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SCALING LIMITS OF RANDOM PLANAR MAPS WITH
A UNIQUE LARGE FACE1

BY SVANTE JANSON AND SIGURDUR ÖRN STEFÁNSSON

Uppsala University, and Uppsala University and Nordita

We study random bipartite planar maps defined by assigning nonnegative
weights to each face of a map. We prove that for certain choices of weights a
unique large face, having degree proportional to the total number of edges in
the maps, appears when the maps are large. It is furthermore shown that as the
number of edges n of the planar maps goes to infinity, the profile of distances
to a marked vertex rescaled by n−1/2 is described by a Brownian excursion.
The planar maps, with the graph metric rescaled by n−1/2, are then shown
to converge in distribution toward Aldous’ Brownian tree in the Gromov–
Hausdorff topology. In the proofs, we rely on the Bouttier–di Francesco–
Guitter bijection between maps and labeled trees and recent results on simply
generated trees where a unique vertex of a high degree appears when the trees
are large.

1. Introduction. A planar map is an embedding of a finite connected graph
into the two-sphere. Two planar maps are considered to be the same if one can be
mapped to the other with an orientation-preserving homeomorphism of the sphere.
The connected components of the complement of the edges of the graph are called
faces. The degree of a vertex is the number of edges containing it and the degree
of a face is the number of edges in its boundary where an edge is counted twice if
both its sides are incident to the face.

In recent years, there has been great progress in understanding probabilistic as-
pects of large planar maps; we refer to [42] for a detailed overview. One approach
has been to study the scaling limit of a sequence of random planar maps obtained
by rescaling the graph distance on the maps appropriately with their size and taking
the limit as the size goes to infinity. This notion of convergence involves viewing
the maps as elements of the set of all compact metric spaces, up to isometries,
equipped with the Gromov–Hausdorff topology. Le Gall showed that the scaling
limit of uniform 2p-angulations (all faces of degree 2p) exists along a suitable
subsequence and he furthermore showed that its topology is independent of the
subsequence and proved that its Hausdorff dimension equals 4 [39]. Subsequently,
Le Gall and Paulin proved that the limit has the topology of the sphere [43]. Re-
cently, Miermont showed that in the case of uniform quadrangulations the choice
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of subsequence is superfluous and the scaling limit in fact equals the so-called
Brownian map up to a scale factor [46]. Le Gall proved independently that the
same holds in the case of uniform 2p-angulations and uniform triangulations [40].

The present work is motivated by a paper of Le Gall and Miermont [41] where
the authors study random planar maps which roughly have the property that the
distribution of the degree of a typical face is in the domain of attraction of a sta-
ble law with index α ∈ (1,2). The model belongs to a class of models in which
Boltzmann weights are assigned to the faces of the map as we will now describe.
Let M∗

n denote the set of rooted and pointed bipartite planar maps having n edges:
the root is an oriented edge e = (e−, e+) and pointed means that there is a marked
vertex ρ in the planar map. The assumption of pointedness is for technical reasons.
For a planar map m ∈ M∗

n, denote the set of faces in m by F(m) and denote the
degree of a face f ∈ F(m) by deg(f ). Note that the assumption that m is bipartite
is equivalent to assuming that deg(f ) is even for all f . Let (qi)i≥1 be a sequence
of nonnegative numbers and assign a Boltzmann weight

W(m) = ∏
f ∈F(m)

qdeg(f )/2(1.1)

to m. The probability distribution μn is defined by normalizing W(m)

μn(m) = W(m)/Zn,(1.2)

where

Zn = ∑
m′∈M∗

n

W
(
m′)(1.3)

is referred to as the finite volume partition function. We will always assume that
qk > 0 for some k ≥ 2 to avoid the trivial case when all faces have degree 2. Note
that for a given random element in M∗

n distributed by μn the marked vertex ρ

is uniformly distributed. The motivation for studying these distributions is first
of all related to questions of universality, namely, there is strong evidence that
under certain integrability condition on the weights qi the scaling limit of the maps
distributed by μn is the Brownian map up to a scale factor [44]. Furthermore,
the distributions are closely related to distributions arising in certain statistical
mechanical models on random maps as is discussed in [41].

In [41], the authors show, among other things, that in the large planar maps
under consideration there are many “macroscopic” faces present and that the scal-
ing limit, if it exists, is different from the Brownian map. The presence of these
large faces in the scaling limit can be understood by considering the labeled trees
(mobiles) obtained from the planar maps using the Bouttier–di Francesco–Guitter
(BDG) bijection [16]; see Section 2. For convenience, we rewrite the sequence
(qi)i≥1 in terms of a new sequence (wi)i≥0 defined by w0 = 1 and

wi =
(

2i − 1
i − 1

)
qi, i ≥ 1.(1.4)
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Through yet another bijection between mobiles (with labels removed) and trees
which we introduce in Section 3, the random trees corresponding to the maps dis-
tributed by μn can be viewed as so-called simply generated trees with weights wi

assigned to vertices of outdegree i. The choice of weights (qi)i≥1 in [41] corre-
sponds to choosing the weights (wi)i≥0 as an offspring distribution of a critical
Galton–Watson tree in the domain of attraction of a stable law of index α ∈ (1,2).
In this case, the random trees converge, when scaled appropriately, to the so-called
stable tree with index α. It follows from properties of the BDG bijection that the
large faces in the planar maps correspond to individuals in the stable tree which
have a macroscopic number of offspring, that is, vertices of large degree.

It was originally noted in [11] and recently developed further in [29, 30, 32,
36] that there exists a phase of simply generated trees where a unique vertex with
a degree proportional to the size of the tree appears as the trees get large. This
phenomenon has been referred to as condensation. The purpose of this paper is to
study the scaling limit of planar maps corresponding to the condensation phase of
the simply generated trees. The large vertex in the trees will produce a large face
in the planar maps in analogy with the situation in [41]. The weights which we
consider are chosen as explained below. Define the generating function

g(x) =
∞∑
i=0

wix
i(1.5)

and denote its radius of convergence by R. For R > 0, define κ = limt↗R
tg′(t)
g(t)

and for R = 0 let κ = 0. We will be interested in the following two cases, (C1)
and (C2), which are known to be the only cases giving rise to condensation in the
corresponding simply generated trees (see, e.g., [29]):

0 < R < ∞ and κ < 1.(C1)

R = 0.(C2)

In practice, we will consider the special case of (C1) when the weights furthermore
obey

wi = L(i)i−β(1.6)

for some β > 2 and some slowly varying function L and the special case of (C2)
when the weights furthermore obey

wn = (n!)α(1.7)

with α > 0. [By (1.4) and Stirling’s formula, (1.6) is equivalent to qi =
L′(i)4−i i1/2−β for another slowly varying function L′; the exponential factor 4i

does not matter when we fix the number of edges in the map, so we might as well
take qi = L′(i)i1/2−β . However, we will in the sequel use wi rather than qi .]
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We now introduce some formalism needed to state the results of the paper.
Let M∗ be the set of all pointed compact metric spaces viewed up to isometries,
equipped with the pointed Gromov–Hausdorff metric dGH [26]. Let e be a standard
Brownian excursion on [0,1] and denote by (Te, δe) Aldous’ continuum random
tree coded by e. Recall that Te = [0,1]/{δe = 0} where

δe(s, t) = e(s) + e(t) − 2 inf
s∧t<u<s∨t

e(u)(1.8)

and by abuse of notation δe is the induced distance on the quotient; see, for ex-
ample, [3, 42]. From here on, we will denote a random element in M∗

n distributed
by μn by (Mn,ρ); sometimes simplified to Mn. The graph distance in Mn will be
denoted by dn.

The main results of the paper are the following. In Theorem 4.2, we prove that
for the weights (1.6) and (1.7), the limit as n → ∞ of the profile of distances in
Mn to the marked vertex ρ, rescaled by (2(1−κ)n)−1/2, is described by a standard
Brownian excursion; see Section 4 for definitions and a precise statement. Second,
we prove the following theorem, which describes the limit of all distances (not just
to the root).

THEOREM 1.1. For the weights (1.6) and (1.7), the random planar maps
((Mn,ρ), (2(1 − κ)n)−1/2dn) distributed by μn and viewed as elements of M∗
converge in distribution to ((Te, ρ

∗), δe), where given Te, ρ∗ is a marked vertex
chosen uniformly at random from Te.

Note that the root edge in Mn is forgotten when we regard the maps as elements
of M∗. We can reroot the random tree Te at the randomly chosen point ρ∗; this
gives a new random rooted tree, which has the same distribution as Te, as shown
by [2], (20), but the point ρ∗ is now the root. Hence, the result in Theorem 1.1 can
also be formulated as follows.

THEOREM 1.2. For the weights (1.6) and (1.7), the random planar maps in
Theorem 1.1 converge in distribution in M

∗ to ((Te,0), δe), where 0 denotes the
root of Te.

Note that the limit Te is quite different from the Brownian map mentioned
above; it is a (random) compact tree, and thus contractible, that is, of the same
homotopy type as a point, and its Hausdorff dimension is 2 [24, 28]. Bettinelli [9]
showed a similar convergence of uniform quadrangulations with a boundary to-
ward Aldous’ continuum random tree when the length of the boundary grows suf-
ficiently fast and the distances in the quadrangulations are divided by the square
root of the length of the boundary (see also the work of Bouttier and Guitter [17]).
In this case, the boundary grows so fast that the faces disappear when rescaled
and the boundary folds into a tree. This is analogous to our situation where the
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FIG. 1. The convergence in Theorem 1.1. A face of large degree (light gray) appears as the planar
map gets larger and the boundary of that face collapses into a tree.

boundary of the large face folds into a tree; see Figure 1. Other examples of pla-
nar maps converging to Aldous’ continuum tree are stack triangulations [1] and
random dissections of polygons [20].

The paper is organized as follows. We begin in Section 2 by recalling the BDG
bijection between planar maps and planar mobiles. In Section 3, we introduce a
bijection from the set of planar trees to itself which allows us to translate results
on the condensed phase of simply generated trees to our setting. In Section 4, we
state and prove Theorem 4.2 which was described informally above. Section 5 is
devoted to the proof of Theorem 1.1. We end with some concluding remarks in
Section 6 and Appendix containing further results on the random Galton–Watson
trees used here and their relation to the two-type Galton–Watson trees used by
Marckert and Miermont [44].

2. Planar mobiles and the BDG bijection. In this section, we define pla-
nar trees and mobiles and explain the BDG bijection between mobiles and planar
maps. We consider rooted and pointed planar maps as is done in [43] which is
different from the original case [16] where the maps were pointed but not rooted.
(But see [16], Section 2.4.)

Planar trees are planar maps with a single face. It will be useful to keep this
definition in mind later in the paper but we recall a more standard definition below
and introduce some notation. The infinite Ulam–Harris tree T∞ is the tree having
a vertex set

⋃∞
k=0 N

k , that is, the set of all finite sequences of natural numbers, and
every vertex v = v1 · · ·vk is connected to the corresponding vertex v′ = v1 · · ·vk−1
with an edge. In this case, v is said to be a child of v′ and v′ is said to be the parent
of v. The vertex belonging to N

0 is called the root and denoted by r .
A rooted planar tree τ is defined as a rooted subtree of T∞ having the properties

that if v = v1 · · ·vk is a vertex in τ then v1 · · ·vk−1i is also a vertex in τ for ev-
ery i < vk . The vertices in a planar tree have a lexicographical ordering inherited
from the lexicographical ordering of the vertices in T∞. This order relation will be
denoted by ≤. Let �n be the set of rooted planar trees with n edges. We use the
convention that the root vertex is connected to an extra half-edge (not counted as
an edge) such that every vertex has degree 1 + the number of its children (1 + its
out degree). The number of edges in a planar tree τ will be denoted by |τ |.

Consider a tree τn ∈ �n and color its vertices with two colors, black and white,
such that the root and vertices at even distance from the root are white and vertices
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at odd distance from the root are black. Denote the black vertex set of τn by V •(τn)

and the white vertex set by V ◦(τn). If u is a black vertex let u0 be the (white)
parent of u and denote by ui the ith (white) neighbor of u going clockwise around
u starting from u0.

Assign integer labels 	n :V ◦(τ ) → Z to the white vertices of τn as follows: The
root is labeled by 0. If u is black and has degree k then

	n(uj+1) ≥ 	n(uj ) − 1(2.1)

for all 0 ≤ j ≤ k, with the convention that uk = u0. The pair θn = (τn, 	n) is called
a mobile and we denote the set of mobiles having n edges by �n.

The set �n × {−1,1} is in a one to one correspondence with the set M∗
n ac-

cording to (the rooted version of) the BDG bijection [16, 43]. We will denote the
BDG bijection by Fn :M∗

n → �n × {−1,1} and we give an outline of its inverse
direction below. Start with a planar mobile θn ∈ �n and an ε ∈ {−1,1}. The con-
tour sequence of θn is a list a0, a1, . . . , a2n−1 of length 2n containing the vertices
in the mobile (with repetitions allowed) constructed as follows. The first element
is a0 = r and for each i < 2n − 1 the element following ai is the first child (in the
lexicographical order) of ai which has still not appeared in the sequence or if all
its children have appeared it is the parent of ai . Extend this sequence to an infinite
sequence by 2n periodicity. The white contour sequence is defined as ci = a2i ,
i ≥ 0. The white contour sequence can be described as a list of the white vertices
encountered in a clockwise walk around the contour of the tree, which starts at the
root. For an index i ∈ N, define its successor as

σ(i) = inf
{
j > i :	n(cj ) = 	n(ci) − 1

}
,(2.2)

where the infimum of the empty set is defined as ∞. Add an external vertex ρ to
the mobile, disconnected from all other vertices, and write ρ = c∞. Also define
the successor of a white vertex ci as

σ(ci) = cσ(i).(2.3)

A planar map is constructed from θn by inserting an edge between ci and σ(ci) for
each 0 ≤ i < n and deleting the edges and black vertices of the mobile. The vertex
ρ corresponds to the marked vertex of the planar map. The root edge in the map is
the edge between c0 and σ(c0) and its direction is determined by the value of ε, if
ε = 1 (ε = −1) the root edge points toward (away from) the root of the mobile.

Thus, the white vertices in the mobile along with an additional isolated white
vertex ρ correspond to the vertices in the planar map and the black vertices in
the mobile correspond to the faces in the planar map, a face having a degree
two times the degree of its corresponding black vertex; see Figure 2 for an ex-
ample. Moreover, the labels in a mobile give information on distances to the
marked vertex ρ in the corresponding planar map m. Define the label of ρ as
	n(ρ) = minu∈V ◦(m) 	n(u) − 1. Then

dn(v, ρ) = 	n(v) − 	n(ρ), v ∈ V (m),(2.4)
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FIG. 2. An illustration of the BDG bijection. The edges in the mobile are solid and the edges in the
planar map are dashed.

where by abuse of notation 	n(v) stands for the label of the white vertex in the
mobile corresponding to the vertex v in the planar map.

The probability distribution μn on M∗
n is carried to a probability distribution

μ̃n on �n ×{−1,1} through the BDG-bijection, that is, μ̃n(A) = μn(F−1
n (A)) for

any subset A ⊆ �n ×{−1,1} and μ̃n can be described as follows: Let τn ∈ �n and
denote by λn(τn) the number of ways one can add labels to the white vertices of
τn according to the above rules. One easily finds that

λn(τn) = ∏
v∈V •

(
2 deg(v) − 1
deg(v) − 1

)
.(2.5)

This follows from counting the number of allowed label increments around each
black vertex v. The number of label increments around v is deg(v), call them
x1, x2, . . . , xdeg(v) in say clockwise order. The number of different configurations
is then given by ∑

x1+···+xdeg(v)=0
xi≥−1,∀i

1 = ∑
y1+···+ydeg(v)=deg(v)

yi≥0,∀i

1 =
(

2 deg(v) − 1
deg(v) − 1

)
,(2.6)

the number of compositions of deg(v) into deg(v) nonnegative parts.
A Boltzmann weight

W̃ (τn) = ∏
v∈V •

(
2 deg(v) − 1
deg(v) − 1

)
qdeg(v) = ∏

v∈V •
wdeg(v)(2.7)

is assigned to the tree τn and

μ̃n

((
(τn, 	n), ε

)) = W̃ (τn)/
(
λn(τn)Zn

)
,(2.8)

where 	n is any labeling of τn, ε ∈ {−1,1} and Zn = 2
∑

τn∈�n
W̃ (τn) is the finite

volume partition function defined in (1.3). Note that given τn the labels 	n are as-
signed uniformly at random from the set of all labelings and ε is chosen uniformly
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from {−1,1}. We will also find it useful to study the distribution of τn after forget-
ting about the labeling and the value of ε. For that purpose, we define ν̃n to be a
probability distribution on �n given by

ν̃n(τn) = ∑
	n,ε

μ̃n

((
(τn, 	n), ε

)) = 2W̃ (τn)/Zn.(2.9)

This distribution was shown by Marckert and Miermont [44] to be the distribu-
tion of a certain two-type Galton–Watson tree; see Appendix.

2.1. Distribution of labels in a fixed tree. We provide a result which we will
later need on the distribution of the maximum absolute value of the labels in a
mobile.

LEMMA 2.1. Let θn = (τn, 	n) ∈ �n be a mobile with τn fixed (nonrandom)
and the labels 	n chosen uniformly from the allowed labelings of the white vertices
of τn according to the rules (2.1). For every p > 0, there exists a constant C(p) > 0
independent of τn such that

E

(
sup

v∈V ◦(τn)

∣∣	n(v)
∣∣p)

≤ C(p)np/2.(2.10)

To prove this lemma, we relate the labels of τn to a random walk indexed by the
white vertices in τn. We start by proving the result for p > 2 and the general case
follows by Jensen’s inequality. In the following, we will let C1,C2, . . . be constants
which do not depend on the tree τn but may depend on other quantities which
will then be explicitly indicated. As before, denote the white contour sequence of
a mobile (τn, 	n) by (ci)0≤i≤n where by definition cn = c0. Let ξ1, ξ2, . . . be a
sequence of independent random variables identically distributed as

P(ξ1 = i) = 2−i−2, i = −1,0,1, . . . .(2.11)

(This is a shifted geometric distribution with mean 0.) The ξi will have the role of
jumps of the random walk. For each black vertex v ∈ τn, define the set Bv ⊆ N by

Bv = {i ∈N|ci−1 ∼ v and ci ∼ v},(2.12)

where v ∼ ci means that v and ci are nearest neighbors in τn. Define Sm = ∑m
i=1 ξi

and for any finite set B ⊂ N let SB = ∑
i∈B ξi . Define the conditioned sequence of

random variables

Sτn
m = (

Sm|SBv = 0 for all v ∈ V •(τn)
)
, m = 0, . . . , n.(2.13)

A simple calculation similar to the one in (2.6) shows that(
Sτn

m

)n
m=0

d= (
	n(cm)

)n
m=0.(2.14)

We have the following.
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LEMMA 2.2. Let τn be a fixed tree and let Ŝ
τn
n (t) be the continuous function

on [0,1] defined by Ŝ
τn
n (t) = n−1/2S

τn
nt when t ∈ [0,1] and nt is an integer, and

extended by linear interpolation to all t ∈ [0,1]. For every p ≥ 2, there exists a
constant C1(p) independent of n and τn such that

E
∣∣Ŝτn

n (t) − Ŝτn
n (s)

∣∣p ≤ C1(p)|s − t |p/2(2.15)

for any 0 ≤ s ≤ t ≤ 1.

PROOF. First, consider the case when s = k/n and t = l/n for integers k and l.
Suppose that k < l and define A = {k + 1, . . . , l} and Av = A ∩ Bv , for every
v ∈ V • := V •(τn). Then A is the disjoint union of the Av , v ∈ V •, and thus

Sl − Sk = SA = ∑
v∈V •

SAv .(2.16)

Conditioning on SBv = 0 for all v ∈ V • now yields

S
τn

l − S
τn

k = ∑
v∈V •

(SAv |SBv = 0).(2.17)

Define Yv = (SAv |SBv = 0) for every v ∈ V •, and note that the random variables
Yv are independent. By [41], Lemma 1, there exists a constant C2(p) > 0 such that
for every v

E|Yv|p ≤ C2(p)|Av|p/2.(2.18)

Thus, by Rosenthal’s inequality (see, e.g., [27], Theorem 3.9.1),

E
∣∣Sτn

l − S
τn

k

∣∣p
= E

∣∣∣∣ ∑
v∈V •

Yv

∣∣∣∣
p

≤ C3(p)
∑

v∈V •
E|Yv|p + C4(p)

( ∑
v∈V •

E|Yv|2
)p/2

(2.19)

≤ C5(p)
∑

v∈V •
|Av|p/2 + C6(p)

( ∑
v∈V •

|Av|
)p/2

≤ C7(p)

( ∑
v∈V •

|Av|
)p/2

= C7(p)(l − k)p/2,

which is equivalent to (2.15) in this case. The case when k/n ≤ s ≤ (k + 1)/n fol-
lows directly since Ŝ

τn
n (t) is linear on [k/n, (k+1)/n] and the general case follows

by splitting the interval [s, t] into (at most) threes pieces and using Minkowski’s
inequality. �

PROOF OF LEMMA 2.1. We will prove an equivalent statement for S
τn
m . For

any t ∈ [0,1) define the dyadic approximations tj = 2−j�2j t�, j = 0,1, . . . . Then
t0 = 0 and tj → t as j → ∞. Since Ŝ

τn
n is continuous, it holds that Ŝ

τn
n (t) =
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∑∞
j=0(Ŝ

τn
n (tj+1) − Ŝ

τn
n (tj )). Fix p > 2. For any ε > 0, by Hölder’s inequality, let-

ting p′ be the conjugate exponent

∣∣Ŝτn
n (t)

∣∣p ≤
( ∞∑

j=0

2−p′εj
)p/p′ ∞∑

j=0

2pεj
∣∣Ŝτn

n (tj+1) − Ŝτn
n (tj )

∣∣p
(2.20)

≤ C8(p, ε)

∞∑
j=0

2pεj
2j+1∑
k=1

∣∣Ŝτn
n

(
k/2j+1) − Ŝτn

n

(
(k − 1)/2j+1)∣∣p.

The right-hand side is independent of t so taking the supremum over t and then
taking the expectation and using (2.15) gives

E sup
t∈[0,1]

∣∣Ŝτn
n (t)

∣∣p ≤ C8(p, ε)

∞∑
j=0

2pεj 2j+1C1(p)2−jp/2

(2.21)

= C9(p, ε)

∞∑
j=0

2(pε+1−p/2)j .

By choosing ε < (p/2 − 1)/p, the estimate (2.10) follows due to (2.14). �

REMARK 2.3. By [13], Theorem 12.3 and (12.51), Lemma 2.2 implies also
that the family of all random functions Ŝ

τn
n (t), where n ∈ N and τn ranges over

all rooted planar trees with n edges, is tight in C([0,1]); equivalently, we may
consider n−1/2	n(cnt ), extended to t ∈ [0,1] by linear interpolation. However, this
family does not have a unique limit in distribution as n → ∞. For example, if τn is
a star, then Ŝ

τn
n (t) converges to

√
2b(t), where b is a Brownian bridge, while if τn

is a path, with the root at one endpoint, Ŝ
τn
n (t) converges to (2/3)1/2B(t ∧ (1 − t))

where B is a standard Brownian motion. And in many cases, Ŝτn
n (t) converges to 0;

if, for example, τn is a random binary tree, then n−1/4S
τn
nt converges in distribution.

See, for example, [31], and thus Ŝ
τn
n (t) is typically of the order n−1/4.

3. Another useful bijection and simply generated trees. The coloring of
the vertices in the mobiles is simply a bookkeeping device which groups together
vertices in every second generation. We will continue referring to black and white
vertices in trees even when no labels are assigned to white vertices. There exists
a useful bijection from the set of trees �n to itself which maps white vertices to
vertices of degree 1 and black vertices of degree k ≥ 1 to vertices of degree k + 1.
We will denote the bijection by Gn. The bijection can be described informally
in the following way: Start with a tree with vertices colored black and white as
described above, the root being white. It will be mapped to a new tree which has
the same vertex set as the old one but different edges. First consider the root, r ,
say of degree i and denote its black children by r1, . . . , ri−1. Begin by attaching a



SCALING LIMITS OF RANDOM PLANAR MAPS 1055

FIG. 3. A diagram describing the bijection from �n to itself which sends white vertices to vertices
of degree 1 and black vertices of degree k to vertices of degree k + 1.

half-edge to r1 which becomes the root of the new tree. Then connect rj to rj+1
with an edge for 1 ≤ j ≤ i − 1 and finally connect ri−1 to the root r . Continue in
the same way recursively for each of the subtrees attached to each of the rj . More
precisely, for a given white vertex u �= r of degree k denote its parent by u0 and its
children by u1, . . . , uk−1. Insert an edge between uj and uj+1 for 0 ≤ j < k − 1 if
possible (i.e., if k > 0), and finally connect uk−1 to u; see Figure 3.

To see that Gn is a bijection, we describe here its inverse. Start with a tree with
all vertices black except the leaves which are white. Let (ai)i≥0 be the contour
sequence of the tree. If aj is a leaf let η(j) denote the maximum number such that
aj , aj+1, . . . , aj+η(j) all lie on the path from aj to the root. Now, for each white
aj insert an edge between aj and aj+k for 1 ≤ k ≤ η(j) and remove the edges of
the original tree. Let the last white vertex (within one period [0,2n) ∩ Z) in the
contour sequence be the root of the resulting tree. In the process, the degree of
each black vertex is reduced by one and the degree of a white vertex aj becomes
η(j) with the exception of the root in which case the degree becomes η + 1.

The usefulness of the bijection Gn is that it gives a simple description of the
probability distribution ν̃n. Let νn be the push-forward of ν̃n by Gn. By (2.7) and
the properties of Gn,

νn(τn) = 2Z−1
n

∏
v∈V (τn)

wdeg(v)−1,(3.1)

where we recall that wi was defined in (1.4). The convenient thing is that now all
vertices are treated equally. The probability measure νn describes simply generated
trees, originally introduced by Meir and Moon [45] and has since been studied
extensively; see, for example, [29] and references therein.

For the weights (1.6) in case (C1) in the Introduction, we define the probabilities

pi = wi

g(1)
;(3.2)
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thus, for i ≥ 1, with L̄(i) = g(1)−1L(i),

pi = L̄(i)i−β.(3.3)

We let Pp be the law of a Galton–Watson tree with offspring distribution (pi)i≥0;
see, for example, [6, 29]. Note that the expected number of offspring of an individ-
ual in the Galton–Watson process is equal to g′(1)/g(1) = κ . We will furthermore
denote the variance of the number of offspring by

σ 2 = g′′(1)/g(1) + κ(1 − κ),(3.4)

which may be finite or infinite depending on the value of β . The measure νn viewed
as a measure on the set of finite trees is in this case equal to the measure Pp(·||τ | =
n), where τ denotes a finite tree. In case (C2), νn has no such equivalent description
in terms of a Galton–Watson process.

Using the bijection Gn, one can translate known results on simply generated
trees to the trees distributed by ν̃n. We will now introduce some notation and state
a few technical results needed later on, some of which are interesting by them-
selves. In a random tree τn distributed by ν̃n select a black vertex of maximum
degree in some prescribed way (e.g., as the first such vertex encountered in the
lexicographical order) and denote it by s. Denote the degree of s by �n and the
white vertices surrounding s by s0, s1, . . . , s�n−1 in a clockwise order, taking s0 as
the parent of s. For more compact notation, we do not explicitly write the depen-
dency of s and si on n.

Denote by τn,0 the tree which consists of all vertices in τn apart from s and
its descendants. Let τn,i be the tree consisting of si and its descendants, 1 ≤ i ≤
�n − 1. Furthermore, define N◦

n,i as the number of white vertices in τn,i . Write
τ ′
n = Gn(τn) and let s′ be the vertex in τ ′

n corresponding to the vertex s in τn. Then
deg(s′) = �n + 1. Define the subtrees τ ′

n,i around s′ in τ ′
n in an analogous way as

above where 0 ≤ i ≤ �n. It is then simple to check that

|τn,0| =
∣∣τ ′

n,0
∣∣ + ∣∣τ ′

n,�n

∣∣ + 1 and |τn,i | =
∣∣τ ′

n,i

∣∣(3.5)

for 1 ≤ i ≤ �n −1. This is the key relation used to translate results from the simply
generated trees to the mobiles.

Let Y = (Yt )t≥0 be the spectrally positive stable process with Laplace transform
E(exp(−λYt )) = exp(tλ2∧(β−1)). (This is a Lévy process with no negative jumps;
the Lévy measure is �(−α)−1x−α−1 dx on x > 0, where α = 2 ∧ (β − 1) ∈ (1,2].
See, for example, [8] and [51].) Denote by D([0,1]) the set of càdlàg functions
[0,1] → R with the Skorohod topology; see [13], Section 14. We have the follow-
ing proposition for the case (1.6), where 0 < κ < 1.

PROPOSITION 3.1. For the weights (1.6), the tree distributed by ν̃n has the
properties that
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(1)

�n

n

p−→
n→∞ 1 − κ.(3.6)

(2)

N◦
n

n

p−→
n→∞p0(3.7)

with p0 = 1/g(1) defined in (3.2).
(3) For any fixed i ≥ 0, |τn,i | converges in distribution as n → ∞ to a finite

random variable. For i ≥ 1, the limit equals |τ |, where τ is a Galton–Watson tree
with offspring distribution (pi)i≥0.

(4) There exists a slowly varying function L1(n) such that for Cn = L1(n) ×
n1/(2∧(β−1)) the following weak convergence holds in D([0,1]):

(∑�(�n−1)t�
i=1 N◦

n,i − (p0/1 − κ)�nt

Cn

)
0≤t≤1

d−→
n→∞(Yt )0≤t≤1.(3.8)

(5) It holds that

1

Cn

sup
1≤i≤�n−1

N◦
n,i

d−→
n→∞V(3.9)

with Cn from part (4) and the random variable V = max0≤t≤1 �Yt .

PROOF. Part (1) follows from the corresponding result for simply generated
trees which was originally proven in [32] in the case of an asymptotically constant
slowly varying function L in (1.6) and then in [36] for a general slowly varying
function L.

Part (2) follows from [29], Theorem 7.11(ii), since the number of white vertices
N◦

n in the tree τn equals the number of leaves in the simply generated tree τ ′
n, via

the bijection Gn.
For part (3), we note that the simply generated trees distributed by νn converge

locally toward an infinite random tree; see [32], Theorem 5.3, in the case of an
asymptotically constant slowly varying function L and [29], Theorem 7.1, for the
most general case. Local convergence of the trees distributed by ν̃n follows and the
result in part (3) is then an immediate consequence; see the arguments in the proof
of Theorem 3(iii) in [36].

Part (4) requires some explanation. We will prove a corresponding statement for
the simply generated trees distributed by νn. Recall the notation τn for (colored)
trees distributed by ν̃n and τ ′

n for (conditioned Galton–Watson) trees distributed
by νn as explained in the paragraph above (3.5). First of all, note that the number
of white vertices in τn,i , which is denoted by N◦

n,i , corresponds to the number of
leaves in the trees τ ′

n,i for 1 ≤ i ≤ �n − 1.
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Recall that Pp is the law of a Galton–Watson process with the offspring distribu-
tion (pi)i≥0 defined in (3.2). Denote by N the total progeny (number of vertices)
of the Galton–Watson process distributed by Pp and denote the random number
of leaves by N(0). It is well known that E(N) = 1/(1 − κ) (see, e.g., [6]), and
furthermore,

EN(0) = p0

1 − κ
= p0EN;(3.10)

in fact, the expected number of vertices in generation m ≥ 0 is κm, and the ex-
pected number of leaves among them is p0κ

m, where summing over all m ≥ 0
yields (3.10). This explains the linear term in (3.8).

Kortchemski [36], Theorem 4, proved a convergence result in D([0,1]) which
in our notation can be written as(∑�(�n−1)t�

i=1 (|τ ′
n,i | + 1) − (1/(1 − κ))�nt

B ′
n

)
0≤t≤1

d−→
n→∞(Yt )0≤t≤1,(3.11)

where B ′
n = L2(n)n1/(2∧(β−1)) for some slowly varying function L2. The main

idea of Kortchemski’s proof is to use the fact that for n large, the subtrees τ ′
n,i be-

come asymptotically independent copies of a Galton–Watson process with law Pp ,
and thus |τ ′

n,i | + 1 appearing in the sum in (3.11) can be replaced by a sequence
(Ni)i≥1 of independent random variables distributed as N . (This is shown in [36]
as a consequence of a corresponding result for random walks by Armendáriz and
Loulakis [5].) Furthermore, it is well known (see, e.g., [34, 35, 48], [49], Sec-
tion 6.1, [29], Theorem 15.5) that if ξi , i = 1,2, . . . , is a sequence of independent
random variables with the distribution (pi)i≥0, and we let Sn = ∑n

i=1 ξi , then

P(N = n) = 1

n
P(Sn = n − 1).(3.12)

Moreover, from the tail behavior (3.3) of pi = P(ξ = i), it follows that, recalling
that Eξi = κ ,

P(Sn = n − 1) = P
(
Sn − nκ = n(1 − κ) − 1

)
(3.13)

= n
(
1 + o(1)

)
P

(
ξ1 = ⌊

n(1 − κ) − 1
⌋)

as n → ∞, see [23] for more general statements. (In our case, (3.13) follows also
directly by a modification of the proof of [29], Theorem 19.34.) Combining (3.12),
(3.13) and (3.3), we obtain

P(N = n) = (
1 + o(1)

)
(1 − κ)−βL̄(n)n−β = (

1 + o(1)
)
(1 − κ)−βpn,(3.14)

so the distribution of N also obeys (1.6) (with a different L), which by standard
results (see, e.g., [25], Section XVII.5) implies that N is in the domain of attraction
of a spectrally positive stable distribution of index α = 2 ∧ (β − 1), and thus(∑�nt�

i=1 Ni − (1/(1 − κ))nt

B ′
n

)
0≤t≤1

d−→
n→∞(Yt )0≤t≤1(3.15)
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for a suitable B ′
n = L2(n)n1/(2∧(β−1)). We refer to [36] for further details, and for

the arguments using (3.15) to show (3.11).
Going through Kortchemski’s proof, one sees that the latter arguments apply in

our case also if we replace Z (k) in [36] by (C−1
k (

∑�kt�
i=1 N

(0)
i − p0

1−κ
kt))0≤t≤η and

the problem is reduced to showing that if (Ni,N
(0)
i )i≥1 is a sequence of indepen-

dent random vectors distributed as (N,N(0)), then(∑�nt�
i=1 N

(0)
i − (p0/(1 − κ))nt

Cn

)
0≤t≤1

d−→
n→∞(Ŷt )0≤t≤1,(3.16)

where Ŷ has the same distribution as Y , and that this holds jointly with (3.15).
(Joint convergence is used in the analogue of [36], (31), in the proof; however, the
joint distribution of (Y, Ŷ ) does not influence the result (3.8).) The proof of part (4)
is thus completed by Lemma 3.4 below.

Finally, part (5) follows from part (4); see the proof of Corollary 2 in [36]. �

REMARK 3.2. Actually, it would suffice to prove (3.16) separately; this
and (3.15) show in particular that the left-hand sides are tight in D([0,1]), which
implies that they are jointly tight in D([0,1]) × D([0,1]), and we can obtain the
desired joint convergence by considering suitable subsequences; this is enough to
show (3.8) for the full sequence since the result does not depend on the joint dis-
tribution of (Yt )0≤t≤1 and (Ŷt )0≤t≤1. We can show (3.16) by the same standard
results as for (3.15) together with the estimate

P
(
N(0) = n

) ∼ cL̄(n)n−β(3.17)

for some c > 0, see Lemma A.2, which shows that the distribution of N(0) has
the same tail behavior as N and (pi)i≥0. This thus yields an alternative proof of
Proposition 3.1(4).

Before stating and proving Lemma 3.4 used above, we give another lemma.

LEMMA 3.3. For the weights (1.6), with notation as above, as n → ∞,

P
(∣∣N(0) − p0N

∣∣ ≥ n
) = o

(
L̄(n)n1−β) = o(npn) = o

(
P(N ≥ n)

)
.(3.18)

PROOF. Note first that (3.14) and (3.3) imply, by a standard calculation [14],

P(N ≥ n) = (
1 + o(1)

)
(1 − κ)−β(β − 1)−1L̄(n)n1−β

(3.19)
= (

1 + o(1)
)
(β − 1)−1(1 − κ)−βnpn.

Let a > 0. Since |N(0) − p0N | ≤ N ,

P
(∣∣N(0) − p0N

∣∣ ≥ n
)

(3.20)

≤ P(N ≥ an) + P

(∣∣N(0) − p0N
∣∣ ≥ 1

a
N and N ≥ n

)
.
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Let ε > 0. By [29], Theorem 7.11, (N(0)|N = n)/n
p−→ p0 as n → ∞. Thus,

P(|N(0) − p0N | ≥ a−1N |N = n) < ε if n is large enough, and for such n,

P

(∣∣N(0) − p0N
∣∣ ≥ 1

a
N and N ≥ n

)

=
∞∑

m=n

P

(∣∣N(0) − p0N
∣∣ ≥ 1

a
N

∣∣∣ N = m

)
P(N = m)(3.21)

≤ εP(N ≥ n).

Thus, (3.20) yields, for large n,

P
(∣∣N(0) − p0N

∣∣ ≥ n
) ≤ P(N ≥ an) + εP(N ≥ n),(3.22)

which by (3.19) yields, with C = (β − 1)−1(1 − κ)−β ,

P
(∣∣N(0) − p0N

∣∣ ≥ n
) ≤ (

1 + o(1)
)
C

(
a1−β + ε

)
L̄(n)n1−β.(3.23)

Since we may choose a arbitrarily large and ε arbitrarily small, (3.18) follows. �

LEMMA 3.4. The limits (3.15) and (3.16), in distribution in D([0,1]), hold
jointly.

PROOF. Suppose first that the offspring distribution (3.3) has finite variance.
[This implies β ≥ 3 by (3.14).] It then follows from (3.14) that N and N(0) ≤
N have finite variances and by a two-dimensional version of Donsker’s theorem,
the result follows with 2−1/2Yt and 2−1/2Ŷt two different (dependent) standard

Brownian motions, and B ′
n = √

Var(N)n/2, Cn =
√

Var(N(0))n/2.
Suppose now instead that the variance of the offspring distribution is infinite;

then EN2 = ∞. We follow [25], Section XVII.5, and let μ(x) be the truncated
moment function

μ(x) = E
(
N21{N ≤ x}).(3.24)

Then μ(x) → ∞ as x → ∞. Moreover, by [25], Theorem XVII.5.2 and
XVII.(5.23), μ(x) is regularly varying with exponent 2 − α = (3 − β) ∨ 0, and
(3.15) holds with nμ(B ′

n)/(B
′
n)

2 → C for some constant C.
If we similarly define the truncated moment function,

μ1(x) = E
((

N(0) − p0N
)21

{∣∣N(0) − p0N
∣∣ ≤ x

})
,(3.25)

it follows easily by (3.18) [and μ(x) → ∞] that, as x → ∞,

μ1(x) = o
(
μ(x)

)
(3.26)

and thus

nμ1(B
′
n)

(B ′
n)

2 = o

(
nμ(B ′

n)

(B ′
n)

2

)
→ 0, n → ∞.(3.27)
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It follows by minor modifications of the arguments in [25], Section XVII.5, that∑n
i=1(N

(0)
i − p0Ni)

B ′
n

p−→ 0.(3.28)

Moreover, by [33], Theorem 16.14, or by symmetrization and a stopping time ar-
gument, it follows that

sup
0≤t≤1

∣∣∣∣∣
�nt�∑
i=1

(
N

(0)
i − p0Ni

)∣∣∣∣/B ′
n

p−→ 0,(3.29)

and thus (3.15) implies that (3.16) holds jointly with Ŷt = Yt and Cn = p0B
′
n.

(Note that Ŷ = Y when the offspring variance is infinite, but not when it is finite.)
�

For the case (1.7), where κ = 0, the proposition below follows immediately
from [30], Theorems 2.4–2.5 and Remark 2.9.

PROPOSITION 3.5. For wi = (i!)α , α > 0, the tree distributed by ν̃n has the
following properties:

(1) For α > 1,

n − �n
p−→

n→∞ 0.(3.30)

For α = 1,

n − �n
d−→

n→∞ Pois(1).(3.31)

For α < 1

n − �n = O
(
n1−α)

(3.32)

with probability tending to 1 as n → ∞.
(2)

N◦
n

n

p−→
n→∞ 1.(3.33)

(3) The vertex s is the unique black child of the root r and

sup
1≤i≤�n−1

N◦
n,i ≤ �1/α� ∨ 1(3.34)

with probability tending to 1 as n → ∞.

The propositions above along with the correspondence between degrees of faces
in the planar maps and degrees of black vertices in the mobiles show that a unique
face of degree roughly equal to (1 − κ)n appears in the planar maps Mn with
probability tending to 1 as n → ∞.



1062 S. JANSON AND S. Ö. STEFÁNSSON

4. Label process on mobiles. Let θn be a random mobile distributed by μ̃n,
and denote by N◦

n the random number of white vertices in θn. Order the white
vertices in a lexicographical order v0, v1, . . . , vN◦

n
(taking vN◦

n
= v0). Again we

do not write explicitly the dependency of v and vi on n. Define the label process
Ln : {0,1, . . . ,N◦

n} → Z by Ln(i) = 	n(vi). Extend Ln to a function on [0,N◦
n ] by

linear interpolation.
Denote the set of continuous functions from [a, b] to R by C([a, b]) equipped

with the topology of uniform convergence. Let b be the standard Brownian bridge
on [0,1], starting and ending at 0. We will in this section prove the following result.

THEOREM 4.1. For the weights (1.6) and (1.7), it holds that(
1√

2(1 − κ)n
Ln

(
tN◦

n

))
0≤t≤1

d−→
n→∞

(
b(t)

)
0≤t≤1(4.1)

with convergence in distribution in C([0,1]).

Since the label function encodes information on distances, cf. (2.4), this re-
sult shows that the diameter of the maps grows like n1/2. More precisely, we can
translate Theorem 4.1 to a result on distances to the marked vertex ρ. Define the
distance process Dn : {0,1, . . . ,N◦

n } → Z by Dn(i) = d(vi, ρ). Extend Dn to a
function on [0,N◦

n ] by linear interpolation, and then to a function on R with pe-
riod N◦

n . By (2.4),

Dn(t) = Ln(t) − 	n(ρ) = Ln(t) − min
0≤s≤N◦

n

Ln(s) + 1, 0 ≤ t ≤ N◦
n .(4.2)

Further, let vi∗ be the first white vertex (in our ordering) that is a neighbor of ρ,
that is, i∗ = min{i :	n(vi) = minj 	n(vj )}.

THEOREM 4.2. For the weights (1.6) and (1.7), it holds that(
1√

2(1 − κ)n
Dn

(
tN◦

n + i∗
))

0≤t≤1

d−→
n→∞

(
e(t)

)
0≤t≤1(4.3)

with convergence in distribution in C([0,1]).

PROOF. The minimum of b is a.s. attained at a unique point, U say, and U is
uniformly distributed on [0,1]; moreover, by Vervaat’s theorem [50], if this min-
imum is subtracted from b and the bridge is shifted (periodically) such that the
minimum is located at 0 one obtains a standard Brownian excursion e on [0,1];
see also [12].

By Skorohod’s representation theorem, we may assume that the convergence
in (4.1) holds a.s. Since the minimum point U is unique, it follows that the
minimum point vi∗/N

◦
n of the left-hand side converges to U a.s. (The minimum

point vi∗ is typically not unique. We chose the first minimum point, but any other
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choice would also converge to U a.s.) The desired convergence (4.3) now follows
from (4.2), (4.1) and Vervaat’s theorem. �

We start by introducing some notation and proving a couple of lemmas before
proceeding to the proof of Theorem 4.1. Begin by considering only the part of the
label process which surrounds the vertex s, a black vertex of maximum degree. Let
s0 be the white parent of s and let si be its ith white child in clockwise order from
s0, where i = 1, . . . ,�n with the convention that s�n = s0. Define the function
L�

n : {0,1, . . . ,�n} → Z by L�
n(i) = 	n(si). As before, extend L�

n to a continuous
function on [0,�n] by linear interpolation.

LEMMA 4.3. For the weights (1.6) and (1.7), it holds that(
1√

2(1 − κ)n
L�

n(t�n)

)
0≤t≤1

d−→
n→∞

(
b(t)

)
0≤t≤1(4.4)

with convergence in distribution in C([0,1]).

PROOF. Let θn = (τn, 	n) be a mobile distributed by μ̃n. By Proposi-
tions 3.1(1) and 3.5(1), �n/n−→p 1 − κ as n → ∞. Using Skorohod’s repre-
sentation theorem, we may construct �n and Ln on a common probability space
such that this convergence holds almost surely, that is,

�n/n
a.s.−→

n→∞ 1 − κ.(4.5)

In the following, we will assume that this holds.
The label process L�

n, evaluated on the integers, is a random walk of length �n

having jump probabilities ω(k) = 2−k−2, k = −1,0,1, . . . , starting at L�
n(0) =

	n(s0) and conditioned to end at 	n(s0); see [41], Section 3.3. It follows from
Propositions 3.1(3) and 3.5(3) that n−1/2	n(s0)−→p 0 as n → ∞. The jump dis-
tribution has mean 0 and variance

∑∞
k=−1 k2ω(k) = 2. The result now follows

by a conditional version of Donsker’s invariance theorem; see, for example, [10],
Lemma 10, for a detailed proof. �

LEMMA 4.4. Let fn, gn :An → [0,�n] be random functions, for some (pos-
sibly random) set An. If

sup
x∈An

n−1∣∣fn(x) − gn(x)
∣∣ p−→ 0(4.6)

then

n−1/2 sup
x∈An

∣∣L�
n

(
fn(x)

) − L�
n

(
gn(x)

)∣∣ p−→
n→∞ 0.(4.7)
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PROOF. By the triangle inequality,(
2(1 − κ)n

)−1/2 sup
x∈An

∣∣L�
n

(
fn(x)

) − L�
n

(
gn(x)

)∣∣
≤ sup

x∈An

∣∣b(
fn(x)/�n

) − b
(
gn(x)/�n

)∣∣
+ sup

x∈An

∣∣(2(1 − κ)n
)−1/2

L�
n

(
fn(x)

) − b
(
fn(x)/�n

)∣∣
+ sup

x∈An

∣∣(2(1 − κ)n
)−1/2

L�
n

(
gn(x)

) − b
(
gn(x)/�n

)∣∣.
The first term converges to zero in probability by (4.6) and the fact that b is con-
tinuous on [0,1], and hence uniformly continuous. The other terms converge to
zero by Lemma 4.3, assuming as we may (by Skorohod’s representation theorem)
that (4.4) holds a.s. �

LEMMA 4.5. As n → ∞,

n−1/2 sup
0≤i≤�n−1

sup
v∈τn,i

∣∣	n(v) − 	n(si)
∣∣ p−→ 0.(4.8)

PROOF. Write the left-hand side as n−1/2K . Choose δ > 0 with 1−δ > 1/(2∧
(β −1)), and choose p > 2/δ. We condition on τn and obtain, by using Lemma 2.1
for each subtree τn,i separately,

E
(
Kp|τn

) ≤
�n−1∑
i=0

E sup
v∈τn,i

∣∣	n(v) − 	n(si)
∣∣p ≤

�n−1∑
i=0

C(p)
(
N◦

n,i

)p/2

(4.9)
≤ C(p)n sup

0≤i<�n

(
N◦

n,i

)p/2
.

Then, by Propositions 3.1(3), (5) and 3.5(3),

sup
0≤i<�n

N◦
n,i/n1−δ p−→ 0,(4.10)

and thus, with probability tending to 1 as n → ∞,

sup
0≤i<�n

N◦
n,i ≤ n1−δ.(4.11)

If τn is such that (4.11) holds then (4.9), along with Markov’s inequality, implies
that for any ε > 0,

P
(
K > εn1/2|τn

) ≤ ε−pn−p/2C(p)n1+(1−δ)p/2

(4.12)
= ε−pC(p)n1−δp/2 → 0.
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FIG. 4. An example of the mapping πn.

Hence, P(K > εn1/2) → 0, as asserted. �

PROOF OF THEOREM 4.1. To unify the treatment of the cases (1.6) and (1.7),
we define p0 = 1 for the weights in (1.7). By Lemma 4.3, it is sufficient to show
that

n−1/2 sup
0≤x≤N◦

n

∣∣∣∣L�
n

(
x

�n

N◦
n

)
− Ln(x)

∣∣∣∣ p−→
n→∞ 0.(4.13)

Note that Ln is a linear interpolation of its values on the integers. Using the tri-
angle inequality (and Lemma 4.4) therefore allows us to restrict to integer val-
ues of x which we will write as k. Introduce the mapping πn : {0,1, . . . ,N◦

n} →
{0,1, . . . ,�n} defined as follows; see Figure 4: Let πn(0) = 0 and πn(N

◦
n) = �n.

If vi ∈ τn,j for j = 1, . . . ,�n − 1 then πn(i) = j . If v0 < vi ≤ s0 in the lexico-
graphic ordering then πn(i) = 0 and if vi ∈ τn,0 with vi > s0 then πn(i) = �n. By
the triangle inequality,

n−1/2 sup
0≤k≤N◦

n

∣∣∣∣L�
n

(
k
�n

N◦
n

)
− Ln(k)

∣∣∣∣
≤ n−1/2 sup

0≤k≤N◦
n

∣∣∣∣L�
n

(
k
�n

N◦
n

)
− L�

n

(
πn(k)

)∣∣∣∣(4.14)

+ n−1/2 sup
0≤k≤N◦

n

∣∣Ln(k) − L�
n

(
πn(k)

)∣∣.
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We begin by showing that the first term on the right-hand side of (4.14) converges
to 0 in probability. By Lemma 4.4, it suffices to show that

n−1 sup
0≤k≤N◦

n

∣∣∣∣k�n

N◦
n

− πn(k)

∣∣∣∣ p−→ 0.(4.15)

We have the estimate
πn(k)−1∑

i=1

N◦
n,i ≤ k ≤

πn(k)∑
i=0

N◦
n,i .(4.16)

Thus, ∣∣∣∣∣k −
πn(k)∑
i=1

N◦
n,i

∣∣∣∣∣ ≤ N◦
n,0 + N◦

n,πn(k)(4.17)

and hence, using Propositions 3.1(3), (5) and

n−1 sup
0≤k≤N◦

n

∣∣∣∣∣k −
πn(k)∑
i=1

N◦
n,i

∣∣∣∣∣ p−→ 0.(4.18)

Furthermore, in view of Propositions 3.1(1), (2) and 3.5(1), (2), �n/N
◦
n

p−→
(1 − κ)/p0. It thus suffices to show that

sup
0≤l≤�n

n−1

∣∣∣∣∣1 − κ

p0

l∑
i=1

N◦
n,i − l

∣∣∣∣∣ p−→
n→∞ 0,(4.19)

which indeed follows from Propositions 3.1(4) and 3.5(1).
Next, consider the second term on the right-hand side of (4.14). This is exactly

the left-hand side in Lemma 4.5, and thus it to tends to 0. �

5. Proof of Theorem 1.1. We start by recalling standard results on the
Gromov–Hausdorff distance. A correspondence R between two metric spaces
(E1, d1) and (E2, d2) is a subset of E1 × E2 such that for every x1 ∈ E1 there
exists an x2 ∈ E2 such that (x1, x2) ∈ R and vice versa. Denote the set of all cor-
respondences between E1 and E2 by C(E1,E2). A distortion of a correspondence
is defined as

dis(R) = sup
{∣∣d1(x1, y1) − d2(x2, y2)

∣∣ : (x1, x2), (y1, y2) ∈ R
}
.(5.1)

The pointed Gromov–Hausdorff distance between (E1, d1) and (E2, d2) with
marked points ρ1 and ρ2, respectively, can be conveniently expressed as, see [18],
Theorem 7.3.25 (for the nonpointed version, the pointed version used here is sim-
ilar)

dGH(E1,E2) = 1

2
inf

R∈C(E1,E2),(ρ1,ρ2)∈R
dis(R).(5.2)
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In the proof of Theorem 1.1, we use similar ideas as in the previous section. Let
Mn be a random planar map with a corresponding mobile θn = (τn, 	n). As before,
we denote the white vertices in θn by v0, . . . , vN◦

n
in lexicographical order and use

the same notation for the corresponding white vertices in Mn. Also define the ver-
tex s and its surrounding vertices s0, . . . , s�N

as before. Denote by θ�
n = (τ �

n , 	�
n)

the mobile which is obtained by trimming θn such that it only consists of the black
vertex s and its surrounding white vertices si , 0 ≤ i ≤ N◦

n , and keeping the labels
of these vertices the same as before. We add a superscript � to the notation when
we consider these vertices as vertices in θ�

n . Take s�
0 to be the root of θ�

n . Note that
if Ln is the label process corresponding to θn then L�

n, defined in Section 4, is the
label process corresponding to θ�

n . By definition, it holds that 	�
n(s

�
i ) = 	n(si) for

all 0 ≤ i ≤ �n. In general, the root s�
0 of θ�

n has a label different from zero, but note
that the BDG bijection still works since it only depends on the increments of the
labels in the white contour sequence. The planar map obtained from θ�

n is denoted
by M�

n , the graph distance on M�
n by d�

n and the marked vertex by ρ�
n.

The planar map M�
n has a single black vertex and has therefore a single face.

Hence, it contains no cycles and is thus a planar tree with �n edges. Given �n, the
map M�

n is a uniformly distributed rooted planar tree and, given M�
n , the marked

vertex ρ�
n is chosen uniformly at random. (Note that the root edge of M�

n yields
both a root vertex and an ordering of the children of the root, and conversely; we
may take the first child to be the other endpoint of the root edge.) Aldous [3] proved
that the contour function of such a random rooted tree, after rescaling, converges in
distribution to e, which implies convergence of the tree to Te in Gromov–Hausdorff
distance; see [38], Theorem 2.5. Hence we obtain, including also the marked ver-
tex, the following.

THEOREM 5.1. For the weights (1.6) and (1.7), the random planar map
((M�

n,ρ�
n), (2(1 − κ)n)−1/2d�

n) viewed as an element of M∗ converges in distribu-
tion toward ((Te, ρ

∗), δe) where given Te, ρ∗ is a marked vertex chosen uniformly
at random from Te.

To complete the proof of Theorem 1.1, we construct the following correspon-
dence between ((Mn,ρn), (2(1−κ)n)−1/2dn) and ((M�

n,ρ�
n), (2(1−κ)n)−1/2d�

n):

Rn = {(
ρn,ρ

�
n

)} ∪
N◦

n−1⋃
i=0

{(
vi, s

�
πn(i)

)}
(5.3)

with πn the same as in the proof of Theorem 4.1. We then show that the distortion
of this correspondence converges to zero in probability. Recall the definition of
τn,i in Section 3. We have the following estimate.

LEMMA 5.2. For any mobile θn = (τn, 	n) it holds that

dis(Rn) ≤ (
2(1 − κ)n

)−1/2
(
14 sup

0≤i≤�n−1
sup

v∈τn,i

∣∣	n(v) − 	n(si)
∣∣ + 4

)
.(5.4)
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By Lemma 4.5, the right-hand side tends to 0 in probability, which along
with Theorem 5.1 completes the proof of Theorem 1.1. We conclude by proving
Lemma 5.2.

PROOF OF LEMMA 5.2. Let (x, x�), (y, y�) ∈ Rn. Write

K = sup
0≤i≤�n−1

sup
v∈τn,i

∣∣	n(v) − 	n(si)
∣∣.

When we refer to ancestral relations in M�
n we use ρ�

n as the reference point, that
is, we say that y is an ancestor of x in M�

n if x �= y and the unique geodesic from
x to ρ�

n contains y. Consider separately the following three cases:

(1) x� = y�.
(2) y� is an ancestor of x� in M�

n , or conversely.
(3) x� �= y� and neither is an ancestor of the other.

Begin by studying case (1). The case x� = y� = ρ�
n is trivial so we consider x� �=

ρ�
n. We can then write x� = y� = s�

i for some i which will be fixed in this part of
the proof. Let λ0 denote the minimum label in τn,i . For a vertex v ∈ V (Mn) define
the successor geodesic γ (v) from v to ρn by (v, σ (v), σ ◦ σ(v), . . . , ρn) with σ

defined in (2.3). Then there is a vertex w with label 	n(w) = λ0 − 1 such that γ (x)

and γ (y) contain w. Therefore, it follows from (2.4) and the definition of K that

dn(x,w) = 	n(x) − λ0 + 1 ≤ 2K + 1 and

dn(y,w) = 	n(y) − λ0 + 1 ≤ 2K + 1.

Thus, by the triangle inequality,∣∣dn(x, y) − d�
n

(
x�, y�)∣∣ = dn(x, y) ≤ dn(x,w) + dn(y,w) ≤ 4K + 2.(5.5)

Next, consider case (2) and assume that y� is an ancestor of x�. First, assume
that y� �= ρ�

n. Then there are unique i and j such that x� = s�
i , y� = s�

j and without
loss of generality we assume that i < j (otherwise we shift the indices i and j

modulo �n). In this part, i and j are fixed. It holds that

	n(sm) > 	n(sj )(5.6)

for all m obeying i ≤ m < j . Let γi be a successor geodesic from si to ρn and let
γj be a successor geodesic in Mn from sj to ρn. We will show that the distance
between γi and sj is small (in terms of K). Define

λ1 = min
{
	n(vm) : i ≤ πn(m) < j

}
.(5.7)

It clearly holds that

λ1 ≤ 	n(sj−1) ≤ 	n(sj ) + 1.(5.8)
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Let l be an index for which the minimum in (5.7) is attained, that is, such that
	n(vl) = λ1 and i ≤ πn(l) < j . Then, by (5.6),

λ1 = 	n(vl) ≥ 	n(sπn(l)) − K ≥ 	n(sj ) + 1 − K.(5.9)

Now, γi and γj intersect for the first time at a vertex with label λ1 − 1, and call
this vertex z; see Figure 5. Then by (2.4) and (5.9)

dn(z, sj ) = 	n(sj ) − 	n(z) ≤ K.(5.10)

Furthermore, with the same argument leading to (5.5)

dn(x, si) ≤ 3K + 2 and dn(y, sj ) ≤ 3K + 2.(5.11)

Finally, we get by repeatedly using the triangle inequality along with (2.4),
(5.10) and (5.11)∣∣dn(x, y) − d�

n

(
x�, y�)∣∣ ≤ ∣∣dn(x, y) − dn(si, sj )

∣∣ + ∣∣dn(si, sj ) − dn(z, si)
∣∣

+ ∣∣dn(z, si) − d�
n

(
x�, y�)∣∣

≤ dn(x, si) + dn(y, sj ) + dn(z, sj )(5.12)

+ ∣∣	n(si) − 	n(z) − 	�
n

(
s�
i

) + 	�
n

(
s�
j

)∣∣
≤ 7K + 4 + ∣∣	n(sj ) − 	n(z)

∣∣ ≤ 8K + 4.

The case y� = ρ�
n is treated in a simpler way leading to a similar upper bound as

in (5.12); we omit the details.

FIG. 5. Illustration of the setup in part (2) of the proof with 	n(sj ) = 4 and λ1 = 4. A planar
mobile is shown with the edges and the black vertices colored light gray. The geodesic γi is black
with dots and dashes and γj is black and solid. Since they are successor geodesics, they intersect at
the vertex z with label λ1 − 1 = 3. Another geodesic γ ′

j from sj to ρn (not a successor geodesic) is
shown in dark gray and it does not intersect γi at a vertex with label λ1 − 1.
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FIG. 6. Illustration of the setup in part (3) of the proof with 	n(sk) = 5, λ2 = 5 and λ3 = 4.
A planar mobile is shown with the edges and the black vertices colored light gray. The geodesic γij

is dotted and dashed, ηl is solid and γk is dotted. Since ηl and γk are successor geodesics, they
intersect at the vertex zk with label λ3 − 1 = 3.

Finally, consider case (3) (see Figure 6 for an illustration). We keep writing
x� = s�

i and y� = s�
j . Denote the common ancestor of x� and y� having the largest

label by z�. Assume that z� �= ρ�
n and write z� = s�

k ; the case z� = ρ�
n is treated in a

similar but simpler way. We may assume without loss of generality that i < j < k

(by shifting the indices modulo �n and possibly renaming x and y). In this part,
i, j and k are fixed. Define the geodesics γi and γj as in case (2) and let γk be the
successor geodesic from sk to ρn. Furthermore, let γij be a geodesic directed from
si to sj in Mn. Since s�

k is an ancestor of both x� and y�, it follows from (5.10) that
there is a vertex zi in γi and a vertex zj in γj such that

dn(zm, sk) = 	n(sk) − 	n(zm) ≤ K for m = i, j.(5.13)

Moreover,

	n(sm) > 	n(sk)(5.14)

for all m obeying i ≤ m < k. We now show that γij is also close to sk . Define

λ2 = min
{
	n(vm) :vm ∈ γij , i ≤ πn(m) < k

}
,(5.15)

where by vm ∈ γij we mean that vm is visited by γij . Condition (3) guarantees
that there is an index, say p, such that i ≤ p < j and 	n(sp) = 	n(sk) + 1. Let
q be the first time at which sp < γij (q) ≤ sk in the lexicographic order on τn.
Then q is well defined since γij ends at sj . If 	n(γij (q)) = 	n(γij (q − 1))+ 1 then
by the properties of the BDG bijection 	n(γij (q)) ≤ 	n(sk). On the other hand,
if 	n(γij (q)) = 	n(γij (q − 1)) − 1 then by the same arguments 	n(γij (q − 1)) ≤
	n(sp) which again yields 	n(γij (q)) ≤ 	n(sk). We have thus established that

λ2 ≤ 	n(sk).(5.16)
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Let l be an index for which the minimum in (5.15) is attained, that is, such that
vl ∈ γij , i ≤ πn(l) < k and 	n(vl) = λ2. By (5.14),

λ2 = 	n(vl) ≥ 	n(sπn(l)) − K ≥ 	n(sk) + 1 − K.(5.17)

Denote the successor geodesic from vl to ρn by ηl . Next, define

λ3 = min
{
	n(vm) :πn(l) ≤ πn(m) < k

}
.(5.18)

Now, ηl and γk intersect for the first time at a vertex having label λ3 − 1, and call
this vertex zk . With same argument as in (5.9),

λ3 ≥ 	n(sk) + 1 − K(5.19)

and this yields, along with (2.4) and (5.16)

dn(vl, zk) = 	n(vl) − 	n(zk) = λ2 − λ3 + 1 ≤ K.(5.20)

Also, by (2.4) and (5.19)

dn(sk, zk) = 	n(sk) − 	n(zk) ≤ K.(5.21)

Using the triangle inequality along with (5.20) and (5.21), we get

dn(v	, sk) ≤ dn(vl, zk) + dn(zk, sk) ≤ 2K.(5.22)

Finally, we obtain by using the triangle inequality, (2.4), (5.11), (5.13) and (5.22)∣∣dn(x, y) − d�
n

(
x�, y�)∣∣

≤ ∣∣dn(x, y) − dn(si, sj )
∣∣

+ ∣∣dn(si, vl) − dn(si, sk)
∣∣ + ∣∣dn(si, sk) − dn(si, zi)

∣∣
+ ∣∣dn(sj , vl) − dn(sj , sk)

∣∣ + ∣∣dn(sj , sk) − dn(sj , zj )
∣∣

+ ∣∣dn(si, zi) + dn(sj , zj ) − d�
n

(
x�, y�)∣∣

≤ dn(x, si) + dn(y, sj ) + 2dn(sk, vl) + dn(zi, sk) + dn(zj , sk)

+ ∣∣	n(si) − 	n(zi) + 	n(sj ) − 	n(zj ) − 	�
n

(
s�
i

) − 	�
n

(
s�
j

) + 2	�
n

(
s�
k

)∣∣
≤ 12K + 4 + ∣∣	n(sk) − 	n(zi)

∣∣ + ∣∣	n(sk) − 	n(zj )
∣∣ ≤ 14K + 4. �

6. Conclusions. We have shown that the random planar maps defined by the
weights (1.6) and (1.7) converge to Aldous’ Brownian tree. It is interesting to note
that there does not seem to be a nontrivial scaling limit of the corresponding simply
generated trees; see [36], Theorem 6, and thus the labels play a crucial role in
obtaining a scaling limit for the random maps.

One can also study the so-called local limit of the planar maps Mn under con-
sideration in this paper. The limit, when it exists, is an infinite graph M and con-
vergence toward M roughly means that one considers all finite neighborhoods of



1072 S. JANSON AND S. Ö. STEFÁNSSON

faces around the root edge and shows that the probability that they appear in the
maps Mn converges, as n → ∞, to the probability that they appear in M . Angel
and Schramm [4] studied local convergence in the case of uniformly distributed
triangulations (all faces have degree 3) and later Durhuus and Chassaing [19]
and Krikun [37] studied the case of uniformly distributed quadrangulations (all
faces have degree 4). Recently, there have been several new results on the local
limit of uniform quadrangulations concerning, for example, properties of infinite
geodesics [21], random walks [7] and quadrangulations with a boundary [22]. In
a forthcoming paper [15], it is shown that the local limit M of the maps Mn dis-
tributed by (1.2) exists for all choices of weights qi . The proof involves using the
bijection Gn introduced in the current paper along with theorems on local conver-
gence of simply generated trees which we now briefly review.

The local limit of the simply generated trees corresponding to the weights (1.6)
and (1.7) was established in [32] (with an asymptotically constant slowly varying
function) and [30], respectively. Later it was established in full generality [cover-
ing cases (C1) and (C2)] in [29]. In case (C2), the local limit is deterministic and
equals the infinite star, that is, the root has a single neighbor of infinite degree and
all its neighbors are leaves. Therefore, the local limit M of the corresponding pla-
nar maps is simply the infinite uniform planar tree. In case (C1), the local limit of
the trees is more complicated. It still has a unique vertex of infinite degree but the
outgrowths from this vertex are now i.i.d. subcritical Galton–Watson trees. There-
fore, the local limit M of the corresponding maps is not a tree. However, since
subcritical Galton–Watson trees tend to be small, it is interesting to see how differ-
ent M is from the uniform tree. It is, for example, interesting to study properties
of random walks on M since random walks are sensitive to the presence of loops.
In [15], it is shown (under some moment conditions on the weights wi ) that the
spectral dimension of M , a number which characterizes the rate of decay of the
return probability of the random walk, equals 4/3 which is indeed the same value
as for the uniform infinite planar tree.

A natural question to ask is how universal our results are, that is, is it enough
to pose the conditions (C1) or (C2) in the Introduction or does one have to go
to special cases? It is shown in [29], Examples 19.37–19.39, that by choosing
irregular weights, still satisfying (C1) or (C2), the corresponding simply generated
trees with n edges can have more than one vertex with a degree of the order of n;
it is even possible that the large vertices have degrees o(n) and that their number
goes to infinity as n → ∞ (at least along subsequences). In the case when there
are two vertices with degrees of the order of n, it is plausible that the planar maps
have a scaling limit which is roughly the Brownian tree with two points identified,
forming a second macroscopic face. The more there is of large vertices in the
simply generated trees the more faces should appear in the scaling limit of the
maps. Thus, we conjecture that the Brownian tree only appears in special cases
of (C1) and (C2). We consider, for simplicity, only one simple example (similar
to [29], Example 19.38) illustrating this.
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EXAMPLE 6.1. Let (wi)i≥0 be a weight sequence such that wi = 0 unless
i ∈ {0,3j : j ≥ 0}. Further, let w0 = 1 and let w3j increase so rapidly that (C2)
holds, and moreover, with probability tending to 1 as k → ∞, if n = 3k , then the
simply generated random tree τn with the distribution νn given by (3.1) is a star,
while if n = 2 · 3k , then τn has two vertices of outdegree n/2 = 3k (and all other
vertices are leaves).

For the subsequence n = 3k , we then obtain the same results as above in the
case (1.7).

For the subsequence n = 2 · 3k , the corresponding coloured tree distributed by
ν̃ has (with probability tending to 1) two black vertices of degrees n/2 connected
by a single white vertex v̂ of degree 2, and each of them joined to n/2 − 1 white
leaves. For each choice of labels 	n, the corresponding map Mn thus has two faces.
The label processes around each black vertex converge to independent Brownian
bridges, which together with the random choice of root implies that, in analogy to
Theorem 4.1, (

1√
n
Ln

(
tN◦

n

))
0≤t≤1

d−→
n→∞

(
h(t)

)
0≤t≤1,(6.1)

where, for two Brownian bridges b1,b2 and U uniformly distributed on [0,1], all
independent,

h(t) =
⎧⎪⎨
⎪⎩

b1(2t + U) − b1(U), 0 ≤ t ≤ (1 − U)/2,

b2(2t + U − 1) − b1(U), (1 − U)/2 ≤ t ≤ 1 − U/2,

b1(2t + U − 2) − b1(U), 1 − U/2 ≤ t ≤ 1.

(6.2)

Moreover, the label process visits v̂, the unique white vertex of degree 2, twice. If
we split this vertex into two, the corresponding map will be a tree, which after nor-
malization converges in distribution in the Gromov–Hausdorff metric to a random
real tree Th′ , where h′ is the random function h above shifted to its minimum and
with the minimum subtracted, so h′ ≥ 0 and h′(0) = 0. We may by the Skorohod
representation theorem assume that the label processes converge a.s. Then the ran-
dom maps with v̂ split converge to Th′ a.s. in the Gromov–Hausdorff metric, with
the two halves of v̂ corresponding to two different points in Th′ [the points given
by t = (1 − U)/2 and t = 1 − U/2], and it follows by combining the two parts of
v̂ again, that the random maps Mn converge to a limit that equals Th′ with these
two points identified. Note that this creates a cycle, so the limit is no longer a tree.
(As a topological space, it is of the same homotopy type as a circle.)

APPENDIX: MORE ON GALTON–WATSON TREES

Marckert and Miermont [44] gave a description of the distribution ν̃ in (2.9)
as a conditioned two-type Galton–Watson tree, while we have used the bijection
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Gn in Section 3 to obtain a simply generated tree (which in many cases is a con-
ditioned Galton–Watson tree), with a single type only. In this appendix, we give
some further comments on the relation between these two approaches.

Consider arbitrary weights qi ≥ 0, i ≥ 1, assuming first only that qi > 0 for
some i > 1 (to avoid trivialities), and define wi by (1.4) (and w0 = 1) and their
generating function g(x) by (1.5). Marckert and Miermont [44] define another
generating function f (x) (denoted fq(x) in [44]) by

f (x) =
∞∑

k=0

wk+1x
k;(A.1)

thus

g(x) = 1 + xf (x).(A.2)

We have seen in Sections 1 and 3 that a random planar map in M∗
n with Bolz-

mann weights (1.1) corresponds to a random mobile (τn, 	n) (and a sign ε that
we ignore here), and that τn corresponds by the bijection Gn to a random tree τ ′

n

that has the distribution of a simply generated tree with |τ ′
n| = n edges, defined by

the weights (wi)i≥0, cf. (3.1) [and note that deg(v) − 1 is the outdegree, i.e., the
number of children of v; see Section 2].

We consider first trees with unrestricted number of edges. We give a planar
tree τ the weight

w(τ) = ∏
v∈V (τ)

wdeg(v)−1.(A.3)

The generating function

G(x) = ∑
τ

x|τ |+1w(τ)(A.4)

summing over all planar trees, satisfies the well-known equation [48]

G(x) = xg
(
G(x)

)
.(A.5)

In particular, the total weight Z = ∑
τ w(τ) = G(1) is finite if and only if the

equation

z = g(z)(A.6)

has a solution z ∈ (0,∞), and then Z is the smallest positive solution to (A.6).
Using (A.2), we can write (A.6) as z = 1 + zf (z), or

f (z) = 1 − 1/z,(A.7)

the form of the equation used in [44].
If Z = G(1) < ∞ (such weights qi are called admissible in [44]), define

pi = wiZ
i−1.(A.8)
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Then, by (A.6),

∞∑
i=0

pi = Z−1g(Z) = 1,(A.9)

so (pi)i≥0 is a probability distribution on {0,1, . . .}. Let τ ′ be a random Galton–
Watson tree with this offspring distribution. Then the probability of a particular
realization τ ′ is∏

v∈V (τ ′)
pdeg(v)−1 = Z

∑
v(deg(v)−2)

∏
v∈V (τ ′)

wdeg(v)−1 = Z−1w
(
τ ′),(A.10)

recalling that the number of vertices in τ ′ is |τ ′|+1 and that
∑

v deg(v) = 2|τ ′|+1
since we count an extra half-edge at the root. Hence, the distribution of the Galton–
Watson tree τ ′ equals the distribution given by the weights w(τ) on the set of all
planar trees.

REMARK A.1. The distribution (pi)i≥0 defined by (A.8) is not the same as
the (pi)i≥0 used in Section 3, so they define different Galton–Watson trees τ ′;
however, they yield the same distribution νn when conditioned on a fixed size n of
the tree.

Since Z = ∑
τ w(τ), the sum of the probabilities (A.10) over all (finite) τ is 1;

thus the Galton–Watson tree τ ′ is a.s. finite, which means that the offspring distri-
bution has mean ≤ 1, that is, the Galton–Watson tree is subcritical or critical. Con-
versely, we can obtain any subcritical or critical probability distribution (pi)i≥0 by
taking wi = pi−1

0 pi ; then w0 = 1 and Z = p−1
0 . (If we do not insist on w0 = 1, we

can simply take wi = pi .)
The offspring distribution (A.8) has probability generating function

gp(x) =
∞∑
i=0

pix
i = Z−1g(Zx)(A.11)

and thus mean

g′
p(1) = g′(Z),(A.12)

which by (A.2) and (A.7) can be written as

g′
p(1) = f (Z) + Zf ′(Z) = 1 + (

Z2f ′(Z) − 1
)
/Z.(A.13)

Hence, the Galton–Watson tree is critical if and only if g′(Z) = 1 or, equivalently,
Z2f ′(Z) = 1 (the form used in [44]). Moreover, the variance of the offspring dis-
tribution is

σ 2 = g′′
p(1) + g′

p(1) − (
g′

p(1)
)2 = Zg′′(Z) + g′(Z)

(
1 − g′(Z)

)
,(A.14)
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which in the critical case g′(Z) = 1 can be written by (A.2) as

σ 2 = Zg′′(Z) = Z
(
Zf ′′(Z) + 2f ′(Z)

) = (
Z3f ′′(Z) + 2

)
/Z,(A.15)

which in the notation of [44] is ρq/Zq.
The two-type Galton–Watson tree defined by Marckert and Miermont [44],

which we denote by τ , has a white root; a white vertex has only black children, and
the number of them has the geometric distribution Ge(p0) = ((1 −Z−1)iZ−1)i≥0;
a black vertex has only white children, and the number of them has the distribution
(pi+1/(1 −p0))i≥0 = (pi+1/(1 −Z−1))i≥0, that is, the conditional distribution of
(ξ − 1|ξ > 0) if ξ has the distribution (pi)i≥0. Thus, the offspring distribution for
the black vertices has the probability generating function

∞∑
i=0

pi+1

1 − Z−1 xi =
∞∑
i=0

wi+1Z
ixi

1 − Z−1 = f (Zx)

1 − Z−1 = g(Zx) − 1

(Z − 1)x
.(A.16)

A simple calculation (which essentially is [44], Proposition 7) shows that the bijec-
tion in Section 3 maps this two-type Galton–Watson tree τ to the standard (single
type) Galton–Watson tree τ ′ with offspring distribution (A.8). This can also be
seen from the construction of the bijection; see Figure 3. In particular, note that
the children of the root in τ are the vertices in the rightmost path from the root
in τ ′, excluding its final leaf (and similarly for the children of other white ver-
tices); this explains why the offspring distribution for a white vertex is geometric,
since the length of the rightmost path in τ ′ obviously has a geometric distribution.

Restricting to trees with n edges (and thus n + 1 vertices) we see, by Re-
mark A.1, that the tree τ ′

n in Section 3 with distribution νn can be seen as τ ′
conditioned on |τ ′| = n, and thus the corresponding tree τn = G−1

n (τ ′
n) has the

same distribution as τ conditioned on |τ | = n.
Although the Galton–Watson tree τ ′ is simpler than the two-type tree τ , the

latter is more convenient for some purposes. For example, when considering the
white vertices, as we do in parts of Section 3, it is immediate (by considering each
second generation) that the number of white vertices in τ ′ is distributed as the
total progeny (number of vertices) in a Galton–Watson tree with offspring distri-
bution

ξ (0) =
ζ∑

j=1

ξ∗
j ,(A.17)

where ζ ∼ Ge(p0) = Ge(1 − Z−1) and ξ∗
j = (ξj − 1|ξj > 0) are independent of

each other and of ζ , and each ξj has the distribution (pi)i≥0. We have, letting
κ = Eξ = ∑

i ipi ≤ 1,

Eξ∗
i = E(ξi |ξi > 0) − 1 = Eξi

1 − p0
− 1 = κ + p0 − 1

1 − p0
(A.18)
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and

Eξ (0) = EζEξ∗
1 = 1 − p0

p0

κ + p0 − 1

1 − p0
= κ + p0 − 1

p0
= 1 − 1 − κ

p0
.(A.19)

Furthermore, it is easy to see that ξ (0) has the probability generating func-
tion

Exξ(0) = p0

1 − ∑∞
k=1 pkxk−1 .(A.20)

Note that Eξ (0) < 1 when Eξ < 1, which says that the white tree consist-
ing of each second generation in τ is subcritical if and only if τ ′ (or τ )
is.

Translated to τ ′, this shows immediately that the number of leaves of the
Galton–Watson tree τ ′ with offspring distribution ξ is distributed as the total
progeny of a Galton–Watson process with offspring distribution ξ (0). In fact, this
was shown by Minami [47]; one version of his argument is the following. Given a
tree τ , we partition its vertex set into twigs as follows: Take the vertices in lexico-
graphic order and stop each time we reach a leaf, that is, the first twig consists of
the root and all vertices up to, and including, the first leaf; the second twig starts
at the next vertex and ends at the next leaf, and so on. Thus, each twig ends with
a leaf, and the number of twigs equals the number of leaves. If we start with a
random Galton–Watson tree τ ′ with offspring distribution (pi), the size of each
twig has a geometric distribution 1 + ζ with ζ ∼ Ge(p0) as above. Moreover, each
nonleaf in the twig has further offspring distributed as ξ∗; hence, if we contract
each twig to a single vertex, we obtain a new random Galton–Watson tree with
offspring distributed as ξ (0); the number of vertices in this tree equals the number
of twigs in τ ′, and thus the number of leaves in τ ′.

In fact, these two arguments are essentially the same; if we use instead the re-
verse lexicographic order when defining the twigs, it is easy to see that each twig
in τ ′ correspond to a white vertex and its (black) children in τ .

We use this representation to verify the tail estimate (3.17).

LEMMA A.2. Let N(0) be the number of leaves in a Galton–Watson tree with
offspring distribution (pi)i≥0 satisfying κ < 1 and (3.3) for some slowly varying
function L̄(i). Then, as n → ∞,

P
(
N(0) = n

) ∼ cL̄(n)n−β,(A.21)

with c = p0
β−1(1 − κ)−β .

PROOF. We have seen that N(0) is distributed as the number of vertices in
a Galton–Watson tree with offspring distribution (A.17). By (3.12) applied to a
sequence ξ

(0)
j of independent copies of ξ (0),

P
(
N(0) = n

) = 1

n
P

(
S(0)

n = n − 1
)
,(A.22)
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where

S(0)
n =

n∑
j=1

ξ
(0)
j

d=
Xn∑
i=1

ξ∗
i ,(A.23)

where Xn = ∑n
j=1 ζj with ζj ∼ Ge(p0) independent of each other and of {ξ∗

i }.
[Thus, Xn has a negative binomial distribution NegBin(n,p0).] Note that EXn =
nEζ1 = n(1 − p0)/p0, and that Xn is strongly concentrated about its mean; for
example, moment convergence in the central limit theorem for Xn implies that

P

(∣∣∣∣Xn − 1 − p0

p0
n

∣∣∣∣ > n2/3
)

= O
(
n−b)

(A.24)

for any fixed b. Furthermore,

P
(
ξ∗
i = n

) = (1 − p0)
−1pn+1 = (

1 + o(1)
)
(1 − p0)

−1L̄(n)n−β(A.25)

as n → ∞, and thus, by a more general version of (3.13) applied to ξ∗
i and (A.18),

uniformly for all k with |k − n(1 − p0)/p0| ≤ n2/3,

P

(
k∑

i=1

ξ∗
i = n − 1

)
= k

(
1 + o(1)

)
P

(
ξ∗

1 = ⌊
n − kEξ∗

1 − 1
⌋)

= (
1 + o(1)

)n(1 − p0)

p0
P

(
ξ∗

1 = ⌊
n(1 − κ)/p0

⌋ + o(n)
)

(A.26)

= (
1 + o(1)

) n

p0
L̄(n)

(
n(1 − κ)/p0

)−β
.

Choose b = β + 1. By (A.22)–(A.26),

P
(
N(0) = n

) = 1

n
P

(
Xn∑
i=1

ξ∗
i = n − 1

)

= (
1 + o(1)

)
p0

−1L̄(n)
(
n(1 − κ)/p0

)−β
. �
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