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Abstract. This paper concerns a relatively new combinatorial struc-
ture called staircase tableaux. They were introduced in the context of
the asymmetric exclusion process and Askey–Wilson polynomials, how-
ever, their purely combinatorial properties have gained considerable in-
terest in the past few years.

In this paper we further study combinatorial properties of staircase
tableaux. We consider a general model of staircase tableaux in which
symbols that appear in staircase tableaux may have arbitrary positive
weights. Under this general model we derive a number of results. Some
of our results concern the limiting laws for the number of appearances of
symbols in a random staircase tableaux. They generalize and subsume
earlier results that were obtained for specific values of the weights.

One advantage of our generality is that we may let the weights ap-
proach extreme values of zero or infinity which covers further special
cases appearing earlier in the literature. Furthermore, our generality
allows us to analyze the structure of random staircase tableaux and we
obtain several results in this direction.

One of the tools we use are generating functions of the parameters of
interests. This leads us to a two–parameter family of polynomials and
we study this family as well. Specific values of the parameters include
number of special cases analyzed earlier in the literature. All of them
are generalizations of the classical Eulerian polynomials.

We also briefly discuss the relation of staircase tableaux to the asym-
metric exclusion process, to other recently introduced types of tableaux,
and to an urn model studied by a number of researchers, including
Philippe Flajolet.

1. Introduction and main results

This paper is concerned with a combinatorial structure introduced re-
cently by Corteel and Williams [16; 17] and called staircase tableaux. The
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original motivations were in connections with the asymmetric exclusion pro-
cess (ASEP) on a one-dimensional lattice with open boundaries, an impor-
tant model in statistical mechanics, see Section 11 below for a brief summary
and [17] for the full story. The generating function for staircase tableaux
was also used to give a combinatorial formula for the moments of the Askey–
Wilson polynomials (see [17; 13] for the details). Further work includes
[10] where special situations in which the generating function of staircase
tableaux took a particularly simple form were considered. Furthermore, [18]
deals with the analysis of various parameters associated with appearances
of the Greek letters α, β, δ, and γ in a randomly chosen staircase tableau
(see below, or e.g. [17, Section 2], for the definitions and the meaning of
these symbols). Moreover, there are natural bijections (see [17, Appendix])
between the a class of staircase tableaux (the α/β-staircase tableaux defined
below) and permutation tableaux (see e.g. [11; 14; 15; 32] and the references
therein for more information on these objects and their connection to a ver-
sion of the ASEP) as well as to alternative tableaux [37] which, in turn,
are in one-to-one correspondence with tree-like tableaux [1]; we discuss this
further in Section 10.

We recall the definition of a staircase tableau introduced in [16; 17]:

Definition 1.1. A staircase tableau of size n is a Young diagram of shape
(n, n− 1, . . . , 2, 1) whose boxes are filled according to the following rules:

(Si) each box is either empty or contains one of the letters α, β, δ, or γ;
(Sii) no box on the diagonal is empty;
(Siii) all boxes in the same row and to the left of a β or a δ are empty;
(Siv) all boxes in the same column and above an α or a γ are empty.

An example of a staircase tableau is given in Figure 1.

α γ

α
β
δ
α
δ
γ
γ

δ

α
αβ

Figure 1. A staircase tableau of size 8; its weight is α5β2δ3γ3.

The set of all staircase tableaux of size n will be denoted by Sn. There are
several proofs of the fact that the number of staircase tableaux |Sn| = 4nn!,
see e.g. [13; 10; 18] for some of them, or (1.4) below and its proof in Section 5.

Given a staircase tableau S, we let Nα, Nβ, Nγ , Nδ be the numbers of
symbols α, β, γ, δ in S. (We also use the notation Nα(S), . . . ) Define the
weight of S to be

(1.1) wt(S) := αNαβNβγNγδNδ ,
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i.e., the product of all symbols in S. (This is a simplified version; see
Section 11 for the more general version including further variables u and
q. This is used e.g. in the connection with the ASEP [17], see [13] for
further properties, but we will in this paper only consider the version above,
which is equivalent to taking u = q = 1.)

By (Siv), each column contains at most one α or γ, and thus Nα+Nγ 6 n.
Similarly, by (Siii), each row contains at most one β or δ so Nβ + Nδ 6 n.
Together with (Sii) this yields

(1.2) n 6 Nα +Nβ +Nγ +Nδ 6 2n.

Actually, as is seen from (1.4) below, the maximum of Nα+Nβ +Nγ +Nδ is
2n− 1, see also Example 2.6 and Section 8. Note that there are n(n+ 1)/2
boxes in a staircase tableau in Sn. Hence, in a large staircase tableau, only
a small proportion of the boxes are filled.

The generating function

(1.3) Zn(α, β, γ, δ) :=
∑
S∈Sn

wt(S)

has a particularly simple form, viz., see [13; 10],

(1.4) Zn(α, β, δ, γ) =

n−1∏
i=0

(
α+ β + δ + γ + i(α+ γ)(β + δ)

)
.

(A proof is included in Section 5.) In particular, the number of staircase

tableaux of size n is Zn(1, 1, 1, 1) =
∏n−1
i=0 (4 + 4i) = 4nn!, as said above.

(We use α, β, γ, δ as fixed symbols in the tableaux, and in Nα, . . . , Nδ, but
otherwise as variables or real-valued parameters. This should not cause any
confusion.)

Note that the symbols α and γ have exactly the same role in the definition
above of staircase tableaux, and so do β and δ. (This is no longer true in the
connection to the ASEP, see Section 11, which is the reason for using four
different symbols in the definition.) We say that a staircase tableau using
only the symbols α and β is an α/β-staircase tableau, and we let S̄n ⊂ Sn be
the set of all α/β-staircase tableaux of size n. We thus see that any staircase
tableau can be obtained from an α/β-staircase tableau by replacing some
(or no) α by γ and some (or no) β by δ; conversely, any staircase tableau
can be reduced to an α/β-staircase tableau by replacing every γ by α and
every δ by β.

We define the generating function of α/β-staircase tableaux by

(1.5) Zn(α, β) :=
∑
S∈S̄n

wt(S) = Zn(α, β, 0, 0),

and note that the relabelling argument just given implies

(1.6) Zn(α, β, γ, δ) = Zn(α+ γ, β + δ).
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We let xn denote the rising factorial defined by

(1.7) xn := x(x+ 1) · · · (x+ n− 1) = Γ(x+ n)/Γ(x),

and note that by (1.4),

Zn(α, β) = Zn(α, β, 0, 0) =

n−1∏
i=0

(α+ β + iαβ) = αnβn(α−1 + β−1)n

= αnβn
Γ(n+ α−1 + β−1)

Γ(α−1 + β−1)
.

(1.8)

In particular, as noted in [10] and [13], the number of α/β-staircase
tableaux is Zn(1, 1) = 2n = (n+ 1)!.

Dasse-Hartaut and Hitczenko [18] studied random staircase tableaux ob-
tained by picking a staircase tableau in Sn uniformly at random. We can
obtain the same result by picking an α/β-staircase tableau in S̄n at ran-
dom with probability proportional to 2Nα+Nβ and then randomly replacing
some symbols; each α is replaced by γ with probability 1/2, and each β by
δ with probability 1/2, with all replacements independent. Note that the
weight 2Nα+Nβ is the weight (1.1) if we choose the parameters α = β = 2.
The purpose of this paper is to, more generally, study random α/β-staircase
tableaux defined similarly with weights of this type for arbitrary parameters
α, β > 0. (As we will see in Section 2, this includes several cases considered
earlier. It will also be useful in studying the structure of random staircase
tableaux, see Section 6.) We generalize several results from [18].

Definition 1.2. Let n > 1 and let α, β ∈ [0,∞) with (α, β) 6= (0, 0). Then
Sn,α,β is the random α/β-staircase tableau in S̄n with the distribution

(1.9) Pα,β(Sn,α,β = S) =
wt(S)

Zn(α, β)
=
αNα(S)βNβ(S)

Zn(α, β)
, S ∈ S̄n.

We also allow the parameters α = ∞ or β = ∞; in this case (1.9) is inter-
preted as the limit when α→∞ or β →∞, with the other parameter fixed.
Similarly, we allow α = β =∞; in this case (1.9) is interpreted as the limit
when α = β → ∞. See further Examples 2.4–2.6 and Section 8. (In the
case α = β =∞, we tacitly assume n > 2 or sometimes even n > 3 to avoid
trivial complications.)

Remark 1.3. There is a symmetry (involution) S 7→ S† of staircase tableaux
defined by reflection in the NW–SE diagonal, thus interchanging rows and
columns, together with an exchange of the symbols by α↔ β and γ ↔ δ, see
further [10]. This maps S̄n onto itself, and maps the random α/β-staircase
tableau Sn,α,β to Sn,β,α; the parameters α and β thus play symmetric roles.

Remark 1.4. We can similarly define a random staircase tableaux Sn,α,β,γ,δ,
with four parameters α, β, γ, δ > 0, by picking a staircase tableau S ∈ Sn
with probability wt(S)/Zn(α, β, γ, δ). By the argument above, this is the
same as taking a random Sn,α+γ,β+δ and randomly replacing each symbol α
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n\k 0 1 2 3
0 1
1 a b
2 a2 a+ b+ 2ab b2

3 a3 a+ b+ 3a2 + 3ab+ 3a2b a+ b+ 3ab+ 3b2 + 3ab2 b3

Table 1. The coefficients va,b(n, k) of Pn,a,b for small n.

by γ with probability γ/(α+γ), and each β by δ with probability δ/(β+ δ).
(The case α = β = γ = δ = 1 was mentioned above.) Our results can thus
be translated to results for Sn,α,β,γ,δ, but we leave this to the reader.

Remark 1.5. For convenience (as a base case in inductions) we allow also
n = 0; S0 = S̄0 contains a single, empty staircase tableaux with Nα = Nβ =
Nγ = Nδ = 0 and thus weight wt = 1, so Z0 = 1. (At some places, e.g. in
Section 8, we assume n > 1 to avoid trivial complications.)

Remark 1.6. It seems natural to use the parameters α and β as above
in Definition 1.2. However, in many of our results it is more convenient,
and sometimes perhaps more natural, to use α−1 and β−1 instead. We will
generally use the notations a := α−1 and b := β−1, and formulate results in
terms of these parameters whenever convenient.

We are interested in the distribution of various parameters of Sn,α,β. In
particular, we define A(S) and B(S) as the numbers of α and β, respectively,
on the diagonal of an α/β-staircase tableau S, and consider the random
variables An,α,β := A(Sn,α,β) and Bn,α,β := B(Sn,α,β); note that An,α,β +
Bn,α,β = n by (Sii), so it suffices to consider one of these. Moreover, by

Remark 1.3, Bn,α,β
d
= An,β,α.

In order to describe the distribution of An,α,β we need some further no-
tation. Define numbers va,b(n, k), for a, b ∈ R, k ∈ Z and n = 0, 1, . . . , by
the recursion

(1.10) va,b(n, k) = (k+a)va,b(n−1, k)+(n−k+b)va,b(n−1, k−1), n > 1,

with va,b(0, 0) = 1 and va,b(0, k) = 0 for k 6= 0, see Table 1. (It is convenient
to define va,b(n, k) for all integers k ∈ Z, but note that va,b(n, k) = 0 for
k < 0 and k > n, for all n > 0, so it really suffices to consider 0 6 k 6 n.)
Furthermore, define polynomials

(1.11) Pn,a,b(x) :=
n∑
k=0

va,b(n, k)xk =
∞∑

k=−∞
va,b(n, k)xk.

Thus, P0,a,b(x) = 1. Moreover, the recursion (1.10) is easily seen to be
equivalent to the recursion
(1.12)
Pn,a,b(x) =

(
(n− 1 + b)x+ a

)
Pn−1,a,b(x) + x(1− x)P ′n−1,a,b(x), n > 1.
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In the cases (a, b) = (1, 0), (0, 1) and (1, 1), the numbers va,b(n, k) are the
Eulerian numbers and Pn,a,b(x) are the Eulerian polynomials (in different
versions), see Section 3. We can thus see va,b(n, k) and Pn,a,b(x) as gener-
alizations of Eulerian numbers and polynomials. Some properties of these
numbers and polynomials are given in Section 4, where we also discuss some
other cases that have been considered earlier.

In the case a = b = 0, we trivially have v0,0(n, k) = 0 and Pn,0,0 = 0 for
all n > 1; in this case we define the substitutes, for n > 2,

(1.13) ṽ0,0(n, k) := v1,1(n− 2, k − 1)

and

(1.14) P̃n,0,0(x) :=

n∑
k=0

ṽ0,0(n, k)xk = xPn−2,1,1(x).

See further Lemmas 4.9 and 4.10.
Our main results are the following. Proofs are given in Section 5.

Theorem 1.7. Let α, β ∈ (0,∞] and let a := α−1, b := β−1. If (α, β) 6=
(∞,∞), then the probability generating function gA(x) of the random vari-
able An,α,β is given by

gA(x) := ExAn,α,β =

n∑
k=0

P(An,α,β = k)xk

=
Pn,a,b(x)

Pn,a,b(1)
=
Pn,a,b(x)

(a+ b)n
=

Γ(a+ b)

Γ(n+ a+ b)
Pn,a,b(x).

(1.15)

Equivalently,

P(An,α,β = k) =
va,b(n, k)

Pn,a,b(1)
=
va,b(n, k)

(a+ b)n
=

Γ(a+ b)

Γ(n+ a+ b)
va,b(n, k).(1.16)

In the case α = β =∞, and n > 2, we have instead

gA(x) :=
n∑
k=0

P(An,α,β = k)xk =
P̃n,0,0(x)

P̃n,0,0(1)
=
P̃n,0,0(x)

(n− 1)!
,(1.17)

P(An,α,β = k) =
ṽ0,0(n, k)

P̃n,0,0(1)
=
ṽ0,0(n, k)

(n− 1)!
.(1.18)

Theorem 1.8. Let α, β ∈ (0,∞] and let a := α−1 and b := β−1. Then

E(An,α,β) =
n(n+ 2b− 1)

2(n+ a+ b− 1)

and

Var(An,α,β)

= n
(n− 1)(n− 2)(n+ 4a+ 4b− 1) + 6(n− 1)(a+ b)2 + 12ab(a+ b− 1)

12(n+ a+ b− 1)2(n+ a+ b− 2)
.
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Remark 1.9. In the symmetric case α = β we thus obtain E(An,α,α) = n/2;

this is also obvious by symmetry, since An,α,α
d
= Bn,α,α by Remark 1.3.

Theorem 1.10. The probability generating function gA(x) of the random
variable An,α,β has all its roots simple and on the negative halfline (−∞, 0].
As a consequence, for any given n, α, β there exist p1, . . . , pn ∈ [0, 1] such
that

(1.19) An,α,β
d
=

n∑
i=1

Be(pi),

where Be(pi) is a Bernoulli random variable with parameter pi and the sum-
mands are independent. It follows that the distribution of An,α,β and the
sequence va,b(n, k), k ∈ Z, are unimodal and log-concave.

These results lead to a central limit theorem:

Theorem 1.11. Let α, β ∈ (0,∞] be fixed and let n→∞. Then An,α,β is
asymtotically normal:

(1.20)
An,α,β − EAn,α,β
(VarAn,α,β)1/2

d−→ N(0, 1),

or, more explicitly,

(1.21)
An,α,β − n/2√

n

d−→ N(0, 1/12).

Moreover, a corresponding local limit theorem holds:

(1.22) P(An,α,β = k) =
(
2πVarAn,α,β

)−1/2
(
e
−

(k−EAn,α,β)2

2VarAn,α,β + o(1)
)
,

as n→∞, uniformly in k ∈ Z, or, more explicitly,

(1.23) P(An,α,β = k) =

√
6

πn

(
e−6(k−n/2)2/n + o(1)

)
,

as n→∞, uniformly in k ∈ Z.

Remark 1.12. The proof shows that the central limit theorem in the forms
(1.20) and (1.22) holds also if α and β are allowed to depend on n, provided
only that Var(An,α,β)→∞, which by Theorem 1.8 holds as soon as n2/(a+
b)→∞ or nab/(a+ b)2 →∞; hence this holds except when a or b is ∞ or
tends to∞ rapidly, i.e., unless α or β is 0 or tends to 0 rapidly. Example 2.7
illustrates that asymptotic normality may fail in extreme cases.

We can also study the total numbers Nα and Nβ of symbols α and β
in a random Sn,α,β. This is simpler, and follows directly from (1.8), as we
show in Section 5. (Recall that in Nα and Nβ, α and β are symbols and not
parameter values.)



8 PAWE L HITCZENKO AND SVANTE JANSON

Theorem 1.13. Let α, β ∈ (0,∞], and let a := α−1, b := β−1. The
joint probability generating function of Nα and Nβ for the random staircase
tableau Sn,α,β is

(1.24) Eα,β
(
xNαyNβ

)
=

n−1∏
i=0

αx+ βy + iαβxy

α+ β + iαβ
=

n−1∏
i=0

bx+ ay + ixy

a+ b+ i
.

In other words,

(1.25)
(
Nα, Nβ

) d
=

(
n−1∑
i=0

Ii,

n−1∑
i=0

Ji

)
,

where (Ii, Ji) are independent pairs of 0/1-variables with the distributions

(1.26) P(Ii = ι, Ji = ι′) =


0, (ι, ι′) = (0, 0),

b
a+b+i , (ι, ι′) = (1, 0),
a

a+b+i , (ι, ι′) = (0, 1),
i

a+b+i , (ι, ι′) = (1, 1).

In particular, the marginal distributions are

Ii ∼ Be
(

1− a

a+ b+ i

)
, Ji ∼ Be

(
1− b

a+ b+ i

)
.(1.27)

Hence,

ENα =
n−1∑
i=0

(
1− a

a+ b+ i

)
= n−

n−1∑
i=0

a

a+ b+ i
,(1.28)

VarNα =
n−1∑
i=0

a

a+ b+ i

(
1− a

a+ b+ i

)
,(1.29)

Cov(Nα, Nβ) = −
n−1∑
i=0

ab

(a+ b+ i)2
.(1.30)

In the case α = β = ∞ (a = b = 0) and i = 0, we interpret a
a+b+i =

b
a+b+i = 1

2 and i
a+b+i = 0 in (1.26)–(1.30), and the factor in (1.24) as

(x+ y)/2.

Theorem 1.14. Let α, β ∈ (0,∞] be fixed and let n→∞. Then, with
a := α−1 and b := β−1,

ENα = n− a log n+O(1)(1.31)

VarNα = a log n+O(1),(1.32)

Cov(Nα, Nβ) = O(1).(1.33)

Furthermore,

Nα − ENα√
log n

d−→ N(0, a),(1.34)
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Nβ − ENβ√
log n

d−→ N(0, b),(1.35)

jointly, with independent limits.

Remark 1.15. A local limit theorem holds too. Moreover, Theorem 1.13
implies that n−Nα can be approximated in total variation sense by a Poisson
distribution P(n− ENα), see e.g. [2, Theorem 2.M]. We omit the details.

Remark 1.16. We can similarly also study the joint distribution of, e.g.,
Nα and A (the total number of α’s and the number on the diagonal), but
we leave this to the reader.

The results above show that the effects of changing the parameters α
and β are surprisingly small. Typically, probability weights of the type
(1.1) (which are common in statistical physics) shift the distributions of
the random variables considerably, but here the effects in e.g. Theorems 1.8
and 1.14 are only second-order. The reason seems to be that the variables
are so constrained; we have Nα, Nβ 6 n and by Theorem 1.13, both are
close to their maximum and thus the weights do not differ as much between
different random staircase tableaux as might be expected.

Remark 1.17. In order to get stronger effects, we may let the weights tend
to 0 as n→∞. For example, taking α = 1/(sn) and β = 1/(tn) for some
fixed s, t > 0, and thus a = sn, b = tn, we obtain by Theorem 1.8

E(An,α,β) =
2t+ 1

2(s+ t+ 1)
n+O(1),(1.36)

Var(An,α,β) =
1 + 4s+ 4t+ 6(s+ t)2 + 12st(s+ t)

12(s+ t+ 1)3
n+O(1).(1.37)

A central limit theorem holds by Remark 1.12. Similarly, one easily shows
joint asymptotic normality forNα, Nβ in this case too; unlike the case of fixed
α and β in Theorem 1.14, the limits are now dependent normal variables. We
omit the details. Note that by Theorem 6.1, the central part of a uniformly
random α/β-staircase tableau, say the part comprising the middle third of
the rows and columns, is an example of this type.

We discuss some examples in Section 2. Sections 3–4 contain further
preliminaries, and the proofs of the theorems above are given in Section 5.
Sections 6 and 7 contain further results on subtableaux and on the positions
of the symbols in a random staircase tableau. The limiting case α = β =
∞ is studied in greater detail in Section 8. Section 9 discusses an urn
model which gives the same distribution as An,α,β. Section 10 discusses, as
said above, some other, equivalent, types of tableaux. Section 11, finally,
describes briefly the connection to ASEP mentioned above.

2. Special cases

Example 2.1. α = β = 2. As said above, this yields the uniformly ran-
dom staircase tableaux studied by Dasse-Hartaut and Hitczenko [18]. More
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precisely, in the notation of Remark 1.4, the uniformly random staircase
tableaux is Sn,1,1,1,1, which is obtained from Sn,2,2 by a simple random re-
placement of symbols.

The main results of [18] can be recovered as special cases of the theorems
above, with a = b = 1/2. Note that in this case, the formulas in Theorem 1.8
simplify to E(An,2,2) = n/2 (see Remark 1.9) and Var(An,2,2) = (n+ 1)/12.

Recall that the number of all staircase tableaux of size n is Zn(1, 1, 1, 1) =
Zn(2, 2) = 4nn!, see (1.4) and (1.8).

Example 2.2. α = β = 1. This yields the uniformly random α/β-staircase
tableau Sn,1,1. As said above, the number of α/β-staircase tableaux of size
n is Zn(1, 1) = (n + 1)!. Indeed, Corteel and Williams [17] gave a bijec-
tion between α/β-staircase tableaux of size n and permutation tableaux of
size (length) n + 1, and there are several bijections between the latter and
permutations of size n + 1 [46; 12]; see further Section 10. α/β-staircase
tableaux are further studied in [13; 10].

The theorems above, with a = b = 1, yield results on uniformly random
α/β-staircase tableaux. For example, Theorem 1.7 shows, using (3.4), that
the distribution of An,1,1 is given by the Eulerian numbers:

(2.1) P(An,1,1 = k) =
v1,1(n, k)

(n+ 1)!
=

〈
n+1
k

〉
(n+ 1)!

.

In other words, the number of α/β-staircase tableaux of size n with k α’s on

the diagonal is
〈
n+1
k

〉
. (This follows also by the bijections mentioned above

between α/β-staircase tableaux and permutation tableaux [17] and between
the latter and permutations [12].) Theorems 1.10 and 1.11 give in this case
well-known results for Eulerian numbers, see [28] and [8], respectively.

Furthermore, the formulas in Theorem 1.8 simplify and yield EAn,1,1 =
n/2 (see Remark 1.9) and VarAn,1,1 = (n + 2)/12. As another example,
Theorem 1.13 shows that

(2.2) n−Nα
d
=

n−1∑
i=0

(1− Ii) ∼
n−1∑
i=0

Be
( 1

i+ 2

)
=

n+1∑
i=2

Be
(1

i

)
,

with the summands independent; note that this has the same distribution
as Cn+1 − 1, where Cn+1 is the number of cycles in a random permutation
of size n + 1, or, equivalently, the number of maxima (records) in such
a random permutation. (Again, a bijective proof can be given using the
bijections with permutation tableaux and permutations in [17] and [12].)
See also Section 10.

Example 2.3. α = 2, β = 1 corresponds to staircase tableaux without δ’s
briefly studied in [13]. The number of such staircase tableaux is, by (1.8),

(2.3) Zn(2, 1) = 2n(3/2)n =
n−1∏
i=0

(3 + 2i) = (2n+ 1)!!,

see [13; 10]. Our theorems yield results on random δ-free staircase tableaux.
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Example 2.4. α = ∞. This means that we take the limit as α → ∞ in
(1.9), which means that we have a non-zero probability only for staircase
tableaux with the maximum number of symbols α, i.e., with Nα = n. For
such α/β-staircase tableaux, the probability is proportional to βNβ .

We let S∗n ⊂ S̄n be the set of such α/β-staircase tableau of size n; by
(Siv), these are the α/β-staircase tableau of size n with exactly one α in
each column. (Such staircase tableaux were studied in [10].) We define the
corresponding generating function

(2.4) Z∗n(β) :=
∑
S∈S∗n

βNβ = lim
α→∞

α−nZn(α, β) =
n−1∏
i=0

(1 + iβ),

where the final equality follows from (1.8). Thus, Sn,∞,β is the random

element of S∗n with the distribution P(Sn,∞,β = S) = βNβ(S)/Z∗n(β).

Example 2.5. α =∞, β = 1. As a special case of the preceding example,
Sn,∞,1 is a uniformly random element of S∗n. By (2.4), the number of α/β-
staircase tableaux of size n with n α’s is

(2.5) Z∗n(1) = n!.

Hence, the probability that a uniformly random α/β-staircase tableau has
the maximum number n of α’s is Z∗n(1)/Zn(1, 1) = n!/(n+ 1)! = 1/(n+ 1).
(See also Theorem 1.13 and (2.2).)

The theorems above, with a = 0 and b = 1, yield results on uniformly
random α/β-staircase tableaux with n α’s (i.e., one in each column). For
example, Theorem 1.7 shows, using (3.3), that the distribution of An,∞,1 is
given by the Eulerian numbers:

(2.6) P(An,∞,1 = k) =
v0,1(n, k)

n!
=

〈
n
k−1

〉
n!

.

In other words, the number of α/β-staircase tableaux of size n with n α’s
of which k are on the diagonal is

〈
n
k−1

〉
. (A bijective proof is given in [10].)

By symmetry, counting instead the number of β’s on the diagonal, by (3.1),

(2.7) P(Bn,∞,1 = k) = P(An,1,∞ = k) =
v1,0(n, k)

n!
=

〈
n
k

〉
n!
.

Compare with Example 2.2, where also the distributions of A and B
d
= A

are given by Eulerian numbers. We see that by (2.6)–(2.7) and (2.1) that

An,∞,1
d
= An−1,1,1 + 1 and Bn,∞,1

d
= An,∞,1 − 1

d
= An−1,1,1

d
= Bn−1,1,1.

The formulas in Theorem 1.8 simplify and yield EAn,∞,1 = (n+1)/2 and
VarAn,∞,1 = (n+ 1)/12. As another example, Theorem 1.13 shows that

(2.8) n−Nβ
d
=

n−1∑
i=0

(1− Ji) ∼
n−1∑
i=0

Be
( 1

i+ 1

)
=

n∑
i=1

Be
(1

i

)
,
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with the summands independent; this has the same distribution as Cn, with
Cn as in the corresponding result in Example 2.2. (A bijective proof is given
in [10].)

Example 2.6. α = β = ∞. This means that we take the limit as α =
β → ∞ in (1.9), which means that we have a non-zero probability only
for α/β-staircase tableau with the maximum number of symbols. These
tableaux correspond to the terms with maximal total degree in Zn(α, β),
and it follows from (1.8) that they have 2n−1 symbols. (We assume n > 1.)

We let S∗∗n ⊂ S̄n be the set of α/β-staircase tableau with Nα+Nβ = 2n−1;
thus Sn,∞,∞ is a uniformly random element of S∗∗n .

We further define the corresponding generating function

(2.9) Z∗∗n (α, β) :=
∑
S∈S∗∗n

αNαβNβ .

This can be obtained by extracting the terms with largest degrees in (1.8),
and thus

(2.10) Z∗∗n (α, β) = (α+ β)

n−1∏
i=1

(iαβ) = (n− 1)!
(
αnβn−1 + αn−1βn

)
.

Hence there are 2(n− 1)! tableaux in S∗∗n ; (n− 1)! with n α’s and n− 1 β’s,
and (n − 1)! with n − 1 α’s and n β’s. See further Section 8. (It follows
that the corresponding number of staircase tableaux with 2n − 1 symbols
α, β, γ, δ is 22n(n− 1)!, see [10].)

By Theorem 1.7 and (3.6) below, assuming n > 2,

(2.11) P
(
An,∞,∞ = k

)
=
ṽ0,0(n, k)

(n− 1)!
=

〈
n−1
k−1

〉
(n− 1)!

,

and thus by (2.1) An,∞,∞
d
= An−2,1,1 + 1.

Example 2.7. β = 0. This gives weight 0 to any staircase tableaux with a
symbol β, so only tableaux with just the symbol α may occur. By (Sii) and
(Siv) in the definition, the only such tableau is the one with α in every diago-
nal box, and no other symbols. This limiting case is thus trivial, with Sn,α,0
deterministic (and independent of the parameter α), and Nα = An,α,β = n,
Nβ = Bn,α,β = 0, and Zn(α, 0) = αn.

This case (and the symmetric α = 0) is excluded from most of our results,
but since it is trivial, the reader can easily supplement corresponding, trivial,
results for it. Note that this case occurs as a natural limiting case when
β → 0.

Example 2.8. α = β = 0. This case is really excluded, since it would give
weight 0 to every α/β-staircase tableau. However, we can define it as the
limit as α = β → 0. This gives a non-zero probability only to α/β-staircase
tableaux with a minimum number of symbols, i.e., with n symbols on the
diagonal and no others. There are 2n such α/β-staircase tableaux, and all
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get the same probability, so Sn,0,0 is obtained by putting a random symbol
in each diagonal box, uniformly and independently. This leads to a classical
case and we will not discuss it any further.

More generally, taking the limit as α, β → 0 with α/(α + β)→ ρ ∈ [0, 1]
yields an α/β-staircase tableau with symbols only on the diagonal and each
diagonal box having symbol α with probability ρ, independently of the other
boxes. (Cf. Theorem 8.4.)

3. Eulerian numbers and polynomials

As a background, we recall some standard facts about Eulerian numbers
and polynomials.

For a = 1, b = 0, the recursion (1.10) is the standard recursion for
Eulerian numbers

〈
n
k

〉
, see e.g. [29, Section 6.2], [38, §26.14], [39, A008292];

thus

(3.1) v1,0(n, k) =

〈
n

k

〉
.

(These are often defined as the number of permutations of n elements with
k descents (or ascents). See e.g. [45, Section 1.3], where also other relations
to permutations are given.) The corresponding polynomials

(3.2) Pn,1,0(x) =
n∑
k=0

〈
n

k

〉
xk

are known as Eulerian polynomials.
Furthermore, the cases (a, b) = (0, 1) and (1, 1) also lead to Eulerian

numbers, with different indexing: By (1.10) and induction, or by (4.9) below,

(3.3) v0,1(n, k) = v1,0(n, n− k) =

〈
n

n− k

〉
=

〈
n

k − 1

〉
, n > 1,

(which is non-zero for 1 6 k 6 n). Similarly, by (1.10) and induction,

(3.4) v1,1(n, k) = v1,0(n+ 1, k) =

〈
n+ 1

k

〉
, n > 0.

Equivalently,

Pn,0,1(x) = xPn,1,0(x), Pn,1,1(x) = Pn+1,1,0(x).(3.5)

Similarly, by the definition (1.13) and (3.4),

(3.6) ṽ0,0(n, k) =

〈
n− 1

k − 1

〉
, n > 2,

and by (1.14) and (3.5),

P̃n,0,0(x) = Pn−1,0,1(x) = xPn−1,1,0(x).(3.7)
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The Eulerian polynomials can also be defined by the formula

(3.8)

∞∑
k=0

(k + 1)nxk =
Pn,1,0(x)

(1− x)n+1

or by the (equivalent) generating function [38, 26.14.4]

(3.9)

∞∑
n=0

Pn,1,0(x)
zn

n!
=

1− x
ez(x−1) − x

,

both found by Euler [21]. (The sums converge for sufficiently small x and
z (|x| < 1 for (3.8)); alternatively, (3.8)–(3.9) can be seen as formulas for
formal power series.)

The Eulerian polynomials were introduced by Euler [20; 21; 22] and were
used by him to calculate the sum of series. (In particular, Euler used them
to calculate the sum of the alternating series

∑∞
k=1(−1)k−1kn for n > 0

[22, p. 85]. This series is obviously divergent, which did not stop Euler; in
modern terminology he computed the Abel sum by taking x = −1 in (3.8).)
See also [31] and [24].

Remark 3.1. Notation has varied. It is now standard to define the Eulerian
polynomials as our Pn,1,0(x), but it was earlier common to use this multi-
plied by x, i.e., our Pn,0,1(x) = xPn,1,0(x), with coefficients

〈
n
k−1

〉
. (Euler

himself used both versions: Pn,0,1 in [20] and Pn,1,0 in [21; 22].) Similarly,
notation for Eulerian numbers has varied, see e.g. [39, A008292, A173018
and A123125].

4. The polynomials Pn,a,b

The numbers va,b(n, k) and polynomials Pn,a,b(x) are defined by (1.10)–
(1.12) for all real (or complex) a and b, but we are for our purposes only
interested in a, b > 0. We regard a and b as fixed parameters, but we note
that the numbers va,b(n, k) are polynomials in a and b (of degree exactly n
in the non-trivial case 0 6 k 6 n).

The case a = b = 0 is trivial: by (1.10) or (1.12) and induction

(4.1) v0,0(n, k) = 0 and Pn,0,0(x) = 0 for all n > 1.

In the case when a = 0 or b = 0 we have the following simple relations,
generalizing the results for Eulerian numbers and polynomials in (3.3)–(3.5).

Lemma 4.1. For all n > 1,

va,0(n, k) = ava,1(n− 1, k),(4.2)

v0,b(n, k) = bv1,b(n− 1, k − 1),(4.3)

and, equivalently,

Pn,a,0(x) = aPn−1,a,1(x),(4.4)

Pn,0,b(x) = bxPn−1,1,b(x).(4.5)
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Proof. Induction, using (1.10) or (1.12). �

We collect some further properties in the following theorems.

Theorem 4.2. For all a, b and n > 0,

Pn,a,b(0) = va,b(n, 0) = an,(4.6)

va,b(n, n) = bn,(4.7)

Pn,a,b(1) =

n∑
k=0

va,b(n, k) = (a+ b)n =
Γ(n+ a+ b)

Γ(a+ b)
.(4.8)

Furthermore, we have the symmetry

(4.9) va,b(n, k) = vb,a(n, n− k)

and thus

(4.10) Pn,a,b(x) = xnPn,b,a(1/x).

Proof. Induction, using (1.10) or (1.12). �

Remark 4.3. The symmetries (4.9)–(4.10) between a and b are more evi-
dent if we define the homogeneous two-variable polynomials

(4.11) P̂n,a,b(x, y) :=

n∑
k=0

va,b(n, k)xkyn−k

which satisfy the recursion

(4.12) P̂n,a,b(x, y) =
(
bx+ ay + xy

∂

∂x
+ xy

∂

∂y

)
P̂n−1,a,b(x, y), n > 1

and the symmetry P̂n,a,b(x, y) = P̂n,b,a(y, x). (Note that P̂n,a,b(x, y) =

ynPn,a,b(x/y) and Pn,a,b(x) = P̂n,a,b(x, 1).)
Then (1.15) can be written in the symmetric form

ExAn,α,βyBn,α,β =

n∑
k=0

P(An,α,β = k)xkyn−k =
Γ(a+ b)

Γ(n+ a+ b)
P̂n,a,b(x, y).

(4.13)

However, we find it more convenient to work with polynomials in one vari-
able.

Theorem 4.4. For all a, b and n > 0,

(4.14) P ′n,a,b(1) =

n∑
k=0

kva,b(n, k) =
n(n+ 2b− 1)

2
(a+ b)n−1



16 PAWE L HITCZENKO AND SVANTE JANSON

and

P ′′n,a,b(1) =

n∑
k=0

k(k − 1)va,b(n, k)

=
n(n− 1)(3n2 + (12b− 11)n+ 12b2 − 24b+ 10)

12
(a+ b)n−2.

(4.15)

Proof. This can be shown by induction, differentiating (1.12) once or twice
and then taking x = 1. We omit the details, and give instead another proof
in Section 5. �

Theorem 4.5. (i) If a, b > 0, then va,b(n, k) > 0 for 0 6 k 6 n, and
Pn,a,b(x) is a polynomial of degree n with n simple negative roots.

(ii) If a > b = 0, then va,b(n, k) > 0 for 0 6 k < n, and Pn,a,b(x) is a
polynomial of degree n− 1 with n− 1 simple negative roots.

(iii) If a = 0 < b, then va,b(n, k) > 0 for 1 6 k 6 n, and Pn,a,b(x) is a
polynomial of degree n with n simple roots in (−∞, 0]; one of the roots
is 0, provided n > 0.

(iv) If a = b = 0, then ṽ0,0(n, k) > 0 for 1 6 k 6 n− 1, and P̃n,0,0(x) is a
polynomial of degree n− 1 with n− 1 simple roots in (−∞, 0]; one of
the roots is 0, provided n > 2.

Proof. (i): Induction shows that va,b(n, k) > 0 for 0 6 k 6 n, so Pn,a,b has
degree exactly n. The fact that all roots are negative and simple follows from
(1.12), as noted already by Frobenius [28] for the Eulerian polynomials; this
can be seen by the following standard argument. Suppose, by induction, that
Pn−1,a,b has n − 1 simple roots −∞ < xn−1 < · · · < x1 < 0. Then Pn−1,a,b

changes sign at each root, with a non-zero derivative, and since Pn−1,a,b(0) >
0 by (4.6), we have sign(P ′n−1,a,b(xi)) = (−1)i−1, i = 1, . . . , n − 1. Since

(1.12) yields Pn,a,b(xi) = xi(1 − xi)P
′
n−1,a,b(xi) and xi < 0, this implies

sign(Pn,a,b(xi)) = (−1)i, i = 1, . . . , n − 1. Moreover, sign(Pn,a,b(0)) = +1
and limx→−∞ sign(Pn,a,b(x)) = (−1)n sign(va,b(n, n)) = (−1)n by (4.6) and
(4.7). Hence Pn,a,b changes sign at least n times in (−∞, 0), and thus has
at least n roots there. Since Pn,a,b has degree n, these are all the roots, and
they are all simple.

(ii), (iii): Follows from (i) and Lemma 4.1. (Alternatively, the proof above
works with minor modifications.)

(iv): Follows from (i) and the definitions (1.13)–(1.14). �

The proof shows also that the roots of Pn−1,a,b and Pn,a,b are interlaced
(except that 0 is a common root when a = 0). For more general results of
this kind, see e.g. [48] and [34, Proposition 3.5].

Example 4.6. The case a = b = 1/2 appeared in [18], see Example 2.1. In
this case, it is more convenient to study the numbersB(n, k) := 2nv1/2,1/2(n, k)
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which are integers and satisfy the recursion

(4.16) B(n, k) = (2k+1)B(n−1, k)+(2n−2k+1)B(n−1, k−1), n > 1;

these are called Eulerian numbers of type B [39, A060187]. The numbers
B(n, k) seem to have been introduced by MacMahon [35, p. 331] in number
theory. They also have combinatorial interpretations, for example as the
numbers of descents in signed permutations, i.e., in the hyperoctahedral
group [6; 9; 43].

Note that this case is a special case of both of the following examples.

Example 4.7. Franssens [25] studied numbers and polynomials equivalent
to the case a = b of ours; more precisely, his Bn,k(c) = 2nvc/2,c/2(n, k), as is
seen by comparing his recursion formula to (1.10), and thus his Bn(x, y; c) =

2nP̂n,c/2,c/2(x, y), using the notation (4.11). The generating function in [25,
Proposition 3.1] thus yields (for small |t|)

(4.17)
∞∑
n=0

P̂n,a,a(x, y)
tn

n!
= B(x, y, t)2a,

with

(4.18) B(x, y, t) :=

{
x−y

xe−(x−y)t/2−ye(x−y)t/2 , x 6= y;
1

1−xt , x = y.

It would be interesting to find a similar generating function for P̂n,a,b(x) for
arbitrary a and b.

Example 4.8. The case a + b = 1 yields polynomials Pn,a,1−a(x) general-
izing the Eulerian polynomials (the case a = 1, or a = 0); they satisfy the
following extensions of (3.8)–(3.9):

(4.19)

∞∑
k=0

(k + a)nxk =
Pn,a,1−a(x)

(1− x)n+1

and

(4.20)

∞∑
n=0

Pn,a,1−a(x)
zn

n!
=

(1− x)eaz(1−x)

1− xez(1−x)
.

These polynomials are sometimes called (generalized) Euler–Frobenius poly-
nomials and appear e.g. in spline theory, see e.g. [36; 47; 41; 42; 44]. The
function Pn,1−a,a(x)/(x − 1)n was studied by Carlitz [7] (there denoted
Hn(a | x)).

We defined in (1.13)–(1.14) ṽ0,0(n, k) and P̃n,0,0(x) as substitutes for the
vanishing v0,0(n, k) and Pn,0,0(x). To justify this, we first note that these
numbers and polynomials satisfy the recursions obtained by putting a = b =
0 in (1.10) and (1.12).
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Lemma 4.9. We have

(4.21) ṽ0,0(n, k) = kṽ0,0(n− 1, k) + (n− k)ṽ0,0(n− 1, k − 1), n > 3,

with ṽ0,0(2, 1) = 1 and ṽ0,0(2, k) = 0 for k 6= 1. Similarly,

(4.22) P̃n,0,0(x) = (n− 1)xP̃n−1,0,0(x) + x(1− x)P̃ ′n−1,0,0(x), n > 3.

with P̃2,0,0(x) = x.

Proof. Follows easily by substituting the definitions (1.13) and (1.14) in
(1.10) and (1.12). �

Moreover, these numbers and polynomials appear as limits as a, b→ 0 if
we renormalize:

Lemma 4.10. For any n > 2 and k ∈ Z or x ∈ R, as a, b↘ 0,

va,b(n, k)

a+ b
→ ṽ0,0(n, k),(4.23)

Pn,a,b(x)

a+ b
→ P̃n,0,0(x).(4.24)

Proof. We first verify (4.23) for n = 2 by inspection, see Table 1. For n > 2
we divide (1.10) by a+b, let a, b↘ 0 and use induction together with (4.21).

Finally, (4.24) follows from (4.23) by (1.14) and (1.11). �

Remark 4.11. More general numbers, defined by a more general version of
the recursion formula (1.10), are studied in [48].

5. Proofs of Theorems 1.7–1.14

To prove Theorem 1.7 we use induction on the size n, where we extend a
staircase tableau of size n−1 by adding a column of length n to the left and
consider all possible ways of filling it out with the symbols. This method
was used, in a probabilistic context, in [18] and its origins seem to go back
to [13, Remark 3.14], see also [10]. For permutation tableaux an analogous
technique was used in [11] and [32].

In order to do the necessary recursive analysis, we introduce a suitable
generating function with an additional “catalytic” parameter that we now
define.

We say that a row of a staircase tableau is indexed by α if its leftmost
entry is α. Thus, for example, in the tableau depicted in Figure 1, the first,
third and eighth rows are indexed by α. The number of rows indexed by α
in a staircase tableau S will be denoted by r = r(S).

We introduce the generating function for the pair of parameters (A, r):

(5.1) Dn(x, z) :=
∑
S∈S̄n

wt(S)xA(S)zr(S) =
∑
S∈S̄n

αNαβNβxAzr.

We regard α and β as fixed in this section, and for simplicity we omit them
from the notation Dn(x, z). We assume that 0 < α, β <∞.
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Remark 5.1. In an α/β-staircase tableau, a row containing a β must by
(Siii) have the β as its leftmost entry; hence it is not indexed by α. Con-
versely, a row without β is necessarily indexed by α. Since no row con-
tains more than one β, it follows that r = n − Nβ [18]. We thus have

Dn(x, z) = znD̃n(x, α, β/z) where

(5.2) D̃n(x, α, β) :=
∑
S∈S̄n

αNαβNβxA = Dn(x, 1).

Hence it is possible to avoid r and instead argue with the simpler D̃n(x, α, β)
and a varying β. However, we find it more convenient to keep α and β fixed
and to use r in the argument below.

Trivially, D0(x, z) = 1 (see Remark 1.5).

Lemma 5.2. Dn satisfies the recursion, for n > 1,

(5.3) Dn(x, z) = αz(x− 1)Dn−1(x, z) + (αz + β)Dn−1(x, z + β).

Proof. Fix an α/β-staircase tableau S of size n−1 with parameters Nα, Nβ,
A, r, and consider all ways to extend it to a tableau of size n by adding a
column of length n on the left and filling some boxes in it. There are three
cases, cf. [10; 18].

(i) We put α in the bottom box of the added column. By (Siv), no other
boxes in the new column can be filled, so this gives a single staircase
tableau of size n; this tableau has parameters Nα + 1, Nβ, A + 1 and
r + 1, so its contribution to Dn(x, z) is

(5.4) αNα+1βNβxA+1zr+1 = αxz αNαβNβxAzr.

(ii) We put β in the bottom box of the added column; we may also put α or
β in some other boxes in the new column, and we consider first the case
when we put no α, so only β’s are added. By (Siii), we may put a β only
in the rows indexed by α (apart from the bottom box). For 0 6 k 6 r,
there are thus

(
r
k

)
possibilities to add k further β; each choice yields a

staircase tableau with parameters Nα, Nβ + 1 + k, A, r − k, and their
total contribution to Dn(x, z) is

(5.5)
r∑

k=0

(
r

k

)
αNαβNβ+1+kxAzr−k = αNαβNβ+1xA(z + β)r.

(iii) We put β in the bottom box of the added column and α or β in some
other boxes in the new column, including an α. By (Siv), we may add
only one α, and it has to be the top one of the added symbols. Again,
the new symbols may (apart from the bottom box) only be added in
rows indexed by α. For 1 6 k 6 r, there are thus

(
r
k

)
possibilities to add

k − 1 further β and one α; each choice yields a staircase tableau with
parameters Nα + 1, Nβ + k, A, r− k+ 1, and their total contribution to
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Dn(x, z) is

(5.6)
r∑

k=1

(
r

k

)
αNα+1βNβ+kxAzr−k+1 = αNα+1βNβxAz

(
(z + β)r − zr

)
.

Combining (5.4)–(5.6), we obtain the total contribution from extensions
of S to be

(5.7) αxz αNαβNβxAzr + (β + αz)αNαβNβxA(z + β)r − αz αNαβNβxAzr,
and summing over all S ∈ S̄n−1 yields (5.3). �

Iterating (5.3) we obtain the following, recalling that x` denotes the rising
factorial and that a = α−1 and b = β−1.

Lemma 5.3. Assume 0 < α, β <∞. For 0 6 m 6 n,

(5.8) Dn(x, z) = (αβ)m
m∑
`=0

cm,`(z)(a+ bz)`(x− 1)m−`Dn−m(x, z + `β),

where c0,0(z) = 1 and, for m > 0, with cm,−1(z) = cm,m+1(z) = 0,

(5.9) cm+1,`(z) = (`+ bz)cm,`(z) + cm,`−1(z), 0 6 ` 6 m+ 1.

Proof. The case m = 0 is trivial. Suppose that (5.8) holds for some m > 0
and all n > m. If n > m, we use Lemma 5.2 on the right-hand side of (5.8)
and obtain

(αβ)−mDn(x, z)

=
m∑
`=0

cm,`(z)(a+ bz)`(x− 1)m−`
(
α(z + `β)(x− 1)Dn−m−1(x, z + `β)

+ (αz + α`β + β)Dn−m−1(x, z + `β + β)
)

= αβ
m∑
`=0

cm,`(z)(a+ bz)`(x− 1)m+1−`(bz + `)Dn−m−1(x, z + `β)

+ αβ
m∑
`=0

cm,`(z)(a+ bz)`(x− 1)m−`(bz + `+ a)Dn−m−1(x, z + `β + β)

= αβ
m∑
`=0

(`+ bz)cm,`(z)(a+ bz)`(x− 1)m+1−`Dn−m−1(x, z + `β)

+ αβ

m+1∑
j=1

cm,j−1(z)(a+ bz)j(x− 1)m+1−jDn−m−1(x, z + jβ).

The result for m+ 1 follows, and the lemma follows by induction. �

We now take z = 1, thus forgetting r. (We will not use r further. If
desired, r can be recovered by Remark 5.1.) This yields the following formula
for the generating function Dn(x, 1) for A. We write cn,` = cn,`(1).



WEIGHTED RANDOM STAIRCASE TABLEAUX 21

Lemma 5.4. Assume 0 < α, β <∞. For n > 0,

(5.10) Dn(x, 1) = (αβ)n
n∑
`=0

cn,`(a+ b)`(x− 1)n−`

where c0,0 = 1 and, for n > 0, with cn,−1 = cn,n+1 = 0,

(5.11) cn+1,` = (`+ b)cn,` + cn,`−1, 0 6 ` 6 n+ 1.

Proof. Take z = 1 and m = n in Lemma 5.3, recalling that D0 = 1 so the
factor Dn−m(x, z + `β) on the right-hand side of (5.8) disappears. �

We have found a formula for Dn(x, 1) as a polynomial in x − 1. We can
identify it as Pn,a,b(x) (up to a constant factor).

Lemma 5.5. Assume 0 < α, β <∞. For n > 0,

(5.12) Dn(x, 1) = (αβ)nPn,a,b(x).

Proof. Define D̂n(x) := (αβ)−nDn(x, 1). Clearly, D̂0(x) = 1 = P0,a,b(x).

We show that D̂n satisfies the recursion (1.12), which implies that D̂n =
Pn,a,b for all n > 0 and thus completes the proof. By Lemma 5.4,

((n+ b)x+ a)D̂n(x) + x(1− x)D̂′n(x)

=

n∑
`=0

(
nx+ bx+ a− (n− `)x

)
cn,`(a+ b)`(x− 1)n−`

=
n∑
`=0

(
(`+ b)(x− 1) + `+ b+ a

)
cn,`(a+ b)`(x− 1)n−`

=
n∑
`=0

(`+ b)cn,`(a+ b)`(x− 1)n+1−` +
n∑
`=0

(a+ b+ `)cn,`(a+ b)`(x− 1)n−`

=
n∑
`=0

(`+ b)cn,`(a+ b)`(x− 1)n+1−` +
n+1∑
j=1

cn,j−1(a+ b)j(x− 1)n+1−j

=

n+1∑
j=0

cn+1,`(a+ b)`(x− 1)n+1−` = D̂n+1(x),

where we used (5.11) and (5.10) in the last line. �

Proof of Theorem 1.7. Assume α, β ∈ (0,∞). By (5.1) and (1.5), we have
Dn(1, 1) = Zn(α, β). Moreover, it follows immediately fromAn,α,β = A(Sn,α,β)
and the definitions (1.15) and (1.9) that
(5.13)

gA(x) =
∑
S∈S̄n

xA(S) P(Sn,α,β = S) =
∑
S∈S̄n

xA(S) wt(S)

Zn(α, β)
=
Dn(x, 1)

Dn(1, 1)
.



22 PAWE L HITCZENKO AND SVANTE JANSON

Hence, Lemma 5.5 yields

(5.14) gA(x) =
Pn,a,b(x)

Pn,a,b(1)
,

which shows (1.15), using (4.8). Extracting coefficients yields (1.16).
The case α =∞ or β =∞ follows by taking limits as α→∞ (β →∞).
The case α = β = ∞ follows similarly by taking limits as α = β → ∞,

using Lemma 4.10. �

The proof above contains (as a simpler special case) the calculation of Zn
in [10]; we record this for completeness:

Proof of (1.4) and (1.8). Taking x = 1 in Lemma 5.4 we obtain

(5.15) Zn(α, β) = Dn(1, 1) = (αβ)ncn,n(a+ b)n = (αβ)ncn,n(a+ b)n,

since cn,n = 1 by (5.11) and induction. (Alternatively, we may use Lemma 5.5
and (4.8).) This yields (1.8), and (1.4) follows by (1.6). �

Proof of Theorem 4.4. We assume a, b > 0; the general case then follows
since all quantities are polynomials in a and b. By Lemmas 5.5 and 5.4, for
any k > 0,

(5.16)
dk

dxk
Pn,a,b(1) = k! cn,n−k(a+ b)n−k

(with cn,` = 0 for ` < 0). In particular, for k = 1 we have by (5.11)

(5.17) cn+1,n = (n+ b)cn,n + cn,n−1 = n+ b+ cn,n−1,

and a simple induction yields

(5.18) cn,n−1 =
n−1∑
m=0

(m+ b) =
n(n+ 2b− 1)

2
,

which by (5.16) yields (4.14).
Similarly,

cn,n−2 =

n∑
m=1

(m+ b− 2)cm−1,m−2

=
n(n− 1)(3n2 + (12b− 11)n+ 12b2 − 24b+ 10)

24
,

(5.19)

which by (5.16) yields (4.15). �

Proof of Theorem 1.8. Assume first (a, b) 6= (0, 0). Then (1.15) yields

EAn,α,β = g′A(1) =
P ′n,a,b(1)

Pn,a,b(1)

and

VarAn,α,β = g′′A(1) + g′A(1)−
(
g′A(1)

)2
=
P ′′n,a,b(1) + P ′n,a,b(1)

Pn,a,b(1)
−
P ′n,a,b(1)2

Pn,a,b(1)2
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and the result follows from Theorem 4.4 and (4.8) (after some calculations).
The case a = b = 0 follows by continuity. �

Proof of Theorem 1.10. The first claim is immediate by Theorems 1.7 and
4.5. This implies (1.19) and the following claims by standard arguments: If
gA(x) has roots −ξ1, . . . ,−ξn 6 0, then, using gA(1) = 1,

(5.20) gA(x) =

∏n
i=1(x+ ξi)∏n
i=1(1 + ξi)

=
n∏
i=1

( ξi
1 + ξi

+
1

1 + ξi
x
)
,

which equals the probability generating function of
∑n

i=1 Be(pi) for inde-
pendent Be(pi) with pi = 1/(1 + ξi); this verifies (1.19). If b = 0 so gA(x)
has only n − 1 roots, the same holds with pn = 0. (We may then formally
set ξn =∞.)

The fact that the distribution of An,a,b is log-concave and thus unimodal
follows easily from (1.19) by induction; the same holds for the sequence
va,b(n, k), k ∈ Z, by (1.16). �

Proof of Theorem 1.11. By Theorem 1.10,

(5.21) An,α,β
d
=

n∑
i=1

Ii,

with Ii ∼ Be(pi) independent. Note that then EAn,α,β =
∑n

i=1 pi and
VarAn,α,β =

∑n
i=1 pi(1− pi). Moreover,

(5.22)
n∑
i=1

E |Ii − pi|3 6
n∑
i=1

E |Ii − pi|2 = VarAn,α,β.

The central limit theorem with Lyapounov’s condition, see e.g. [30, Theo-
rem 7.2.2], shows that any sequence of sums of this type is asymptotically
normal, provided the variance tends to infinity, which holds in our case by
Theorem 1.8. Theorem 1.8 further shows

EAn,α,β = n/2 +O(1),(5.23)

VarAn,α,β = n/12 +O(1),(5.24)

which implies that the versions (1.20) and (1.21) are equivalent.
Finally, [40, Theorem VII.3] shows that also a local limit theorem (1.22)

holds for any sum of the type (5.21); again we use (5.23)–(5.24) to simplify
the result and obtain (1.23). �

Proof of Theorem 1.13. Assume first α, β < ∞. The joint probability gen-
erating function of (Nα, Nβ) is by definition

(5.25)

∑
S∈S̄n wt(S)xNαyNβ

Zn(α, β)
=

∑
S∈S̄n α

NαβNβxNαyNβ

Zn(α, β)
=
Zn(αx, βy)

Zn(α, β)
,

and (1.24) follows from (1.8).
Since (Ii, Ji) defined by (1.26) has the probability generating function

bx+ay+ixy
a+b+i , the distributional identity (1.25) follows from (1.24). Thus ENα =
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i=0 E Ii, VarNα =

∑n−1
i=0 Var Ii and Cov(Nα, Nβ) =

∑n−1
i=0 Cov(Ii, Ji),

which yield (1.28)–(1.30).
The case when α =∞ or β =∞, or both, follows by taking limits. �

Proof of Theorem 1.14. The estimates (1.31)–(1.33) follow from (1.28)–(1.30).
The central limit theorem (1.34)–(1.35) follows from the representation

(1.25) in Theorem 1.13 as in the proof of Theorem 1.11; note that (1.33)
implies Cov(Nα, Nβ)/ log n→ 0, which yields the independence of the limits
in (1.34)–(1.35). �

6. Subtableaux

We number the rows and columns of a staircase tableau by 1, . . . , n start-
ing at the NW corner (as in a matrix); the boxes are thus labelled by (i, j)
with i, j > 1 and i + j 6 n + 1. The diagonal boxes are (i, n + 1 − i),
i = 1, . . . , n, going from NE to SW. We denote the symbol in box (i, j) of a
staircase tableau S by S(i, j), with S(i, j) = 0 if the box is empty.

If we delete the first rows or columns from a staircase tableau, we obtain
a new, smaller, staircase tableau. For S ∈ Sn and a box (i, j) in S (so
i + j 6 n + 1), let S[i, j] be the subtableau with (i, j) as its top left box,
i.e., the subtableau obtained by deleting the first i − 1 rows and the first
j − 1 columns. Note that S[i, j] ∈ Sn−i−j+2. (The conditions (Si)–(Siv) are
clearly satisfied.)

Theorem 6.1. Let α, β ∈ (0,∞] and i+j 6 n+1. The subtableau Sn,α,β[i, j]
of Sn,α,β has the same distribution as Sn−i−j+2,α̂,β̂, where α̂−1 = α−1 + i−1

and β̂−1 = β−1 + j − 1.

Proof. Consider first the case i = 1 and j = 2, where we only delete the first
(leftmost) column. Let S ∈ S̄n−1. The probability that Sn,α,β[1, 2] = S is
proportional to the sum of the weights of all extensions of S to a staircase
tableau in S̄n. By the proof of Lemma 5.2, with x = z = 1, this sum equals,
see (5.7),

(β + α)αNαβNβ (1 + β)r = (β + α)αNαβNβ (1 + β)n−Nβ

= (β + α)(1 + β)nαNα
( β

1 + β

)Nβ
,

(6.1)

so P(Sn,α,β[1, 2] = S) is proportional to αNα β̂Nβ with β̂ := β/(β + 1), i.e.,

β̂−1 = β−1 + 1. Hence, Sn,α,β[1, 2]
d
= Sn−1,α,β̂, so the theorem holds in this

case.
Next, the case i = 2, j = 1 where we delete the top row follows by

symmetry, see Remark 1.3.
Finally, the general case follows by induction, deleting one row or column

at a time. �
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7. The positions of the symbols

We have so far considered the numbers of the symbols α and β in a
random α/β-staircase tableau, and the numbers of them on the diagonal.
Now we consider the position of the symbols. We begin by considering the
symbols on the diagonal, where every box is filled with α or β.

Theorem 7.1. Let α, β ∈ (0,∞] and let a := α−1, b := β−1. The probability
that the i:th diagonal box contains α is

(7.1) P
(
Sn,α,β(i, n+ 1− i) = α

)
=

n− i+ b

n+ a+ b− 1
, 1 6 i 6 n.

Proof. If n = 1, this follows directly from the definition and α/(α + β) =
b/(a+ b).

In general, we use Theorem 6.1 with j = n + 1 − i which shows that

Sn,α,β[i, n+ 1− i] d
= S1,α̂,β̂ with α̂ := α̂−1 = a+ i− 1, β̂ := β̂−1 = b+ n− i,

which yields

P
(
Sn,α,β(i, n+ 1− i) = α

)
= P

(
S1,α̂,β̂(1, 1) = α

)
=

α̂

α̂+ β̂
=

n− i+ b

n+ a+ b− 1
.

�

The probability of an α thus decreases linearly as we go from NE to SW,
from approximately 1 to approximately 0 for large n. Hence the top part
of the diagonal contains mainly α’s and the bottom part mainly β’s. (This
is very reasonable, since these choices give fewer restrictions by (Siii) and
(Siv).)

Non-diagonal boxes are often empty. The distribution of a given box is
as follows.

Theorem 7.2. Let α, β and a, b be as in Theorem 7.1. The probability that
the non-diagonal box (i, j) contains α or β is,

P
(
Sn,α,β(i, j) = α

)
=

j − 1 + b

(i+ j + a+ b− 1)(i+ j + a+ b− 2)
,(7.2)

P
(
Sn,α,β(i, j) = β

)
=

i− 1 + a

(i+ j + a+ b− 1)(i+ j + a+ b− 2)
,(7.3)

and thus

P
(
Sn,α,β(i, j) 6= 0

)
=

1

i+ j + a+ b− 1
.(7.4)

For α = β =∞ and i = j = 1, we interpret (7.2) and (7.3) as 1/2.

Proof. Consider first the case i = j = 1. By Theorem 1.13, the expected
total number of symbols α in S = Sn,α,β is

(7.5) ENα =

n−1∑
i=0

(
1− a

a+ b+ i

)
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If we delete the first column, the remaining part S[1, 2] is by Theorem 6.1 an
Sn−1,α1,β1 with a1 := α−1

1 = a and b1 := β−1
1 = b + 1; hence Theorem 1.13

shows that the expected number of symbols in S[1, 2] is
(7.6)
n−2∑
i=0

(
1− a1

a1 + b1 + i

)
=

n−2∑
i=0

(
1− a

a+ b+ 1 + i

)
=

n−1∑
i=1

(
1− a

a+ b+ i

)
.

Taking the difference of (7.5) and (7.6) we see that

(7.7) E
(
#α in the first column

)
= 1− a

a+ b
=

b

a+ b
.

Now delete the first row of S. By Theorem 6.1, the remainder S[2, 1] is
an Sn−1,α2,β2 with a2 := α−1

2 = a+1 and b2 := β−1
2 = b. Hence (7.7) applied

to this subtableau shows that

(7.8) E
(
#α in boxes (2, 1), . . . , (n, 1)

)
=

b2
a2 + b2

=
b

a+ b+ 1
,

and taking the difference of (7.7) and (7.8) we obtain

(7.9) P
(
Sn,α,β(1, 1) = α

)
=

b

a+ b
− b

a+ b+ 1
=

b

(a+ b)(a+ b+ 1)
.

(This argument is valid also for n = 2, since (7.7) holds also for n = 1, by
Theorem 7.1 or by noting that (7.6) holds, trivially, also for n = 1.)

We have shown (7.9), which is (7.2) for i = j = 1. The general case of
(7.2) follows by Theorem 6.1, (7.3) follows by symmetry (Remark 1.3) and
(7.4) follows by summing. �

Example 7.3. For 2 6 k 6 n, the expected total number of symbols in the
boxes on the line i+ j = k parallel to the diagonal is

(7.10)

k−1∑
i=1

1

k + a+ b− 1
=

k − 1

k + a+ b− 1
.

Thus, for k large there is on the average about 1 symbol on each such line
that is not too short. (In the case α = β = ∞, the expectation equals 1
for every such line.) We do not know the distribution of symbols on the
line i + j = k, and leave that as an open problem. We conjecture that the
distribution is asymptotically Poisson as n, k →∞.

Example 7.4. The expected number of α’s on the line i + j = k, with
2 6 k 6 n, is
(7.11)

k−1∑
i=1

j − 1 + b

(k + a+ b− 1)(k + a+ b− 2)
=

(k − 1)(k + 2b− 2)

2(k + a+ b− 1)(k + a+ b− 2)
,

which is about 1/2 for large k (with equality when α = β = ∞). Again,
we do not know the distribution, but we conjecture that it is asymptotically
Poisson as n, k →∞.



WEIGHTED RANDOM STAIRCASE TABLEAUX 27

We can also consider the joint distribution for several boxes. We consider
only boxes on the diagonal, leaving non-diagonal boxes as an open problem.
Our key tool is the following simple lemma. Compare to Theorem 6.1 with
no conditioning and (in this case) a shift of β.

Lemma 7.5. If we condition Sn,α,β on the bottom box Sn,α,β(n, 1) = α, the
subtableau Sn,α,β[1, 2] obtained by deleting the first column has the distribu-
tion of Sn−1,α,β.

Proof. If S is an α/β-staircase tableau such that the bottom box S(n, 1) = α,
then the first column is otherwise empty by (Siv), and the remainder, i.e.
S[1, 2], is an arbitrary α/β-staircase tableau of size n − 1. Introducing
weights (1.1), we see that if we condition Sn,α,β on Sn,α,β(n, 1) = α and
then delete the first column, we obtain a copy of Sn−1,α,β as asserted. �

The following theorem gives a complete description of the distribution of
the boxes on the diagonal. For convenience, we use a simplified notation,
letting Sn(j) be the symbol of the random Sn,α,β in the diagonal box in
column j, i.e.,

(7.12) Sn(j) := Sn,α,β(n+ 1− j, j).

Theorem 7.6. Let α, β and a, b be as in Theorem 7.1, and let 1 6 j1 <
· · · < j` 6 n. Then

(7.13) P
(
Sn(j1) = · · · = Sn(j`) = α

)
=
∏̀
k=1

jk − k + b

n− k + a+ b
.

For ` = 1, this is Theorem 7.1.

Proof. We use induction on n. (Induction on ` is also possible.)
If j1 > 1, we may delete the first column, which decreases n and each jk

by 1 and, by Theorem 6.1, increases b by the same amount. Thus (7.13)
follows by the inductive hypothesis.

If j1 = 1, we use Lemma 7.5 and obtain by Theorem 7.1 and induction

P
(
Sn(j1) = · · · = Sn(j`) = α

)
= P(Sn(1) = α)P

(
Sn(j2) = · · · = Sn(j`) = α | Sn(1) = α

)
= P(Sn(1) = α)P

(
Sn−1(j2 − 1) = · · · = Sn−1(j` − 1) = α

)
=

b

n+ a+ b− 1

`−1∏
k=1

jk+1 − 1− k + b

n− 1− k + a+ b
,

which shows (7.13) in this case too. �

The case ` = 2 can also be expressed as a covariance formula.

Corollary 7.7. If 1 6 j < k 6 n, then

Cov
(
1{Sn(j) = α},1{Sn(k) = α}

)
= − (j − 1 + b)(n− k + a)

(n+ a+ b− 1)2(n+ a+ b− 2)
.
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Proof. By Theorem 7.6, the covariance is

j − 1 + b

n− 1 + a+ b
· k − 2 + b

n− 2 + a+ b
− j − 1 + b

n− 1 + a+ b
· k − 1 + b

n− 1 + a+ b

=
j − 1 + b

n− 1 + a+ b

(
k − 2 + b

n− 2 + a+ b
− k − 1 + b

n− 1 + a+ b

)
,

and the result follows. �

Remark 7.8. Barbour and Janson [3] studied the profile of a random per-
mutation tableau, which by the bijection discussed in Section 10 is equivalent

to studying the sequence of partial sums
∑k

j=1 1{Sn(j) = α}, k = 1, . . . , n,

in the case α = β = 1; it is shown in [3] that after rescaling, this sequence
converges to a Gaussian process. It would be interesting to extend this to
general α and β.

8. The case α = β =∞

The limiting case α = β =∞ was studied in Example 2.6, where we saw
that Sn,∞,∞ is a uniformly random element of S∗∗n , the set of α/β-staircase
tableau with the maximal number, 2n − 1, of symbols α and β. We study
these α/β-staircase tableaux further.

Lemma 8.1. A staircase tableau S ∈ S∗∗n has always box (1, 1) filled with a
symbol.

Proof. This follows from (7.4) in Theorem 7.2, taking α = β = ∞ and
thus a = b = 0, which shows that the random staircase tableau Sn,∞,∞
has a symbol in box (1, 1) with probability 1; recall from Example 2.6 that
Sn,∞,∞ is uniformly distributed in S∗∗n .

Alternatively, we can give a combinatorial proof as follows: Suppose that
S ∈ S∗∗n has box (1, 1) empty. We may replace any α in the first column
by β, and any β in the first row by α, without violating (Si)–(Siv), and we
may then add α (or β) in box (1, 1), yielding a staircase tableau with one
more symbol, which is a contradiction since S∗∗n consists of the α/β-staircase
tableaux with a maximum number of symbols. �

Given a staircase tableau S ∈ S∗∗n , we let as above S(1, 1) be the symbol
in (1, 1), and we let S′ be the staircase tableau obtained by removing this
symbol from S.

Lemma 8.2. If S ∈ S∗∗n , then S′ has n− 1 α’s and n− 1 β’s.
More precisely, S′ has an α in each column except the first, and a β in

each row except the first.

Proof. By (Siv), S has at most one α in each column; moreover, since (1, 1)
is filled, the first column cannot contain an α in any other box. Hence, S′

contains no α in the first column, and at most one α in every other column.
Similarly, S′ contains no β in the first row and at most one in every other
row.
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Consequently, Nα(S′) + Nβ(S′) 6 (n − 1) + (n − 1) = 2n − 2. On the
other hand, S contains 2n − 1 symbols so S′ contains 2n − 2 symbols and
we must have equality. �

Conversely, if S0 ∈ S̄n has n−1 α’s and n−1 β’s distributed as described
in Lemma 8.2, then box (1, 1) is empty and we may add any of α or β to
(1, 1) and obtain a staircase tableau in S∗∗n . Let S∗∗′n := {S′ : S ∈ S∗∗n } be
the set of α/β-staircase tableaux described in Lemma 8.2. The mapping
S 7→ S′ is thus a 2–1-map of S∗∗n onto S∗∗′n .

Given ρ ∈ [0, 1], we define a random α/β-staircase tableau Sn,∞,∞,ρ by
picking a random, uniformly distributed, S′ ∈ S∗∗′n and adding a random
symbol, independent of S′, in box (1, 1), with probability ρ of adding α. In
particular, Sn,∞,∞,1/2 has the uniform distribution on S∗∗n , i.e., Sn,∞,∞,1/2 =
Sn,∞,∞, see Example 2.6.

Lemma 8.3. Let α, β ∈ (0,∞). Then the random tableau Sn,α,β conditioned
to have the maximum number 2n − 1 of symbols has the distribution of
Sn,∞,∞,ρ with ρ = α/(α+ β).

Proof. A staircase tableau S ∈ S∗∗n has weight αwt(S′) if S(1, 1) = α and
β wt(S′) if S(1, 1) = β. Since all staircase tableaux S′ ∈ S∗∗′n have the same
weight αn−1βn−1 by Lemma 8.2, the result follows. �

We have defined Sn,∞,∞ by letting α = β →∞. What happens if we let
α→∞ and β →∞, but with different rates?

Theorem 8.4. Let α → ∞ and β → ∞ such that α/(α + β) → ρ ∈ [0, 1],

and let n > 1 be fixed. Then Sn,α,β
d−→ Sn,∞,∞,ρ.

Proof. The weight of every α/β-staircase tableau in S̄n \ S∗∗n is at most,
assuming as we may α, β > 1,

(8.1) αnβn−2 + αn−2βn = o
(
αnβn−1 + αn−1βn

)
= o
(
Zn(α, β)

)
.

Hence P(Sn,α,β /∈ S∗∗n ) → 0, so it suffices to consider Sn,α,β conditioned on
being in S∗∗n , and the result follows by Lemma 8.3. �

Thus, although the limiting distribution depends on the size of α/β, it is
only the distribution of the top left symbol S(1, 1) that is affected; S′n,α,β has
a unique limit distribution for all α, β →∞. In particular, the distribution
of the symbols on the diagonal has a unique limiting distribution.

9. An urn model

Consider the following generalized Pólya urn model (an instance of the
so-called Friedman’s urn [27; 26], which was studied already by Bernstein
[4; 5]; see also Flajolet et al [23]): An urn contains white and black balls.
There are initially a white and b black balls. At times 1, 2, . . . , one ball is
drawn at random from the urn and then replaced, together with a new ball
of the opposite colour.
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Let An [Bn] be the number of white [black] balls added in the n first
draws; we thus have An + Bn = n. Furthermore, after n draws there are
An + a white and Bn + b black balls in the urn, and thus

(9.1) P(An+1 = k) =
a+ k

n+ a+ b
P(An = k)+

n− (k − 1) + b

n+ a+ b
P(An = k−1).

Comparing (9.1) to (1.10) we find by induction

(9.2) P(An = k) =
va,b(n, k)

(a+ b)n
.

(Cf. (4.8).)
In the description of the urn model, it is natural to assume that a and

b are integers. However, urn models of this type can easily be extended to
allow fractional balls and thus non-integer “numbers” of balls, see e.g. [33].
(It is then perhaps better to talk about weights instead of numbers, allowing
balls of different weights.) We thus may allow the initial numbers a and b to
be any non-negative real numbers with a + b > 0; we still add one (whole)
ball each time. (When a and b are rational, with a common denominator
q, there is also an equivalent model starting with qa and qb balls and each
time adding q balls of the opposite colour.) Equation (9.2) still holds, which
by Theorem 1.7 shows the following:

Theorem 9.1. Let α, β ∈ (0,∞], with (α, β) 6= (∞,∞). Then, for every
n > 0, (An,α,β, Bn,α,β) has the same distribution as (An, Bn) in the urn
model above, starting with a := α−1 white and b := β−1 black balls. �

In this urn model, we assume a+ b > 0, since the definition assumes that
we do not start with an empty urn. We may cover the case a = b = 0 too
by any extra rule saying which ball to add to an empty urn, for example
choosing a white or black ball at random. In any case, the second ball
gets the opposite colour so the composition at time n = 2 is (1, 1), and the
urn then evolves as an urn with this initial composition. Consequently, for
n > 2, (9.2) yields, using (1.13),

(9.3) P(An = k) =
v1,1(n− 2, k − 1)

2n
=
ṽ0,0(n, k)

(n− 1)!
.

Hence, using (1.18), Theorem 9.1 holds in the case α = β = ∞ too, with
this extra interpretation.

Remark 9.2. We similarly see that an urn started with the composition

(0, 1) or (1, 0) becomes (1, 1) after the first step. The relations An,∞,1
d
=

An−1,1,1 + 1 and Bn,∞,1
d
= Bn−1,1,1 in Example 2.5 are thus obvious for the

corresponding urn models.

Note that asymptotic normality (1.20) is well-known for many generalized
Pólya urn models, including this one [4; 5; 26; 33]. We do not know any
general local limit theorems for such urn models.
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alternative permutation tree-like staircase
tableaux tableaux tableaux tableaux
#rows #rows −1 #rows −1 A
#columns #columns #columns −1 B
#free rows #unrestricted rows −1 #left points n−Nβ

#free columns #top 1’s #top points n−Nα

#← #restricted rows −1 #empty left cells Nβ −B
#↑ #top 0’s #empty top cells Nα −A
Table 2. Some correspondences between different types of tableaux.

10. Permutation tableaux, alternative tableaux and tree-like
tableaux

Permutation tableaux (see e.g. [46; 12; 14; 15; 11; 32]), alternative tableaux
[37] and tree-like tableaux [1] are Young diagrams (of arbitrary shape) with
some symbols added according to specific rules, see the references just given
for definitions. The size of one of these is measured by its length, which is
the sum of the number of rows and the number of columns.

There are bijections between the α/β-staircase tableaux of size n, the
alternative tableaux of length n and the permutation tableaux of length
n + 1 [17, Appendix], as well as between these and the tree-like tableaux
of length n + 2 [1]. (In particular, the numbers of tableaux of these four
types are the same, viz. (n + 1)!. In fact, there are also several bijections
between these objects and permutations of size n + 1 [46; 12; 37; 10; 1].)
In these correspondences, the shape of the alternative tableau corresponds
to the sequence of symbols on the diagonal of the staircase tableau, with
α and β in the latter corresponding to vertical and horizontal steps on the
SE border of the alternative tableaux; the shapes of the permutation and
tree-like tableaux are the same with an additional first row, or additional
first row and first column, added.

Some parameters are easily translated by these bijections; Table 2 gives
some important examples from [17; 1] (see these references for definitions).

A uniformly random tableaux of any of these types thus corresponds to a
random staircase tableau Sn,1,1, see Example 2.2. For examples, this enables
us to recover several of the results for permutation tableaux in [32] from the
results above.

Furthermore, deleting the top row of a staircase tableau corresponds for
the alternative tableau to deleting the first step on its SE boundary; this
means deleting its last column if it is empty, and otherwise deleting the
first row. (And similarly for deleting the first column.) Hence, Theorem 6.1
translates to a result on subtableaux of random alternative tableaux.
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11. Staircase tableaux and the ASEP

As mentioned in the introduction, staircase tableaux were introduced in
[16; 17] in connection with the asymmetric exclusion process (ASEP); as
a background, we give some details here. The ASEP is a Markov process
describing a system of particles on a line with n sites 1, . . . , n; each site
may contain at most one particle. Particles jump one step to the right with
intensity u and to the left with intensity q, provided the move is to a site
that is empty; moreover, new particles enter site 1 with intensity α and site
n with intensity δ, provided these sites are empty, and particles at site 1
or and n leave the system at rates γ and β, respectively. (There is also a
discrete-time version.) See further [17], which also contains references and
information on applications and connections to other branches of science.

Explicit expressions for the steady state probabilities of the ASEP were
first given in [19]. Corteel and Williams [17] gave an expression using stair-
case tableaux and a more elaborate version of the weight wt(S) and gen-
erating function for them. For this version, we first fill the tableau S by
labelling the empty boxes of S with u’s and q’s as follows: first, we fill all
the boxes to the left of a β with u’s, and all the boxes to the left of a δ with
q’s. Then, we fill the remaining boxes above an α or a δ with u’s, and the
remaining boxes above a β or a γ with q’s. When the tableau is filled, its
weight, wt(S), is defined as the product of labels of the boxes of S; this is
thus a monomial of degree n(n + 1)/2 in α, β, γ, δ, u and q. For example,
Figure 2 shows the tableau in Figure 1 filled with u’s and q’s; its weight
is α5β2δ3γ3u13q10. We then let Zn(α, β, γ, δ, q, u) be the total weight of all

α γ

α
β
δ
α
δ
γ
γ

δ

α
αβ

u
q
q
q
u
u
u

q

q
u

u
q

u
u

q
u
u
u

u

u
q
q q

Figure 2. The staircase tableau in Figure 1 filled with u’s
and q’s; the weight is α5β2δ3γ3u13q10.

filled staircase tableaux of size n, i.e.

(11.1) Zn(α, β, γ, δ, q, u) =
∑
S∈Sn

wt(S).

Obviously, Zn is a homogeneous polynomial of degree n(n + 1)/2. Note
that the simplified versions of wt(S) and Zn used in the present paper are
obtained by putting u = q = 1, and that in this case Zn has the simple form
(1.4). Other special cases for which there is a simple form are discussed in
[10] and [13]. The general generating function (11.1) also has connections
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to the Askey–Wilson polynomials, see [17; 13]. See also [14] for connections
between a special case and permutation tableaux.
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