FIRST CRITICAL PROBABILITY FOR A PROBLEM ON RANDOM
ORIENTATIONS IN G(n,p).

SVEN ERICK ALM, SVANTE JANSON, AND SVANTE LINUSSON

ABSTRACT. We study the random graph G(n,p) with a random orientation. For three
fixed vertices s,a,b in G(n,p) we study the correlation of the events {a — s} and
{s — b}. We prove that asymptotically the correlation is negative for small p, p < %,
where C; = 0.3617, positive for % <p< % and up to p = pa2(n). Computer
aided computations suggest that p2(n) = %, with Cy ~ 7.5. We conjecture that the
correlation then stays negative for p up to the previously known zero at %; for larger
p it is positive.

1. INTRODUCTION

Let G(n,p) be the random graph with n vertices where each edge has probability p
of being present independent of the other edges. We further orient each present edge
either way independently with probability %, and denote the resulting random directed

graph by é(n, p). This version of orienting edges in a graph, random or not, is natural
and has been considered previously in e.g. [1, 2, 3, 5].

Let a,b, s be three distinct vertices and define the events A := {a — s}, that there
exists a directed path in G(n,p) from a to s, and B := {s — b}. In a previous paper, [2],
we showed that, for fixed p, the correlation between A and B asymptotically is negative
for p < % and positive for p > % Note that we take the covariance in the combined
probability space of G(n,p) and the orientation of edges, which is often referred to as
the annealed case, see [2] for details. We say that a probability p € (0,1) is critical (for
a given n) if the covariance Cov(A4, B) = 0. We have thus shown in [2] that there is a
critical probability %—1—0(1) for large n. (Moreover, this is the largest critical probability,
since the covariance stays positive for all larger p < 1.) We also conjectured that for large
n, there are in fact (at least) three critical probabilities when the covariance changed
sign. Based on computer aided computations we guessed that the first two critical
probabilities would be approximately % and % In this note we prove that there is
a first critical probability of the conjectured order, where the covariance changes from
negative to positive, and thus there must be at least three critical probabilities. Our
theorem is as follows.
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Theorem 1.1. With p = % and sufficiently large n, the covariance Cov(A, B) is neg-
ative for 0 < ¢ < c¢1 and positive for ¢y < ¢ < 1, where ¢; ~ 0.180827 is a solution to
(2 —¢)(1 —¢)® = 1. Furthermore, for fized c with 0 < ¢ < 1,

3
B 3 c 1 1
(1.1) Cov(4,B) = (1—(2—)(1—¢) )'m'ﬁﬂ)(ﬁ)'
In fact, the proof shows that (1.1) holds uniformly in 0 < ¢ < ¢ for any ¢ < 1;
moreover, we may (with just a little more care) for such ¢ write the error term as
O(c*n=*). This implies that for large n, the critical p ~ 2¢1/n is indeed the first critical
probability, and that the covariance is negative for all smaller p > 0.

Remark 1.2. In a random orientation of any given graph G, it is a fact first observed
by McDiarmid that P(a — s) is equal to P(a <> s) in an edge percolation on the same
graph with probability 1/2 for each edge independently, see [5]. Hence the events A
(and thus B) have the same probability as P(a <> s) in G(n,p/2). With p = 2¢/n it is
well known that for ¢ < 1 this probability is ﬁn‘l + O(n™2), see e.g. [4]. Hence the
covariance in (1.1) is of the order O(P(A) P(B)/n).

The outline of the proof is as follows, see Sections 2 and 3 for details.

Let p := 2¢/n, where ¢ < 1. Let X4 := #{a — s} be the number of paths from a
to s in é(n,p) and Xp := #{s — b}. (In the proof below, for technical reasons, we
actually only count paths that are not too long.) We first show that, in our range of p,
the probability that X4 > 2 or Xp > 2 is small, and that we can ignore these events and
approximate Cov(A, B) by Cov(X4, Xp). The latter covariance is a double sum over
pairs of possible paths (a, 3), where « goes from a to s and 8 goes from s to b, and we
show that the largest contribution comes from configurations of the following two types:

Type 1: The two edges incident to s, i.e the last edge in a and the first edge in
B, are the same but with opposite orientations; all other edges are distinct. See
Figure 1.

~.

FIGURE 1. Configurations of Type 1 (7,5 >0, i+ j > 1).

Type 2: a and § contain a common subpath with the same orientation, but all
other edges are distinct. See Figure 2.

If (a,B) is of Type 1, then a and S cannot both be paths in C_j(n,p), since they
contain an edge with opposite orientations. Thus each such pair («, ) gives a negative
contribution to Cov(X4, Xp). Pairs of Type 2, on the other hand, give a positive
contribution. It turns out that both contributions are of the same order n~3, see Lemmas
3.2 and 3.3, with constant factors depending on ¢ such that the negative contribution



FIRST CRITICAL PROBABILITY FOR A PROBLEM ON RANDOM ORIENTATIONS IN G(n,p). 3

FIGURE 2. Configurations of Type 2 (i,j > 0, k,l,m > 1).

from Type 1 dominates for small ¢, and the positive contribution from Type 2 dominates
for larger c.

Open problem 1.3. It would be interesting to find a method to compute also the
second critical probability, which we in [2] conjectured to be approximately % (The
methods in the present paper apply only for ¢ < 1.) Even showing that the covariance
is negative when p is of the order logn 44 open. Moreover we conjecture that (for large

n at least) there are only three critical probabilities, but that too is open.

2. PROOF OF THEOREM 1.1

We give here the main steps in the proof of Theorem 1.1, leaving details to a sequence
of lemmas in Section 3.

By a path we mean a directed path v = vge; - - - epvp in the complete graph K,. We
use the conventions that a path is self-avoiding, i.e. has no repeated vertex, and that the
length || of a path is the number of edges in the path.

We let T' be the set of all such paths and let, for two distinct vertices v and w, 'y,
be the subset of all paths from v to w.

If v € I', let I, be the indicator that + is a path in é(n,p), i.e, that all edges in v are

present in G (n,p) and have the correct orientation there. Thus

P 1l c\ 1l
(2.1) EL=PL=1)=(3)"=(5)".
Let 14 and Ip be the indicators of A and B. Note that the event A occurs if and only
if > qer,. la > 1, and similarly for B.
It will be convenient to restrict attention to paths that are not too long, so we introduce
a cut-off L :=log?n and let I'%, be the set of paths in I'y, of length at most L. Let

Xa= )Y I and Xp:= Y I,

a€el'L, BEFfb

i.e, the numbers of paths in é(n,p) from a to s and from s to b, ignoring paths of length
more than L.
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Write X4 = Iy + X/, and Xp = I; + X}, where I’y and I}; are the indicators for the
events X4 > 1 and Xp > 1 respectively, so that
Iy = min(X 4, 1),
if X4<1
X)= (Xa—1);={" pAasL
Xa—1 if X4q>1.
We have I4 > I'y. Let Jy := Iy — Iy and Jp := Ip — Iz. Thus
(2.2) Cov(A, B) = Cov(Ia, Ip) = Cov(Iy, Ig) + Cov(Iy, Jg) + Cov(Ja, Ip).

We will show in Lemma 3.1 below that the last terms are small: O(n~%?). (The exponent
99 here and below can be replaced by any fixed number.)
Similarly, since I’y = X4 — X/,

(2.3) Cov(I’y,I5) = Cov(Xa,Xp) — Cov(Xa, X) — Cov(X}y, Xg) + Cov(XY}y, X5),

where Lemma 3.5 shows that the last three terms are O(n~*). Hence, it suffices to
compute

(2.4) Cov(X 4, Xp) :cov( Yo Y Ig) =Y Y Cov(la, Ip).
a€lf,  perly o€l perk,

Lemmas 3.2 and 3.3 yield the contribution to this sum from pairs («, ) of Types 1
and 2, and Lemma 3.4 shows that the remaining terms contribute only O(n~%). Using
(2.2)-(2.4) and the lemmas in Section 3 we thus obtain

Cov(A, B) = Cov(I'y, 1) + O(n™%) = Cov(X 4, Xg) + O(n™?)
2¢3 — ¢t 3 1 1
B <_ (1—1¢)? * (1 —c)5> n3 +O<ﬁ>’

3

- (1—(2—0)(1—0)3)%+0(%)7

which is (1.1).

The polynomial 1 — (2 — ¢)(1 — ¢)® = —c* + 5¢® — 9¢ + 7c — 1 is negative for ¢ = 0
and has two real zeros, for example because its discriminant is —283 < 0, see e.g. [6]; a
numerical calculation yields the roots ¢; &~ 0.180827 and co &~ 2.380278, which completes
the proof. O

3. LEMMAS

We begin with some general considerations. We assume, as in Theorem 1.1, that
p=2c/nand 0 <c< 1.

Consider a term Cov(I,,Ig) in (2.4). Suppose that o and 3 have lengths ¢, and /3.
Furthermore, suppose that § contains § > 0 edges not in « (ignoring the orientations)
and that these form p > 0 subpaths of 8 that intersect o only at the endvertices. (We
will use the notation 3\ « for the set of (undirected) edges in § but not in «a.) The
number /.3 of edges common to o and 8 (again ignoring orientations) is thus 3 — 6. By
(2.1), El, = (¢/n)* and E Iz = (c/n)%.
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(i) If o and B have no common edge, then I, and Ig are independent and
(3.1) Cov(lq, Ig) = 0.

(ii) If all common edges have the same orientation in « and f, then

Lo+0 Lo+l
(3.2) Cov(In, Ig) = E(InIg) —EI,E Iz = (%) _ (%) 2

(iii) If some common edge has different orientations in a and 3, then E(I,Ig) = 0
and

¢\ batls

A

(3.3) Cov(la, 1) = ~EIELs = - (

We denote the falling factorials by (n)g :=n(n—1)---(n—£¢+1). Note that the total
number of paths of length ¢ in I'y,, is (n — 2)p_1 := (n — 2)--- (n — £), since the path is
determined by choosing ¢ — 1 internal vertices in order, and all vertices are distinct.

Lemma 3.1. Cov(I), Jg) = O(n™%) and Cov(Ja,Ig) = O(n™%).

Proof. J4 is the indicator of the event that there is a path in G (n,p) from a to s, and
that every such path has length > L = log?n. Thus,

0<a< Y
a€lys, |a|>L

and thus, using (2.1) and the fact that there are (n — 2),_1 < n‘~! paths of length ¢ in
Fasa

0<EJs< Z (Z)M Sine_l (;)Zgch:O(cL):O(n_gg).

aera5y|0¢‘>L (=L
Since J4,I5 € [0,1],
|Cov(Ja,Ig)| <E(Jalg) + EJAEIg < 2E.J4 = O(n™).
Similarly, |Cov(I’y, Jg)| = O(n=%). O
Lemma 3.2. Pairs of Type 1 contribute —%%—FO(#) to the covariance Cov(X 4, Xp).

Proof. Let the path « from a to s consist of i + 1 edges, where the last edge is the first
in the path g8 of length j + 1 from s to b, see Figure 1. The paths must not share any
more edges, but could have more common vertices. Here 7,57 > 0 and ¢ 4+ 5 > 1 since
a # b. Let R;; be the number of such pairs of paths, for given ¢ and j. If j > 1, the
paths are determined by the choice of ¢ distinct vertices for a and then j — 1 distinct
vertices for §; if j = 0, then ¢ > 1 and the paths are determined by the choice of i — 1
distinct vertices for a. Order is important so, for ¢,j < L, with a minor modification if
j = O?
(n=2)i-(n=3)j-1 2 Rij = (n—2)iyj1,
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Thus R;; = n'ti~1 (1 + O(M>> and summing over all such pairs («, 3) gives by

n

(3.3) a contribution to Cov(X4, Xp) of

N EZZ%J(§>HTH::_ > W+T4(1+CKK”ZJV>)(;y+ﬂ2

i+5>1 i+i>1
4,J<L

i+j>1 i+j>1
4,j<L

=—n73 (2 Z I 4 Z ATt 4 O(CL)) + O(n_4)

j=21 4,521

203 ct 2¢% — ¢4
= — _3 _4 = — _3'7 _4 . |:|
n (1—c+(1—c)2>+0(n ) n (1_6)2—1-0(71 )

3

Lemma 3.3. Type 2 pairs contribute # : W—FO(L) to the covariance Cov(X 4, Xp).

n4
Proof. A pair («, ) of paths of Type 2 must contain a directed cycle containing s, from
which there are m > 1 edges to a vertex x to which there is a directed path of length
1 > 0 from a. The cycle continues from z with k£ > 1 edges to a vertex y, which connects
to b via j > 0 edges. The cycle is completed by [ > 1 edges from y to s, see Figure 2.
By (3.2), then

(3.4) Cov(In, Is) = (%)Hﬁwm <1 _ (C>k> .

n

Let R; j k1 m be the number of such pairs («a, 8) with given 4, j, k,I,m. The path a is
determined by i + k 4+ [ — 1 distinct vertices and given «, if j > 1, then the path g is
determined by choosing m + j — 2 vertices; if j = 0 then b lies on «, so « is determined
by choosing i + k + [ — 2 vertices, and then 3 is determined by choosing m — 1 further
vertices. Reasoning as in the proof of Lemma 3.2 we have
i+j+k+l+m—3<1 n O((i+j + k‘i‘l‘f‘m)?)).

n

Due to our cut-off, we have to have ¢+ + k+1 < L and j + k +m < L, but we may
for simplicity here allow also paths «, with lengths larger than L; the contribution
below from pairs with such a or 8 is O(c) = O(n™). Summing over all possible
configurations gives

C i+j+k+l+m C k
S () (- (2))
n n

,j20,k,l,m>1

1 L c\k 1
_ +ithti+
= 2 v m‘(l‘(n”*@(m)
1,j>0,k,l,m=>1
1 A 1
= =+ 0(): 0
nd (1—¢)° + nt
Lemma 3.4. The sum Y. |Cov(Iy, Ig)| over all pairs (a,B) with o € TL, B € TL and
(a, B) not of Type 1 or 2 is O(n*‘*).

Rijktim=n
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Proof. Consider pairs (a, ) with some given £, d, u. The path «, which has ¢, — 1
interior vertices, may be chosen in < nfe~! ways. The 2u endvertices of the 1 subpaths
of B\ av are either b or lie on «, and given a, these may be chosen (in order) in < (£,+2)%
ways. The § — p internal vertices in the subpaths can be chosen in < n%~# ways. They
can be distributed in (Zj) (interpreted as 1 if y = § = 0) ways over the subpaths. The
path 3 is determined by these endvertices, the sequence of § — i interior vertices in the
subpaths between these endvertices and which vertices belong to which subpath; hence
the total number of choices of § is < (2:%)(504 4 2)2Hnd=H,

For each such pair (a, 8), we have by (3.1)~(3.3) |Cov(Ia, I)| < (¢/n)%*9. Conse-
quently, the total contribution to ) |Cov(I,,Ig)| from the paths with given £, d, jt is at
most

0—1 2u, bo—14+6—p [ € tatd (6 —1 26 fa+5, —p—1
(3.5) (M_1>(ea+2) n (n) = () Uar2eetonet,

We consider several different cases and show that each case yields a contribution
O(n*4), noting that we may assume that g > ¢, since otherwise o and 3 are edge-
disjoint, and thus Cov(/lq, Ig) = 0 by (3.1).

(i) u > 4: Using that (Z:ll) < o1 < L#) and summing (3.5) over § > 0 and ¢, < L,
yields for a fixed p a contribution

(3.6) < (L +2)3%(1 —¢) 211,
and the sum of these for p >4 is
(3.7) O(Lun_5) = O(n_5 log?* n) = O(n_4).

(ii) p = 3: Using that, with u = 3, (zj) = (551) < 42, and summing (3.5) over all
la

,0 > 0 yields a contribution of at most
(38) > (e +2)0 <Y (la +2) Y 6%t =0(n ).
£a,6>0 £0>0 >0
It remains to consider p < 2.

(iii) # = 0: In this case, 8 C «, and thus § = 0 and ¢, > {3 (because a # b). Given
ly and fg, we can choose 3 in < nt~1 ways and then « in < nfe=%~1 ways; for each
choice (3.3) applies since the edges in /5 have opposite orientations in «, and thus the
contribution to ) [Cov(I4, )| is at most

b —pa_1 {C\latls .
(39) nﬂﬁ 1+£a 65 1 (7) — C€a+€ﬂn @3 2.
n

If £g = 1, then (o, 3) is of Type 1, see Figure 1 (j = 0). Since we have excluded such
pairs, we may thus assume that £g > 2. Summing (3.9) over ¢, > {3 > 2 yields O(n*4).

(iv) p € {1,2} and o and B have some common edge with opposite orientations: In this
case, (3.3) applies, and (2:11) < § < Lg. Thus, if we let £o3 = g — 6 > 1 be the number
of common edges in a and f, then the total contribution to ) |Cov (I, Ig)| for given
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Lo, U3, 11, Lop (which determine § = £g — £,3) is at most, in analogy with (3.5) but using
(3.3)
c>4’a+€ﬁ

(3.10) 05(Lo + 2)Hnfa—1+0=n (—

= (o + 2)%45 ctottop 1 tas—n,
n

For fixed p, the sum of (3.10) over 4,,¢3 > 1 and lo3 > 3 — p is O(n*4), so we only
have to consider 1 < £, < 2 — p. In this case we must have 4 = 1 and {,g = 1 (and

(Z:ll) = 1); thus a and 8 have exactly one common edge, which is adjacent to one of
the endvertices of 8. If the common edge is adjacent to s, we have a pair (a, 8) of Type
1, see Figure 1; we may thus assume that the common edge is not adjacent to s. Then,
¢ > 2 and the common edge is adjacent to b, which implies b € a. Given £, the number
of paths « that pass through b is (¢, — 1)(n — 3)¢,—2, since b may be any of the ¢, — 1
interior vertices. The choice of « fixes the last interior vertex of 8 (as the successor of b
in «), and the remaining ¢ — 2 interior vertices may be chosen in < nt8=2 ways. The

total contribution from this case is thus at most

Lo+t
E) e — (ga _ 1)C€a+éﬁn—4

)

(3.11) (b — 1)ple—2tls=2 (

n
and summing over £, and {g we again obtain O(n‘4).

(v) u € {1,2} and all common edges in o and 3 have the same orientation: The edge in
B at s does not belong to « (since it would have opposite orientation there), so one of
the p subpaths of 8 outside « begins at s. If p =1, or if u =2 and b ¢ «, then («, ) is
of Type 2, see Figure 2 (j = 0 and j > 1, respectively). We may thus assume that u = 2
and b € . As in case (iv), given £,, we may choose a in (£y — 1)(n — 3)p, o < £onte2
ways. The pu = 2 subpaths of 5 outside a have 4 endvertices belonging to «; one is s
and the others may be chosen in < ¢3 ways. For any such choice, the remaining § — 2
vertices of 8 may be chosen in < n’~2 ways. The total contribution for given £, and §
is thus, using (3.2), at most

lo+6
(3.12) (4 pfa—2+0-2 (%) = (A clatop—4,
and summing over all £,,§ we obtain O(n‘4). 0

Lemma 3.5. With notation as before, we have Cov(X 4, X) = Cov(X’y, X5) = O(n™%)
and Cov(X'y, Xp) = O(n™%).

Proof. We only need to consider paths in T'"', which is assumed throughout the proof.
Define Y, = (XQA), the number of pairs of (distinct) paths from a to s, and similarly
Vi = (7). Then 0 < X, < Ygand 0 < X < Yp. Let Y} := Y4 — X/; and
Y} :=Yp — Xj. Then Y} = 0 unless X4 > 3.

Further, let Z4 := (X3A), the number of triples of (distinct) paths from a to s. Then
0<Y) <Zjy.

To show that Cov(X4, X%) = Cov(X'y, Xp) = O(n™), we write Cov(X/y, Xp) =
Cov(Ya — Y}, Xp) = Cov(Ya, Xp) — Cov(Y), Xp). Here, Cov(Y},Xp) = E(Y, XB) —
E(Y}) -E(Xp), where E(Y,Xp) < E(Z4Xp), which we will show is O(n~%). Further we
will show that E(X4) = E(Xp) = O(n™!) and that E(Y}) < E(Z4) = O(n3), so that
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Cov(Y}, Xp) = O(n™*). Finally we will show that Cov(Y4, Xg) = O(n~?) finishing the
proof of the first part of the lemma.

For the second part we write COV(XA, X5) =E(X, X5) —E(X)) -E(X%). We prove
that E(X, X%) < E(YaYg) = O(n™?) and that E(X/)) = E(X}) < IE(YA) = 0(n72),
which finishes the proof.

(i) E(X4) = O(n™"):

Let a denote an arbitrary path from a to s (in ') with length [ > 1. Then,

—E(D ) =Y Ell) < ZL:nll (%)l <——-n'=0@").
ot a =1

(ii) E(Ya) = O(n™2):
Let a1 and a9, with lengths I; and I be two distinct paths from a to s. Further, let

d = |ag \ a1| be the number of edges in g not in «y, which form g > 0 subpaths of ao
with no interior vertices in common with «. The number of choices for oy is (compare

the proof of Lemma 3.4) at most n®~#(l; + 1) (Z:ll), which gives

= 3 st < 3ot () e (G2 ()

a1Faz l1,6,p
Z n HT 1(l1—f—1)2“cll+‘S 0-1
w—1
l1,6,p
Case 1: p > 2.
Here, (I3 + 1)%* < (L + 1)%#, (z_i) < (-1t <o < LH s0 that the terms are at

most n~#~ L HI(L + 1)3*. Summing over I; and § gives at most = )2 (L +1)3#n—r"1
which summed for > 2 is O(L5n3) = O(n~3log!? n) = O(n72).

Case 2: p=1.

Here, (5_1) =1, and

p—1
Y E(laIay) <02 (L +1)% ) & =0(n?).

l1,0 hi>1 6>1

(iii) E(Za) = O(n™3):
We have
E(Za)= Y E(laTaylay),
a1,02,03
where a1, as and ag denote three distinct paths from a to s.

Let I3 denote the length of ay, let d3 = |z \ a1| be the number of edges in as not
in a; forming ps > 0 subpaths of ag intersecting a; only at the endvertices, and let
93 = Jas \ (o U ag)| be the number of edges in a3 not in ay or ag forming pus > 0
subpaths of aig whose interior vertices are not in «ay or as. Note that pus = 0 is possible
if uo > 2, as then ag can be formed by one part from oy and one part from as; however,
if uo =1 then pus > 1. Hence, pg + pug > 2.
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If all common edges of the three paths have the same direction, E(Iy,In,l0s) =
(E)l1+62+63

n

The number of choices for as is, as in (ii), at most n%#2 . (I; 4 1)%2 . (222:11) and the

number of choices for as is at most n% =43 . (I; 4+ g — g + 1)2#3 - (ff;:ll) - 212 where the
last factor is an upper bound for the possible number of choices between segments of

and ao. Thus, with summation over I1 > 1,00 > ps > 1,03 > usz > 0, with ps + pg > 2,
(3.13)
ZE(IQ1I(12L13) < Znhfl . n52*lt2 . (ll + 1)2;@ ) (322:11)

, otherwise it is 0, so we need only consider paths with the same direction.

_ _ ¢\ lhi+d2+63
IS (I Gy — g + 1) (BT]) 22 (ﬁ)
= S e 1y g 102 (B2 (1 By — g 1) - (5T e s,

Case 1: ps + us > 3.
0o —
Here, (I1+1)%2 < (L+1)%2, (2271) < L2, (L4602 —pg+1)%5 < (2L+1)%5 < (L41)3s

(assuming as we may L > 4), (22:11) < LM3 and 2¥2 < LP2, so that the sum over [q, 09, 03
is at most

(3.14) pH2mHs =L, (L+ 1)4“2+4“3 . Z catd2tds <(1- C)*S opH2—p3—L (L+ 1)4(M2+M3)_
Summing over po and us, with po + ps > 3 gives
O(n™*-L'* = 0(n*log?* n) = O(n™3).

Case 2: s + us = 2.

Here, (/1427/1’3) € {(270)7(171)}7 so that (ll + 1)2#2 < (ll + 1)47 (322:11) < 527 (ll + 02 —

po + 1)2#3 < (Iy + 82)2, (22:11) = 1 and 2*2 < 4, so that summing over [y, d9, 03 and
o + p3 = 2 gives at most

2-4-n7% N (i + Dby (I +62)7 - B = O(n7P).
l1,62,03

(iv) E(Za- XB) = O(n™?):

E(Za-XB) = Y E(la,laylas13), where aq, ap and g are three distinct paths from a
to s and f is a path from s to b. We need only consider paths where all common edges
have the same direction, as E(/y, la,la;13) = 0 otherwise.

As in (iii) the three « paths are described by [y, d2, pi2, 03, 3. Let d4 := |8\ (aq Uaa U
ag)| be the number of edges in 3, not in any of the a paths, and let these form p4 subpaths
of 8 whose endvertices lie on a1, s, ag but share no other vertices with those paths. The
number of choices for the a paths are the same as in (iii) and given those, and dy4, 114, the
8 path can be chosen in at most n%—#4 . (I1 4 69 — g + 03 — pg + 1)2H4 . (i‘ij) - 32(p2tus)
ways, where the last factor is a crude upper bound for the number of ways £ can choose
different sections from the « paths, as there are at most 2(ug + pg) vertices where a
choice can be made and there are at most 3 possible choices at each of these. Clearly,
E(In, Loy laglg) = (£)1H92+93+% gince all common edges have the same direction.
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Note that g4 > 1 for non-zero terms as otherwise the first edge in 8 from s would be
the last edge in one of the « paths, and therefore would have opposite direction. Further,
wa > 1, ug >0, but pus+pus > 2 as ug = 1, ug = 0 would imply that ag = oy or az = as.

Summing over Iy > 1, uo > 1, §o > po, pus > 0, 63 > us3, pa > 1 and d4 > g with
o + ps > 2 gives at most

(3.15)
anl_l o2 (I + 1) (32:11) . pd3—Hs (I1 4 02 — pig + 1)%3 . (23;:11) . QH2,

)ll +02+03+04

_ C
. pdiha (I3 4 69 — pig + 03 — pz + 1)2/t4 . (/%rll) . 32(p2+ps3) (ﬁ

Y e 1 (50 6 1 () 2

U+ 8y — o+ Oy — pug + 1) M- (D7]) - g2utu) L ot dtos

Case 1: po + pg + pa > 4.
Here, using the same type of estimates as in (iii) and summing over [y, d2, d3, d4 gives at
most

n—u2-#3—ﬂ4—1,(L+1)7/L2+7,u3+4u4 Z cl1t02+d3+0a < (l_c)—4n—u2—u3—,u4—l.(L+1)7(u2+u3+u4),

which summed over ps + pug + pg > 4 is
O(n™>-L®) =05 -log’n) = O(n™?).

Case 2: po + ps + pg = 3.

Here, (p2, 3, pta) € {(2,0,1),(1,1,1)} so that (I + 1)%2 < (I, + 1)4, (27]) < 6,

(tda—pat 1) < (i+62)%, (227) = (;iT7) = 1,22 <4, (hi+02—puo+d3—p+ 1) <
(I + 92+ 53)2 and 32(u2tus) — 34 — 81, so that the sum over [y, d9, 3, d4 is finite and the

total contribution is O(n~%).
(v) E(Ya-Yg) = O(n™%):

E(Ya-YR) = > E(lo,lay1Ip,1,), where aq and ag are two distinct paths from a to s
and B3 and 4 are two distinct paths from s to b. As above, we need only consider paths
where all common edges have the same direction. As before, a1 and as are described by
l1 = |a1] > 1, 62 = |ag \ a1] > 1, the number of edges in ag not in aj, and uy > 1, the
number of subpaths they form that intersect oy in (and only in) the endvertices. Then
B3 is described by 63 = |3 \ (a1 U ag)|, the number of edges in 3 not in «; or ag, and
13, the number of subpaths they form with no interior vertices in common with a;g, as.
Similarly, 84 is described by 64 = |53\ (a1 Uaa U B3)| > 0, the number of edges in 4 not
in a1, as or B3 and pg > 0, the number of subpaths they form which intersect o, as, 83
in (and only in) the endvertices. Note that us > 1 for every non-zero term, as otherwise
the first edge in 3 from s would be the last edge in one of the «a paths, and therefore
would have opposite direction.

The number of choices for the v paths are the same as in (ii) and given those, and

63, 13, 04, 14, the B paths can be chosen in at most n%=#3 . (I + dy — po + 1)2#3 . (fg:ll) '

K2 . pda=ha (1) 4§y — pig 4 03 — 3 + 1)2H4 (Zi:ll) - 32(u2t43) where the last factor is an
upper bound for the number of ways 84 can choose different sections from the « paths
and fs.
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When all common edges have the same direction, E(In, lo,Ig,15,) = (&)hH02+0s+0,
Summing over Iy > 1, uo > 1, 09 > po, u3 > 1, 03 > us, pug > 0 and 64 > pg gives at
most

S 1 () 05yt 1 () -

)ll +2+03+04

PN 2 (Iy + 6y — pig + 03 — pu3 + 1)2u4 . (54:1) . 32(p2tps) (E

pa—1 n

=Y w1 (2T - (I Gy - )P (22T]) - 20

. (ll + 0y — o+ 03 — pg + 1)2M4 . (2111:%) . 32(M2+M3) . Cl1+52+53+54_

We sum the same terms as in (3.15), so the sum over all terms with py > 1 is O(n™%)
by the estimates in part (iv). Hence it suffices to consider the terms with ps = 0 and
thus d4 = 0.

Case 1: ps+ us >4, ug = 0.

Here, each term is 32(#2+#3) times the corresponding term in (3.13). Hence, the estimates
in (iii) show that, cf. (3.14), summing over [y, d2, d3 gives at most

(1— C)—3n—u2—u3—1 (L + 1)6(H2+u3)’
which summed over puo + pug > 4 is
O(n=5-L*) =0(mn> log¥®n) = 0(n™).

Case 2: ps + us =3, ug = 0.

Here: H2, 43 S 2 so that (l1+1)2/"2 S (Z1+1)47 (222:11) S 527 (l1+52—ﬂ2+1)2“3 = (ll+62)47

(22:11) < 63, 242 < 4, and 32(2tms) — 36 — 729 so that the sum over li,da,d3 is
O(n~r2=#3~1) and the contribution is O(n™%).

Case 3: po + pus =2, ug = 0.

This can only occur if uo = pus = 1. Thus, [ starts with an edge not in any of the «
paths and, as this is its only excursion it must end up at one of the « paths and follow
it to b (if B3 were to go straight to b without coinciding with any of the a paths then
B4 would have to do the same, so that 83 = 4). f4 must start as §3 until it encounters
an « path and must have the possibility to chose a different path to b than 83 along the
« paths. This means that both a paths must pass through b and that they only differ
somewhere between a and b. Thus, see Figure 3, there must be three vertices x (possibly
x =a), y (possibly y = x) and z (possibly z = b) between a and b, so that both « paths
pass in order a,x,y, 2,b, s, and both [ paths pass in order s, x,y, z,b. Both the two «
paths and the two 3 paths follow different subpaths between y and z. Let the number
of edges between a and x be i > 0, between z and y be j > 0, between y and z be k > 1
and [ > 1 for the two possibilities (with k£ 4+ > 3), between z and b be m > 0, between
s and x be r > 1 and between b and s be t > 1.

Then, E(Iy, I, 15,1p,) = (%Hﬂkﬂﬂnﬂﬂ and the number of possibilities is at most

n
onitithtlrmirtt=4 oo that the sum over 4,5, k,I,m,r, t is O(n™%).

(vi) Cov(Yy, XB) = O(n™%):
|Cov(Ya, Xp)| = | Z ZCOV(IM 'IOC2715)| < Z Z |Cov(1a, 'Ia2alﬂ)|7

arFaz B ar#az B
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FIGURE 3. Configurations for Case 3 of (v): pg + us + g = 2.

where

COV(Ial : Ia27]ﬂ) = E(ICH oy - IB) - E(Ial ’ Ia2) ) E(Iﬁ)v
which is 0 if a; and a9 have a common edge with opposite directions, or if 5 has no edge
in common with the « paths.
Let as above a1 have length [y, as have o edges not in a; forming ue subpaths of
ay intersecting aq in (and only in) the endvertices. Let also 5 have length Iz with 3
edges not in ay or ap forming s subpaths of 3 intersecting «y, g in (and only in) the
endvertices. Then, if all common edges of S and a3 U as have the same direction,

<c>ll+52+53 (c)l1+52+l5
n n

|COV(Ia1 'IOé27 Iﬁ)‘ =

)

c\ l1+62+63
< ()

n

and if B has at least one common edge in opposite direction,

l1+02+1 l1+02+03.
|COV(Ia1'Ia2715)|:<E)1 i BS(C)I o

n n

The number of ways of choosing oy, ae and f is at most, as in (iii) above,

Tl nf2 TR ()P (9270) TR (I 4 By — g+ 1) - (7)) - 472,

The last factor is 4%*? in this case as 3 can have opposite direction in the common
subpaths. If there is a crossing between a1 and o there may be 4 choices for § and
there are at most 2uo such vertices. Thus,

Z Z |Cov(la, - Iay, 1) < Z nlth L pdame (1 4 1) (222:11)

arFaz f l1,p2,02,12,03
83— 2 Sa_1 9 ¢\ l1+62+483
B4 6y 1 () e (£
< Zn—m—us—l (1 + 1)2u2 . (222:11) (I + 0y — pg + 1)2u3 . (iz:ll) 4282, Jat0a+03

Here, [y > 1, puo > 1, d2 > o, pu3 > 0 and 43 > p3. Note that the terms in the final sum
are the same as in (3.13), except that 22 is replaced by 42/,

Case 1: po + g > 4.
Here, using the same estimates as in (iii), see (3.14), the sum over [y, d2, d3 is, for L > 16,
at most

(1— C)_3 L R Z (L + 1)4(N2+u3).

Summing over pg + pz > 4 gives O(n™° - L) = O(n""log® n) = O(n™?).
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Case 2: s + ps = 3.

do—
Here, (N27/’L3) = {(370)7 (27 1)) (172)} and (ll + 1)2“2 < (ll + 1)67 (Mzz_ll) < 5%7 (ll + 02 —
po + 1)1 < (I +62)%, (ff;:ll) < 63 and 42 < 4% = 4096. Summing over ly, 82, p2, 03, 113
gives at most

3n~t ) 4096 - (Iy + 1)°- 63 - (I + 62)* - 05 - TR = O(n 7).
11,02,03

Case 3: po = ug = 1.

We need only consider the situation when g has at least one edge in common with
a1 U ao, as otherwise the covariance is 0.

Subcase 3.1: At least one common edge has opposite direction.

|Cov(Ia, * Iy, Ig)| = cito2Hls . p=h=%2=ls " Here, l5 > 2, as I3 = 1 would imply that
p3 = 0. Further, [1 +d2 > 3, as otherwise a1 = . Let lop = |[fN(1Uas)| = lg—3d3 > 1.
Then, estimating the number of possible choices of the paths as above,

Z |Cov(la, - Loy, Iﬁ)‘
l1,62,03,l

S Znh,1 . ,n(sgfl . (ll 4 1)2 i n5371 . (ll 4 62)2 .9. Cll+52+13 X n*l1*52*l5

—=9. Z (I +1)2 - (Iy + §9)2 - htoa+dstlap . =3=las — O (%),
11,62,03,lap

Subcase 3.2: All common edges have the same direction.

The first edge of 3, from s, must be disjoint with a1 U ao. Let § start with ¢ > 1
disjoint steps and then join one of the o paths, oy say, for a further j > 1 steps to b.
Further, let a; have k > 0 steps before joining § and ending with [ steps from b to s. As
before, as is determined by two vertices on o and d9 — 1 exterior vertices giving at most
(Iy +1)2 - n%~1 possibilities. Further, 8 can join either of the o paths, and may then do
an excursion along the other path, giving at most 4 possibilities. Then, asl; = k+j+1,

> |Cov(Ia, - Loy, Ip)|

34'2222Z”i_l'”k+j+l_2'(l1+1)2'”52_1'(%

i>1 k>0 j>1 [>1 65>1

)i+k+j+l+62

=dn~t > (k414 1) SR — oY),
i7k7j7l762

Case 4: us =0, us € {1,2}.

ps = 0 implies that § C (a1 U ag), so that the first edge in 5 has opposite direction in
a1 U . Furthermore, at least one of the « paths, a; say, must pass through b, so that
l1 > 2. ay can be chosen in at most (I; + 1)2“2 o2~ K2 ways and there are at most 22
ways for 3 to choose between the a paths, giving at most n/t=2. (I +1)2+2 022 ok <

e . . . li+62+l5
4-(Iy +1)* - nht92712=2 ways of choosing v, ap and 3. The covariance is — (%) 1toztis
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Summing over Iy > 2, pu2 = 1,2, d2 > p and lg > 1 gives

1452+
§:|Cmdﬂn'ﬂmw%ﬂf£4§:U1+—D4'nh+ﬁ*W*2‘(5)1 2+

n
= 4Z(Z1 + 1)t toatls =l =2 — O (Y,
which finishes the proof. O
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