property but B has
not. Let 7 : B — Bj be the inclusion.

Then ¢ : BRB* — B®B* is not injective by Theorem 8.2. Thus the
composition (ié)[)é : BRB* — B®B* — Bi1®B* is not injective, but this
equals the composition L(i@[) : BRB* — Bi®B* — B1®B*. On the other
hand, since B; has the approximation property; ¢ : Bi®B* — B1®B* is
injective by Theorem 8.2; hence i®I : BOB* — B;®B* is not injective.

9. HILBERT SPACES

Consider the case B = H, a Hilbert space. We shall give some special
results for second moments. (We do not know whether the results extend to
moments of order k > 3 or not, and leave this as open problems.) We begin
with some well-known results.

Theorem 9.1. A Hilbert space has the approximation property.

Proof. Property (i) in Section 8 is easily verified using suitable orthogonal
projections. ([

Next, we note that H* = H; hence the correspondence (4.9) yields an
isometric embedding of HQH into B(H) = L(H; H), the space of bounded
linear operators on H. We identify a tensor in HQH and the corresponding
operator without further comment; hence we regard HQH as a subspace of
B(H). Moreover, an elementary tensor x ® y corresponds to an operator
of rank 1, and every operator of rank 1 is given by an elementary tensor;
hence the tensors in H ® H, which are finite sums of elementary tensors,
are exactly the operators on B of finite rank. The injective tensor product
H®H is thus the closure in B(H) of the set of finite rank operators, which
shows (see (iv) in Section 8) that HQH = K(H), the space of compact
operators H — H.

The natural map HQH — N (H, H) onto the nuclear forms is a bijection;
moreover, the nuclear and integral bilinear forms on H coincide. Equiva-
lently, the integral and nuclear operators H — H coincide, and furthermore,
the set of them equals the set of trace class operators, which we denote by
N(H). We can thus identify all these spaces of bilinear forms or operators
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with HQH. (See e.g. [63, Chapter 48 and Proposition 49.6]. See further
e.g. [13, Exercise 1X.2.20] or [41, Chapter 31].)

With these identifications, the map ¢ : HOQH — H®H is just the inclu-
sion map N(H) — K(H) € B(H). (By Theorem 8.2 and H* = H, the
approximation property is equivalent to the fact that ¢ : HQH — H®H is
injective, which we thus also see explicitly.)

We summarize these descriptions of the tensor products.

Theorem 9.2. Under the identification (4.9) of tensors and operators H* =
H — H, we have HOH = N(H), the space of trace class operators on H
(which equals the space of nuclear operators), and HQH = KC(H), the space
of compact operators. U

Theorem 9.3. FEvery integral bilinear form on H is nuclear. The space of
these forms can be identified with HQH . O

The general formulas (B1®Bs)* = L(By, By; R) and (B1®Bs)* = Z(B, B),
see Theorems 4.6-4.7, can be translated to operators as N(H)* = B(H)
and K(H)* = N(H), where the dualities are given by the trace form
({T,S)="Te(TS*).

In particular, (HQH)** = K(H)** = B(H). Thus, if the second injective
moment exists in Bochner or Pettis sense, it is by the correspondence (4.9)
given by a compact operator in K(H), and if it exists in Dunford sense it
is, again by (4.9), given by an operator in B(H). Similarly, if the second
projective moment exists in Bochner or Pettis sense, it is given by a trace
class operator in N(H), and the second injective moment equals the same
operator. In all these cases, the following theorem shows that the second
moment is a positive operator. (In particular, it is self-adjoint.)

Theorem 9.4. If the second moment E X®2 egists in Bochner or Pettis
sense, or EX®? exists in any sense, then, regarding the moment as an
operator in B(H), it is a positive operator.

Proof. In all cases, it follows that the injective moment E X®? exists in
Dunford sense. Thus, for z € H, by (6.3),

(EX®2z,2) = (EX®2, 2 ®@2) = E(X,2)2 > 0. O

Remark 9.5. The only case remaining is the second projective moment
E X®2 in Dunford sense, which belongs to N'(H)** = B(H)*. We shall see
in Example 9.15 (under a set theory hypothesis) that this moment is not
always given by an operator on H.

However, if H is separable, or more generally if X is a.s. separably valued,
and IEX®A2 exists in Dunford sense, then it exists in Pettis sense too and
thus E X®? ¢ N(H). This follows from Theorem 5.13, since N'(H) does
not contain a subspace isomorphic to ¢y (e.g. by [17, Theorem V.10], since
H®H is a separable dual space when H is separable; we omit the details);
moreover, we shall prove a more general result by a different method in
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Theorem 9.14, which shows that in essentially all cases (again depending on
a set theory hypothesis), the Dunford and Pettis senses coincide and thus

EX®2 e N(H).

We next characterize when the injective second moment exists, in the
three different senses; we begin with two lemmas.

Lemma 9.6. Fvery weakly measurable H-valued random variable is weakly
a.s. separably valued.

Example 7.4 shows that X is not necessarily a.s. separably valued.

Proof. Let {es}ses be an ON basis in the Hilbert space H, and let & :=
|{es, X)|?. Since X is weakly measurable, each & is a non-negative random
variable.

Let C be the collection of countable subsets A € S. For A € C, let

€ai= ) & = D) Kes, I < | X|P < o0

SEA sEA
Thus every &4 is a finite non-negative random variable, and A; € Ay —
§a, < 84y
Let my := Earctan &4, and
my :=sup{ma : A€ C}. (9.1)

Note that m, < 7/2 < 0.

There exist A, € C with ma, > ms — 1/n, so taking A, := | J5_; An we
have ma, = ms, and thus the sup in (9.1) is attained. Moreover, for any
s¢ Ay, Ay U {s} € C and thus my, (s < ms = ma,, ie,

Earctan,, s < Earctany,. (9.2)

Since €4, (s} = €A, +&s = €a,, (9.2) implies arctan(£a, + &) = arctan{a,
a.s., and since &4, < 0, thus & = 0 a.s. Consequently, if s ¢ A,, then

(e5,X)=0 as. (9.3)
Let M be the closed linear span of {es; : s € A,}. M is a separable

subspace of H. If y € M*, then y = ZS¢A* ases with only a countable
number of as # 0; hence (9.3) implies (y, X) = 0 a.s. O

Lemma 9.7. If X is a weakly measurable H-valued random variable, then
X®2 s weakly a.s. separably valued in H®?.

Proof. By Lemma 9.6, there exists a separable subspace M € H such that
2*(X) = 0 a.s. for every z* L M. Let M be the closed subspace of HOH
spanned by {r®vy : z,y € M}.

Let o € (H®H)*; then « is a bilinear form on H which by Theorem 9.3
is nuclear; thus there exist 2%, y* with >0 | ||z%||y#| < o and

a(z,y) = Y zh(@)yr(y). (9.4)

n=1
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Assume that o L M.

Let P: H — M be the orthogonal projection onto M and @ := I — P.
Decompose a as app + apg + agp + agqg, where app(z,y) := o(Px, Py),
O‘PQ(xay) = a(vaQy)v aQP($7y) = a(Qz:,Py), aQQ(xay) = Oz(Qac,Qy)

For any xz,y € H, a(Px, Py) = (o, Pr ® Py) = 0, since xt ®y € M. Hence
app = 0. Consider one of the other terms, for example apg. By (9.4),

°¢] e¢]
ap(X, X) = ) (o}, PX)yp, QX) = 3 (Pay, XXQui, X). (95)
n=1 n=1
However, Qy L M and thus, by the choice of M, (Qy}, X) = 0 a.s., for
every n. Hence (9.5) yields apg(X,X) =0 a.s.
Similarly, apg(X, X) = 0 a.s. and apg(X, X) =0 a.s., and thus

(0, X®@X) =0ao(X,X) =apg(X,X) +agp(X,X) + ago(X,X) =0 as.

This holds for every a L M , and thus X ® X is weakly a.s. separably
valued. O

Theorem 9.8. Suppose that H is a Hilbert space and that X is a weakly
measurable H-valued random variable.

(i) The injective second moment B X®? exists in Dunford sense if and
only if E[{y, X)|? < oo for every y e H.

(i) The injective second moment E X®? erists in Pettis sense if and only if
the random variables |{y, X)|?, for y € H with |y| < 1, are uniformly
integrable. _

(iii) The injective second moment E X®? exists in Bochner sense if and
only if X is a.s. separably valued and E | X|? < co.

Proof. (i): By Theorem 6.10(ii)(c), using Theorem 9.3.
(ii): By Theorem 9.3, Lemma 9.7 and Theorem 6.19(ii)(c).
(iii): A special case of Theorem 6.7. O

In the Hilbert space case, the different types of integrability can also be
characterized by the value of the moment.

Theorem 9.9. Suppose that H is a Hilbert space and that X is a weakly
measurable H-valued random variable such that the injective second moment

E X®? egists in Dunford sense. Regard EX®? as a bounded operator in
B(H).
(i) The injective second moment exists in Pettis sense if and only if F X®? ¢
K(H).
(ii) The injective second moment exists in Bochner sense if and only if X
is a.s. separably valued and E X®? e N'(H).

Proof. (i): If the moments exist in Pettis sense, then EX®? ¢ HYH =
K(H).
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Conversely, suppose that E X ®2 ¢ K(H). Let E be any event. Then
E(15X)%2 + E(1X)®2 = E(15X®?) + E(15. X®?) = E X2,

Since I[E(lEX)®2 > 0 and IE(IEcX)&)2 > 0 (in operator sense) by Theo-
rem 9.4, it follows that

0 < E(1pX®?) < E X%2, (9.6)

It is easily verified that if S,T € B(H) with 0 < S < T and T compact,
then S too is compact. (For example because SY2 = VT2 for some V €
B(H), and thus S = SY2(§Y2)* = VTV*)) Hence, (9.6) implies that
E(lEX®2) € K(H) = H®H for every event E, which means that X©2
satisfies the definition of Pettis integrability. A

(ii): If E X®2 exists in Bochner sense, then E X®? too exists in Bochner
sense by Theorem 6.7. Hence, EX®2 = EX®2 ¢ HRH = N(H). Moreover,
X is a.s. separably valued by Theorem 6.7.

Conversely, suppose that E X®? ¢ N(H) and X is a.s. separably valued.
Let M be separable subspace of H such that X € M a.s. and let {e,},, be a
(countable) ON basis in M. Then |X|? =Y (X, e,)? a.s., and thus

E|X|? = Y EX, en)? = Y E X2, ¢,) = Tr(E X®?)
n

n

< EXE | ) < 0.
Thus E X®2 exists in Bochner sense by Theorem 6.7. ([

Theorem 9.10. Suppose that H is a Hilbert space and that X is a weakly
measurable H-valued random variable such that the injective second moment
E X%2 erists in Dunford sense. Regard E X%2? as a bounded operator in
B(H). If EX®? ¢ N(H) and X is a.s. separably valued, then the projective

second moment E X®? exists in Bochner sense.
Proof. By Theorem 9.9(ii) and Theorem 6.7. O

Remark 9.11. If the projective second moment exists in Bochner or Pettis
sense, it is an element of HQH = N(H). The second injective moment is
the same, and is then thus a trace class operator.

Theorem 9.10 gives a converse when X is a.s. separably valued. However,
the converse does not hold in general; a weakly measurable random variable
in a non-separable Hilbert space can have an injective moment in Pettis
sense that is a trace class operator, even if the projective second moment
does not exist; see Example 7.4.

For the projective second moment, all three senses coincide for H-valued
random variables, provided dim(H) is not too large.

Definition 9.12. A cardinal m is real-measurable if there exists a set S
with cardinality |S| = m and a probability measure p defined on the o-field
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25 of all subsets of S that is diffuse, i.e., such that u{s} =0 for every s € S.
(Obviously, then such a measure p exists for every set S with |S] = m.)

A cardinal m is measurable if there exists such a measure that takes only
the values 0 and 1.

Remark 9.13. If measurable cardinals exist, they have to be very large;
larger than the first strongly inaccessible cardinal. It is consistent with the
standard ZFC axioms for set theory to assume that there are no strongly
inaccessible cardinals, and thus no measurable cardinals. Whether it also
is consistent to assume the existence of measurable cardinals is not known.
See [40, Chapter IX.3-4] and [39].

Real-measurable cardinals may be smaller. There exists a real-measurable
cardinal that is non-measurable <= ¢ is real-measurable <= Lebesgue
measure on [0, 1] can be extended to all subsets of [0, 1], see [64] and [62,
Section 16.2].

If the Continuum Hypothesis holds, then ¢ is not real-measurable, see [4]
and [64], and thus every real-measurable cardinal is measurable and thus
extremely large. Consequently, it is consistent to assume that there are no
real-measurable cardinals at all. In this case, the following theorem applies
to all Hilbert spaces without qualification. (The separable case was given in
Example 7.1.)

Theorem 9.14. Let H be a Hilbert space such that dim H s a non-real-
measurable cardinal. If X is an H-valued random variable, then the following
are equivalent.
(i) E X®?2 egists in Dunford sense.
(ii) E X®2 exists in Pettis sense.
(i) EX 82 egists in Bochner sense.
)

(iv) X is a.s. separably valued, X®2 s weakly measurable in %2 and

E||X]? < oo.

Proof. (iii) = (ii) = (i) is trivial and (iv) = (iii) for any space by
Theorem 5.1, using Lemma 6.5 and Theorem 3.3. It remains to show that
(i) = (iv).

Suppose that E X®? exists in Dunford sense and let z := E X®2. By
definition, X®? is weakly measurable in H®?.

Let M be a closed subspace of H and let Py; : H — M be the orthogonal
projection. Then aps(z,y) := (Pyz, Pyy) is a bounded bilinear form on

H; ajpr can by Theorem 4.6 be regarded as a continuous linear functional
on HXH and

(an, 2y = Boar, X ® X) = Eay(X, X) = E [Py X
Hence, | Py X |? is measurable and its expectation is finite. Define
par = E||PyX|? < .

In particular, E | X||? = pg < o.
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If My € My, then | Py, X | < ||Pa, X || and thus pps, < par,. In particular,
pun < pp for every closed subspace M < H, so {un : M < H} is bounded.

Furthermore, if My L Ms, then | Pyyan, X |2 = | Pay X% + | Pa, X ||? and
thus

MM @My = 1My + M- (9.7)
Let Z be the set of separable closed subspaces of H, and let
Wy = sup{un : M € Z}. (9.8)

Thus px < pg < . There exist M,, € Z such that pp;, > pe — 1/n,
n = 1. Let M, be the closed linear hull of U‘{O M,,. Then M, is separable so
M, € Z,and M,, © M, so unr, = i, > px—1/n. Consequently, pnr, = pix
and the supremum in (9.8) is attained.
By (9.7),

WH = My T Pt = Hos F Hagt- (9.9)

Assume first g, = pg. Then (9.9) yields
0=y =E| Py X7

and thus PM;X = 0 a.s.; hence X € M, a.s. so X is a.s. separably valued.

It remains to show that if p, < pp, then dim H is real-measurable, which
contradicts our assumption. In this case, choose an ON basis {es}ses in
M. For each subset A € S, let My be the closed subspace of H spanned
by {es}sea and let pu(A) := upr, = E | Py, X|? Then p is finitely additive by
(9.7). Moreover, if A, / A, then [Py, X| /[Py, X| and thus pu(A,) /7
1(A) by monotone convergence. Consequently, p is a o-additive measure
defined on (S,2%). For any s € S, M (st = Res is one-dimensional and thus
M, @ My, is separable, so

e + HMy gy = HMy T BM = BMa@My S [l

Hence, p{s} := pn,, = 0, which shows that the measure p is diffuse. On
the other hand, Mg = M;- and thus by (9.9)

1(S) = pas = ppgt = pH — px > 0.

Consequently, by normalizing p we obtain a diffuse probability measure on
(S,2%), which shows that |S| is a real-measurable cardinal. Since dim(H) >
|S|, dim(H) is real-measurable too. (In fact, dimH = |S| + dim M, =
S| +Ro = |S].) O

The assumption in Theorem 9.14 that dim H is not real-measurable is
necessary as is seen by the following example. (Cf. the related Example 7.4.)
Nevertheless, Theorem 9.14 shows that the projective second moments for
practical applications only can be used for Bochner measurable random
variables, i.e., in the a.s. separably valued case.

Example 9.15. Suppose that dim H is a real-measurable cardinal. Let p
be a diffuse probability measure on (S,2%) for some set S with |S| = dim H.
Since then H = (2(S), we may assume that H = ¢2(S).
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Define X : (S,2% u) — H = £2(S) by X(s) = es. Then X is bounded,
and since every function on (5,2, 1) is measurable, X is weakly measurable
in H and X ® X is weakly measurable in H @H . Hence E X&2 exists in
Dunford sense. (X and X ® X are also Borel measurable, for the same
reason.) Furthermore, if « is the bilinear form on H given by the inner
product, (EX®2 o) = Ea(X, X) = E|X|? = 1 and thus E X2 # 0.

On the other hand, the argument in Example 7.4 shows that X is not
a.s. separably valued. (In fact, if M is any separable subspace of H, then
X 1 M as.) By Theorem 6.7, E X®2 does not exist in Bochner sense.

Note further that (z*, X) = 0 a.s., for every z* € H* = H. Thus the
injective second moment E X®2 exists in Dunford (and Pettis) sense by
Theorem 9.8, and (6.3) shows that EX®2 = 0. However, using Dunford
senses, E X®2 = 0, as shown above, and E X®? = L**(EX®2) by (6.2).
Since ¢ : H®? — [H®?2 ig injective, this shows that E X®2 ¢ H®2; hence
E X®2 does not exist in Pettis sense.

Example 9.16. Consider Gaussian random variables in a Hilbert space H.
As shown in Example 7.6, if X is Gaussian, then E X®* and E X®F exist
in Bochner sense. In particular, E X ®2 - EX®2 is an element of H v@H =
N(H), i.e., a trace class operator. By Theorem 9.4, EX®? = E X®? is a
positive trace class operator.

Conversely, if ¥ is any positive trace class operator in a Hilbert space H,

then there exists by the spectral theorem for compact self-adjoint operators,
see e.g. [13, Corollary I1.5.4], an ON set (ey) ; in H such that

e0]
Y= Z Anen ® en, (9.10)

n=1

where A, >0 and Y7 | Ay = [|X]arm) < 0. Let ()52 be L.i.d. standard
normal variables and define X := Y% | A/2¢, e it is easily seen that this
sum converges a.s., that X is Gaussian, and that E X®? = Z;O:l Anen®e, =
.

Consequently, the second moment of a Gaussian random variable in a
Hilbert space is a positive trace class operator, and can be any such operator.

Moreover, the second moment determines the higher moments by (7.5), and
thus the distribution by Theorem 17.3 below.

10. LP(u)

Let 1 < p < o and let B = LP(u) = LP(S,S, ), where p is a o-finite
measure on a measurable space (5, S). Note first that LP(x) has the approx-
imation property, see e.g. [57, Example 4.5]. (It suffices to consider the case
when p is a probability measure, and then (i) in Section 8 is satisfied by
using conditional expectations on suitable finite sub-o-fields; we omit the
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details.) Furthermore, LP(S,S,u)* = L9(S,S, ), where g € (1,0] is the
conjugate exponent given by p~! + ¢! = 1 [22, Corollary IV.8.1,5].

If X:(s,w)+— X(s,w)€eRisan (S x F)-measurable function on S x 2,
then X (s) = X(s,-) is a (real-valued) random variable for every s; moreover,
for each w € Q, X(-,w) is a function on S, and if further §¢ | X (s, w)[? du(s) <
o a.s., then X can be regarded as a mapping (2, F,P) — LP(u), i.e., as a
random variable in B = LP(y). This random variable is Bochner measurable,
as stated in the following lemma; see [22, I11.11.16-17].

Lemma 10.1. If X : (s,w) — X(s,w) € R is an (SxF)-measurable function
on S x Q and §4|X(s,w)[Pdu(s) < © a.s., then X can be regarded as a
Bochner measurable mapping (Q, F,P) — LP(u), i.e., a Bochner measurable
LP(u)-valued random variable; conversely, every Bochner measurable LP(11)-

valued random variable is (a.s.) represented in this way by some (u x P)-a.e.
unique (S x F)-measurable X on S x Q. O

Theorem 10.2. Let 1 < p < o0, let q be the conjugate exponent given by

pt+qt =1, and let (S,S, ) be a o-finite measure space.

(i) Suppose that X : S xQ — R is (S x F)-measurable and that HXHZP(M) =
$51X(s,w)|Pdu(s) < oo a.s. Regard X as an LP(u)-valued random
variable and suppose further that IEHXHIZP(M) < . Then, EX®* ¢

Lr(S, u)®k and EX®* ¢ LP(S, u)&)k exist in Bochner sense. Further-
more, E X® and E X®* are represented by the a.e. finite function

Dy (s1,...,86) == E(X(s1,w) - X(sp,w)) (10.1)

in the sense that if g1,...,gr € LY(u) = (LP(p))*, then

<EX®k791®"'®gk> = <EX®k791®"'®gk>

= L‘k Dr(s1,..-,86)01(51) - gr(sk) dp(s1) - - - dulsg). (10.2)

(ii) Let Y be another LP(u)-valued random variable represented by an (S x
F)-measurable function Y : S x Q@ — R such that E HYH’EP(N) < 0, and
let

Ui(s1,...,85) = E(Y (s1,w) -+ Y (sg,w)). (10.3)

Then the following are equivalent
(a) EX®F = EY©®k,

(b) EX®k = Ey®k;

(¢) For any g1,...,gr € LY(P),

E({g1, X {9, X)) = E({g1,Y) - - {gr, Y)):

(d) @ = Uy a.e. on S*.
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Proof. (i): X is Bochner measurable by Lemma 10.1, and thus E X®* and

E X®F exist in Bochner sense by Lemma 6.3 and Theorem 5.1 (or by Theo-
rem 6.7). Furthermore, by (6.3) and Fubini’s theorem, using Lemma 10.1,

EX® g @ © g =E(g1, X) - (gr, X))

B EJ:gk X(s1) -+ X(sk) g1(s1) -+ - gr(sk) dp(s1) - - - dp(si)

a Lk E(X(s1)--- X (s))g1(s1) - -~ gr(sx) du(s1) - - - dpu(sy),

showing (10.2).

(ii): The moments exist in Bochner sense by (i). Then (a) <= (b) by
Theorem 8.3 and (6.1), (b) <= (c) by Corollary 6.14 and (b) < (d) by
(10.2). O

Example 10.3. In the special case p = 2, L?(u) is a Hilbert space, and we
can also apply the results of Section 9. (Since X is Bochner measurable by
Lemma 10.1, and thus a.s. separably valued, it suffices to consider a sepa-
rable subspace of L?(x).) In particular, Theorem 9.8 and Theorem 9.9 give
conditions for the existence of the injective second moment in the different
senses, while Theorem 9.14 shows that for the second projective moment,
the different senses coincide.

Example 10.4. Another interesting special case is p = 1. We have L!(S, ,u)®k =
LY(S*, k), see [57, Exercise 2.8]; thus EX® ¢ LY(S*, u¥) (when it exists

in Bochner or Pettis sense); clearly E X ®k equals the function ®;, in (10.1)
when Theorem 10.2 applies.

Example 7.3 shows that E X Bk may exist in Pettis sense in L!(S, u)®k =
LY(S*, u¥) without existing in Bochner sense. In this case E X ®k g still
given by a function @, in L'(S*, u¥) but the pointwise formula (10.1) may
fail; in Example 7.3, we have X (s,w) = fay for all s and w, and thus
| X (s1,w) X (s2,w)| = a%;, so the expectation in (10.1) exists (for any s1, s2)
only when Ea% = Y, pna? < oo, which in this case is the condition for
E X®2 to exist in Bochner sense, see Example 7.3; we may choose ppa2 = 1/n

to obtain our counterexample. In this example, E X®? equals Dn Prar, ®
n, where the sum converges in L?, and thus in L'; the sum also converges
pointwise a.e. (since it is a sum of independent random variables defined on
[0,1]?), but (when p,a? = 1/n, say) does not converge absolutely at any
point.

We do not know any necessary and sufficient conditions for the existence of
E X®* in Pettis sense in L' (S, u)®* = L(S*, u*), nor for the existence of in-
jective moments beyond Theorem 6.10, where (ii)(b) applies by Lemma 10.1.
(Even for k = 1, the existence of the mean E X in Pettis sense in L'(u)
seems difficult to characterize exactly, since it is essentially equivalent to
X e LY(u)®L(P), which has no simple description, see Remark 5.20.)
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Since L'(S*, 1/*) does not contain any subspace isomorphic to ¢y (e.g. as
a consequence of [57, Theorem 6.31 and Corollary 6.21]), it follows from
Theorem 5.13 that if X is Bochner measurable (e.g. by Lemma 10.1), then

E X®k exists in Pettis sense as soon as it exists in Dunford sense.

Example 10.5. Taking S = N with counting measure, we obtain /P, 1 <
p < 0. (See e.g. Examples 5.15, 5.16 and 7.2.) In this case, X = (X,,)5

and @y is by (10.1) the function E(X,, - X,,) on N¥. Consequently, by
Theorem 10.2, if E|X |5 < o and E|[Y|%, < oo, then E X®F = EY®F if
and only if all mixed k:th moments of (X,,)>_; and (Y;,)>; coincide.

Note that moments may exist in Pettis sense also under weaker assump-
tions, see Example 5.15.

Note that the projective tensor product /P& with 2 < p < oo and the
injective tensor product (P& with 1 < p < 2 are reflexive, see [57, Corollary
4.24]. In these cases, at least, the second moment thus exists in Pettis sense
as soon as it exists in Dunford sense.

11. C(K)

In this section we study the case B = C(K) where K is a compact space.
(By compact we mean compact Hausdorff.) The perhaps most important
example is C[0, 1].

Note that several other Banach spaces are isomorphic to C'(K) for some
compact K. Hence the results in this section apply to these spaces too.

Example 11.1. Let C,(Z) be the space of bounded continuous functions
on a completely regular topological space Z. Then Cp(Z) = C(5Z), where
BZ is the Stone-Cech compactification of Z, see e.g. [27, Section 3.6], [30,
Chapter 6] and [13, Section V.6 and Exercise VIII.2.7]. Note that Z is a
dense subspace of 8Z, and that every bounded continuous function on Z
has a unique continuous extension to 5Z.

One important example is

0 = Cy(N) = C(AN). (11.1)

Example 11.2. We shall see in Theorem 14.2 that D[0,1] = C(I) for a
compact space I.

Example 11.3. If B is any complex commutative C*-algebra, then B =~
Cc(X), the space of complex-valued continuous functions on the maximal
ideal space X, see [13, Section VIII.2], and thus the subset Bg := {f : f =
f*} of hermitean (i.e., real) elements is isomorphic to C'(X). This includes
Examples 11.1-11.2.

Example 11.4. Let L be a locally compact space and L* = L u {0} its
one-point compactification. Then Co(L) = {f € C(L*) : f(o) = 0} is a
subspace of codimension 1 in C(L*). Hence, if X is a random variable in
Co(L), we can regard it as a random variable in C(L*). Note that Co(L) is a
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complemented subspace. (Every subspace of finite codimension in a Banach
space is complemented.)

In particular, ¢y = Cp(N) is a (complemented) subspace of codimension
lin ¢ = C(N*) = C(N u {0}). (In fact, ¢ is also isomorphic to ¢, by the
mapping (an)y — (ant1 + a1){, but it seems more convenient to use the
inclusion.)

We begin by noting some well-known facts. See e.g. [57, Example 4.2],
[67, Section 3.2] and [13, Theorem V.6.6], respectively, for proofs.

Theorem 11.5. C(K) has the approzimation property, for any compact
K. O

Theorem 11.6. If K1,..., K}, are compact spaces, then C(K1)®---QC (K})
= C(Ky x --- x K}) (isometrically) with the natural identification. In par-

ticular, C(K)®% = C(K*"). O
Theorem 11.7. C(K) is separable if and only if K is metrizable. O

Corollary 11.8. If K is a compact space, then C(K)®k can be regarded as
a subspace of C(K)®¢ = C(KF*). (As a vector space; typically, the norms
differ.)

Proof. By Theorem 11.5 and Theorem 8.3, ¢ : C(K)®* — C(K)®* is injec-
tive. Furthermore, C(K)®* = C(K*) by Theorem 11.6. O

Remark 11.9. Except in trivial cases (k = 1 or K finite), C’(K)@k is not a
closed subspace of C(K )®k , and thus the norms are different and not even
equivalent on C(K )®k. This is implicitly shown for ¢y by Littlewood [44],
who showed (in our terminology) the existence of a bounded bilinear form
a € (c%;ﬁ)* which does not belong to (c%vm)* = co(N?)* = (1(N?); the result
can be transfered to C'(K) for any infinite compact K. (See also the proof
of Theorem 16.2 for an argument from [65] for C|0, 1].)

Theorem 11.10. Let X be a C(K)-valued random variable, where K is a
compact space. If E X®F exists in Bochner or Pettis sense, then it is the
function in C(K)®* = C(K*) given by

EX®F(ty, .. 1) = B(X(t1) - X (). (11.2)

Proof. E X®F ¢ C’(K)@g = C(K*) by Theorem 11.6. Furthermore, the point
evaluations d;, t € K, are continuous linear functionals on C'(K'), and thus

EXO*(ty, ... t) = EX®F 5, @...®6,) =E(X(t)--- X(tx)). (11.3)
O

Note that the function (11.2) is the standard k:th moment function for

a stochastic process; in particular, for k = 2 and EX = 0, E X®2 is the
covariance function.
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Example 11.11. Let W be standard Brownian motion in C[0, 1], see Exam-
ple 5.12. Then all (projective and injective) moments exist in Bochner sense,
e.g. by Theorem 11.25 below. All odd moments vanish by symmetry. E &2
is the covariance function E(W (s)W (t)) = Cov(W(s), W(t)) = sat regarded
as a continuous function in C([0,1]?), and E W®?2 is the same function re-

garded as an element of the subspace C|0, 1]®2. Similarly, E Wt = E et
is the function in C([0,1]*) given by, see e.g. [37],

E(W (t0)W (t2)W (t5)W (ta))
= (tl A tg)(tg A t4> + (t1 A tg)(tg A t4) + (tl A t4)(t2 A tg). (11.4)

Remark 11.12. If E X®* exists in Dunford sense, then (11.2) still defines
a bounded function on K*, but the function is not necessarily continuous
(Example 11.28); moreover, this function by itself does not in general de-
termine E X®* ¢ C(K*)** uniquely, not even for k = 1, and not even if
it happens to be continuous. (Note that the point evaluations do not form
a total set in C(K*)*.) Indeed, in Example 11.30 we shall see a K and a
random variable Z € C(K) such that E Z exists in Dunford sense (but not
Pettis sense) with EZ # 0, but E(Z(t)) = 0 for every t € K. (This cannot
happen when K is metric, see Corollary 11.17; see further Remarks 11.18
and 11.24.) We therefore prefer the Pettis or Bochner case for applications.

Apart from the previously defined o-fields on C'(K), we let C be the o-field
generated by the point evaluations f +— f(t), t € K. Thus X : Q — C(K)
is C-measurable if and only if X(¢) is measurable for every ¢t € K. Since
0 € C(K)*, it is immediate that every weakly measurable random variable
X is C-measurable; we shall see that the converse holds when K is metrizable
but not in general (Example 11.31).

Further, let B(K) be the Borel o-field on K.

We also let M(K) be the space of signed Borel measures on K, and M
be the o-field on M(K) generated by the maps p — {u, f) := §; fdpu,
f e C(K). Note that every u € M(K) defines a continuous linear functional
on C(K), so there is a bounded linear map M(K) — C(K)*. Moreover,
by the Riesz representation theorem (see e.g. [22, Theorem IV.6.3], [12,
Theorem 7.3.5], [13, Theorem II1.5.7]), this map is an isometric bijection
of the subspace M,(K) of regular measures onto C(K)*. (In many cases
M,(K) = M(K), for example when K is a metrizable compact space, see
[12, Proposition 8.1.10].)

Theorem 11.7 implies that if K is a compact metric space, there are
no measurability problems; some results are given in the following lemma.
However, if K is not metrizable, and thus C'(K) is not separable, the situ-
ation is more complicated; we have to be more careful with measurability
in statements, but even so, many results below do not hold for arbitrary
compact K, see the (counter)examples at the end of the section. We thus
state most of our results for the metrizable case only. (See Sections 12 and
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15-16, together with Examples 11.4 and 11.2, for examples of non-separable
spaces C'(K) where most results hold, although some new arguments are
required.)

Remark 11.13. All spaces C'(K) where K is an uncountable compact met-
ric space are isomorphic as Banach spaces [46], [50] (although not isometri-
cally); hence they are all the same as C[0, 1] from an abstract point of view.
We shall, however, not use this; we prefer to regard the spaces concretely.

Lemma 11.14. Let K be a metrizable compact space.
(i) The mapping (f,t) — f(t) is jointly (C x B(K))-measurable on C(K) x
K.
(ii) The mapping (f, 1) — §; fdu is jointly (Cx M)-measurable on C'(K)x
In particular, (f,x*) — (z*, f) is jointly (C x M)-measurable on
C(K) x M(K)=C(K) x C(K)*.

Proof. Choose a metric d on K. For each n = 1 there is a finite covering
of K by open sets Uy;, 1 < i < Ny, of diameters < 1/n. We may find a
partition of unity subordinate to {Upy;}, i.e., a set of functions f,; € C(K)
such that f,; >0, >, fns = 1 and {t € K : fp;(t) > 0} < Up;. (For example,
let gni(t) = d(t7 chu) and fp; := gm’/Zj gnj')

Choose some ty,; € Up;. For any function f € C(K),

Sl}/lp‘f Zf ng fnz ‘ - Sup‘z - TLZ fnz( )
supE 1F2) = f (1) | fui(8) < sup{£(5) = F(w)] = [t = u] < 1/}

L0 (1L5)

as n — o0. This shows first that f(t) = limy, e D, f(tni)fni(t), which is
C x B(K)-measurable, showing (i).
Moreover, (11.5) implies that, for all f € C(K) and pe M(K),

N;
| ran= i 3 | i

where the right hand side evidently is (C x M)-measurable.
This proves the first claim in (ii), and the final claim follows by the Riesz
representation theorem discussed before the lemma. O

Corollary 11.15. If K is a metrizable compact, then C coincides with the
o-field By, on C(K) generated by the continuous linear functionals, and also

with the Borel o-field B. Hence, if X : Q — C(K), then X is Bochner
measurable < X is weakly measurable <= X 1is C-measurable.

Proof. By Lemma 11.14, each f — (z*, f) with * € C(K)* is C-measurable.
Conversely, each point evaluation f(t) = (0, f) where ¢, € C'(K)*. This
proves that C and B, coincide.
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Furthermore, B,, = B in any separable Banach space, see Section 3, so
Theorem 11.7 completes the proof. O

If K is not metrizable, i.e., when C'(K) is not separable, we cannot ex-
pect equivalence with Bochner measurability. Moreover, Examples 11.31
and 11.32 show that then in general B,, # C; hence we cannot expect equiv-
alence between weak measurability and C-measurability. Moreover, Exam-
ple 11.31 constructs a random variable that is C-measurable but not weakly
measurable. (Recall that we only consider complete probability spaces.)
Nevertheless, we shall see in Theorems 12.4 and 15.5 (using Examples 11.4
and 11.2) that there exist important cases of non-separable C'(K') such that
By = C and thus the last equivalence holds.

We can now complete the proof of Theorem 1.3 in the introduction.

Proof of Theorem 1.3. By Theorems 11.7 and 11.5, C'(K) is separable and
has the approximation property. Hence, Theorem 1.1 applies and shows (to-
gether with its proof, or Corollary 6.14) that (1.2) <= (1.3) <= E X®* =

EY&?“, where the moments exist in Bochner sense by Theorem 6.7. Finally,
EX® = EY® «— (1.4) by (11.2). O

We continue with further results and next give a complete characterization
of the existence of injective moments in the different senses in the metrizable
case.

Theorem 11.16. Let K be a metrizable compact space and suppose that X
is a C-measurable C(K)-valued random variable. Let k > 1.

(i) EX®F ezists in Dunford sense <= the weak k:th moment exists
— sup,p E|X(1)F < 0.
(ii) EX®F exists in Pettis sense <= the family {(IX@®)|F : t € K} of
random variables is uniformly integrable.
(iii) E X®* ezists in Bochner sense < E(supyex |X(t)|)k < .

Proof. By Corollary 11.15, X is weakly measurable.

(i): Since C(K) is separable by Theorem 11.7, Theorem 6.10(ii)(a) shows
that E X®* exists in Dunford sense if and only if the weak k:th moment
exists. Moreover, in this case E|z*(X)|¥ < C for some C < oo and all
r* € C(K)* with |2*|| < 1. In particular, taking z* = &, E | X (t)|F < C.

Conversely, if E|X(t)[¥ < C for all t € K, and p € C(K)* € M(K)
with ||u|| = 1, then, by Holder’s inequality and Fubini’s theorem (using
Lemma 11.14(i)),

k
EI<M,X>|"’=EU Xt du(t)| <E f X (@) gl (1) = f E X (6)]* dlul (1)
K K K

Hence Lemma 6.8 shows that the weak k:th moment exists.
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(ii): Since C(K)ék = C(K"), its dual space is C(K*)* = M, (K*) c

M(K*). If p € M(K*) with |¢| < 1 and E is any event, then by the
arithmetic-geometric inequality and Fubini (using Lemma 11.14(i))

E (LK, XE5) = (1E )
<E (1E [ 0X@IF + X @) il ,tk>)

j X(h) -+ X (t) dulty, . 1)

L{kZE 1p|X ()] )d|/~0|(t1,...,tk)

< f;lEIE(lE|X(t)|k). (11.7)

It follows from (11.7), using (5.4), that if {|{X(¢)|¥ : t € K} is uniformly
integrable, then so is the family {(u, X®*) : |u| < 1}. Since C(K)®* is
separable when C/(K) is, it follows by Theorem 5.8 that the moment E X®*
exists in Pettis sense. _

Conversely, if EX®F exists in Pettis sense, then {|X(#)|* : t € K} is
uniformly integrable by Theorem 6.19(i), taking z* = d;, t € K.

(iii): Immediate by Theorem 6.7, since C(K) is separable. O

Already the case k = 1 in Theorem 11.16 is non-trivial and gives the fol-
lowing characterisations of the existence of the expectation E X of a C(K)-
valued random variable.

Corollary 11.17. Let K be a metrizable compact space and suppose that
X is a C-measurable C(K)-valued random variable.

(i) EX ezists in Dunford sense <= sup,cp E|X(t)] < c0.
(ii) EX exists in Pettis sense <= the family {X(t) : t € K} of random
variables is uniformly integrable.
(iii) EX exists in Bochner sense <= E(sup,x |X(t)]) < 0.

In the Pettis and Bochner cases, E X is the continuous functiont — E(X (t)).

Also when E X exists just in Dunford sense, it is given by this function
(bounded by not necessarily continuous) in the sense that for any p e C(K)* =

M(K)7
WEX) = | ECX®)du(o. (11.8)

Proof. It remains only to verify (11.8). If X is Pettis or Bochner integrable,
(11.8) follows by Theorem 11.10. In the more general Dunford case we have
by Fubini, using Lemma 11.14,

(LEX) = E(u, X) = E JK X(t,w) du(t) = L{ E(X (t,w)) dp(t).  (11.9)

O
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Remark 11.18. For non-metrizable K, (11.8) is not true in general for
Dunford integrable X, as seen in Example 11.30; cf. Remark 11.12. (The
reason that the proof above fails in this case must be that we cannot use
Fubini in (11.9), because X (f,w) is not jointly measurable.)

We know that if the moment exists in Pettis sense, it is given by the
function (11.2) which then has to be continuous. The next theorem shows
that in the separable case (i.e., when K is metrizable compact), it is for
the existence of an even injective moment in Pettis sense also sufficient that
this function exists and is continuous. This is not true for odd moments,
not even the first moment E X, as is seen in Example 11.26 below; nor does
this hold in general for non-metric K as is seen in Example 11.30.

Theorem 11.19. Let K be a metrizable compact space and suppose that X
is a C-measurable C (K )-valued random variable such that sup,e i E | X (¢)]? <
0. Suppose that k = 2 is even. Then the following are equivalent.

(i) E X®F exists in Pettis sense.

(ii) (t1,...,tk) = E(X(t1) -+ X(ty)) is continuous on K*.
(iii) t > E X (t)* is continuous on K.
In this case, E X is the function in C(K*) given in (ii).

Proof. (i) = (ii): By Theorem 11.10, which also shows the final statement.

(il) = (iii): Trivial.

(iii) = (i): If t,, — tin K, then X (t,) — X (t) and thus X (t,,)* — X (¢).
Furthermore, by (iii), and the fact that k is even, E | X (t,)|* — E|X(¢)|*.
Hence {|X(t,)|¥} is uniformly integrable and thus |X(¢,)|* — |X(¢)|F in
LY(P), see e.g. [34, Theorem 5.5.2]. Consequently, the map t ~— | X (¢)|* is
continuous K — L'(P), and since K is compact, {| X (¢)|* : t € K} is a com-
pact subset of L'(P), and in particular weakly compact and thus uniformly
integrable [22, Theorem IV.8.11]. Thus (i) follows by Theorem 11.16(ii). O

We turn to projective moments. For the second moment, we can show
that the conditions for the injective moment in Theorem 11.16 also imply
the existence of the projective second moment. This uses the following result
by Grothendieck [32] see e.g. [52, Theorem 5.5] or [8, Theorem V.2|. (These
references also contain further related results. In particular, Grothendieck’s
theorem is essentially equivalent to Grothendieck’s inequality, see [8, 52, 43].)

Let kg denote Grothendieck’s constant. (It is known that 7/2 < kg <
7/(21og(1 + +/2)), but for us the value is not important. )

Theorem 11.20 (Grothendieck). If K is a compact set and « is a bounded
bilinear form on C(K), then there exists a Borel probability measure jn on
K such that

la(f, 9)| < 2kaalll fllzagrmlgl 2k - (11.10)

Hence, a extends to a bounded bilinear form on L?(K, ) of norm < 2kg||cl|.
O



HIGHER MOMENTS OF BANACH SPACE VALUED RANDOM VARIABLES 55

Remark 11.21. The standard formulation is for a bilinear form o on
C (K1) x C(K2) for two compact sets K; and Ko; then there exist prob-
ability measures pu; and po on Kp and Ky such that

la(f, Ol < kalall fll2ry ) |91 22 (Ko o) - (11.11)

We are only interested in the special case K; = Ky, and we may then
replace 11 and pip by p1:= 3(u1 + p2) to obtain (11.10). (An inspection of
the proof in e.g. [32] or [8] shows that we may take k¢ in the version (11.10)
too provided « is symmetric, but this is not enough in general; consider for
example a(f, g) := f(0)g(1) on C[0, 1]. Recall that we only have to consider
symmetric « for our purposes, cf. Remark 6.16.)

This leads to the following improvement of Theorem 11.16 when k = 2.
This does not extend to k = 3 by Example 11.27.

Theorem 11.22. Let K be a metrizable compact space and suppose that X
is a C-measurable C(K)-valued random variable.

(i) EX®2 exists in Dunford sense — EX®2 exists in Dunford sense
<= the weak second moment exists <= sup;cx E|X(t)|? < 0.
(ii) E X2 exists in Pettis sense <= B X®2 exists in Pettis sense <
the family {| X (t)|? : t € K} of random variables is uniformly integrable.
(iii) E X®2 exists in Bochner sense <= EX®? ezists in Bochner sense
— E(supex | X(1)])° < oo

Proof. The forward implications are immediate, using Theorems 6.2, 6.10,
6.19, 6.7 and Lemma 6.8, see the proof of Theorem 11.16. It remains to show
the converses. Note that X (¢,w) is jointly measurable by Lemma 11.14.

(i): Suppose that E|X(t)|> < C for every t € K. Let a be a bounded
bilinear form on C(K). By Theorem 11.20, v extends to a bounded bilinear
form on L?(K,u) for some probability measure p on K. Since C(K) <
L?(K, ), we can regard X as an L?(K, u)-valued random variable. Since
X (t,w) is jointly measurable, it follows, see Lemma 10.1, that X is Bochner
measurable in L?(K, i). Moreover, by Fubini,

E|X |2, = EL{ X (8 )2 dpu(t) = JKE X () du(t) < C < 0. (11.12)

Hence, Theorem 6.7 shows that E X®2 L*(K, ,u)®2 exists (in Bochner
sense). In particular, since a extends to L?(K, u), a(X,X) is measurable
by Lemma 6.3 and

Ea(X, X) = Ela, X&) = (o, E X®2)

exists. Since « is an arbitrary bounded bilinear form on C'(K'), Theorem 6.15
now shows that E X®? exists in Dunford sense in C(K)%®? too.

(ii): Assume that the family {|X (¢)|? : t € K} is uniformly integrable. Let
a be a bounded bilinear form on C'(K) with |a| < 1 and let as above u be
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as in Theorem 11.20. If E' € F is any measurable set, then by (11.10) and
Fubini,

E[15 - (X, X)| < B(1x2k L{ X () )

~ %0 JKE(1E|X<t7w>|2) dult) < 2hosup (16X (1))

It follows, using (5.4), that the family {a(X, X) : « € L(C(K)* R), |of < 1}
is uniformly integrable. Moreover, X ®2 g trivially weakly a.s. separably
valued since C(K )®2 is separable. Hence Theorem 5.8 shows, using Theo-
rem 4.6, that E X®2 exists in Pettis sense.

(iii): This is (again) a special case of Theorem 6.7, included here for
completeness. O

As an immediate corollary, we can weaken the integrability condition in
Theorem 1.3 in the case k = 2 to {| X (¢)|? : t € K} and {|Y (¢)|? : t € K} being
uniformly integrable, since it is enough for the proofs above of Theorems 1.1
and 1.3 that the moments E X®? and EY®? exist in Pettis sense. By the
methods in the proof of Theorem 11.19, we can weaken the condition further;
the following theorem shows that in this case, it suffices that the moments
exist in Dunford sense.

Theorem 11.23. Let K be a metrizable compact space and suppose that
X and Y are two C-measurable C(K)-valued random variables such that
SUpse g | X ()% < 00 and sup,e |Y (t)|? < 0. Then, for k = 2, the following
are equivalent.

(i) (1.2), ie., Ea(X,X) = Ea(Y,Y) for every bounded bilinear form «
on C(K).

(ii) (1.3), i.e., E(z}(X)23(X)) = E(2}(YV)23(Y)), for any a}, 25 € C(K)*.

(iii) (1.4), i.e., ]E(X(tl)X(tg)) = }E(Y(tl)Y(tg)) for any ti,to € K.

(iv) EX®? = EY®2 in C(K ) , with the moments existing in Dunford
sense. _ _

(v) EX®? = EY®? in C(K)®2, with the moments ezisting in Dunford
sense.

Proof. The implications (i) = (ii) = (iii) are trivial, and the equivalences
(i) = (iv) and (ii) <= (v) are Corollaries 6.17 and 6.12(a). It remains to
show that (iii) = (i).

Thus, let a € L(C(K)%R) = (C’(K)®2)* As in the proof of Theo-
rem 11.22, there exists by Theorem 11.20 a probability measure p on K
such that o extends to L?(K, ) and E X®? exists in L?(K, 1)®? in Bochner

sense; similarly EY®? exists in L2(K, 1)®? in Bochner sense.
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As a consequence, the injective moments E X ®2 and B Y®? exist in L2 (K, ,u)®2

in Bochner sense. Let g, h € L?(K, u)* = L?(K, ). Then, by Fubini’s theo-
rem, with joint measurability by Lemma 11.14,

B((X, 9, 1)) = B | [ X(w)g(t)X (u,0)h(u) du(t) i)
- [| B X @) gt ante) du

The same applies to Y. Consequently, if (iii) holds, then E((X, g)(X, h)) =
E(CY, gXY, h)), which is (1.3) for L?*(K, ) (with k& = 2). Hence Corol-
lary 6.14 yields EX®2 = EY®? in L} (K, ,u)®2. Furthermore, L?(K, u) has
the approximation property by Theorem 9.1, and thus E X ®2 — EY®2 in
L*(K, ,u)®2 by Theorem 8.3. Consequently,

Ea(X,X) = (,EX®?) = (0, EY®?) = Ea(Y,Y).

Since « is an arbitrary bounded bilinear form on C'(K), this completes the
proof. O

Remark 11.24. Theorem 11.23 shows that, when K is metrizable, the mo-
ment E X®? (or E X®?) is determined by the moment function E(X () X (u))
as soon as the moment exists in Dunford sense. The corresponding result
for £ =1 is in Corollary 11.17.

Example 11.30 yields an example of a non-metrizable K such that (iii)
does not imply (ii).

We leave it as an open problem whether Theorem 11.23 extends to £ = 3.
In particular, for metrizable K and k > 3, if EX®* or E X®* exists in
Dunford sense, does the moment function (11.2) determine this moment
uniquely?

For projective moments of order £ > 3, we do not know any special
results for Pettis or Dunford integrability, but we have as always a simple
result for Bochner integrability. (Recall that this implies Pettis and Dunford
integrability, so we have a sufficient condition for them too.)

Theorem 11.25. Let K be a metrizable compact space and suppose that
X is a C-measurable C(K)-valued random variable. Then E X®F ezists in

Bochner sense <> E X®F exists in Bochner sense < E(supye |X(t)|)k <
0.

Proof. Theorem 6.7. O

We end by a few counterexamples, partly taken or adapted from [24] and
[62] where further related examples are given. See also Examples 5.14, 5.18
and 5.19, which by Examples 11.1-11.4 can be seen as examples in some
C(K).
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Example 11.26. Let X be a C(K)-valued random variable such that E X
exists in Dunford sense but not in Pettis sense, and let Y := nX, where
n = +1 with the sign uniformly random and independent of X. Then Y is
Dunford integrable and EY (¢) = E(nX(t)) = 0 for every t € K, so EY () €
C(K) but Y is not Pettis integrable (since otherwise X = Y would be too).
We may for example take X as in Example 5.14 (X € ¢y < ¢ = C(N*), so
K = N* is metric) or as in Example 5.19 (X is bounded). (We cannot take
both K metric and X bounded by Theorem 11.16.)

Example 11.27 (cf. [8, Section V.5]). Let T := [0, 27| (perhaps regarded
as the unit circle) and N* := N u {00} (the usual one-point compactification
as in Example 11.4), and take K := T u N*  where we regard T and N*
as disjoint. If f € C(K), define f(n) = i gwf(t)e*i"t dt, i.e., the Fourier
coefficients of f|r.

Define the trilinear form « on C(K

) by
ol f,g,h) = Zf )g(n (11.13)

By Holder’s inequality and Parseval’s identity,

o 1/2 1/2
Slimaenm| < ol( [ 1rorst) ([ orss) < il

n=1

thus the sum in (11.13) converges and « is well-defined and bounded.

Let N be an N-valued random variable with P(N = n) = p,, let a,
be some positive numbers and define the random variable X € C(K) by
X(t) := cos(Nt), t € T, and X(n) := anen(n), n € N*. Then X(N) = :
and

a(X, X, X) = X(N)%ay = ian.

Hence,

0
E|o(X, X, X)| = =1 Z Prin. (11.14)

Furthermore, | X ()| < 1 for t € T and E|X(n)> = ppad for n € N (and 0
for n = o0).

Choose, e.g., pp := n~*3 (for n large) and a,, := n'/3. Then E [X (n)|* —
0 as n — o, and thus {|X(z)]* : * € K} is uniformly integrable. Hence
E X®3 exists in Pettis sense by Theorem 11.16. On the other hand, E |a(X, X, X)| =

oo by (11.14), and thus E X 83 does not exist (even in Dunford sense). This
shows that Theorem 11.22(i)(ii) do not hold for k = 3.
The example may be modified for any given k = 3 by taking

alfry. s fr): Rerl fa(n) -+ fe(n), (11.15)

and p, = n~F+D/3,
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Example 11.28 (cf. [23, Example (2)] and [24, Example 5.5]). Let w; be
the first uncountable ordinal and let K = [0, w; ], the set of all ordinals < w;
with the order topology. It is easily seen that K is compact, Note that
K\{w1} = [0,w;) is the (uncountable) set of all countable ordinals.

It is not difficult to see that every f € C[0,w;] is constant on [o,w;] for
some o < wi. Hence, the Baire o-field Ba on [0,w1] is the o-field consisting
of all subsets A such that either A or its complement A€ is countable.

Furthermore, every bounded increasing function f : [0,w;] — R is con-
stant on [a,wq) for some a < w;. It follows (by considering the positive
and negative parts) that every regular signed Borel (or Baire) measure on
[0,w1] is supported on some set [0,a] U {w1}; hence every regular signed
Borel measure has countable support and is thus discrete. Consequently,
C[0,w1]* = 1[0, w1 ].

We define a probability measure P on (|0, w; |, Ba) by setting P(A) = 0if A
is countable and P(A) = 1 if A€ is countable. The mapping X : a — X, :=
Law;] maps (2,Ba,P) — C[0,wi]. If B < wi, then Xo(8) = H{a <} =0
for a.e. a, while X,(w1) = 1 for all . In other words, X(8) = 0 a.s. if
B < wi but X(wy)=1.

We have seen that any z* € C[0,w1]* is given by

z*(f) = D é(@) f(a) (11.16)

for some & € £1[0,w1]. (Note that the sum really is countable.) It follows
that in this case,

z*(X) = &(wr) a.s. (11.17)
Consequently, X is weakly measurable, and since X further is bounded, the
Dunford integral E X exists. We have, by (11.17),

(EX,z*) = Ez*, X) = £(w), (11.18)

when z* is given by (11.16). Consequently, E X is given by the function
1y, that is 1 at w; and 0 on [0,w;). This function is not continuous, and
thus E X ¢ C[0,w1], which shows that X is not Pettis integrable.

By Theorem 5.8, X is not weakly a.s. separably valued. (This is also easily
seen directly. If M is any separable subspace of C[0,w;], then there exists
an o < wp such that every function in M is constant on [, w;]. Hence,
X ¢ M as.)

Note that Example 11.28 gives a uniformly bounded continuous random
function X (¢) such that E X (¢) is not continuous. This cannot happen on
a metric space K, since dominated convergence shows that E X (¢) always
is sequentially continuous. (Indeed, if X is a uniformly bounded random
variable in C'(K) with K compact metric, then Theorem 11.16 applies and
shows that all injective moments exist in both Bochner and Pettis sense.)

Example 11.29 ([29] and [62]). Recall that /* = Cy,(N) =~ C(8N) where SN
is the Stone-Cech compactification of N, see Example 11.1. Furthermore,
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BN can be regarded as the subset of the unit ball of (£*)* consisting of
all multiplicative linear functionals on ¢*. (This holds also as topological
spaces, with the weak® topology on (¢°)*.) A point n € N then is identified
with the multiplicative linear functional d,, : f +— f(n).

Let X1 and X@ be two independent copies of the random variable
X € (® = C(BN) constructed in Example 5.19, and let ¥ = X1 — X2,
We follow Fremlin and Talagrand [29] and Talagrand [62, Theorem 4-2-5] to
show that Y is Pettis integrable. (Recall from Example 5.19 that X is not.)

The coordinates Y,, are i.i.d. random variables, each with the distribution
of m1 — m2 with independent 71,72 ~ Be(1/2); hence Y,, has the centred
binomial distribution Bin(2,1/2) —1. It follows that 4/2Y, is an orthonormal
sequence in L?(P). Consequently, by Bessel’s inequality, if £ € L®(P) <
L%(P), then the sequence y¢ := (E(¢Y,,))Y € £2  cp.

If 2* = (a,)¥ € £}, then by Fubini,

@*ye) = D anB(EY,) =E Y. anl;, = B(E(*,Y)). (11.19)
n=1 n=1

If 2* € ¢g, then z*(XM) and 2*(X ) are by Example 5.19 equal to some
constant a.s., and thus z*(V) = z*(X(M) — 2*(X®)) = 0 a.s. Furthermore,
(x*,y¢) = 0 since y¢ € co, and thus (11.19) holds in this case too. Hence,
(11.19) holds for all z* € (¢*)*, and every £ € L*(PP), which shows that Y
is Pettis integrable and E(£Y') = ye.

Consider now the injective second moment E Y®2, Assume that this exists
as a Pettis integral; it then belongs to C(BN)RC(BN) = C((6N)?). Let us
write @ = EY®? € C((BN)?). If z* € BN\N, then z* € cg, and thus
x*(Y) = 0 a.s.; consequently,

Qz*,2%) = (z* @2 EY®?) = E(a* @ 2*, Y®2) = E(z*, V)2 = 0. (11.20)
On the other hand, if n € N, then, similarly,
Q(n,n) = (8, ® 5y, EY®?) = E(4,, ® 6, Y®?*) = E(6,, Y)* = &, (11.21)

since (6,,,Y) =Y, ~ Bin(2, 3) — 1. However, N is dense in 8N, so (11.21)
implies by continuity that Q(z*, x*) = % for all z* € SN, which contradicts
(11.20). Consequently, the second moment E Y®2 does not exist as a Pettis
integral. (We do not know whether it exists as a Dunford integral.)

Example 11.30. Let B := (*/co. We identify ¢* and C(ON), see Exam-
ple 11.1; then ¢y = {f € C(BN) : f(x) = 0 when x € SN\N}, and it follows
by the Tietze-Urysohn extension theorem [27, Theorem 2.1.8], since N is
open in SN, that we can identify B = ¢*/cy = C(SN\N). (This can also
be seen from Example 11.3, since SN\N is the maximal ideal space of the
complex version of £*/cy.)

Let m : {* — (*/cy be the quotient mapping. (Thus 7 is identified
with the restriction mapping C(SN) — C(SN\N).) Let X be the weakly
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ngeasurable {*®-valued random variable constructed in Example 5.19, and let
X =7(X)€el®/co = C(BN\N). Finally, let Z:=1—-X. (Thus0< Z < 1.)
Then X and Z are bounded and weakly measurable C'( K )-valued random

variable, with K = SN\N. By Example 5.19, if 2* € K = SN\N, then
X@*)=X@=*) =& X)=1 as. (11.22)
Hence,
Z(x*)=0 a.s. (11.23)
for every z* € K and
E(Z(z})--- Z(z})) =0 (11.24)
for any x7,..., 2} € K = fN\N, so the function defined in (11.2) exists and
is continuous on K* (in fact, constant 0).
However, let 2% € ((*)* be defined by {z%, (a;);) := > | a;, and let
T : {* — {* be the linear map =z — (z(x)),. Choose any z§ € SN\N and
define z* € ({*°)* as T*xj. i.e., by

@ @) = ap, Tey = (xg, (aq,(2)n), wel®,

If x € ¢g, then z}(z) - 0 as n — oo, and thus Tz = (z}(z))n € co, sO

(@*,x) = {xf,Tx) = 0; hence, T* L ¢o, and Z* € (£*/cy)*. Furthermore, by
the law of large numbers, {(z}, X) = %Z?:l X, — % a.s., and thus

GFX)=E"X)=4% as (11.25)

and
@F2y=(GE*1-X)=1-G%X)=1 as. (11.26)

For k = 1, E Z exists in Dunford sense, since Z is bounded and weakly
measurable; (11.26) implies that (7*,E Z) = E(Z*, Z) = } and thusE Z # 0,
although (11.23) shows that (E Z,6;) = E(Z(t)) = 0 for every t € K. In
particular, it follows that EZ € C(K)**\C(K), and thus Z is not Pettis
integrable. (Cf. Example 5.19 which shows that E X does not exist in Pet-
tis sense by essentially the same argument.) We see also that (11.8) fails
for Z and p = Z*; hence, as said in Remark 11.18, Z(t,w) is not jointly
measurable. _ .

For k > 2, we do not know whether E Z® or E Z® exists in Dunford
sense, but they do not exists in Pettis sense, by an extension of the argument
for E Z. Indeed, if E Z%* exists in Pettis (or just Dunford) sense, then by
(11.25), with =* as above,

(7)®*, E 2% = BGa*, 2)F = (3)", (11.27)
so E Z® 0. On the other hand, by (11.24),
(1, ® - @b, EZEY =E(Z(t1) - Z(tx)) = 0 (11.28)

for all ¢1,...,¢ € K. Suppose that E Z®* exists in Pettis sense. Then,
by Theorem 11.10, E Z®* is the function (11.2) on K*, ie., by (11.28),
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E 78k = 0, a contradiction. Hence, E Z®* does not exist in Pettis sense.
This also shows that Theorem 11.19 does not hold for K = SN\N.

Example 11.31. Let Z € {*/co and 7* € ({*°/cp)* be as in Example 11.30.
Let £ ~ Be(1/2) be independent of Z, and define Z; := £Z € {®/cy =
C(BN\N).

By (11.23), Zi(z*) = 0 a.s. for every z* € K = SN\N. On the other hand,
by (11.26),

(F*, 21y =&F* Zy =3¢ as. (11.29)

Define the measure p on the o-field C as the distribution of Z;, and
regard the random variable Z; as defined by the identity map C(K) —
C(K) on the probability space (C(K),C*, ), where C* is the completion
of C. (Recall that we want our probability space to be complete.) This
version of Z; is C-measurable. If p(Z;) is any measurable functional, then
¢ is a C*-measurable function on C(K), and thus ¢ is p-a.e. equal to a
C-measurable function ¥ on C(K). By the definition of C, this implies that
U(f) = ¥(f(t1), f(t2),...) for some function F on R* and some sequence
of points t; € K. By (11.23), each Z;(t;) is a.s. constant, and thus ¢ (Z;)
is a.s. constant; since ¢(Z1) = ¥(Z1) a.s., also p(Z1) is a.s. constant. Since
Z*(Z1) is not a.s. constant by (11.29), £*(Z;) is not measurable; hence Z;
is C-measurable but not weakly measurable. It follows that C # B,.

Example 11.32. For another (simpler) example with C # B, let K :=
{0,1}1, where ¢; = 2° (or any cardinal number > ¢), and let as in Exam-
ple 5.19 u be the product measure p := (%50 + %51)”.

Suppose that the linear functional f — x(F) := {, fdu is C-measurable.

Then there exist points t; € K, i = 1,2,..., and a (measurable) function
® : R® — R such that
‘ﬁfdu=¢ﬁﬁﬁjﬁﬂw~% feC(K). (11.30)

Each t € K is a function ¢; — {0, 1} which we denote by a — t(«). Define
an equivalence relation on ¢; by f =+ <= ;(8) = t;(y) for all i. The
number of equivalence classes is 2% = ¢ < ¢;, and thus there exists 3,7 € ¢;
with 8 # v but 8 = ~.

Consider the normalized coordinate functions f,(t) := 2t(a) —1: K —
{—1,1}, a € ¢1. Since 8 = v, f3(t;) = f,(t;) for each 4, and thus f5(t;) f(t;) =
1. Consequently, if g := fo fy and h := 1, then g, h € C(K) and g(t;) = h(t;)
for each i, so by (11.30)

| gdn =it gtt2),...) = Bt hit2),. ) = | b,
K K
which is a contradiction since {gdy =0 and §hdp = 1.
This contradiction shows that the continuous linear functional y is not
C-measurable, and thus B,, 2 C.
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12. Co(S)

In this section we consider B = ¢y(S), for an arbitrary set S. As dis-
cussed in Example 11.4, we can regard co(S) as a complemented subspace
of codimension 1 in C(S*) = C(S u {o0}): co(S) = {f € C(S*) : f(0) = 0}.
(The results below could easily be formulated for C(S*) instead, but we
leave that to the reader.)

Note that ¢o(S) is separable (and S* metrizable) if and only if S is count-
able. (The discrete space S is always metrizable, but that is not enough.)
The case when S is countable is thus covered by the results (for C'(S*))
in Section 11. We shall see that these results extend to arbitrary S be-
cause of the special simple structure of ¢o(S). This illustrates that some
non-separable Banach spaces can be handled without problems, and it is a
background to Sections 15-16 where we (by technically more complicated
arguments) obtain similar results for D]0, 1], which is more important for
applications.

Theorem 12.1. The injective tensor product cO(S)C;)]€ = ¢o(S*) (isometri-

cally). Moreover, cy(S) has the approzimation property, and thus Co(S)®k c

co(9)®" = ¢o(S*) (as a vector space).

Proof. An easy consequence of Theorems 11.6 and 11.5, applied to C'(S*).
U

The dual space cg(S)* = ¢1(S). Note that every element in ¢'(S) has
countable support. Thus every z* € ¢¢(S)* depends only on countably
many coordinates. This extends to multilinear forms as follows. For a
subset A € S, let P4 be the projection in ¢y(S) defined by

Paf(x) :=1{x € A} f(z). (12.1)

Lemma 12.2. If S is any set and « is a bounded k-linear form on co(S),
then there exist a countable subset A < S such that

Oé(fl,...,fk) ZOz(PAfl,...,PAfk). (122)

Proof. Write, for convenience,
a(st,...,sk) = ales, ... €s), S1,...,8, €S. (12.3)

Fix a finite set F' € S and let X € ¢y(5) be random with X(s), s € F,
i.id. with P(X(s) = +1) = P(X(s) = —1) = 3, while X(s) = 0 for s ¢ F.

Let X1,..., X, be independent copies of X. Then

a(Xt o X = ) sty sk Xa(s1) - Xa(si)
S1,-.,SKEF

and thus, since different terms are orthogonal,

Elo(X1,.... X0)P = D la(st,....s0)%

S1,...,SKkEF
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Hence,
D lafst, s < o).
S1y-.sSLEF
Since this holds for every finite F',
S Ja(st, sl < . (12.4)
81,...,SKES
In particular, only a countable number of a(s1, ..., sx) are non-zero. Hence
there exists a countable subset A of S such that a(si,...,sx) = 0 unless
S1y--.,8; € A. Then (12.2) holds for every fi,..., fr with finite supports,
and the general case follows by continuity. ([

Remark 12.3. Bohnenblust and Hille [9] proved the stronger result
DT alsts. s < oo,

81,..,SKES

where the case k = 1 is just c¢o(S)* = ¢£}(S) and k = 2 had been proved
earlier by Littlewood [44]; see also [8].

The integral forms are, by definition, the elements of the dual of co(S)®";
by Theorem 12.1 this equals c¢o(S*)* = ¢1(S*). Consequently, every integral
k-linear form on ¢o(S) is nuclear.

We let, as in Section 11, C be the o-field generated by the point evalua-
tions. Thus, a ¢o(S)-valued random variable X is C-measurable if and only
if X(s) is measurable for every s € S.

Theorem 12.4. The o-fields C and By, on co(S) coincide, for any S.
Moreover, the following hold for any co(S)-valued random variable X :

(i) X is weakly measurable if and only if X is C-measurable.
(ii) If X is C-measurable, then there exists a countable subset Sy S S such
that for every s ¢ Sp, X(s) =0 a.s.
(iii) If X is C-measurable, then X is weakly a.s. separably valued. Moreover,
then X® is weakly a.s. separably valued in co(S)®* and co(S)®F for
every k = 1.

Note that (i) is proved for any separable C(K) in Corollary 11.15, but
here ¢o(S) may be non-separable.

Proof. Since cq(S)* = ¢1(S), and every element of ¢1(S) has countable sup-
port, it follows that B, is generated by the point evaluations, i.e., that
By, =C.

(i): This is immediate from B,, = C.

(ii): Suppose that X is C-measurable, and let, for 4, > 0,

S5 = {s€ 8 : P(IX(s)| > 8) > €)}.

Suppose that Ss. is infinite for some d,¢ > 0. Fix these ¢ and ¢, and let
si, 1 = 1,2,..., be an infinite sequence of distinct elements of Ss.. Let
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N := >, 1{|X(s;)| > d} be the number of points s; where | X| > §. Since
X € ¢9(S), N is a finite random variable, and thus there exists M < oo such
that P(N > M) < ¢/2. Tt follows that for every s;,

E(1{|X(s;)| > 0}1{N < M}) = P(|X(s;)| > ) and N < M)
> P(|X(s5)] > 0)) —P(N > M) > /2.

Summing over all ¢ we obtain the contradiction
0 e¢]
M 2 E(NL{N < M}) = Y E(1{|X(s;)| > S}1{N < M}) = Y &/2 = 0.
i=1 i=1
Consequently, each Sj. is finite. Let Sy = U;f:l Sp-15,-1. Then Sy is a
countable subset of S and if s ¢ Sp, then X (s) =0 a.s.

(iii): Let Sp be as in (ii) and let By := {f € co(S) : supp(f) S So}.
Then B is separable. Moreover, if z* € ¢o(S)* = ¢(S) with z* 1 By, then
x* = (a(s)) € £1(S) with a(s) = 0 for s € Sp and thus, since {s : a(s) # 0} is
countable,

s¢So

Thus X is weakly a.s. separably valued. R

More generally, if £ > 1, then B?k is a separable subspace of cg(S)®F.
Suppose that a € (Co(S)®k)* with o | B®*. By Theorem 4.6, a is a
bounded multilinear form cy(S)* — R. Let A be the countable subset given
by Lemma 12.2.

Since A is countable and X (s) = 0 a.s. for s € A\Sp, PaX = Pa~s,X € By
a.s., and thus a.s.

(@, X = a(X,....X) = a(PaX,..., PaX) = (@, (Pans, X)®*) = 0.

This hold for every o L B?k, and thus X®* is weakly a.s. separably valued
in co(S)®F. Since ¢ : cp(S)®F — ¢o(S)®* is continuous, X is weakly a.s.

separably valued in ¢y(S)®* too. O

However, X is not always a.s. separably valued; consider for example
X = ey € ¢[0,1] where U ~ U(0,1). (Cf. Example 7.4, where we consider
a similar random variable in ¢2[0,1].)

Theorem 12.5. If X is a random variable in co(S), then X is a.s. sepa-
rably valued if and only if there exists a countable subset A = S such that
supp(X) € A a.s.

Proof. If A is countable, then {f € co(S) : supp(f) € A} is a separable
subspace of ¢(S); conversely, every separable subspace of ¢y(S) is included
in some such subspace with A countable. O

Theorem 12.6. Suppose that X is a C-measurable co(S)-valued random
vartable. Let k = 1.
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(i) EX®* egists in Dunford sense <= the weak k:th moment exists
— sup,sE|X(s)F < 0.
(ii) E X% exists in Pettis sense <= the family {|X(s)|F : s € S} of
random variables is uniformly integrable <= E|X(s)¥ € ¢o(9).
(iii) E X®* exists in Bochner sense <= E(supsg |X(s)|)k < o0 and there
exists a countable subset A < S such that supp(X) < A a.s.

If E X®* egists in Bochner or Pettis sense, then it is the function in Co(S)®k =
co(S*) given by

EX®(s1,...,51) = E(X(s1) - X(s1))- (12.5)

Proof. The proof of Theorem 11.16 holds with a few minor changes; we
use Theorems 6.10(ii)(c), 12.4(iii) and 12.5, and note that (11.6) and (11.7)
hold without measurability problem since p now is a discrete measure with
countable support.

Moreover, for (ii), if s, is any sequence of distinct elements in S, then
| X (sn)|F — 0 as n — co. Hence, if {|X(s)|* : s € S} of random variables is
uniformly integrable, then E|X (s,)[¥ — 0, and it follows that E|X (s)|¥ €
co(S). The converse is obvious.

Finally, (12.5) follows as in Theorem 11.10. O

There is an obvious analogue of Corollary 11.17, which we leave to the
reader. Note that (11.8) holds for ¢o(S), even when this space is non-
separable, because each p in (11.9) has a countable support.

For the second projective moment, we can again use Grothendieck’s the-
orem, and obtain the following version of Theorem 11.22.

Theorem 12.7. Suppose that X is a C-measurable co(S)-valued random
variable.

(i) EX®2 exists in Dunford sense <= EX®? ezists in Dunford sense
<= the weak second moment exists <= sup,gE|X(s)|? < oo.

(i) EX®2 exists in Pettis sense <= E X2 exists in Pettis sense <=
E|X(s) € co(9).

(iii) E X®? exists in Bochner sense <= E X®? exists in Bochner sense

> E(sup,es |X(s)|)2 < o0 and there exists a countable subset A < S
such that supp(X) € A a.s.

Proof. For any given bounded bilinear form « on ¢o(S), there exists by
Lemma 12.2 (or by Theorem 11.20) a countable subset Sy of S such that
a(f,g) depends only on the restrictions of f and g to Sy. Thus « can be
regarded as a bilinear form on ¢(Sp), and can be extended to C (S ), and the
proof of Theorem 11.22 applies, again using Theorems 12.4(iii) and 12.5. O

It is now easy to see that Theorems 1.3 and 11.23 hold for C-measurable
random variables in ¢(S); we leave the details to the reader.

The results above show that the space ¢o(.S) behaves very well even when
S is uncountable. However, the following example shows that the moments
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may be degenerate. We note also (Example 12.9) that the norm of a weakly
measurable random variable in ¢y(S) may fail to be measurable.

Example 12.8. Let B = ¢[0,1] and X = ey, U ~ U(0,1). (Cf. Exam-
ple 7.4.)

Let o be a bounded k-linear form on c¢y[0,1], and let A < [0,1] be a
countable set as in Lemma 12.2. Since P(P4X # 0) = P(U € A) = 0, it
follows from (12.2) that

(o, XBY = a(X,...,X) =0 a.s.

Consequently, every projective moment E X ®k exists in Pettis sense, with
E X®* =0, for every k = 1. Hence also the injective moments exist in Pettis
sense with E X®* = 0. (No moment exists in Bochner sense, since X is not
a.s. separably valued, see Theorems 12.5 and 12.6(iii).)

Example 12.9. We modify Example 12.8 by still taking B = ¢([0, 1] but
now, as in Example 7.4, X = a(U)ey where a : [0,1] — (0,1] is a non-
measurable function. Then X is weakly measurable, as in Examples 7.4 and
12.8, but | X| = a(U) is not measurable.

13. D[0,1] AS A BANACH SPACE

Recall that D = DJ0, 1| denotes the linear space of functions [0,1] — R
that are right-continuous with left limits, see e.g. [6, Chapter 3]. In other
words f € D[0,1] if limg ¢ f(s) = f(t) for every t € [0, 1), and furthermore
the left limit of f at ¢, which we denote by

(1) = Tim £(5), (13.1)
exists for every ¢ € (0,1]. We further define
Af(t) = f(t) — f(t-), (13.2)

the jump at ¢. We may for completeness define f(0—) := f(0) and thus
Af(0) :=0.

It is easily seen that each function f € D is bounded. Hence |f|p :=
supyeo,1] |/ (t)| defines a norm on D; the resulting topology is the uniform
topology on D, see [6, Section 15]. The norm is complete, so D is a Banach
space. Note that D is not separable, since the uncountable set of functions
a5 t € [0,1], all have distance 1 to each other; this leads to measura-
bility problems when we consider D-values random variables, as discussed
in Example 3.5 and [6, Section 15]. Note also that the (separable) space
C = (][0, 1] of continuous functions on [0, 1] is a closed subspace of D|0, 1].
The following relation between D[0,1] and C]0,1] was proved by Corson
[14, Example 2].

Theorem 13.1 ([14]). A is a bounded linear map of D|[0,1] onto ¢o(0,1],
with kernel C[0,1] and norm |A| = 2. Furthermore, for any f € D[0,1],

1A o0, = 2inf{[ f + Al pjo.1y : b € C[0,1]}. (13.3)
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Hence, A can be regarded as an isomorphism D/C — ¢¢(0,1] and %A s an
isometric isomorphism D/C — co(0,1].

Proof. 1t is well-known that f € D implies Af € ¢y(0, 1], but for complete-
ness we repeat the proof: Given ¢ > 0, for every z € [0,1] we may find
an open interval U, = (z — 0,2 + d,) such that |f(y) — f(x)] < ¢/2 for
ye(x,x+0;) and |f(y) — f(x—)| < &/2 for y € (x — J,z). (We consider only
y € [0,1], and ignore y € U,\[0, 1], if such points exist.) Hence, |Af(y)| <e
for y € U\{z}. Since [0,1] is compact, it can be covered by a finite set of
such intervals Uy, ,...,Us,,, and then {y : Af(y) > ¢} < {z1,...,2,}. Since
e > 0 is arbitrary, this shows that Af € ¢o(0, 1].

Hence A : DJ[0,1] — ¢(0,1]. It is obvious that A is linear and that
feker(A) < feC[0,1]. Furthermore, |Af|c, < 2|f|p. The function
fo(z) == 1pp1y) — 1p,1/2) in D has [Afolle, = 2 = 2| fo]p, showing that
equality can hold and thus |A] = 2.

If g € co0(0,1], let supp(g) = {z1,...,zp} With 0 <21 < -+ <z, < L.
Let f be the function in D that is constant on [0,z1) and [z, 1], linear
on each [x;,ziy1) for 1 < i < n, and satisfies f(z;—) = —g(x;)/2, f(z;) =
9(zi)/2, 1 <i<n. Then Af =gand |f|p = %HQHCO(OJ]. (The case g =0
is trivial; take f = 0.)

For an arbitrary g € ¢9(0,1] and € > 0, we can find g, € ¢po(0, 1] such
that g = 271 gn and 37 lgnleo01] < l9lepo,) + €. Taking f, € D
as just constructed with Af,, = g, and |fn|p = %HganO(OJ], we see that
f:=X" | fn€ D satisfies Af =357 | g, = g. Hence, A is onto. Moreover,

S 1 o 1 €
Ifllp < Z | falp = B 2 lgnlcoc0,1] < §H9||c0(0,1] t3
n=1 n=1
Consequently,
inf{[flp : Af = g} < 5l9leo0.11:
and since |A| = 2, we have equality:
inf{[flp: Af = g} = 59co0,11:
which easily is seen to be equivalent to (13.3). O

Corollary 13.2 (Pestman [51]). Every continuous linear functional x €
DI0, 1]* is given by

1
X(f) = j fdu+ Y AL (13.4)
0 t(0,1]

for some unique p € M[0,1] and h € £1(0,1]; conversely, (13.4) defines a
continuous linear functional on D[0, 1] for every such p and h. Furthermore,

sIxXlpx < lullar + [Rlla < 2lx] D= (13.5)

Note that the formally uncountable sum in (13.4) really is the countable
sum Ztesupp(h) h(t)Af(t)
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Proof. Tt is clear that for any p € M[0,1] and h € £1(0,1], (13.4) defines a
linear functional y with

IX(OI < larlf o + IRl ol AF leoco,1 < (leellar + 21ler0,17) 1 f 1o

Hence, x € D* and |x|p* < |ullar + 2|hlg1(0,1], showing the first part of
(13.5).

Conversely, if x € D*, then the restriction of x to C is a continuous
linear functional on C, which by the Riesz representation theorem is given
by a real measure p € M[0,1] with ||u|ar = |Ix|c < |x|p- As just said,
x1(f) := Sé f du defines a continuous linear functional on D, with ||x1||p* <
lielar < Ixlp and x1(f) = x(f) if f € C. Let x2 := x — x1. Then x» € D*
and x2(f) = 01if f € C. Hence x2 can be regarded as an element of (D/C)*.
By Theorem 13.1,

(D/C)* = ¢o(0,1]* = £'(0, 1],
using the isometric isomorphism %A. Hence, there exists g € £1(0,1] with

l9lle0.1 = Ix2lpsoy+ = Ix2lpx < lixlp= + [xallo= < 2[x[p+  (13.6)
and
(i) = (0. 380 = 5 3 gAS)
te(0,1]
The decomposition (13.4) follows with h = %g; furthermore, by (13.6),

[illar + [2lero,y < Xl o= + lIx]px = 2[x]ps-

Finally, to see uniqueness, suppose that u € M[0,1] and h € £1(0,1] are
such that x defined by (13.4) equals 0. Then 0 = x(f) = S fdu for every
f e C0,1], and thus p = 0. This implies further 0 = x(f) = >, h(t)Af(?)
for every f € D[0,1], and thus by Theorem 13.1 ) , h(t)g(t) = 0 for every
g € ¢o(0,1]. Hence, h = 0. O

Remark 13.3. The decomposition (13.4) can also be written

ff ) dpn (¢ f £(t-) dpa(t) (13.7)

where g := —er(m] h(x)d, and py := p — po. Conversely, every pair of
measures fi1, p2 € M[0, 1] defines a continuous linear functional x € DJ0, 1]*
by (13.7). However, this representation is not unique unless we impose
further conditions (for example that ug is discrete With ,ug{O} =0, as in the
construction above); note that § f(¢)d = { f(t—)du(t) for every f € D
and every continuous measure p, since f ( ) = f(t) except on the countable

set supp(Af).

Remark 13.4. C[0,1] is not a complemented subspace of D[0,1], i.e. there
does not exist a bounded linear projection P : D[0, 1] — C0, 1], see Corson
[14, Example 2]. Equivalently, there does not exist a right inverse of A,
i.e., a bounded linear map T : ¢¢(0,1] — D][0,1] such that ATg = g for
every g € co(0, 1]. (The equivalence is standard, and follows because we can
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factor I — P through D/C = ¢y(0, 1] and thus define T by TA = I — P, and
conversely.)

To see this, suppose that such a map T exists. Then g — Tyg(t) is a
bounded linear functional on ¢o(0, 1] for every ¢ € [0,1], and is thus given
by some h; € £1(0,1]. Let N := Ute@m[o,l] supp(h¢). Then N is countable,
so there exists s € (0,1]\N. Consider e,(t) := 1{t = s} € ¢y(0,1]. Since
supp(es) = {s} is disjoint from supp(h;) for all rational ¢, it follows that
Tes(t) = {es, hey = 0 for all rational ¢. Since T'es € D|0, 1], this implies that
Tes = 0, which contradicts ATes = es. (See Corson [14, Example 2] for a
different proof.)

Nevertheless, Corollary 13.2 shows that C[0,1]* = M]|0,1] embeds as
a complemented subspace of D[0,1]*, and we have D[0,1]* = C[0,1]* &
c0(0,1]*. The crucial fact is that each bounded linear functional x on C[0, 1]
extends in a canonical (linear) way to a bounded linear functional on D][0, 1],
because x is given by a measure p € M|[0, 1] and we can define the extension
by { f du for any f € D. (This is similar to the decomposition (£*)* = ci@cy
since ¢f = (! embeds into (¢°)*.) In general, a closed subspace By of
a Banach space B is said to be weakly complemented if its annihilator is
complemented, i.e. if there is a projection P : B* — By; it is easy to see
that this is equivalent to the existence of a bounded linear map i : Bj — B*
such that ix* is an extension of z* for every z* € Bj, and then B* =
i(B) @ Bol ~ By ® BOL. Thus C[0, 1] is a weakly complemented subspace
of D[0,1]. (And ¢ is a weakly complemented subspace of ¢*°; in fact, c¢ is
a weakly complemented subspace of any Banach space B > ¢g.)

14. D[0,1] AS A BANACH ALGEBRA

The product of two functions in D[0,1] is also a function in D][0, 1], and
thus D[0,1] is a commutative Banach algebra. In order to use the general
theory of complex Banach algebras (which is much more satisfactory than
the theory for real Banach algebras), we consider in this section DJ0, 1] as a
complex space, consisting of all complex-valued right continuous functions
on [0, 1] with left limits. The results below will be proved for this case, but
it follows immediately that they hold for the real case too, by considering
the subset of real-valued functions.

The (complex) Banach algebra D[0, 1] has an involution given by f + f,
and obviously |ff| = [f]? so D[0,1] is a commutative C*-algebra. As
said in Example 11.3, every such algebra A is isometric to the space C(K)
of continuous functions on its maximal ideal space K, see e.g. [13, Chapter
VIIIL.2]. The maximal ideal space can be described as the set of all (non-
zero) multiplicative linear functionals (i.e., homomorphisms) h : A — C
with the weak*-topology (in this context known as the Gelfand topology),
and the isometry A — C(K) maps f € A to the function f:ih— h(f) on
K; moreover, K is a compact Hausdorff space.

In the case of D[0,1], the maximal ideal space has a simple description.
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Theorem 14.1. The linear homomorphisms on D[0,1] are given by f —
f(t), te€[0,1], and f — f(t—), t € (0,1]. The mazimal ideal space I thus
consists of two copies, t and t—, of every point in (0,1], together with a
single 0.

Proof. This is a simple adaption of the standard argument for the Banach
algebra of continuous functions on a compact set. The mappings f — f(t)
and f — f(t—) are non-zero homomorphisms, and they are obviously all
distinct.

Suppose that there exists another homomorphism & : D[0,1] — C, and
let M := ker(h); thus M is a maximal ideal in D][0, 1]. Since h differs from
all f — f(t) and f — f(t—), there exists for each t € (0, 1] two functions
ft+, fr— € M such that fi(t) # 0 and f;_(t—) # 0. By taking a suitable
linear combination of f;; and f; we see that there exists f; € M such that
fi(t) # 0 and f;(t—) # 0; thus there exists an open set U; such that t € U,
and |f:| is bounded below in U;. For ¢ = 0 we directly find fo with fo(0) # 0
and thus an open set Uy with 0 € Uy and fy bounded below in Uj.

The sets U; form an open cover of the compact set [0, 1], and thus there
exists a finite set {¢1,...,t,} such that [ JI_; Uy, 2 [0,1]. The function F :=
Sy I ful? =230 fufi, € M, since M is an ideal, and infyepo 17 F(t) > 0, by
the construction. Hence 1/F' € D[0,1], and 1 = F'- (1/F) € M, which is a
contradiction.

(Alternatively, one can use the description in Corollary 13.2 of the con-
tinuous linear functionals and show that (13.4) is multiplicative only in the
cases given in the theorem.) O

We give T the Gelfand topology, i.e., the topology generated by the func-
tions f 1> C; as said above Iis compact. By Theorem 14.1, the points
in T are of two types, t and t—; we call the points ¢ ordinary. (We may for
symmetry define t+ = t; then I = {t+ : 0 < ¢ < 1} U {0}. We shall use
the notation t+ for the ordinary points in T when we want to distinguish
between ¢+ as an element of I and ¢ as an element of [0,1].) We may thus re-
gard [0, 1] as a subset of T , consisting of the ordinary points. (But note that
[0,1] does not have the subspace topology.) We then have D[0, 1] = C’(f)
as noted by Edgar [24, Example 5.7] (and possibly known earlier); we state
this in detail:

Theorem 14.2. DJ[0,1] = C(I). More precisely, each function f € D[0,1]
extends to a unique continuous function on f, with f(t—) given by (13.1),
and, conversely, if f is a continuous function on f, then the restiction to
the ordinary points t € [0,1] is a function in D]0,1].

Proof. This is just a reformulation of the fact that the Gelfand transform
f — f is an isomorphism D[0,1] — C(f ), using the description of 7 in
Theorem 14.1. ([l

Corollary 14.3. D[0, 1] has the approximation property.
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Proof. In fact, C(K) has the approximation property for every compact K,
see Theorem 11.5 or [57, Example 4.2]. O

The topological space T is called the split interval or two arrow space.
(Actually, this name is often used for a modification of I obtained by either
adding an extra point 0— or deleting 1; both modifications are symmetric
with a natural involutive homeomorphism ¢+ — (1 —t)F.)

Note that there is a natural total order on I. ; with < y— < y when
x,y € [0,1] with < y. (This is the lexicographic order, if we regard I as
a subset of [0,1] x {—, +}.) We define intervals in T in the usual way, using
this order. Recall that any totally ordered set can be given a topology, the
order topology, with a base consisting of all open intervals (—o0, a), (a, o),
and (a,b), see e.g. 27, Problems 1.7.4 and 3.12.3].

Recall that a compact Hausdorff space is totally disconnected or zero-
dimensional if it has a base consisting of open and closed sets, and extremally
disconnected if the closure of every open set is open. (These notions are
used also for non-compact spaces, but then “totally disconnected” is used
in several, non-equivalent, meanings, coinciding for compact spaces, see e.g.

27].)

Theorem 14.4. The compact Hausdorff topology on 7 equals the order
topology. The space is totally disconnected but not extremally disconnected.

Furthermore, 1 is isolated (i.e., {1} is open), each t € [0,1) has a neigh-
bourhood base consisting of the intervals [t,u), uw > t, and each t— has a
neighbourhood base consisting of the intervals [u,t—], u < t. These neigh-
bourhood bases consist of open and closed sets.

For t—, there is an alternative neighbourhood base consisting of the inter-
vals (u, t—]; these sets are open but not closed. (Symmetrically, the intervals
[t,u—) form another open neighbourhood base at ¢.)

Proof. We first consider the order topology and note that the given collec-
tions of sets are neighbourhood bases; this is easily seen since [t, u) = (t—, u),
|u,t—] = (u—,t) and {1} = (1—,0), with the interpretation (0—, u) =
(—o0,u).

In particular, these intervals form together a base for the order topology.
If J is any of these intervals, then 1; is a function on I whose restriction
f to [0,1] belongs to D[0,1], and it is easily verified that f= 1,. Hence,
by Theorem 14.2, 1; € C(I), and thus J is open and closed in I with the
Gelfand topology. This shows that the Gelfand topology is stronger than
the order topology. Since the Gelfand topology is compact and the order
topology Hausdorff, the topologies coincide.

We have seen that the given base consists of open and closed sets; hence
the space is totally disconnected. On the other hand, U = [ J7°_ [1/( 2n) 1/(2n—

1)) is an open set whose closure U = U U {0} is not open; hence I is not
extremally disconnected. O
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Corollary 14.5. The compact space T is separable and first countable (each

point has a countable neighbourhood base), but not second countable (f does
not have a countable base).

Proof. Tis separable, since the rational numbers are dense.

We obtain countable neighbourhood bases by taking rational u only in
the intervals in Theorem 14.4.

On the other hand, if {U,} is a base for the topology, then each set [, 1],
which is open, contains some Uyy) with ¢ € Uyy). Then ¢ = minUy,(y), and
thus the sets U,y are distinct. It follows that every base contains (at least)
¢ elements. O

Corollary 14.6. The compact space T is not metrizable.

Proof. A compact metrizable space is second countable [27, Theorem 4.2.8].

Alternatively, this follows by Theorem 11.7 since C(I) = DJ[0, 1] is not
separable. O

Remark 14.7. The topology on T induces on the subspace [0, 1] the topol-
ogy where {1} is open and each t € [0, 1) has a neighbourhood base consisting
of the intervals [t,u), u > t. This (or rather the corresponding topology on
R) is known as the Sorgenfrey line, and is a standard source of counterex-
amples in topology, see e.g. [58] and [27, Examples 1.2.2, 2.3.12, 3.8.14,
5.1.31].

For example, if I denotes [0, 1] with this topology, so icl , then I and
I x T are separable, but I x I contains the closed subspace {(t,1—t)} which
is discrete and uncountable, and thus not separable. (In particular, IxI
cannot be metrizable, yielding a third proof of Corollary 14.6.) Moreover, I
is paracompact and normal, but I x I is neither [58].

15. MEASURABILITY AND RANDOM VARIABLES IN D[0, 1]

We equip C|0, 1], D[0, 1] and ¢(0, 1] with the o-fields generated by point
evaluations; we denote these by C (as in Section 11), D and Cy (to distinguish
it from C). We further, as in Section 11, equip M[0, 1] with the o-field M
generated by the mappings p — { fdu, f € C[0,1]. In the present section,
we shall always use these o-fields, even if we do not always say so explicitly.

Note that C[0, 1] is a separable Banach space, and thus C equals the Borel
o-field B(C) on C]0, 1]; moreover, it equals the o-field B,,(C) generated by
the continuous linear functionals, see Corollary 11.15.

On the other hand, D[0,1] is not separable, and D is not equal to the
Borel o-field B(D), see Example 3.5. (The non-separability of D causes
several problems, and is the main source of complications in the proofs
below.) However, we shall see that D equals the o-field B,,(D) generated
by the continuous linear functionals. It is also well-known that D equals
the Borel o-field for the Skorohod topology on D][0, 1], see [6, Section 12].
(This is a weaker topology which is separable metric but not a vector space
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topology; it is the topology commonly used on D, but it is not used in
the present paper where we consider Banach spaces.) Furthermore, D also
equals the o-field generated by balls in D [6, Section 15].

Also ¢(0,1] is not separable, but we have seen in Section 12 that it
nevertheless has several nice properties.

We begin by proving some lemmas.

Lemma 15.1. The mappings (f,t) — f(t), (f,t) — f{t—) and (f,t) —
Af(t) are measurable D x[0,1] — R. Furthermore, the map A is measurable

DJ0,1] — ¢o(0,1].

Proof. Since each f € D is right-continuous, f(t) = lim,_,q f([nt]/n), and
(f,t) = f(|nt]/n) is measurable for each n. The measurability of f(t—) is
shown similarly, using f(([nt]| —1)/n) (for t > 0), and Af(t) = f(t) — f(t—).

In particular, f +— Af(t) is measurable for each fixed ¢, which shows that
A : D[0,1] — ¢o(0, 1] is measurable. O

Lemma 15.2. There exists a sequence of measurable maps zy : D[0,1] —
[0,1], & = 1,2,..., such that if f € D|0,1], then the non-zero values of
xx(f), k= 1,2,... are the jump points of f, i.e., the points x € [0, 1] with
|Af(x)| > 0, without repetition.

Proof. If f € D[0,1] and I < [0, 1] is an interval, define

var(f; 1) := sup{|f(:v)—f(y)| ::):,yeI}. (15.1)

Note that it suffices to consider z,y in (15.1) that are rational, or equal to
the right endpoint of I; this implies that f +— var(f;I) is measurable for

each 1.
Fixe > 0 and f € D and consider for each n the sequence :zrgn), ey xfg()n) of

all dyadic rationals k/2" such that 1 < k < 2" and var(f; [(k—1)/2", k/2"]) >
€; we assume that this sequence is in increasing order and we extend it to

(n)

an infinite sequence by defining x;’ = 0 for k > m(n). It is easily seen that,
as n — oo, a:én) — 1z, for each k, where x1,x9,... are the points x where
|Af(z)| = €, taken in increasing order and extended by 0’s to an infinite
sequence. By construction, for each k, the maps f — :z:,(cn) are measurable,
and thus each xj is a measurable function of f. Repeating this construction
fore =27", m =0,1,2,..., we may rearrange the resulting sequences in a

single sequence (z;){°, eliminating any repetitions of non-zero values. O

Remark 15.3. In Lemma 15.2, we may further assume that zp(f) are
arranged with |Af(z1)| = |Af(z2)| = .... We will not use this, and leave
the proof (using Lemma 15.1) to the reader.

Lemma 15.4. The map (f,pn) — Sé f du is measurable D[0,1] x M[0,1] —
R.
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Proof. First note that the Riemann—Stieltjes sums

n—1
Su(fom) == Y fG/n)uli/n, (i +1)/n) + f(Lu{1} (15.2)
=0

are measurable, and that, using the notation in (15.1),
1

Sulfn) = | Fan

0
Define S*(f; p) := limsup,, ,o, Sn(f;1). Then (15.3) implies

s [

0

< [l masvar(f: i/n, (i + 1)/n]). (15.3)

fdu‘ < ||p/| lim sup max var(f; [i/n, (i + 1)/n])
n—00 ?
= A . 15.4
Il masc |AF(@)] (15.4)

Let z1(f) be as in Lemma 15.2 and let V;, be the (non-linear) measurable
map D — D given by

Vaf (@) := Y7 Af(ap())1{z = ax(f)}- (15.5)
k=1

Thus max, |A(f — Vo f)(x)] = maxg=yn |Af(zr(f))] = 0 as n — oo, since
Af € ¢9(0,1] by Theorem 13.1, and it follows from (15.4) that, for any
feD[0,1] and p € M]0, 1],

1

S - Vafi) = [ (= Valdu—0,  asnow (150)
0
Consequently, S(l] fdp is the limit as n — o of the measurable functions
1 n
S*(f = Vafsu) + JO Vifdu=S*(f = Vafip) + 2 Af(xk(f))ﬂ[xk(f)a 1]7
k=1

where the last factor is measurable by Lemma 15.1 since p — G, (t) := p(t, 1]
is measurable M[0,1] — DJ[0,1] and p[z,1] = G, (z—) for > 0. O

Theorem 15.5. Every continuous linear form x € D[0,1]* is D-measurable.
Hence D = By(D), and a D-valued random variable X is D-measurable if
and only if it is weakly measurable.

Proof. By Lemma 15.4, f +— S(l) f du is D-measurable for every p € MJ0, 1].
It follows from Corollary 13.2 that f — (x, f) is D-measurable for every
x € D[0, 1]*.

This implies B, (D) € D. Conversely, each point evaluation f(t) = (0, f)
where d; € D[0,1]*. Hence D = B,,(D). O

Remark 15.6. We can extend the map in Lemma 15.4 to (f,x) — {f,x)
for f € D, x € D*; however, this map is not jointly measurable for D
and the o-field D* on D* generated by x — (x, f), f € D. (The map is
separably measurable by Theorem 15.5.) In fact, let a(t) : [0,1] — R be a
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non-measurable function. Then the maps t — f; := 1j;q) and ¢ — x; =
g — a(t)Ag(t) are measurable for D and D*, respectively; note that for
any fixed g, t — {xt,9) = a(t)Ag(t) is measurable since it has countable
support. However, t — {f;, x¢» = a(t) is non-measurable.

Remark 15.7. We have D[0,1] = C(I), and it follows from Lemma 15.1
that D also equals the o-field generated by point evaluations on 1. We can
also consider the map (f,t) — f(t) for f € D[0,1] and ¢ € 1. However,
in contrast to Lemma 15.1, this map is not jointly D x B(f)—measurable,
where B(f) is the Borel o-field on I. To see this, let A © [0,1] be a non-
measurable set (with 0 € A) and let ¢ : I — T be the function defined by
©(u) := u+ when u € A and ¢(u) := u— when u ¢ A; then ¢ is increasing
and thus Borel measurable. Furthermore, the function u — f, = 1,1
is a measurable map [0,1] — D[0,1] = C’(f) Hence, u — (fu,p(u)) is
measurable [0, 1] — C(I) x I. However, the composition u — f,(o(u)) =
1 A(Au) is non-measurable, showing that (f,t) — f(t) is not measurable on
C(I) x I.

One of the main purposes of this section is to prove the following theorem,
extending Theorem 15.5 to multilinear forms. (Note that the corresponding
result for C[0, 1] is immediate, since C equals the Borel o-field on C[0, 1] and
(0, 1] is separable, which imply that the product o-field C™ on (C[0, 1])™
equals the Borel o-field.)

Theorem 15.8. Every bounded multilinear form T : (D|0,1])™ — R, for
any m = 1, is D-measurable.

Proof. We shall prove the more general result that for any m,¢ > 0, any
bounded multilinear form a : (D[0,1])™ x (co(0,1])* — R is measurable.
We do this by induction over m.

First, assume that m = 0, so a : (c(0,1]) — R. Recall the pro-
jections P4 in ¢p(S) defined in (12.1) and let A be a countable subset
as in Lemma 12.2 (with S = (0,1] and & = ¢). If A is finite, then
a(Pafi,...,Pafe) is a finite linear combination of products of point evalu-
ations, and thus measurable.

If Ais infinite, write A = {x1, 29, ...} and define P, := Py, . ;. For any
feco(0,1], Pof > Pafincg(0,1] as n — oo, and thus o( P, f1, ..., Pnfi) —
a(Pafi,...,Pafe). BEach map a(P,f1,..., Pyfe) is measurable, and the re-
sult in the case m = 0 follows by (12.2).

Now suppose that m > 1. Consider first the restriction ag of a to C x
D™ x ¢g(0, 1]6. For fixed fo,...,fm € D and gi1,...,9¢ € ¢o(0,1], ap
is a bounded linear functional on C[0,1]; thus «g can be regarded as a
multilinear map Ty : D™ x ¢o(0,1]° — C[0,1]* = M][0,1]. For a fixed
f1 € C[0,1], the map (fa, ..., fm, 91, --,9¢) = ao(f1, for -, fmr 915+ - -5 90)
is measurable by induction, which by the definition of the o-field M in
M]0, 1] shows that T is measurable.
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Define
1

al(fhf??’"7fm7.gl7"'7g£) = f fldTO(f27"‘7fm7917"‘7gf)' (157)
0

Then oy is a bounded multilinear form (D[0,1])™ x (co(0,1])* — R, and
a1 is measurable by Lemma 15.4 and the measurability of Ty. Moreover, if
f1 € C[O, 1], then Oél(fl, fg, - ,fm,gl, L. ,gg) = Oé(fl, fQ, ey fm,gl, . ,gz).
Define as := a —aj;. Then as = 0 on C x D™ ! x ¢(0, 1]4, SO (o
can be regarded as a multilinear form on (D/C) x D™ ! x ¢y(0,1]°. By
Theorem 13.1, A : D/C" — ¢¢(0,1] is an isomorphism, so there exists a
bounded multilinear form ag : ¢o(0,1] x D™ 1 x ¢4(0, 1]e — R such that

a2(f17f27 .. -afmagla cee 79@) = a3(Af17f27 .. '7fmvgla s 795)‘ (158)

Then a3 is measurable by induction, and since A : D — ¢y(0, 1] is measur-
able by Lemma 15.1, (15.8) shows that as is measurable.
Thus, a = a1 + ag is measurable. O

Corollary 15.9. Let X be a D-measurable D0, 1]-valued random variable.
Then X®F is weakly measurable in D®* and in D®* for every k > 1.

Proof. Immediate by Theorems 4.6 and 15.8 and the continuous map ¢ :
D&k _, D&k O

We have seen in Example 3.5 that a D-measurable D-valued random
variable X is not always a.s. separably valued. In fact, the following theorem
describes the situation precisely: X is a.s. separably valued if and only if
the jumps only occur in a fixed countable set. (Cf. Theorem 12.5 for ¢o(.5).)

Lemma 15.10. A subset Dy S D is separable if and only if there exists a
countable subset N of [0,1] such that supp(Af) := {t : |[Af(t)| # 0} € N
for each f € Dy.

Proof. If N < [0,1] is countable, then
Dy :={f € D[0,1] : supp(Af) € N} (15.9)

is a separable subspace of D, for example because A induces an isomorphism
D,/C = ¢y(N), and both C' and ¢o(N) are separable.

Conversely, if Dy € D is separable and {f,}°_; is a countable dense
subset, then N := [ J,, supp(Af,) is countable and supp(Af) < N for every
f € Dy. ([l

Theorem 15.11. Let X be a D-measurable D[0, 1]-valued random variable.
Then X is a.s. separably valued if and only if there exists a countable subset
N of [0,1] such that a.s. supp(AX) := {t: |AX(t)] # 0} < N.

Proof. Immediate from Lemma 15.10. O

However, a weak version always holds.
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Lemma 15.12. Let X be a D-measurable D[0,1]-valued random variable.
Then there is a countable set N < [0,1] such that for each t € [0,1]\N,
AX(t) =0 a.s.

The exceptional null set may depend on ¢, in contrast to the condition in
Theorem 15.11.

Proof. By Theorem 12.4(ii) applied to AX € ¢y(0, 1], which is Cy-measurable
by Lemma 15.1. U

Theorem 15.13. Let X be a D-measurable D[0, 1]-valued random variable.
Then X is weakly a.s. separably valued.

Proof. Let N be as in Lemma 15.12 and let D; < D be the separable
subspace defined in (15.9).

Suppose that xy € D* with x L Dj, and represent x as in (13.4). Since
X L Dy and C € Dy, we see that if f € C, then 0 = x(f) = Xéfdu; thus
p = 0and x(f) = >, h(t)Af(t) for all f € D. Moreover, if t € N, then
1j¢1) € D1, and thus 0 = x(1p1)) = h(t). Hence, any x L D; has the form

X(f) = Y, hOAS(D) (15.10)

teM

for some countable set M = {t: h(t) # 0} with M n N = .
For each t € M, we have ¢t ¢ N and thus X(¢) = 0 a.s., and thus a.s.
Xx(X) =0 by (15.10). O

We extend this to X®*.

Theorem 15.14. Let X be a D-measurable D[0, 1]-valued random variable.
Then, for every k =1, X®* is weakly a.s. separably valued in the projective
and injective tensor products (D[0,1])®* and (D[0,1])®*.

Proof. Tt suffices to consider the projective tensor product since ¢ : (D[0, 1])®* —
(D[0,1])®* is continuous.

Let, again, NV be as in Lemma 15.12 and let D1 < D be the separable
subspace (15.9). Then D?k is a separable subspace of D®*. We claim that
if x e (D®k)* and x L D®* then x(X®*) = 0 a.s., which proves the lemma.
By Theorem 4.6, x is a bounded k-linear form on D. We will prove the
claim by induction, using a more elaborate claim.

For £,m > 0, let Ly, be the set of all (£+m)-linear forms o € L(D**™ R)
such that

a(fi,-. oy foxm) =0 if fi,..., foqm € D1, (15.11)
and

alfiy- s form) =0 if f; € C for some i < /. (15.12)
Claim. If £,m > 0, then a(X, ..., X) = 0 a.s. for every o € Ly .
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The case ¢ = 0, m = k yields the claim x(X®*) = 0 a.s. above, proving
the lemma. We prove the claim by induction on m.

Step 1: m = 0. If m = 0, then (15.12) shows that a can be seen as
an (-linear form on D/C = ¢y(0,1]. Hence there exists an /(-linear form
B :¢o(0, l]z — R such that

a(flv""ff) = 5(Af17aAf€)

By (15.11), 5(g1,...,9¢) = 0 if suppg; S N for every i. Let A be a countable
subset of (0, 1] given by Lemma 12.2 (applied to /). Then, as in the proof
of Theorem 12.4(iii), Po(AX) = Ps~n(AX) a.s., and thus a.s.

a(X,...,X) = B(AX,...,AX) = B(P4(AX),..., P4(AX)) = 0.

Step 2: m = 1. Let K :=/+m = 1. If £ = 1, then the result is
Theorem 15.13 (and its proof). Thus assume k > 2.

For fixed fi,..., fx—1, the map fr — a(f1,...,fr) is a bounded linear
form on D. The restriction to C gives an element of C* = M[0,1], i.e. a
signed measure pif, g, on [0,1]. Define, similarly to (15.7),

1
1(Fraes fo) = fo fediig por

Then «q is a bounded k-linear form on D, and thus so is as := a — a3.

If f1,..., fr—1 € D1 and fr € C € Dy, then Oé(fl, ceey fk) = 0 by (15.11);
hence piy, . ¢, = 0 and thus a1(fi,..., fr) = 0 for any f € D. Similarly,
by (15.12), if f; € C for some i < ¢, then puy, ¢, = 0and ai(f1,..., fr) =
0. Hence, (15.11) and (15.12) hold for «y, i.e., a1 € L;,,. Consequently,
ag =« —aq € Ly, too.

Moreover, if fi € C, then the definition of «a; yields ai(fi,..., fr) =
a(f1,..., fr) and thus

aQ(flv"'vfk) :a(flv"'afk’)_al(fla"'vfk) =0.

Hence (15.12) holds for ¢ = k = ¢ + m too, so (after relabelling) as €
L41,m—1, and by induction as(X,...,X) =0 a.s.

Return to aq. For each fixed fx € C, (f1,..., fx—1) — a(f1,-- -, fr=1, fx)
defines a (k — 1)-linear form on D, which by (15.11)-(15.12) belongs to
Lmm—1. By induction, thus o(X,..., X, fx) = 0 a.s. for each fixed fi €
C. By taking f; in a countable dense subset of C, it follows that a.s.
a(X,...,X, f) =0forevery f e C. Thus, a.s., px, x =0and a1 (X,..., X, f) =
0 for every f € D; in particular, a1 (X, ..., X, X) = 0.

We have shown that a(X,..., X) = ay(X,..., X) + ao(X,..., X) =0
a.s. when o € Ly ,,, which proves the claim. O

16. MOMENTS OF D-VALUED RANDOM VARIABLES

After the preliminaries in the last sections, we can prove analg\gues of The-
orem 11.16-11.23 for D|0, 1]. (Note that although D[0,1] = C(I), we cannot
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use these theorems in Section 11 directly, since DJ0, 1] is non-separable and
thus 7 is not metrizable.)

We begin with describing the space D|0, 1]®k where the moments live.
By Theorem 11.6, D|0, 1]®k = C(IA)C;)]‘: = C(I*). We return from I to [0,1]
by taking the restrictions of the functions in C’(IA )¥ to the (dense) subset
[0,1]* < I* (i.e., the normal points in I*).

Definition 16.1. D([0,1]*) is the Banach space of all functions [0, 1]* — R
that have a continuous extension to :T%; D([0,1]%) is equipped with the
supremum norm. Thus D([0, 1]¥) is naturally isometric to C(I*).

This means that f € D([0,1]%) if at each (t1,...,%) € [0,1]%, f has
limits in the 2¥ octants (with obvious modifications at the boundary). More
precisely, taking k = 2 for notational convenience, f € D([0,1]?) if and only
if, for each (s,t) € [0, 1]?, the limits

f(s+,t+):= lim f(s,t),

s'—s, s'=s
't !>t

f(5+at_) = lim f(S/,t,),
s’ —>s, s'=s
't t'<t

f(S-,t-F) = lim f(Slvt,)a
s'—>s, s'<s
't ¢t

f(S—,t—) = lim f(Slvt/)
s'—>s, s'<s
't /<t
exist (as finite real numbers), except that we ignore all cases with an ar-
gument 0—. Note the slight asymmetry; we use > but <. Note also that

necessarily f(s+,t+) = f(s,t) when it exists.

Theorem 16.2. If k > 2, then D[0,1]®* < D[0,1]®* = D([0,1]¥). (The
subspace D[0,1]%% of D([0,1]%) is not closed, and the norms are different

and not equivalent on D[0,1]®*.)

Proof. The equality D[0,1]®% = D([0,1]¥) follows by Theorem 11.6 ap-
plied to C(I), together with Definition 16.1, and the inclusion D]0, 1]®k c
DJo0, 1](;)]f by Corollary 11.8, or by Corollary 14.3 and Theorem 8.3.

The claim that D0, 1]®k is not a closed subspace of D([0, 1]*), is a special

~

case of the general fact in Remark 11.9, applied to C(I), but we give also
a direct proof, using an argument from Varopoulos [65] (where C(T)®C(T)
is studied, and more generally C(K)®C(K) for an abelian compact group

By the closed graph theorem the claim is equivalent to the claim that
that the norm on D[0,1]®* is not equivalent to the norm inherited from
D([0,1]%), i.e., the sup norm.
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It suffices to consider the case k = 2. If F' € L*([0,1]?), let F(m,n) :=
{§ F(s,t)e2m(mstnt) 45 dt be its Fourier coefficients. Since D[0,1] < L?[0,1],
Parseval’s identity and Holder’s inequality imply, together wih (4.4), that
if F' € DJ0, 1]®2, then Y° _ |F(n,n)| < HFHD[OJ]@Q. However, there ex-
ist trigonometric polynomials f(t) = >, a,e?™™ such that sup, |f(t)| = 1
with >’ |a,| arbitrarily large. (For example Cesaro means of the Fourier
series Yo sin2mint/(nlogn), which represents a continuous function [70,
Section V.1].) Taking F(s,t) := f(s +t) € C([0,1]*) we have |F| p(o,152) =
sup |F(s,t)] =1 and HF“D[O,1]®k > > |an| which is arbitrarily large. O

Example 16.3. Let W be standard Brownian motion, regarded as a random
variable in D[0,1]. Then all (projective and injective) moments exist (in
Bochner sense), and are the same as for W regarded as an random variable
in C[0,1], see Example 11.11 and Remark 6.22. In particular, E W2 is the
covariance function s A t regarded as an element of D[0, I]C;>2 = D([0,1]?),
and EW®? is the same function regarded as an element of the subspace
DJo, 1]®2. Similarly, the fourth moment is given by the function (11.4).

Example 16.4. The D[0, 1]-valued random variable X = 1(1] in Examples
3.5 and 5.18 is not a.s. separably valued, see Example 5.18, and thus it has
no moments in Bochner sense; however, all moments exist in Pettis sense by
Theorem 16.10 below. The k:th moment is given by the function

E(X(t1) - X(tx) =EL{U < t1,...,U <t} = minftq, ..., t}.

This function is continuous, and thus belongs to C([0, 1]¥) < D([0,1]%).
Note that the second moment is the same as for Brownian motion (Ex-
ample 16.3), but not the fourth (or any other moment).

Example 16.5. For a simple example with a discontinuous function in
D(J0,1]?) as second moment, let S, = > & be a simple random walk, with
& iid and P(§ = 1) = P(&§ = —1) = 5. Let Xy, (t) := Sjuy/v/n. Then
the second moment of X, € D[0,1] is the function in D([0,1]?) given by
E(X,(s)Xn(t)) = [n(t A u)|/n.

We turn to conditions for the existence of injective moments.

Theorem 16.6. Suppose that X is a D-measurable D|0, 1]-valued random
variable. Let k > 1.

(i) E X®F egists in Dunford sense <= the weak k:th moment exists
— supte[O’l]E|X(t)|k < 0.
(ii) E X®* exists in Pettis sense <= the family {(IX()[*F : te[0,1]} of
random variables is uniformly integrable.
(iii) E X®F exists in Bochner sense <« E(supte[oyl] |X(t)|)k < o and
there is a countable set N [0, 1] such that supp(AX) S N a.s.
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If EVX@“ exists in Bochner or Pettis sense, then it is the function in
DI[0,1]%* = D([0,1]%) given by

EX®(ty, ... ) = E(X(t) - X(tx)),  ti,...,tx€[0,1].  (16.1)

Proof. We use DI[0,1] = C’(f) and try to argue as in the proof of Theo-
rem 11.16; however, several modifications are needed.

(i): The forward implications are immediate as in Theorem 11.16, but for
the remaining implication we argue somewhat differently.

Consider a linear form u € (D[0, 1]¥%)* = C(I%)* = M(I*) with ] < 1.
Then u can be regarded as an integral multilinear form on D[0, 1]%; by
Corollary 15.9, (i, X®*) is measurable.

A serious technical problem is that X (¢,w) is in general not jointly mea-
surable on I x Q, see Remark 15.7; hence we cannot use Fubini’s theorem
as in (11.6) and (11.7). We circumvent this as follows. Similarly to (11.7),

(G x2] =[xt X dute ..
1 & e
< Jp D IXCF A

= L|X(t)|kdu(t) (16.2)

for some positive measure v on I with HVHM(IA) = ||| < 1. We now regard

~

v as a continuous linear functional y on C'(I) = DJ[0, 1], and represent it by
Corollary 13.2 as f > § f dvy + Se (17 M(E)AS(E) with

lvilar + Rl < 2|v]px < 2. (16.3)
Thus, (16.2) yields
1
XD < [ IXOF a0+ 3 HOAXFO. (164
te(0,1]

Since X (t,w) is jointly measurable on [0, 1] x 2 by Lemma 15.1 and the sum
in (16.4) is countable, we can take the expectation in (16.4) and use Fubini’s
theorem here, obtaining

1
E[¢u, X®9)| < J EIX@)Fdum|t) + Y [hOIEX @ +EIX(E)]).
0 te(0,1]
(16.5)
Now suppose that supepo ) E[X(¢)|" < C. Then Fatou’s lemma applied
to a sequence t ' t yields also E | X (t—)|¥ < C for every ¢t > 0, and (16.5)
implies

| k

E[{u, XBFY| < Cllvi|m + 20| h|p < AC. (16.6)
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This shows that (i, X®) is integrable for every p € (DI0, 1]@“)*7 which
shows that X®* is Dunford integrable, completing the proof of (i).

(ii): As in Theorem 11.16, the forward implication follows by Theo-
rem 6.19(i), taking x* = &, t € [0, 1].

For the converse, apply (16.6) to 1gX , where E € F is an event, and
obtain

E|1g{u, X®F) < 4 sup E(1g|X(1)|%), (16.7)
te[0,1]

which by (5.4) shows that if the family {| X (¢)|*} is uniformly integrable, then
the family {(u, X®*) : |u|| < 1} is uniformly integrable. Since Theorem 15.14
shows that X ®k jg weakly a.s. separably valued, it follows by Theorem 5.8
that E X®* exists in Pettis sense.

(iii): Immediate by Theorems 6.7 and 15.11.

The final claim follows by Theorem 16.2 and the argument in the proof
of Theorem 11.10, which yields (11.3) in the present setting too. O

The case k£ = 1 in Theorem 16.6 gives the following characterisations of
the existence of the expectation E X of a D[0, 1]-valued random variable.

Corollary 16.7. Let X be a D-measurable D[0,1]-valued random variable.
(i) EX ezists in Dunford sense <= supep 11 E|X(t)] < o0.

(ii) E X exists in Pettis sense <= the family {X(t) : t € [0, 1]} of random

variables is uniformly integrable.

(iii) EX exists in Bochner sense < E(SUPte[0,1] | X (¢)]) < %0 and there
is a countable set N < [0,1] such that supp(AX) € N a.s.

In the Pettis and Bochner cases, EX € D[0,1] is the function t — E X ().

O

As in Theorem 11.19, an even injective moment exists in Pettis sense if
and only if it exists in Dunford sense and it belongs to D[0, 1]%* = D([0, 1]¥).

Theorem 16.8. Suppose that X is a D-measurable D[0, 1]-valued random
variable such that supepo 11 E | X (t)|? < 0. Suppose that k > 2 is even. Then
the following are equivalent.

(i) E X®F ezists in Pettis sense.
(ii) The function g(t) := E X (t)* belongs to D[0, 1], and g(t—) := E X (t—)*,
0<t<1.

Proof. (i) = (ii): If t, is a sequence in [0,1] and ¢, \ ¢, then X (¢,)* —
X (t)*, while if t,, /' t, then X (t,)* — X (t—)*. By Theorem 16.6, {| X (¢)|* :
t € [0,1]} is uniformly integrable; thus it follows that E X (¢,)* — E X (t)
or E X (t,)* — E X (t—)F, respectively.

(i) = (i): If ¢, is any sequence in [0,1], there exist a subsequence
(still denoted t,, for convenience) such that t, — t for some ¢ € [0,1]; we
may furthermore select the subsequence such that either ¢, > t or ¢, < t
for all n. In the first case, X(t,) — X(t) and thus | X (t,)|* — |X(@®)|*;
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furthermore, by (ii) and the fact that k is even, E|X(t,)|*F = g(t,) —
g(t) = E|X(¢)|*. In the second case, similarly | X (¢,)|* — |X(t—)|* and
E|X ()" = g(t,) — g(t—) = E|X(t—)|*. In both cases it follows that
| X (t,,)|* converges in L' (P) (to | X (¢)|* or | X (t—)|¥), see [34, Theorem 5.5.2].
Consequently, {|X (t)|¥ : ¢t € [0,1]} is a relatively compact subset of L!(P),
and in particular relatively weakly compact and thus uniformly integrable
[22, Theorem IV.8.11]. Thus (i) follows by Theorem 16.6(ii). O

The extra condition g(t—) := E X (t—)* in Theorem 16.8 cannot be omit-
ted, as seen by the following example.

Example 16.9. Let I, := [1 — 27,1 — 2" 1) and let X equal 2?1,
with probability 27", n > 1. Then EX(t)* = 1p51)(t) < 1 but {X(£)?}
is not uniformly integrable; hence it follows from Theorem 16.6 that |E X®?
exists in Dunford sense but not in Pettis sense. Note that g(t) := E X (t)? =
1112,1)(t) € D[0,1] but EX(1-)* = 0 # g(1-).

For projective moments, we do not know any general necessary and suf-
ficient conditions for existence in Pettis or Dunford sense, but we have a
simple sufficient condition.

Theorem 16.10. Let X be a D-measurable D[0, 1]-valued random variable,
and suppose that E || X ||* < oo.

(i) Then E X®F ezists in Pettis sense.

(ii) E X® exists in Bochner sense <= there is a countable set N < [0,1]
such that supp(AX) € N a.s.

Proof. (i): Let a € L(D* R) be a k-linear form. Then {a, X®*) is measur-
able by Corollary 15.9, and

o, XEO) < e | X7,

It follows that the family {<a,X®k> : |o| < 1} is uniformly integrable.

Moreover, X®F is weakly a.s. separably valued by Theorem 15.14. Hence
Theorem 5.8 shows, using Theorem 4.6, that E X®* exists in Pettis sense.
(ii): This is another special case of Theorem 6.7. O

For the second moment, we can as for C'(K) use Grothendieck’s theorem
Theorem 11.20 to show that the conditions for the injective moment in
Theorem 16.6 also imply the existence of the projective second moment,
thus improving Theorem 16.10 when k& = 2. Example 11.27 shows that this
does not extend to k = 3.

Theorem 16.11. Let X be a D-measurable D[0, 1]-valued random variable.

(1) E X®2 exists in Dunford sense < EX®? exists in Dunford sense
< the weak second moment exists <> sup[o ] E | X (#)]? < o0.
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(ii) E X®2 egists in Pettis sense <= E X®2 exists in Pettis sense <>
the family {| X (t)|? : t € [0,1]} of random variables is uniformly inte-
grable. _

(iii) E X®? exists in Bochner sense <= E X®? exists in Bochner sense
= E(supte[oyl] |X(i§)|)2 < oo and there is a countable set N < [0, 1]
such that supp(AX) € N a.s.

Proof. The forward implications follow directly, as in the proof of Theo-
rem 11.22, using also Theorem 15.11.
(i): Let o be a bounded bilinear form on D[0,1] = C(I). By The-

orem 11.20, a extends to a bounded bilinear form on L?(I,v) for some
probability measure v on I; more precisely, (11.10) yields

‘(a,X®2>‘ < 2kg|of L|X(t)|2dz/(t). (16.8)

This is, apart from a constant, the same estimate as (16.2) (proved for
integral forms), and the same argument as in the proof of Theorem 16.6
yields, cf. (16.6),

E{a, X®%)| < 8k¢ o S[up]ElX( )P (16.9)

Furthermore, (o, X®?) is measurable by Corollary 15.9. It follows that if
Supefo] E | X (t)|? < o0, then E X®?2 exists in Dunford sense.

(ii): Assume that the family {|X(¢)|? : t € K} is uniformly integrable. By
applying (16.9) to 15X as in the proof of Theorem 16.6, we obtain from
(5.4) that the family {a(X,X) : a € L(D[0,1]*R), |o| < 1} is uniformly
integrable. Moreover, X ®2 jg weakly a.s. separably valued by Theorem 15.14.
Hence Theorem 5.8 shows, using Theorem 4.6, that E X ©2 oxists in Pettis
sense.

(iii): This is again a special case of Theorem 6.7. O

Theorem 16.12. Let X and Y be D-measurable D0, 1]-valued random

variables such that supo 1] | X (#)]? < o0 and SUDse[0,1] [Y'(t)]? < o0. Then

the following are equivalent.

(i) Ea(X,X) =Ea(Y,Y) for every bounded bilinear form o on D|0,1].

(it) E(2}(X)23(X)) = E(zf(Y)a3(Y)), for any =f,25 € D[0,1]*.

(iil) E(X (t1)X (tg)) = E(Y (t1)Y (t2)) for any ty,ts € [0,1].

(iv) EX®2 = EY®2 jp Do, 1]®2, with the moments existing in Dunford
sense. _ _

(v) EX®? = EY®2 in D[0,1]%?%, with the moments existing in Dunford
sense.

Proof. We argue as in the proof of Theorem 11.23, with some changes. The
implications (i) = (ii) = (iii) and (iv) = (v) are trivial, the equivalence
(i) < (iv) is Corollary 6.17 and (v) = (ii) follows by (6.3). It remains to
show that (iii) = (i).
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Thus, let o € L(D[0,1]*R) = L(C’(f)g; R). By Theorem 11.20 there
exists a probability measure v on I such that « extends to LQ(f ,v). The
main difference from Theorem 11.23 is that we cannot assert that X (t,w) is
jointly measurable on % ), see Remark 15.7. It is, however, still possible to
regard X as a map into L? (f ,v). We prefer to state this slightly differently,
returning to [0,1] by the argument already used in the proof of Theorem 16.6.

We thus regard v as a continuous linear functional x on C'(I (A) DJ0, 1]; we
now use the representation (13.7) in Remark 13.3 and write it as

Lfdv: f f(t) dpa(t) J f(t=)dusa(t) (16.10)

where pg is a discrete measure supported on a countable set {t,}o_;. It is
easily seen that both p; and ps are positive measures. (We may alternatively
omit this verification and replace them by |u1| and |us2|, possibly increasing
v.)

Let ¥ :=[0,1]u{th,—}r, C I. We define a o-field A on ¥ by A := {A C
¥ : An|0,1] € B([0,1])}, and let x be the measure puq + pf on (3, A), where
wh is the measure on {t,—}>_; given by ph{t,—} := pua{tn}. Then (16.10)
can be written

ﬁfdy - J fdu. (16.11)
I b
Applying this to |f|?, we see that HfHLQ(IAV) = || fllz2(s, ) for all f e D[0,1],

and o thus extends to a bounded bilinear form on L?(X, ). Moreover,
Lemma 15.1 implies that X (¢,w) is jointly measurable on ¥ x Q. Conse-
quently, X is a Bochner measurable random variable in L?(3, 1) by Lemma 10.1.
Furthermore, the assumption that sup, E|X ()| < oo implies by Fubini’s

theorem, as in (11.12), that IEHXH%Q(Z ) < o0, and thus E X®? exists in

L3 (%, u)®2 in Bochner sense. The same holds for E Y®2.
The proof is now completed as for Theorem 11.23, mutatis mutandis. [

Theorem 16.13. Let X and Y be D-measurable D|0,1]|-valued random
variables, and suppose that either
() E|X|* <0 and E|[Y|* < o0, or
(ii) k =2 and sup{E|X(t)]? : t € [0,1]} < oo, sup{E [V (#)|> : t € [0,1]} <
0.
Then (1.2) is equivalent to (1.3), and further to

E(X(t1) - X(tr)) = E(Y(t1) -+ Y (tr)), t1,...,tp€[0,1].  (16.12)

Proof. (i): By Theorem 16.10, E X®* and E Y®F exist in Pettis sense. Thus,
E X®* and EY®* too exist in Pettis sense, and the result follows by The-
orem 8.3, Corollaries 6.17 and 6.14 and (16.1), similarly as in the proofs of
Theorems 1.1 and 1.3.

(ii): A simplified version of Theorem 16.12. O
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Remark 16.14. As for Theorem 11.23, we do not know whether the con-
dition (i) can be weakened for k > 3.

17. UNIQUENESS

In the previous sections we have considered the k:th moment(s) for a fixed
k. In this section and the next, we consider the sequence of all moments. In
the present section we show that there are analogues of the classical results
for real-valued random variables that the moments (under certain condi-
tions) determine the distribution. In Section 18 we consider convergence,
where the situation is more complicated and less satisfactory.

We suppose for simplicity that the Banach space B is separable. All ran-
dom variables are tacitly assumed to be (Borel) measurable, cf. Theorem 3.3.

We begin with two simple results on the existence of all moments.

Theorem 17.1. Let X be a B-valued random variable, where B is a sepa-
rable Banach space. Then the following are equivalent.

(i) E|X|* < oo for every k > 1,

(ii) The projective moment E X®F exists in Bochner sense for every

k=
(iii) The injective moment E X®F exists in Bochner sense for every k >

1.
1.
Proof. An immediate consequence of Theorem 6.7. O

We do not know any general weaker criterion for the existence of projective
moments in Pettis or Dunford sense. (See Theorem 9.14 for one case where
no weaker criterion exists, and Theorem 11.22 for a case when it does.) For
injective moments we have the following.

Theorem 17.2. Let X be a B-valued random variable, where B is a sepa-
rable Banach space. Then the following are equivalent.

(i) E[{z*, X)|F < o for every k = 1,

(ii) The injective moment E X egists in Dunford sense for every k = 1.
(iii) The injective moment E X®F exists in Pettis sense for every k = 1.

Proof. (i) <= (ii): By Theorem 6.10(ii)(a).

(ii) <= (iii): If (ii) holds, then sup{E|{z*, X)|* : |z*| < 1} < oo for
every k > 1 by Theorem 6.10(i). Thus sup{E |[(z*, X [F*! : |2*|| < 1} < oo,
which implies that {|{z*, X)|¥ : |z*| < 1} is uniformly integrable. Theo-
rem 6.19(ii)(a) shows that (iii) holds. The converse is obvious. O

It is well-known that already on R, there are random variables with the
same moments but different distributions, see e.g. [34, Section 4.10]. A
well-known sufficient condition for the distribution of X to be uniquely de-
termined by the moments is the Carleman condition [10]

e 6}
M (EX]P) " = w0, (17.1)

n=1

Note that (17.1) is satisfied whenever E e/X| < oo for some ¢ > 0.
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Theorem 17.3. Let B be a separable Banach space and let X and 'Y be two
B-valued random variables. Suppose that B |X|* < oo and E|Y|* < oo for
every k =1 and that | X| satisfies the Carleman condition (17.1). Then the
following are equivalent.

i) x2y.
(i) EX®F = EY®* for every k > 1.
(iii) EX®F = EY®F for every k > 1.
(iv) {z*, X 4 (&*,Y) for every z* € B*.

=
=

Proof. Note that the moments exist in Bochner sense by Theorem 17.1.

(i) = (ii) is obvious and (ii) = (iii) follows by Theorem 6.2.

(iii) = (iv): If z* € B*, then

E(z*, X)F = (B X®F (2*)®F) = (RY®F (2*)®F) = B(z*, V)P

for every k > 1 by (6.3) and (iii). Since E [{z*, X)|* < [2*|FE|X]*, the
Carleman condition (17.1) holds for {(z*, X) too, and it follows that (iv)
holds.

(iv) = (i): This is well-known [42]. (Sketch of proof: Any finite linear
combination of elements of B* is another element of B*. Hence (iv) implies,
by the Cramér-Wold device, that (iv) holds jointly for any finite number

of functionals z*. A standard application of the monotone class theorem
shows that P(X € A) = P(Y € A) for every A€ B, = B.) O

Remark 17.4. The proof of Theorem 17.3 shows that it suffices that the
Carleman condition holds for each (x*, X). Moreover, if we only consider
injective moments, and the equivalences (i) <= (iii) <= (iv), then the mo-
ment assumptions may be weakened to E [(z*, X)|* < o0 and E [(z*, Y|} <

o for every k = 1, with the injective moments existing in Pettis sense by
Theorem 17.2.

Remark 17.5. The assumption that B is separable is essential; the equiv-
alence (i) <= (iv) is not true in general for non-separable B. Example 7.4
gives an X in £?[0, 1] such that (z*, X) = 0 a.s. for every z* € £2[0,1]* =

¢2[0,1], and thus {z*, X) d {x*,Y) with Y = 0, although X # 0 a.s.

18. CONVERGENCE

As in the preceding section, we assume that the Banach space B is sepa-
rable, and that all random variables are (Borel) measurable.

We consider a sequence X,, n = 1 of B-valued random variables, and
a potential limit X. For definition and general properties of convergence

in distribution, denoted X, 4 x , see [6]. In particular, recall that con-
vergence in distribution can be described by a metric, at least when B is
separable as here, see [6, Theorem 6.8]. (The non-separable case is more
complicated and related to the existence of real-measurable cardinals, cf.
Remark 9.13, see [5, Appendix III].)
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As in the real-valued case, convergence in distribution implies conver-
gence of the moments, provided some suitable integrability condition holds
uniformly. We state one simple such result.

Theorem 18.1. Suppose that X and X,, n = 1, are B-valued random
variables, where B is a separable Banach space. Suppose that X, 4 X,
and that sup,, E|| X, |* < o for every k > 1. Then EXS?’“ — E X® jn p®k
and EX?’“ S EX® i B gsn — 0, for every k = 1.

Proof. By Theorem 17.1, all moments IEXS?IC and EX%;)]"’ exist. Furthermore,
| X 4, | X||, and thus by Fatou’s lemma (for convergence in distribution
[34, Theorem 5.5.8]), E|X|* < liminf, ,o E[|X,||¥ < 0. Hence all mo-
ments E X® and E X®F also exist.

By the Skorohod representation theorem [6, Theorem 6.7], we may assume
that X,, =% X. Then X?k 25, X®k since the (non-linear) mapping x —
2®* is continuous B — B®*. Thus, ||X§k - X®k|\ 2% 0. Furthermore,

Rk Qk Rk Rk k k
| X225 — XOF| < [ X2 + | XEF| = | Xa]* + | X", (18.1)

and since sup, E|X,|?* < oo and E||X||* < oo, it follows that the family
{| X&* — X®¥| . n > 1} is uniformly integrable (for any fixed k), see e.g. [34,
Theorems 5.4.2-4.6]; hence E | X®F — X®*| — 0. Consequently,

|EXPE —EX® = | E(XPF - X&) <E|XPF — X&) -0,

as n — oo. This proves EXS?"’ — IEX®’“, and EX%;)]“ — EX®* follows
similarly, or by Theorem 6.2. O

If B is finite-dimensional, then the converse to Theorem 18.1 holds, pro-
vided the moments determine the distribution of X (for example by the
Theorem 17.3); this is the standard method of moments (in several vari-
ables).

In infinite dimensions, there is in general no converse. We begin with
a simple example showing that convergence of the injective moments does
not imply convergence in distribution. Moreover, the example shows that
convergence of the injective moments does not imply convergence of the
projective moments. (The converse implication is trivial by Theorem 6.2.)

Example 18.2. Regard R" as a subspace of £ by the isometric embedding
(at,...,an) = (a1,...,ay,0,0,...). Let X, := n_1/2(§1,...,§n) e R" c (2,
where £1,&2,... ~ N(0,1) are i.i.d. standard normal random variables.
Note first that | X,[? = 137" &2 — 1 as. as n — o0 by the law of large
numbers. Thus X, does not tend to 0 in distribution.
Next, consider the injective moment E X®*. (It does not matter whether
we regard IEX?’g as an element of (R™)®* or (52)&3’“, since (R™)®* is isomet-

rically a subspace of (52)&)"3, see Remark 4.4.)
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If y = (ai,...,a;) € R”, then {y, X) = > ain~Y2¢; is normal with
mean 0 and variance >, a?n L E&2 = |y|?/n, ie. {y, X) ~ N(0,|y|*/n).
Hence, for any yq,...,yr € R, by Holder’s inequality,

KEXE*, 11 @ @ue)| = [E(X, 1) - (X, y))|

Qmaynw<qn'

il
Vn

for some constant Cj, := E [£1]". Since B®* can be seen (isometrically) as a
subspace of L(B*;R), see Section 4, it follows that

| E XSk < Cn 2. (18.2)

| k

In particular, the injective moments IEX,@:% — 0 as n — oo for every k > 1
Finally, the second moment E X®? is given by the covariance matrix,

1 w1
E X% = (EE&@)Z-J':l =1, (18.3)

where [ is the identity matrix. Regarded as an operator, I is the identity
operator in R", which has trace norm |I|ygn) = n. Since the projective
tensor norm equals the trace norm (for Hilbert spaces), see Theorem 9.2, we
obtain | IEXS?QH = H%IHN(RW.) = 1. (Since there exists a projection /> — R"
of norm 1, it does not matter whether we regard EX§2 as an element of
(R”)®2 or (62)&32.) Hence the projective moments IEX}?Q do not tend to 0.

In fact, this extends to every infinite-dimensional Banach space.

Theorem 18.3. Let B be any infinite-dimensional Banach space. Then
there exists a sequence of Bochner measurable random variables X, in B
such that the injective moments EX®* — 0 as n — oo for every k > 1 but
X, does not tend to 0; in fact, | X, | = 1.

Proof. Let €, — 0 (for example, ¢, := 1/n). By Dvoretzky’s theorem, see
g. [42] or [53], for every n, there is a n-dimensional subspace B,, of B
such that B,, is isomorphic to R” by an isomorphism 7T;, : R® — B, with
T, I < 1+ e
Let X] € R" be as X,, in Example 18.2, and let X, := T, X, € B. O

Remark 18.4. It is easy to see that we may replace X, in Example 18.2 or
Theorem 18.3 by X,,/|| Xy, thus obtaining | X, | = 1 a.s. and E X®* — 0 for
every k > 1. (In Example 18.2, this means taking X,, uniformly distributed
on the unit sphere of R™.)

For projective moments, the situation is more complicated. We next
give another example (with B = ¢), showing that also convergence of the
projective moments does not imply convergence in distribution in general.
On the other hand, we then show that in a Hilbert space, it does (assuming
a Carleman condition). Moreover, we shall show that in a Hilbert space,
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even weak convergence (denoted —) of the projective moments suffices to
imply convergence in distribution.

Example 18.5. Let B = ¢y and let X,, be the B-valued random variable
given by P(X,, =¢;) =1/n,i=1,...,n. Then |X,| = 1.

If o is a k-linear form on ¢, then by (12.4), using the notation (12.3) and
the Cauchy—Schwarz inequality,

—Eaem.. )l < —E e

n 4 v - n 4 e ‘
i=1 1=1

1 2

<<ﬁ 2 |a(81,...,sk)|2)1/ <n71/2\|04“‘

S1,.-,SEEN

~ ~ 1/2
Ko, EX®F)| = | Eda, X®F)| =

Hence, using Theorem 4.6,
HX?’“H <n 250 as n — oo.
Consequently, ]EXS?’C — 0 for every k, but X,, +- 0.

Theorem 18.6. Suppose that X and X,, n = 1, are H-valued random
variables, where H is a separable Hilbert space. Suppose further that || X ||

satisfies the Carleman condition (17.1). If IEX?’€ 5 EX®* in B®F for

every k = 1, with the moments existing in Pettis sense, then X, 4, x.

Proof. For any fixed y € H, and any m > 1,

2m

HI’ _yHQm = <J}—y,$—y>m = Z Oék(.%',...,.%’),
k=0

where «y, is some bounded k-linear form (depending on y and m). Hence, if
E X% %5 E X® for every k, then

2m 2m
E HXn - y”2m = Z E<O‘k7X1§<>k> = 2<ak7EXr<?k>
k=0 k=0
2m
- Y, EXSF) = E[|X — y|". (18.4)
k=0

Since ||.X| satisfies the Carleman condition, it is straightforward to show
that | X —y| < |X| + |y| does too. It thus follows from (18.4), by the
method of moments, that

d
|Xn = yl? = [ X —yl*. (18.5)

(We use here the fact that for positive random variables, the Carleman
condition can be relaxed to (17.1) for the square root, see [34, (4.10.2)].
Alternatively, we can introduce random signs and apply the method of mo-
ments to show that +] X, —y| — £ X —y], where all odd moments vanish
and thus converge trivially.)
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The argument extends to any linear combination of | X, —y1[?, ..., | Xy —
y¢|? for any given y1,...,y, € H; hence (18.5) holds with joint convergence
for any finite set y1,...,ys € H.

Consequently, if A € B is a finite intersection of open balls B(y;,r;) :=
{z : |x — yi|| < r;} such that P(X € dB(y;,r;)) = 0, then P(X,, € A) —
P(X € A); this implies X, 4 x by [6, Theorem 2.4]. O

Remark 18.7. The argument extends to the spaces LP(u) (assumed to be
separable) provided p is an even integer (and | X|?/? satisfies the Carleman
condition). We do not know whether there are further Banach spaces such

that E Xg)k — E X®F for every k implies X,, 4 x (provided X is bounded,
say, for simplicity).

Specialising to X =0, we have the related problem: For which Banach
spaces B does E X®* — 0 in B®* for every k imply X, 2507

Next we show that weak convergence of the injective moments is equiva-
lent to weak convergence in distribution, meaning convergence in distribution
of {x*, X,,) for every x* € B*.

Theorem 18.8. Suppose that X and X,, n = 1, are B-valued random
variables, where B is a separable Banach space. Suppose further that

sup E |(z*, X,)|F < o0 (18.6)
nz=l1

for every x* € B* and every k = 1, and that every {x*, X ), x* € B*, satisfies
the Carleman condition (17.1). Then the following are equivalent.

(i) EXg)k Y EX® in BEF for every k > 1.

(ii) E(z(Xy) -+ 2f(Xpn)) — E(@3(X)---2}(X)) for every k > 1 and
xf,...,x} € B*. (In other words, the weak moments converge point-
wise. )

(iii) E(2*(Xn)*) — E(2z* (X)) for every k > 1 and z* € B*.

(iv) z*(X,) 4, x*(X) for every z* € B*.

(v) z*(X,) 4, x*(X) jointly for all x* € B*.

Note that all (injective) moments exist in Pettis sense by Theorem 17.2
together with (18.6) and the Carleman condition for (x*, X ) (which implies
that | |(z*, X)|¥ < oo for every k).

Proof. By assumption, for every k > 1, T : z* — ({x*, X1),{z*, Xa2),...)
maps B* into /*(L*(P)). By the closed graph theorem, T is bounded, and
thus

Cy, := sup{E [{z*, X,)|" : |lz*| < 1, n = 1} < 0. (18.7)
Note that, by definition, (i) holds if and only if
GGEXER) = By, X&) - By, X&) = (x, E x®F) (18.8)

for every x € (B(;)k)* and every k > 1.
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(i) = (ii): Choosing x = 2] ®---®«} in (18.8), (ii) follows by (6.3).

(i) = (i): Let x € (B®*)*. By Theorem 4.7, x has a representation
(4.10), and as shown in the proof of Theorem 6.10, (6.5) holds, together
with the corresponding formula with X replaced by X,,. Thus, (18.8) can
be written

L{k E(x’f(Xn) e xZ(Xn)) dp(aT, ..., x})

— E(z}(X)---23(X)) dpu(z], ..., 2f). (18.9)
Kk
The integrand converges pointwise by (ii); furthermore, by Holder’s inequal-
ity and (18.7), [E(2}(Xn) - }(Xn))| < Ci. Consequently, (18.9) holds by
dominated convergence.

(ii) = (iii): A special case, obtained by taking ] = --- = a2} = 2*.

(iii) = (ii): A standard polarisation argument. Given zf,...,z}, use
(iii) with «* := tia] + --- + tgxf, where tq,...,t; are real numbers. Then
both sides of (iii) are (homogeneous) polynomials in t1,. .., tx, and since the
left side converges to the right for every t1,..., g, the coefficient of £y - - -t
converges too, which yields (ii) (after dividing by &!).

(iiil) = (iv): This is the usual method of moments for the real-valued
random variables (z*, X, ), using the Carleman condition.

(iv) = (iii): For any fixed k, the random variables {(x*, X,,)* are uni-
formly integrable, by (18.6) with k + 1. Hence (iv) = (iii).

(iv) <= (v): The joint convergence in (v) means, by definition, joint
convergence for any finite set x7,...,z} € B*. Since any linear combination
of xf,..., x} is another element of B*, this follows from (iv) by the Cramér—
Wold device. (Cf. the proof of Theorem 17.3.) O

Remark 18.9. If all (injective) moments exist in Pettis sense and Theo-
rem 18.8(i) holds, then (iii) holds by (6.3), see the proof above, and thus
(18.6) holds for every even k, and thus for every k, so (18.6) is redundant
in this case.

Example 18.10. Take B = ¢' and let X, be as in Theorem 18.3 and
Remark 18.4. Then the injective moments E X®* — 0, and Theorem 18.8
shows that {(x*, X,,) 4,0 as n—> o for every z* € (£')*; equivalently,
(z*, X,) = 0 as n — o0. However, |X,|| = 1 and thus X,, - 0.

By Schur’s theorem [17, p. 85], a sequence in ¢! converges weakly if and
only if it converges strongly (i.e., in norm). We see that this does not extend
to convergence in probability (or distribution) for sequences of random vari-
ables in ¢'. This also shows that Skorohod’s representation theorem does
not hold for weak convergence in distribution: there is no way to couple
the random variables X,, such that X, — 0 a.s., since this would imply
X, — 0 a.s. by Schur’s theorem, and thus X, 250.
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If we know tightness by other means, weak convergence in distribution is
equivalent to convergence in distribution.

Corollary 18.11. Suppose that X and X,, n = 1, are B-valued random
variables, where B is a separable Banach space. Suppose further that all
injective moments H:EXT(’?]C exist in Pettis sense, that EX%;)]"’ Y, EX®k ip
B&k for every k = 1, that the sequence X, is tight, and that every {x*, X),

x* € B*, satisfies the Carleman condition (17.1). Then X, 4, x.

Proof. By Theorem 18.8 and Remark 18.9, z*(X,) 4, x*(X) for every
x* € B*. Since X, is tight, every subsequence has a subsubsequence that

converges in distribution to some random variable Y in B [6]. Then, along

the subsubsequence, z*(X,) 4, x*(Y) for every x* € B*, and thus z*(Y) 4

x*(X), which implies Y dx , see Theorem 17.3. Hence every subsequence
has a subsubsequence converging (in distribution) to X, which implies that
the full sequence converges. ([

In Hilbert spaces, we can use the second moment to deduce tightness.
We regard as usual the second moments as operators on H; recall that
they always are positive operators by Theorem 9.4. Recall also that if the
second injective moment E X®? exists (in any sense, e.g. Dunford) and is
a trace class operator, then the projective moment E X®? exists too, in
Bochner (and thus Pettis) sense by Theorem 9.10. (And conversely, see
Corollary 9.11.) Moreover, the projective and injective second moments are
then given by the same operator, so it does not matter which of them we
use.
We identify H®H with the space N'(H) of nuclear (trace class) operators
on H, see Section 9. For operators T, U in a Hilbert space H, we let as usual
T < U mean (Tz,z) < (Ux,z) for every x € H; in particular, T > 0 (T is
positive) if (T'z,z) = 0.

Theorem 18.12. Let H be a separable Hilbert space, and let {X, : o € A}
be a family of H-valued random variables. Suppose that there is a nuclear
operator T € HRQH = N(H) such that EX®? < T for every a € A, with the
moment existing in Dunford sense. Then {X,, : a € A} is tight.

Proof. By the spectral theorem for compact self-adjoint operators, e.g. [13,
Corollary I1.5.4], there exists an ON basis (e;,) in H such that
Q0
T =) Anen®en, (18.10)

n=1

where A, is the eigenvalue corresponding to e, A, = 0 because T' = E X ?2 =
07 and 27?:1 >\n = HTHN(H) < Q0.
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Choose a positive sequence a,, — o0 such that Zle anAn < 00, and define

0

[z]]? == Y] anl(X, en)]? < c0.

n=1

Define K, := {x € H : |||z]|| < r}. It is well known (and easy to see, e.g.
using [42, Lemma 2.2]) that each K, is a compact subset of H. Moreover,
for each «, using (6.3) and (18.10),

o0 o0
E |||Xa|||2 = Z anE|<Xaven>|2 = Z an<EX§26na€n>
n=1 n=1
[ee] e ¢]
< Z an{Ten, eny = Z An Ay < CO.
n=1 n=1
Hence, by Markov’s inequality, P(Xo ¢ K;) < Y00 | anAn/r? — 0 as 7 — o0,
uniformly in a € A, which shows that {X,} is tight. O

Theorem 18.13. Let H be a separable Hilbert space, and let {X, : o € A}

be a family of H-valued random variables. If the family {E X§2 ca€ A} of
projective second moments is relatively compact in HOH = N(H), with the
moments existing in Pettis sense, then {X, : a € A} is tight.

Proof. Consider any sequence (Xg,, )iy with ap, € A, n > 1. By the com-
pactness assumption, there is a subsequence, which we simply denote by
(X,), such that EX®? — V in HOH = N(H) for some V € N(H). By
taking a further subsequence, we may assume that

|E X2 — V| <27 (18.11)

Let T, := EX§2 — V; this is a symmetric nuclear operator and the corre-
sponding positive operator |T},| := (T7*T},)"/? satisfies

Tl ey = 1Tnlarcey < 27" (18.12)

Define T := V + >, |T,,| € N(H), where the sum converges in N'(H) by
(18.12). Note that for any = € H,

(E Xf??:c,@ =Thz,z) + Vr,z) < (Tylz,z) + Va,z) < Tz, z).

Thus, E X¥2 < T. By Theorem 18.12, the sequence (X,,) is tight, and thus
there is a subsequence that converges in distribution.

We have shown that every sequence (X, ) has a subsequence that con-
verges in distribution; this shows that {X,} is tight. O

This leads to the following convergence criterion, combining the second
projective and arbitrary injective (or, equivalently, weak) moments. Com-
pare Theorems 18.3 and 18.6.
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Theorem 18.14. Suppose that X and X,, n = 1, are H-valued random
variables, where H is a separable Hilbert space. If IEX§>2 - EX®2 4y
H®? = N(H) and EXS 25 EX®k i HE* for every k > 1, with all
moments existing in Pettis sense, and furthermore every {y,X), y € H,
satisfies the Carleman condition (17.1), then X, 4 X.

Proof. Since the sequence E X?Q converges, it is relatively compact, and thus
Theorem 18.13 shows that the sequence (X,,) is tight. The result follows
from Corollary 18.11. (]

We do not know whether there are similar results for other Banach spaces.
Example 18.5 shows that convergence of moments is not enough to pro-
vide tightness in general. Note that a commonly used sufficient condition
for tightness of a family {X,} in C]0, 1], assuming {X,(0)} tight, is that
E(X4(s) — Xo(t))* < Cls — t|® for some C < o0, B > 1 (typically, 3 = 2)
and all s,t € [0,1]. (See [5, Theorem 12.3 and (12.51)] for a more general
result, and [5, Theorem 15.6] for a similar result for D[0,1].) By expanding
the fourth power and using (11.2), this can be seen as a continuity condi-
tion on the fourth moments E X&* € C([0,1]*). This suggests that also for
other spaces, it might be possible to find tightness criteria using suitable
subspaces of B® or B®%. We have, however, not explored this further.

APPENDIX A. THE REPRODUCING HILBERT SPACE

In this appendix (partly based on [42, Chapter 8]) we study a construction
closely related to the injective second moment, and explore the connection.
We suppose that X is weakly measurable and furthermore that z*(X) €
L%(P) for every z* € B*; this is by Lemma 6.8 equivalent to the existence
of the weak second moment E(z}(X)z%(X)), z¥,z5 € B*. Furthermore,

this holds whenever the injective second moment E X®? exists in Dunford
sense, and the converse holds under weak conditions, for example when B
is separable, see Theorem 6.10.
By Remark 5.11, then T : B* — L%(P) and T% : L*(P) — B**, and thus
the composition T%Ty : B* — B**. This operator is characterised by
(TTxa*,y*) = (Txz*, Txy*) = E(z*(X)y* (X)). (A.1)

In other words, T{Ty : B* — B** is the operator corresponding to the
weak moment, seen as a bilinear form B* x B* — R.

By (5.1), (5.3) and Remark 5.11, or by (5.2) and (A.1),
TxTxaz* = E(z*(X)X), (A.2)
with the expectation existing in Dunford sense.

Lemma A.l. Suppose that x*(X) € L?>(P) for all z* € B*. Then the
following are equivalent.

(i) X is Pettis integrable, i.e., E X exists in Pettis sense.
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(ii) T% : L*(P) — B.
(iii) T%Ty : B* — B.

Proof. (i) < (ii): By Remarks 5.3 and 5.11.

(i) = (iii): Trivial.

(ili) = (ii): If (iii) holds, then 7% maps im(Ty) into B, and thus
T%(im(Ty)) € B. Since im(Ty )t = ker(T%), it follows that T% : L*(P) —
B. ]

By Remark 5.11, the assertions (i)—(iii) in Lemma A.1 hold whenever B
is separable, and more generally when X is weakly a.s. separably valued.

Recall from Section 4 that B®B can be regarded as a subspace of L(B*; B).
If the injective second moment E X ®2 exists in Pettis sense, then by (4.9),
(6.3) and (A.1), E X®2 € B®B corresponds to the operator T%Ty. (In par-
ticular, T3 Ty € L(B*, B) so X is Pettis integrable by Lemma A.1.) Hence
T5%Tx can be seen as a form of the injective second moment.

Remark A.2. Note that if, for example, B is separable, then T%Ty €
L(B*,B) by Lemma A.1. However, it does not always correspond to an
element of B®B. For example, if B = ¢y and X is as in Example 7.5, then

E X®2 is the infinite diagonal matrix (Pn@2 6pmn )

o ne1, and the corresponding

operator TETy @ ¢ = (' — ¢y is the multiplication operator (b,){ >
(pna2b,). Choosing a, such that p,a2 = 1, E X®? is thus the (infinite)
identity matrix and T5 Ty is the inclusion map ' — ¢p; in this case EX ®2
exists in Dunford sense but not in Pettis sense by Example 7.5, and T Ty €
L(c§,co) but T¥Ty ¢ co®co. (Recall from Theorem 12.1 that co®cy =
co(N?), so the identity matrix is not an element of ¢y®cy.)

Assume in the remainder of this appendix also that the assertions of
Lemma A.1 hold. (Recall that this is the case for example if B is separable,

or if E X®? exists in Pettis sense.) Thus Ty : B* — L2(P), T% : L%(P) - B
and T%Ty : B* — B. Furthermore, im(7Ty )" = ker(T%) and thus im(T}y) =
ker(T5%)*.

T% induces an bijection of ker(T% )+ onto im(7%) S B. Let Hy be im(T%)
equipped with the inner product induced by this bijection, i.e.,

@y = (T ™ e, (TX) ™ P (A-3)

where (%)™ : Hx — ker(T%#)t < L*(P). Thus Hx is a Hilbert space
isomorphic to ker(T%)* and T% is a Hilbert space isomorphism im(7Ty) =

ker(T#)t — Hx. Hy is called the reproducing kernel Hilbert space cor-
responding to X [42]. Note that Hx < B with a continuous inclusion,
since T% : ker(T%)* — B is continuous. Furthermore, im(7) is dense in
im(Ty) = ker(T%)*, and thus im(T%Ty) is dense in Hy.
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The unit ball Kx of Hx is the image under 7% of the unit ball of L?(P).
The latter unit ball is weakly compact, and since 7% : L?(P) — B is contin-
uous, and therefore weakly continuous, Kx is a weakly compact subset of
B. In particular, Kx is closed in B.

If x € Hx and o* € B*, then T{Tyz* € Hx and

(TXTxa* aymy = (Txa™, (TX) " o) = &*, TR(TX) " ) = (¥ 2). (AA4)

Hence, the operator TxTy : B* — Hx < B is the adjoint of the inclusion
Hx — B. Furthermore, by (A.4) and (A.1), for z*,y* € B*,

(TXTxa", TXTxy* )y = (@* Tk Txy") = E(2"(X)y*(X)). (A5

The operator T Ty and the Hilbert space Hx determine each other; more
precisely, we have the following.

Theorem A.3. If X and Y are B-valued random wvariables such that
Ty, Ty : B* - L*(P) and T%, Ty : L*(P) — B, then the following are
equivalent:
(i) Hx = Hy (as vector spaces with given inner products).

) The unit balls Kx and Ky are the same (as subsets of B).
) TETy = TET, .
(iv) E(zf(X)a3(X)) = E(2}(Y)z5(Y)) for every x}, a5 € B*.

)

sense, or that B is separable (in which case the moments exist at
least in Dunford sense).

Proof. (i) < (ii): Each Hilbert space determines its unit ball. Conversely,
the unit ball determines the space and its norm, and thus the inner product
by the polarisation identity {(z,y) = 1(|z + y||> — |z — y||*).

(i) = (iii): Immediate from (A.4).

(ili) = (i): T%Ty determines both the set im(7T%7y) < Hx and, by
(A.5), the inner product in Hx restricted to this subspace; since im(7T% 7y )
is dense in Hy, and Hyx continuously included in B, this determines Hx.

(iii) <= (iv): By (A.1).

(iv) <= (v): By Corollary 6.14 or 6.12. O

As said above, T{T can be seen as the second injective moment of X;
by Theorem A.3, also the space Hx can be seen as a manifestation of the
second injective moment.

The space Hyx is important for the law of iterated logarithm in Banach
spaces, since the unit ball Kx turns out to be the natural limit set, see
Ledoux and Talagrand [42, Chapter 8] for a detailed discussion. In particular
[42, Theorem 8.5], if B is separable and S, = > ; X; where X; are indepen-
dent copies of X, with E X = 0, and further the sequence S,,/v/2nloglogn is
a.s. relatively compact (which holds under rather general conditions, but not
always), then its set of limit points is a.s. Kx. See also [1, 2] for exceptional
cases where Hx still is important.



HIGHER MOMENTS OF BANACH SPACE VALUED RANDOM VARIABLES 99

Example A.4. Let W e C][0, 1] be standard Brownian motion, see Exam-
ples 5.12 and 11.11. By (5.5) and an integration by parts,

J W) du(t) J uft 1] dW (). (A.6)

Hence Im(7Tx) is the space of stochastic integrals S g(t) dW(t) where g is
a deterministic function of the type g(t) = p[t,1] with p € MJ0,1], i.e., a
function g on [0,1] of bounded variation. Since || §gdW| 2@y = glr2j01]
and the functions of bounded variation are dense in L2[0,1], it follows that

Tm(Tx) — ”01 gdW : g L2[0, 1]} | (A7)

Moreover, by (5.6),

TX(J g ) <W ") dW(s)> _ Jot os)ds.  (A8)

Hence the reproducing Hilbert space Hx is given by

Hx = {Ltg(s)ds:geL2[0,1]}; (A.9)

equivalently, this is the space of absolutely continuous functions f on [0, 1]
with f(0) = 0 and f’ € L?[0,1]; the norm is |f/|z2. This is the usual
Cameron—Martin space, see e.g. [37, Example 8.19]. (See [37, Section VIII.4]
for a generalization to more general Gaussian processes.) Note that the law
of iterated logarithm for Brownian motion [38, Theorem 27.18] says that the
cluster set of Ys(t) := W (st)/v/2sloglog s € C[0,1] as s — o0 a.s. is the unit
ball Kx of Hy; this is another example of the connection between the law
of iterated logarithm and the reproducing Hilbert space.

Remark A.5. The name reproducing Hilbert space is in a more general
context used for a Hilbert space H of functions on some set 7 such that
each point evaluation f — f(¢) is a continuous linear functional on H,
see Aronszajn [3] and e.g. [37, Appendix F]. The definition implies that
for each t € T there is an element K; € H such that f(t) = {f,Kn
for all f € H. In particular, K¢(t) = (K, K¢)g; the symmetric function
K(s,t) := Ky(t) = (K, Kyy on T x T is known as the reproducing kernel,
see [37, Theorem F.3] for some of its basic properties.

We can connect the space H x constructed above to this general setting by
taking 7 = B* and regarding elements of B as functions on B* in the usual
way, regarding = € B as the function z* — {(x,2*). The point evaluations
are thus the elements x* € B*, which are continuous on Hx < B, and (A.4)
shows that

Ko = TxTxx™; (A.10)

hence the reproducing kernel is, using (A.5), given by
K(z*,y*) = E(z*(X)y*(X)). (A.11)



100 SVANTE JANSON AND STEN KAIJSER

In other words, Hx is a reproducing Hilbert space of functions on B*, and
the reproducing kernel equals the weak second moment of X given by (1.1).

We mention also that the construction above of Hy is an instance of [37,
Theorem F.5], taking (in the notation there) 7 = B*, hy+ = x*(X), and
H = Im(Ty), the closed linear subspace of L?(P) spanned by {z*(X): 2* €
B*}. (Then the operator R defined there equals our 7% by (5.3) and (5.2).)

We finally mention the following result, adapted from [42, Lemma 8.4].
For simplicity, we consider only separable B. (Note that then T% : L?(P) —
B by Remark 5.11.) We do not know whether the result extends to non-
separable spaces.

Theorem A.6. Suppose that B is separable and that z*(X) € L*(P) for
every x* € B¥. Then the following are equivalent.

(i) KX is a compact subset of B.

(ii) Tx : B* — L%(P) is a compact operator.

(iii) TX L?(P) — B is a compact operator.

(iv) T{Ty : B* — B is a compact operator.

(v) If ¥ 5 0 in B*, then Ex*(X)% — 0. In other words, Tx : B* —
L2(P) is sequentzally weak™®-norm continuous.

(vi) The family {x*(X)? : |z*| < 1} of random wvariables is uniformly
integrable. _

(vii) The injective moment E X®? exists in Pettis sense.

Proof. (i) <= (iii): By the definition of compact operators (which says that
Kx is relatively compact, i.e., Ky is compact) and the fact shown above
that Kx is a closed subset of B.

(ii) <= (iii): Standard operator theory [13, VI.3.4].

(iii) = (iv): Immediate.

(iv) = (v): Let o ™% 0 in B*. If ¢ € L?(P), then T3¢ € B, and
thus (Txxk, &) = (x}, TEE) — 0; hence Txz! — 0 in L*(P) and thus
T5Txx;, 5 0 in B. Moreover, the sequence z; is bounded by the uniform
boundedness principle since it is weak™ convergent. Since T5T'y is a compact
operator, it follows that the sequence TxT'xx; is relatively compact in B,
and thus the weak convergence T\ Txx;, > 0 implies norm convergence,
ie., [|[T%Txx}| — 0. Consequently, (A.1) implies

Ew( ) <TXTX:Cn7 Ly

(v) = (ii): Let K* be the closed unit ball of B* with the weak™ topology;
then K* is compact by Alaoglu’s theorem [13, Theorem V.3.2]. Moreover,
since B is separable, K™* is metrizable, and thus sequential continuity on
K* is equivalent to ordinary continuity. Hence (v) implies that Tx is a
continuous map from K* into L?(P). Consequently its image is compact,
which means that T’y is a compact operator.

(ii) = (vi): By (ii), the family {z*(X) : ||=*|| < 1} is relatively compact
in L?(P), which implies that {z*(X)? : |z*|| < 1} is uniformly integrable.

< |TxX Txwp| sl )sx — 0.
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(For example because f +— f2 is a continuous map L?(P) — L'(P), so the
latter family is relatively compact in L'(P), and thus uniformly integrable
by [22, Corollary IV.8.11].)

(vi) = (v): If 2 25 0, then 2*(X)? — 0 a.s., and thus uniform
integrability implies E z(X)2 — 0.

(vi) <= (vii): By Theorem 6.19(ii)(a). O

APPENDIX B. THE ZOLOTAREV DISTANCES

The Zolotarev distance (5(X,Y’), where the parameter s > 0 is a fixed
real number, is a measure of the distance (in some sense) between the distri-
butions of two random variables X and Y with values in the same Banach
space B. We give the definition of (s in Subsection B.2 below and explain
the connection to tensor products and moments, but first we recall some
preliminaries on Fréchet derivatives in Subsection B.1.

Note that (s(X,Y) depends only on the distributions £(X) and L(Y); we
may write ((£(X),L(Y)) = (s(X,Y), and regard (s as a distance between
probability distributions on B, but it is often convenient to use the notation
(s(X,Y) with random variables X and Y.

It is important to note that (s(X,Y’) may be infinite. Hence (s defines a
metric only on suitable classes of probability distributions on B, where we
know a priori that (s(X,Y) < co.

B.1. Fréchet differentiablity. We recall some well-known facts about de-
rivatives of Banach space valued functions, see e.g. [11] for details.

Let B and B; be Banach spaces, and let U be a non-empty open subset
of B. A function f : U — By is (Fréchet) differentiable at a point x € U if
there exists a bounded linear operator T': B — By such that

fly) = f(z) =Ty — x) = o(|ly — 2|) (B.1)
as y — x. The linear operator T' € L(B; By) then is uniquely determined; it
is called the derivative of f at x and is denoted by f'(z) or Df(x).

The function f : U — Bj is said to be differentiable if it is differentiable
at every x € U. In this case, the derivative f is a function U — L(B; By).
If furthermore f’ : U — L(B; By) is continuous, f is said to be continuously
differentiable.

Since L(B;Bj) is a Banach space, we may iterate: If the derivative
'+ U — L(B; B;) is differentiable, its derivative f” is called the second
derivative of f, and so on. Note that f” then is a function on U with values
in L(B; L(B; B1)) = L(B?; By), so the second derivative f”(x) at a point
x € U is a bilinear map B x B — Bj. More generally, the k:th deriva-
tive f(¥)(x), if it exists, is a k-linear map B* — Bj. It can be shown [11,
Théoréme 5.1.1] that this map is symmetric. Since L(B*; By) = L(B%*; By)
by an extension of Theorem 4.6, we can also regard the k:th derivative
f®)(x) as a (symmetric) linear map B®* — B;. We may take advantage of
this by writing f® (x)(y,...,y) as f®)(z)(y®*).
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CY(U; By) is defined to be the linear space of all continuous functions f :
U — By, and CY(U; By) is the linear space of all continuously differentiable
functions f : U — B;. More generally, C*(U; By) is the linear space of all
k times continuously differentiable functions U — By; this may be defined
formally by induction for k = 1 as the space of all differentiable functions
f:U — By such that f' € C*=1(U; L(B; By)).

Note that (B.1) implies continuity at z; thus a differentiable function is
continuous. Hence, C°(U; B1) > CY(U; By) > C*(U;By) o ---.

For 0 <« < 1, we define Lip, (U; B1) to be the linear space of all functions
f U — Bj such that

i, = sup L =001 (B2
is finite. More generally, for s > 0, we write s = m + v with m € {0,1,2...}
and 0 < <1 (thus m = [s] — 1) and define
Lip,(Us; B1) := {f € C"™(U; By) : f'™ € Lip, (U; L(B™; B1))}.  (B.3)
with
| Flip, = 1/ Jwip, - (B.4)

It follows from a Taylor expansion [11, Théoreme 5.6.1] at 0 that if f €
Lip,(B; B1), then

flz) =] %f(k)(O)(x@“) +O(If lip, I=[°) (B.5)
k=0 "

where the implicit constant is universal (it can be taken as 1). (The term
with £ = 0 in (B.5) is just the constant f(0).) In particular,

[f(@)] =01 +|z[*), xzeB. (B.6)
Note that || |Lip, is only a seminorm. In fact, we have the following.

Lemma B.1. Let f : U — By where U S B is connected, and let s > 0.
Then the following are equivalent, with m = [s] — 1,
(1) IfllLip, = 0
(ii) fO™ is constant.
(iit) fOm+)(z) =0 for allz e U.
(iv) f(x) =X o ak(z,...,x), where ay € L(B¥; By) is a k-linear map.

Proof. (i) < (ii): It follows from (B.2) and (B.4) that
[Flip, =0 = [F"|uip, =0 = f™ (@) = f"™(y) for any z,y € U.

(ii) = (iii): Obvious by the definition of the derivative.

(iii) = (iv): Suppose for simplicity that U is convex. (The general case
follows easily, but we omit this.) By a translation we may assume that 0 € U,
and then (iv) follows from Taylor’s formula [11, Théoreme 5.6.1]. (We have

ay = f(0)/k.)
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(iv) = (ii): It is easily seen by induction that if each oy is symmetric,
as we may assume by symmetrization, then for 1 < j < m,

k!
(k=)

ak(xv"'axaylv"'vyj)

@) =
k=3

(with k — j arguments of aj, equal to z); in particular, £ (z) = m!a,,
which does not depend on x. O

B.2. Zolotarev distances. We now define the Zolotarev distance (s as
follows, for any s > 0; see Zolotarev [66, 67, 68, 69] and e.g. [48, 49, 60] for
further details.

Let B be a Banach space, and suppose that every bounded multilinear
form B* — R is B,-measurable (i.e., measurable for the product o-field BX),
for any k > 1. (For k = 1, this holds by the definition of B,,.) If B is sepa-
rable, this assumption always holds, since every bounded multilinear form is
continuous and thus Borel measurable on B¥; moreover, when B is separable
the Borel o-field on B* equals the product o-field B* and B = B,,. The main
example with B non-separable is D[0, 1], where B,, = D by Theorem 15.5
and every multilinear form is D-measurable by Theorem 15.8. (Another ex-
ample is ¢o(S), where B,, = C by Theorem 12.4 and every multilinear form
is C-measurable as a consequence of Lemma 12.2.)

We let Lip¥ (B; R) be the set of all B,,-measurable functions in Lip,(B; R);
this is evidently a subspace of Lip,(B; R). If B is separable, then Lipy'(B;R) =
Lip(B;R), since every function in Lip,(B;R) is continuous and thus Borel
measurable, and B = B,,.

Let X and Y be two weakly measurable B-valued random variables, and
suppose that E|X|*,E|Y|* < co. (We use upper integrals here, since the
norms | X||, |Y| are not necessarily measurable.) Define

((X,Y) :=sup{|E f(X) —Ef(Y)| : f € Lip(B;R) with | f|Lip, < (1}' |
B.7

By assumption, f is By-measurable, and thus f(X) is measurable. More-
over, by (B.6), |f(X)| = O(1 + | X||*) and by assumption E|X|* < o0; hence
E|f(X)| < o. Similarly, E|f(Y)] < oo, and thus |E f(X) — E f(Y)]| is
well-defined and finite for every f € Lip¥(B;R). Thus ((X,Y) is a well-
defined number in [0, co]. Moreover, E f(X) and E f(Y) depend only on the
distributions £(X) and £(Y'), and thus (s is really a distance between the
distributions; we may write (s(L£(X), L(Y)) = ((X,Y).
By (B.7) and homogeneity, for any f € Lipy (B;R), if ((X,Y) < o0,

[Ef(X) —Ef(YV)] < |flLip, G(X, ). (B-8)

It is clear that (s(X,Y) = 0 with (;(X, X) = 0, and that (s is symmetric
and that the triangle inequality holds. Moreover, if z* € B*, then %" €
Lip,(B;C) for any s > 0 as is easily seen [68]. Hence, by taking real and
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imaginary parts, (B.8) implies that if (5(X,Y’) = 0, then
E (0 _ | e () (B.9)

and it is well-known that this implies that £(X) = L(Y) on By. (In fact,
(B.9) implies, by replacing z* by tz* with ¢t € R, that 2*(X) and z*(Y)
have the same characteristic function, and thus z*(X) 4 z*(Y) for every
x* € B*. This implies £(X) = L(Y) on By, as seen in Theorem 17.3 and its
proof.) Consequently, (s is a metric on any set of probability distributions
on (B, B,,) such that (s is finite.

However, for s > 1, (;(X,Y) may be infinite. The following lemma says
exactly when (; is finite.

Lemma B.2. Suppose that X and Y are weakly measurable B-valued ran-
dom wariables such that E| X|*,E|Y|* < 0o. Then the moments E X®* and
EY®* ezist in Dunford sense for 1 < k < m = [s] — 1, and the following
are equivalent.

(i) ¢(X,Y) < 0.

(i) Ea(X,...,X) = Ea(Y,...,Y) for every k = 1,...,m and every
a € L(B*;R).

(i) EX®* = EY®* for 1 < k < m.

In particular, if 0 < s < 1, then (ii) and (iii) are vacuous, and thus
(s(X,Y) < oo for all such X and Y.

Proof. If o € L(B*;R) is any k-linear form, then x — a(z,...,z) is B,-
measurable by assumption and thus a(X,..., X) is measurable. Further-
more, if 1 <k <m < s, then |a(X,..., X)| < |lof|X]|* = O + || X|*), and
thus a(X,...,X) is integrable. Theorem 6.15 shows that E X®* exists in
Dunford sense for 1 < k < m, and the same holds for EY®k,

(i) = (ii): Suppose that a € L(B¥;R) with k < m, and let f(z) :=
afz,...,x). By assumption, f is B,-measurable, and by Lemma B.1 f €
Lipy(B;R) with || f||Lip, = 0. Consequently, f € Lipy' (B;R), and if (,(X,Y) <
oo, then (B.8) yields E f(X) =E f(Y).

(ii) = (i) Suppose that f € Lipg'(B;R) with || f|Lip, < 1. By (B.5), there
exist k-linear forms ay = f*)(0)/k! € L(B*;R) and a function g : B — R
with |g(z)| < |z|*® such that

f@)y= > ap(z,...,z) +g(). (B.10)
k=0

(Here, ag = f(0) is just a real constant.) By assumption, f(X) and all
ak(X, ..., X) are measurable, and thus g(X) is measurable, and similarly
g(Y) is measurable. Hence we can use the decomposition (B.10) and obtain
using (ii) (and the fact that g is a constant), with all terms finite by the
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assumptions E| X |*, E[|Y|* < oo,
[Ef(X) —Ef(Y)|

= i]Eak(X,...,X)—i-IEg(X)— iEak(Y,...,Y)—Eg(Y)
k=0 k=0

= [Eg(X) —Eg(Y)| < E|g(X)| + Elg(Y)| <E[X|* + E[Y]*,
Taking the supremum over all such f yields
(X, Y) <E|X|F +E|Y]* < oo. (B.11)
(ii) <= (iii): This is Corollary 6.17. O

Example B.3. If 0 < s < 1, then Lemma B.2 shows that (; is a metric on
the set of all probability distributions on (B, B,,) with a finite s:th moment
of the norm E| X|J*.

If 1 < s <2, and we still assume E||X||*, E[|Y|® < o0, Lemma B.2 shows
that (5(X,Y) < oo if and only if EX = EY. Hence (; is a metric on the
set of probability distributions with E|X||* finite and a given expectation.
In this case it is natural to work in the set of probability distributions with
expectation 0, which easily is achived by subtracting the means from the
variables, so this is no serious restriction.

The next case 2 < s < 3 is substantially more complicated. Lemma B.2
shows that we need not only EX = EY but also EX®? = EY®? For
real-valued random variables, it is standard to obtain this by considering
the standardized variable (Var X) /2(X — E X). This extends to finite-
dimensional spaces, where Var X is the covariance matrix, see e.g. [48], but
not to infinite-dimensional ones, and this is a serious problem when using (
with s > 2 in Banach spaces. Nevertheless, it is at least sometimes possible
to modify the variables to achieve the desired exact equality of the second
moments, see e.g. [49], and results like Theorems 1.1 and 1.3 then are useful.

For s > 3 we need not only equal first and second moments, but also
equal third moments E X®3 = EY®3, This can in general not be achieved
by any norming, not even for real-valued random variables. If the variables
are symmetric, however, all odd moments vanish. Thus, for s < 4, ( is
a metric of the set of all symmetric probability distributions with a given
second projective moment, and E|| X |* finite. It seems likely that there might
be applications with symmetric random variables and 3 < s < 4, but we do
not know of any such cases, or of any other applications of (s with s > 3.

The main use of the Zolotarev distances is to prove convergence in dis-
tribution; the idea is that if (X)), is a sequence of B-valued random

variables, we can try to prove X, 4 x (for a suitable random variable X
in B) by first proving

(X, X) — 0. (B.12)
It turns out that (B.12) is by itself sufficient for convergence in distributions
in some Banach spaces, for example when B is a Hilbert space [31, 19], but
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not always, for example not in C[0, 1] where extra conditions are needed
[49, 60].

Example B.4. One example where this approach has been particularly suc-
cessful is the contraction method used to prove convergence in distribution
of a sequence X, of random variables when there is a recursive structure of
the type

K
X0 23 A XD b, (B.13)
r=1
where (X](-l));-ozo, e (XJ(-K));’-O:O are i.i.d. copies of (X,)2,, and A, p, I, p

and b, are given random variables independent of all XJ(-T). (The idea is,
roughly, to first find a good candidate X for the limit by formally letting
n — oo in (B.13), assuming that A, ,, I,, and b, converge in some suitable
way. Then one uses (B.13) to obtain a recursive estimate of the distance
(s(Xn, X), and use this to show that (s(X,,X) — 0.) This method was
introduced for real-valued random variables by Résler [54, 55, 56], and has
been extended to variables with values in R? [47, 48], LP[0, 1] [25], Hilbert
spaces [19], C[0,1] and DJ0, 1] [49, 60]; see further [49, 60] and the further
references given there. These papers use not only the Zolotarev distance
(s considered here but also some other probability metrics; nevertheless the
Zolotarev distances are essential in several of the applications. Moreover, it
is easily verified that for any real constant ¢,

X, tY) = [t]°¢(X,Y) (B.14)
and, for any bounded linear operator T' € L(B; B),
GTX,TY) < TG(X,Y). (B.15)

In applications, these relations are typically applied with |¢| or |T'|| small,
and it is then advantageous to take s large. In fact, in some applications
(see e.g. [49]) one is forced to take s > 2 in order to obtain the required
estimates, and then, as seen in Lemma B.2 and Example B.3, it is essential
to have (or arrange) equalities of the second moments E X®2 = E X®?2 in
order for (4(X,,X) < oo (which is necessary in order to even start the
recursion sketched above).
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