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Abstract. We study the relation between the growth rate of a graph
property and the entropy of the graph limits that arise from graphs
with that property. In particular, for hereditary classes we obtain a
new description of the colouring number, which by well-known results
describes the rate of growth.

We study also random graphs and their entropies. We show, for
example, that if a hereditary property has a unique limiting graphon
with maximal entropy, then a random graph with this property, selected
uniformly at random from all such graphs with a given order, converges
to this maximizing graphon as the order tends to infinity.

1. Introduction and results

In recent years a theory of convergent sequences of dense graphs has been
developed, see e.g. the book [Lov12]. One can construct a limit object for
such a sequence in the form of certain symmetric measurable functions called
graphons. The theory of graph limits not only provides a framework for
addressing some previously unapproachable questions, but also leads to new
interesting questions. For example one can ask: Which graphons arise as
limits of sequences of graphs with a given property? Does a sequence of
random graphs drawn from the set of graphs with a given property converge,
and if so, what is the limit graphon? These types of questions has been
studied for certain properties [CD11, LS06, DHJ08, Jan13b]. In this article
we study the relation between these questions, the entropy of graphons, and
the growth rate of graph properties.

The growth rate of graph properties has been studied extensively in the
past, see e.g. [Ale92, BT97, BBW00, BBW01, BBS04, Bol07, BBSS09]. The
standard method has been to use the Szemerédi regularity lemma, while
we use graph limits; this should not be surprising, since it has been known
since the introduction of graph limits that there is a strong connection with
the Szemerédi regularity lemma. Some of our proofs reminisce the proofs
from previous works, but in different formulations, cf. e.g. Bollobás and
Thomason [BT97].
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1.1. Preliminaries. For every natural number n, denote [n] := {1, . . . , n}.
In this paper all graphs are simple and finite. For a graph G, let V (G) and
E(G), respectively, denote the vertex set and the edge set of G. We write
for convenience |G| for |V (G)|, the number of vertices. Let U denote set of
all unlabelled graphs. (These are formally defined as equivalence classes of
graphs up to isomorphisms.) Moreover for n ≥ 1, let Un ⊂ U denote the set
of all graphs in U with exactly n vertices. Sometimes we shall work with
labelled graphs. For every n ≥ 1, denote by Ln the set of all graphs with
vertex set [n].

We recall the basic notions of graph limits, see e.g. [LS06, BCL+08, DJ08,
Lov12] for further details. The homomorphism density of a graph H in a
graph G, denoted by t(H;G), is the probability that a uniformly random
mapping φ : V (H) → V (G) preserves adjacencies, i.e. uv ∈ E(H) =⇒
φ(u)φ(v) ∈ E(G). The induced density of a graph H in a graph G, denoted
by p(H;G), is the probability that a uniformly random embedding of the
vertices of H in the vertices of G is an embedding of H in G, i.e. uv ∈
E(H) ⇐⇒ φ(u)φ(v) ∈ E(G). (This is often denoted tind(H;G). We
assume |H| ≤ |G| so that embeddings exist.) We call a sequence of finite
graphs {Gi}∞i=1 with |Gi| → ∞ convergent if for every finite graph H, the
sequence {p(H;Gi)}∞i=1 converges. (This is equivalent to {t(H;Gi)}∞i=1 being
convergent for every finite graph H.) One then may construct a completion
U of U under this notion of convergence. More precisely, U is a compact
metric space which contains U as a dense subset; the functionals t(H;G) and
p(H;G) extend by continuity to G ∈ U , for each fixed graph H; elements of
the complement Û := U \U are called graph limits; a sequence of graphs (Gn)
converges to a graph limit Γ if and only if |Gn| → ∞ and p(H;Gn)→ p(H; Γ)
for every graph H. Moreover a graph limit is uniquely determined by the
numbers p(H; Γ) for all H ∈ U .

It is shown in [LS06] that every graph limit Γ can be represented by a
graphon, which is a symmetric measurable function W : [0, 1]2 → [0, 1]. The
set of all graphons are denoted by W0. (We do not distinguish between
graphons that are equal almost everywhere.) Given a graph G with vertex
set [n] and adjacency matrix AG, we define the corresponding graphon WG :
[0, 1]2 → {0, 1} as follows. Let WG(x, y) := AG(dxne, dyne) if x, y ∈ (0, 1],
and if x = 0 or y = 0, set WG to 0. It is easy to see that if (Gn) is a graph
sequence that converges to a graph limit Γ, then for every graph H,

p(H; Γ) = lim
n→∞

p(H;Gn)

= lim
n→∞

E

 ∏
uv∈E(H)

WGn(Xu, Xv)
∏

uv∈E(H)c

(1−WGn(Xu, Xv))

 ,
where {Xu}u∈V (H) are independent random variables taking values in [0, 1]
uniformly, and E(H)c = {uv : u 6= v, uv 6∈ E(H)}. Lovász and Szegedy
[LS06] showed that for every graph limit Γ, there exists a graphon W such
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that for every graph H, we have p(H; Γ) = p(H;W ) where

p(H;W ) := E

 ∏
uv∈E(H)

W (Xu, Xv)
∏

uv∈E(H)c

(1−W (Xu, Xv))

 . (1.1)

Unfortunately, this graphon is not unique. We say that two graphons W
and W ′ are (weakly) equivalent if they represent the same graph limit, i.e.,
if p(H;W ) = p(H;W ′) for all graphs H. For example, a graphon W (x, y)
is evidently equivalent to W (σ(x), σ(y)) for any measure-preserving map
σ : [0, 1] → [0, 1]. Not every pair of equivalent graphons is related in this
way, but almost: Borgs, Chayes and Lovász [BCL10] proved that if W1 and
W2 are two different graphons representing the same graph limit, then there
exists a third graphon W and measure-preserving maps σi : [0, 1] → [0, 1],
i = 1, 2, such that

Wi(x, y) = W (σi(x), σi(y)), for a.e. x, y. (1.2)

(For other characterizations of equivalent graphons, see e.g. [BR09] and
[Jan13a].)

The set Û of graph limits is thus a quotient space of the setW0 of graphons.
Nevertheless, we shall not always distinguish between graph limits and their
corresponding graphons; it is often convenient (and customary) to let a
graphon W also denote the corresponding graph limit. For example, we
may write Gn →W when a sequence of graphs {Gn} converges to the graph
limit determined by the graphon W ; similarly we say that a sequence of
graphons Wn converges to W in W0 if the corresponding sequence of graph
limits converges in U . (This makes W0 into a topological space that is com-
pact but not Hausdorff.)

For every n ≥ 1, a graphonW defines a random graph G(n,W ) ∈ Ln: Let
X1, . . . , Xn be an i.i.d. sequence of random variables taking values uniformly
in [0, 1]. Given X1, . . . , Xn, let ij be an edge with probability W (Xi, Xj),
independently for all pairs (i, j) with 1 ≤ i < j ≤ n. It follows that for every
H ∈ Ln,

P[G(n,W ) = H] = p(H;W ). (1.3)
The distribution of G(n,W ) is thus the same for two equivalent graphons,
so we may define G(n,Γ) for a graph limit Γ; this is a random graph that
also can be defined by the analogous relation P[G(n,Γ) = H] = p(H; Γ) for
H ∈ Ln.

1.2. Graph properties and entropy. A subset of the set U is called a
graph class. Similarly a graph property is a property of graphs that is invari-
ant under graph isomorphisms. There is an obvious one-to-one correspon-
dence between graph classes and graph properties and we will not distinguish
between a graph property and the corresponding class. LetQ ⊆ U be a graph
class. For every n ≥ 1, we denote by Qn := Q ∩ Un the set of graphs in Q
with exactly n vertices. We also consider the corresponding class of labelled
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graphs, and define QLn to be the set of all graphs in Ln that belong to Q
(when we ignore labels). Furthermore, we let Q ⊆ U be the closure of Q in U
and Q̂ := Q∩ Û = Q\Q the set of graph limits that are limits of sequences
of graphs in Q.

Define the binary entropy function h : [0, 1] 7→ R+ as

h(x) = −x log2(x)− (1− x) log2(1− x)

for x ∈ [0, 1], with the interpretation h(0) = h(1) = 0 so that h is continuous
on [0, 1], where here and throughout the paper log2 denotes the logarithm
to the base 2. Note that 0 ≤ h(x) ≤ 1, with h(x) = 0 attained at x = 0, 1
and h(x) = 1 at x = 1/2, only. The entropy of a graphon W is defined as

Ent(W ) :=

∫ 1

0

∫ 1

0
h(W (x, y)) dx dy. (1.4)

This is related to the entropy of random graphs, see [Ald85] and [Jan13a,
Appendix D.2] and (4.9) below; it has also previously been used by Chat-
terjee and Varadhan [CV11] and Chatterjee and Diaconis [CD11] to study
large deviations of random graphs and exponential models of random graphs.
Note that it follows from the uniqueness result (1.2) that the entropy is a
function of the underlying graph limit and it does not depend on the choice
of the graphon representing it; we may thus define the entropy Ent(Γ) of a
graph limit Γ as the entropy Ent(W ) of any graphon representing it.

Our first theorem bounds the rate of growth of an arbitrary graph class
in terms of the entropy of the limiting graph limits (or graphons).

Theorem 1.1. Let Q be a class of graphs. Then

lim sup
n→∞

log2 |Qn|(
n
2

) ≤ max
Γ∈Q̂

Ent(Γ). (1.5)

We present the proofs of this and the following theorems in Section 5.

Remark 1.2. For any graph class Q, and n ≥ 1,

|Qn| ≤ |QLn | ≤ n!|Qn|. (1.6)

The factor n! is for our purposes small and can be ignored, since log2 n! =
o(n2). Thus we may replace |Qn| by |QLn | in Theorem 1.1. The same holds
for the theorems below.

Remark 1.3. |Qn| ≤ |Un| ≤ |Ln| = 2(n2), so the left-hand side of (1.5) is at
most 1, and it equals 1 if Q is the class of all graphs, cf. (1.6). Furthermore,
by (1.4), Ent(W ) ∈ [0, 1] for every graphon W . In the trivial case when Q is
a finite class, Qn = ∅ for all large n and the left-hand side is −∞; in this case
Q̂ = ∅ and the right-hand side is also (interpreted as) −∞. We exclude in
the sequel this trivial case; thus both sides of (1.5) are in [0, 1]. Note further
that Ent(W ) = 1 only when W = 1/2 a.e.; thus the right-hand side of (1.5)
equals 1 if and only if Q̂ contains the graph limit defined by the constant
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graphon W = 1/2. (This graphon is the limit of sequences of quasi-random
graphs, see [LS06].)

A graphon is called random-free if it is {0, 1}-valued almost everywhere,
see [LS10, Jan13a]. Note that a graphon W is random-free if and only if
Ent(W ) = 0. This is preserved by equivalence of graphons, so we may define
a graph limit to be random-free if some (or any) representing graphon is
random-free; equivalently, if its entropy is 0. A property Q is called random-
free if every Γ ∈ Q̂ is random-free. Theorem 1.1 has the following immediate
corollary:

Corollary 1.4. If Q is a random-free class of graphs, then |Qn| = 2o(n
2).

For further results on random-free graphons and random-free classes of
graphs, see Hatami and Norine [HN12].

A graph class P is hereditary if whenever a graph G belongs to Q, then
every induced subgraph of G also belongs to P.

Our second theorem says that when Q is a hereditary graph property,
equality holds in (1.5). (See also Theorem 1.9 below.)

Theorem 1.5. Let Q be a hereditary class of graphs. Then

lim
n→∞

log2 |Qn|(
n
2

) = max
Γ∈Q̂

Ent(Γ).

Our next theorem concerns the limit of the sequences of random graphs
that are sampled from a graph class. There are two natural ways to sample
a random graph sequence (Gn), with |Gn| = n, from a graph class Q. The
first is to pick an unlabelled graph Gn uniformly at random from Qn, for
each n ≥ 1 (assuming that Qn 6= ∅). The second is to pick a labelled graph
Gn uniformly at random from QLn . We call the resulting random graph Gn a
uniformly random unlabelled element of Qn and a uniformly random labelled
element of Qn, respectively.

Theorem 1.6. Suppose that max
Γ∈Q̂ Ent(Γ) is attained by a unique graph

limit ΓQ. Suppose further that equality holds in (1.5), i.e.

lim
n→∞

log2 |Qn|(
n
2

) = Ent(ΓQ). (1.7)

Then
(i) If Gn ∈ Un is a uniformly random unlabelled element of Qn, then

Gn converges to ΓQ in probability as n→∞.
(ii) The same holds if Gn ∈ Ln is a uniformly random labelled element

of QLn .

Remark 1.7. Note that for hereditary properties, it suffices to only assume
that max

Γ∈Q̂ Ent(Γ) is attained by a unique graph limit ΓQ as then (1.7)
follows from Theorem 1.5.
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The next theorem concerns sequences of random graphs drawn from arbi-
trary distributions, not necessarily uniform. A random labelled [unlabelled]
graph Gn on n vertices is thus any random variable with values in Un [Ln].
We consider convergence in distribution of Gn, regarding Gn as a random
element of U ⊂ U (ignoring labels if there are any); the limit in distribu-
tion (if it exists) is thus a random element of U , which easily is seen to be
concentrated on Û ; in other words, the limit is a random graph limit.

Recall that the entropy Ent(X) of a random variable X taking values in
some finite (or countable) set A is

∑
a∈A(−pa log2 pa), where pa := P(X = a).

Theorem 1.8. Suppose that Gn is a (labelled or unlabelled) random graph
on n vertices with some distribution µn. Suppose further that as n → ∞,
Gn converges in distribution to some random graph limit with distribution µ.
Then

lim sup
n→∞

Ent(Gn)(
n
2

) ≤ max
W∈supp(µ)

Ent(W ),

where supp(µ) ⊆ Û is the support of the probability measure µ.

1.3. Maximal entropy graphons. The results in Section 1.2 show that
graphons with maximal entropy capture the growth rate and other asymp-
totic behaviors of graph classes. In this section we study the structure of
those graphons for hereditary classes.

We define the randomness support of a graphon W as

rand(W ) :=
{

(x, y) ∈ [0, 1]2 : 0 < W (x, y) < 1
}
, (1.8)

and its random part as the restriction of W to rand(W ). Finally the ran-
domness support graphon of W is defined as 1rand(W ), the indicator of its
randomness support.

A graphon W is called Kr-free (where r ≥ 1) if p(Kr,W ) = 0; by (1.1),
this is equivalent to

∏
1≤i<j≤rW (xi, xj) = 0 for almost every x1, . . . , xr.

(The case r = 1 is trivial: no graphon is K1-free.) Recall that the Turán
graph Tn,r is the balanced complete r-partite graph with n vertices. For each
r ≥ 1, the graphs Tn,r converge to the Kr+1-free graphon WKr as n→∞.

Let Er denote the support of WKr , i.e., Er :=
⋃
i 6=j Ii × Ij where Ii :=

((i−1)/r, i/r] for i = 1, . . . , r, and also define E∞ := [0, 1]2. For 1 ≤ r ≤ ∞,
let Rr be the set of graphonsW such thatW (x, y) = 1

2 on Er andW (x, y) ∈
{0, 1} otherwise. In other words, W has randomness support Er and its
random part is 1

2 everywhere. Note that E1 = ∅ and thus R1 is the set of
random-free graphons, while R∞ consists only of the constant graphon 1

2 . If
W ∈ Rr, then

Ent(W ) =

∫
Er

h(1/2) = |Er| = 1− 1

r
. (1.9)

A simple example of a graphon in Rr is 1
2WKr . (For r < ∞, this is the

almost surely limit of a uniformly random subgraph of Tn,r as n→∞.) More
generally, if r < ∞, we can modify 1

2WKr by changing it on each square I2
i
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for i = 1, . . . , r to a symmetric measurable {0, 1}-valued function (i.e. to any
random-free graphon, scaled in the natural way); this gives all graphons in
Rr.

We let, for 1 ≤ r < ∞ and 0 ≤ s ≤ r, W ∗r,s be the graphon in Rr that is
1 on Ii × Ii for i ≤ s and 0 on Ii × Ii for i > s. (Thus W ∗r,0 = 1

2WKr .)
For a class Q of graphs, let

Q̂∗ :=

{
Γ ∈ Q̂ : Ent(Γ) = max

Γ∈Q̂
Ent(Γ)

}
denote the set of graph limits in Q̂ with maximum entropy. It follows from
Lemma 3.3 below that the maximum is attained and that Q̂∗ is a non-empty
closed subset of Q̂, and thus a non-empty compact set.

After these preparations, we state the following result, improving Theo-
rem 1.5.

Theorem 1.9. Let Q be a hereditary class of graphs. Then there exists a
number r ∈ {1, 2 . . . ,∞} such that max

Γ∈Q̂ Ent(Γ) = 1− 1
r , every graph limit

in Q̂∗ can be represented by a graphon W ∈ Rr, and

|Qn| = 2(1−r−1+o(1))(n2). (1.10)

Hence, Q̂∗ = Q̂ ∩Rr. Moreover, r has the further characterisations

r = min
{
s ≥ 1 : 1rand(W ) is Ks+1-free for all graphons W ∈ Q̂

}
(1.11)

= sup
{
t : W ∗t,u ∈ Q̂ for some u ≤ t

}
, (1.12)

where the minimum in (1.11) is interpreted as ∞ when there is no such s.
Furthermore r = 1 if and only if Q is random-free, and r =∞ if and only if
Q is the class of all graphs.

The result (1.10) is a fundamental result for hereditary classes of graphs,
proved by Alekseev [Ale92] and Bollobás and Thomason [BT97], see also
the survey [Bol07] and e.g. [BBW00, BBW01, BBS04, BBS09, BBSS09,
ABBM11]. The number r is known as the colouring number of Q.

Remark 1.10. Let, for 1 ≤ r < ∞ and 0 ≤ s ≤ r, C(r, s) be the hereditary
class of all graphs such that the vertex set can be partitioned into r (possibly
empty) sets Vi with the subgraph induced by Vi complete for 1 ≤ i ≤ s and
empty for s < i ≤ r. Note that G(n,W ∗r,s) ∈ C(r, s) a.s., and that every
graph in C(r, s) with n vertices appears with positive probability. (In fact,
G ∈ C(r, s) ⇐⇒ p(G,W ∗r,s) > 0.) It follows from (1.3) and Lemma 3.2 below
that, for any hereditary class Q, W ∗r,s ∈ Q̂ if and only if C(r, s) ⊆ Q. Hence,
(1.12) shows that r (when finite) is the largest integer such that C(r, s) ⊆ Q
for some s; this is the traditional definition of the colouring number, see e.g.
[Bol07] where further comments are given.
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2. Examples

We give a few examples to illustrate the results. We begin with a simple
case.

Example 2.1 (Bipartite graphs). Let Q be the class of bipartite graphs;
note that this equals the class C(2, 0) in Remark 1.10. Suppose that a graph
limit Γ ∈ Q̂. Then there exists a sequence of graphs Gn → Γ with Gn ∈ Q,
where for simplicity we may assume |Gn| = n. Since Gn is bipartite, it has a
bipartition that can be assumed to be {1, . . . ,mn} and {mn + 1, . . . , n}. By
selecting a subsequence, we may assume that mn/n→ a for some a ∈ [0, 1],
and it is then easy to see (for example by using the bipartite limit theory in
[DHJ08, Section 8]) that Γ can be represented by a graphon that vanishes on
[0, a]2 ∪ [a, 1]2. Conversely, if W is such a graphon, then the random graph
G(n;W ) is bipartite, and thus W ∈ Q̂. Hence Q̂ equals the set of graph
limits represented (non-uniquely) by the graphons⋃

a∈[0,1]

{
W : W = 0 on [0, a]2 ∪ [a, 1]2

}
. (2.1)

If W is a graphon in the set (2.1), with a given a, then the support of W
has measure at most 2a(1− a), and thus

Ent(W ) ≤ 2a(1− a), (2.2)

with equality if and only if W = 1
2 on (0, a) × (a, 1) ∪ (a, 1) × (0, a). The

maximum entropy is obtained for a = 1/2, and thus

max
Γ∈Q̂

Ent(Γ) = 1
2 , (2.3)

and the maximum is attained by a unique graph limit, represented by the
graphon W ∗2,0 defined above.

Theorem 1.5 thus says that |Qn| = 2
1
2(n2)+o(n2) (which can be easily proved

directly). Theorem 1.6 says that if Gn is a uniformly random (labelled or
unlabelled) bipartite graph, then Gn → W ∗2,0 in probability. The colouring
number r in Theorem 1.9 equals 2, and both (1.11) and (1.12) are easily
verified directly.

Example 2.2 (Triangle-free graphs). Let Q be the class of triangle-free
graphs. It is easy to see that the corresponding class of graph limits Q̂ is the
class of triangle-free graph limits {Γ : p(K3,Γ) = 0} defined in Section 1.3,
see [Jan13b, Example 4.3].

This class is strictly larger than the class of bipartite graphs; the set Q̂ of
triangle-free graph limits thus contains the set (2.1) of bipartite graph limits,
and it is easily seen that it is strictly larger. (An example of a triangle-free
graph limit that is not bipartite is WC5 .)

We do not know any representation of all triangle-free graph limits similar
to (2.1), but it is easy to find the ones of maximum entropy. If a graphon W
is triangle-free, then so is its randomness support graphon, and Lemma 6.4
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below shows that Ent(W ) ≤ 1
2 , with equality only if W ∈ R2 (up to equiv-

alence). Furthermore, it is easy to see that if W ∈ Rr is triangle-free, then
W (x, y) 6= 1 a.e., and thus W = W ∗2,0. (Use Theorem 6.1 below, or note that
max{W (x, y), 1

2} is another triangle-free graphon.) Thus, as in Example 2.1,
W ∗2,0 represents the unique graph limit in Q̂ with maximum entropy.

Theorem 1.5 and 1.9 thus say that |Qn| = 2
1
2(n2)+o(n2), as shown by

Erdős, Kleitman and Rothschild [EKR76]. (They also proved that almost
all triangle-free graphs are bipartite; this seems related to the fact that the
two graph classes have the same maximum entropy graph limit, although we
do not know any direct implication.)

Theorem 1.6 says that if Gn is a uniformly random (labelled or unlabelled)
triangle-free graph, then Gn →W ∗2,0 in probability.

The same argument applies toKt-free graphs, for any t ≥ 2. The colouring
number is t−1 and thus the number of such graphs of order n is 2

r−2
r−1(n2)+o(n2),

as shown in [EKR76]. (See also [KPR85, KPR87].) The unique graph limit
of maximum entropy is represented by W ∗t−1,0. Thus Theorem 1.6 applies
and shows that, hardly surprising, a random Kt-free graph converges (in
probability) to the graphon W ∗t−1,0.

Example 2.3 (Split graphs). Another simple application of Theorem 1.6 is
given in [Jan13b, Section 10], where it is shown that the class of split graphs
has a unique graph limit with maximal entropy, represented by the graphon
W ∗2,1; this is thus the limit (in probability) of a uniformly random split
graph. Recall that the class of split graphs equals C(2, 1) in Remark 1.10;
in other words, a graph is a split graph if its vertex set can be partitioned
into two sets, one of which is a clique and the other one is an isolated set.
(Equivalently, G is a split graph if and only if p(G;W ∗2,1) > 0.)

Our final example is more complicated, and we have less complete results.

Example 2.4 (String graphs). A string graph is the intersection graph of
a family of curves in the plane. In other words, G is a string graph if there
exists a collection {Av : v ∈ V (G)} of curves such that ij ∈ E(G) ⇐⇒
Ai ∩ Aj 6= ∅. It is easily seen that we obtain the same class of graphs if we
allow the sets Av to be arbitrary arcwise connected sets in the plane.

It is shown by Pach and Tóth [PT06] that the number of string graphs
of order n is 2

3
4(n2)+o(n2). Thus, Theorems 1.5 and 1.9 hold with maximum

entropy 3
4 and colouring number 4.

We study this further by interpreting the proof of [PT06] in our graph limit
context. To show a lower bound on the number of string graphs, [PT06]
shows that every graph in the class C(4, 4) is a string graph. (This was
proved already in [KGK86, Corollary 2.7].) A minor modification of their
construction is as follows: Let G be a graph with a partition V (G) =

⋃4
i=1 Vi

such that each Vi is a complete subgraph of G. Consider a drawing of
the graph K4 in the plane, with vertices x1, ..., x4 and non-crossing edges.



10 HAMED HATAMI, SVANTE JANSON, AND BALÁZS SZEGEDY

Replace each edge ij in K4 by a number of parallel curves γvw from xi to xj ,
indexed by pairs (v, w) ∈ Vi×Vj . (All curves still non-intersecting except at
the end-points.) Choose a point xvw on each curve γvw, and split γvw into
the parts γ∗vw from xi to xvw and γ∗wv from xvw to xj , with xvw included
in both parts. If v is a vertex in G, and v ∈ Vi, let Av be the (arcwise
connected) set consisting of xi and the curves γ∗vw for all w /∈ Vi such that
vw ∈ E(G). Then G is the intersection graph defined by the collection {Av},
and thus G is a string graph.

It follows, see Remark 1.10, that if Q is the class of string graphs, then
W ∗4,4 ∈ Q̂.

To show an upper bound, Pach and Tóth [PT06] consider the graph G5,
which is the intersection graph of the family of the 15 subsets of order 1 or 2
of {1, . . . , 5}. They show that G5 is not a string graph, but that G5 ∈ C(5, s)
for every 0 ≤ s ≤ 5. Thus C(5, s) 6⊆ Q, and thus W ∗5,s /∈ Q̂, see Remark 1.10.

Consequently, we have W ∗4,4 ∈ Q̂ but W ∗5,s /∈ Q̂, for all s. Hence Theo-
rem 1.9 shows that the colouring number r = 4, see (1.12), and that W ∗4,4 is
one graphon in Q̂ with maximal entropy.

However, in this case the graph limit of maximal entropy is not unique.
Indeed, the construction above of string graphs works for any planar graphH
instead of K4, and G such that its vertex set can be partitioned into cliques
Vi, i ∈ V (H), with no edges in G between Vi and Vj unless ij ∈ E(H). (See
[KGK86, Theorem 2.3].) Taking H to be K5 minus an edge, we thus see
that if G ∈ C(4, 4), and we replace the clique on V1 by a disjoint union of
two cliques (on the same vertex set V1, leaving all other edges), then the
new graph is also a string graph. It follows by taking the limit of a suitable
sequence of such graphs, or by Lemma 3.2 below, that if Ii := ((i−1)/4, i/4]
and I1 is split into I11 := (0, a] and I12 := (a, 1/4], where 0 ≤ a ≤ 1/8, then
the graphon W ∗∗a ∈ R4 obtained from W ∗4,4 by replacing the value 1 by 0 on
(I11 × I12) ∪ (I12 × I11) satisfies W ∗∗a ∈ Q̂ ∩R4 = Q̂∗. Explicitly,

W ∗∗a (x, y) =


1/2 on

⋃
i 6=j(Ii × Ij);

0 on (I11 × I12) ∪ (I12 × I11);

1 on (I11 × I11) ∪ (I12 × I12) ∪
⋃4
i=2(Ii × Ii).

Thus W ∗∗0 = W ∗4,4, but the graphons W ∗∗a for a ∈ [0, 1/8] are not equivalent,
for example because they have different edge densities∫∫

W ∗∗a =
5

8
− a

2
+ 2a2 =

19

32
+ 2
(1

8
− a
)2
.

Thus there are infinitely many graph limits in Q̂∗ = Q̂ ∩ R4. (We do not
know whether there are further such graph limits.)

Consequently, Theorem 1.6 does not apply to string graphs. We do not
know whether a uniformly random string graph converges (in probability)
to some graph limit as the size tends to infinity, and if so, what the limit is.
We leave this as an open problem.
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3. Some auxiliary facts

We start by recalling some basic facts about the binary entropy. First
note that h is concave on [0, 1]. In particular if 0 ≤ x1 ≤ x2 ≤ 1, then

h(x2)− h(x1) ≤ h(x2 − x1)− h(0) = h(x2 − x1),

and

−(h(x2)− h(x1)) = h(x1)− h(x2) = h(1− x1)− h(1− x2) ≤ h(x2 − x1);

hence
|h(x2)− h(x1)| ≤ h(x2 − x1). (3.1)

The following simple lemma relates
(
N
m

)
to the binary entropy.

Lemma 3.1. For integers N ≥ m ≥ 0, we have(
N

m

)
≤
(
N

m

)m( N

N −m

)N−m
= 2Nh(m/N).

Proof. Set p = m/N . If X has the binomial distribution Bin(N, p), then

1 ≥ P[X = m] =

(
N

m

)
pm(1− p)N−m

and thus(
N

m

)
≤ p−m(1− p)−(N−m) =

(
N

m

)m( N

N −m

)N−m
= 2Nh(p). �

We will need the following simple lemma about hereditary classes of graphs
[Jan13b]:

Lemma 3.2. Let Q be a hereditary class of graphs and let W be a graphon.
Then W ∈ Q̂ if and only if p(F ;W ) = 0 when F 6∈ Q.

Proof. If F 6∈ Q, then p(F ;G) = 0 for every G ∈ Q since Q is hereditary,
and thus p(F ;W ) = 0 for every W ∈ Q by continuity.

For the converse, assume that p(F ;W ) = 0 when F 6∈ Q. Thus p(F ;W ) >
0 =⇒ F ∈ Q. By (1.3), if P(G(n,W ) = H) > 0, then p(H;W ) > 0 and
thus H ∈ Q. Hence, G(n,W ) ∈ Q almost surely. The claim follows from the
fact [BCL+08] that almost surely G(n,W ) converges to W as n→∞. �

Next we recall that the cut norm of an n× n matrix A = (Aij) is defined
by

‖A‖� :=
1

n2
max
S,T⊆[n]

∣∣∣∣∣∣
∑

i∈S,j∈T
Aij

∣∣∣∣∣∣ .
Similarly, the cut norm of a measurable W : [0, 1]2 → R is defined as

‖W‖� = sup

∣∣∣∣∫∫ f(x)W (x, y)g(y) dx dy

∣∣∣∣ ,
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where the supremum is over all measurable functions f, g : [0, 1] → {0, 1}.
(See [BCL+08] and [Jan13a] for other versions, equivalent within constant
factors.) We use also the notation, for two graphons W1 and W2,

d�(W1,W2) := ‖W1 −W2‖�. (3.2)

The cut distance between two graphons W1 and W2 is defined as

δ�(W1,W2) := inf
W ′2

d�(W1,W
′
2) = inf

W ′2

‖W1 −W ′2‖�, (3.3)

where the infimum is over all graphons W ′2 that are equivalent to W2. (See
[BCL+08] and [Jan13a] for other, equivalent, definitions.) The cut distance
is a pseudometric onW0, with δ�(W1,W2) = 0 if and only if W1 and W2 are
equivalent.

The cut distance between two graphs F and G is defined as δ�(F,G) =
δ�(WF ,WG). We similarly write δ�(F,W ) = δ�(WF ,W ), d�(F,W ) =
d�(WF ,W ) and so on.

The cut distance is a central notion in the theory of graph limits. For
example it is known (see [BCL+08] and [Lov12]) that a graph sequence (Gn)
with |Gn| → ∞ converges to a graphon W if and only if the sequence (WGn)
converges to W in cut distance. Similarly, convergence of a sequence of
graphons in W0 is the same as convergence in cut distance; hence, the cut
distance induces a metric on Û that defines its topology.

Let P be a partition of the interval [0, 1] into k measurable sets I1, . . . , Ik.
Then I1, . . . , Ik divide the unit square [0, 1]2 into k2 measurable sets Ii× Ij .
We denote the corresponding σ-algebra by BP ; note that if W is a graphon,
then E[W | BP ] is the graphon that is constant on each set Ii × Ij and
obtained by averagingW over each such set. A partition of the interval [0, 1]
into k sets is called an equipartition if all sets are of measure 1/k. We let Pk
denote the equipartition of [0, 1] into k intervals of length 1/k, and write, for
any graphon W ,

W k := E[W | BPk ]. (3.4)
Similarly, if P is a partition of [n] into sets V1, . . . , Vk, then we consider

the corresponding partition I1, . . . , Ik of [0, 1] (that is x ∈ (0, 1] belongs to
Ij if and only if dxje ∈ Vj) and again we denote the corresponding σ-algebra
on [0, 1]2 by BP . A partition P of [n] into k sets is called an equipartition if
each part is of size bn/kc or dn/ke.

The graphon version of the weak regularity lemma proved by Frieze and
Kannan [FK99], see also [LS07] and [Lov12, Sections 9.1.2 and 9.2.2], says
that for every every graphon W and every k ≥ 1, there is an equipartition
P of [0, 1] into k sets such that

‖W − E[W | BP ]‖� ≤
4√

log2 k
. (3.5)

Let us close this section with the following simple lemma. Part (ii) has
been proved by Chatterjee and Varadhan [CV11], but we include a (different)
proof for completeness.
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Lemma 3.3. The function Ent(·) satisfies the following properties:
(i) If W is a graphon and P is a measurable partition of [0, 1], then

Ent(E[W | BP ]) ≥ Ent(W ).

(ii) The function Ent(·) is lower semicontinuous on W0 (and, equiva-
lently, on Û). I.e., if Wm →W in W0 as m→∞, then

lim sup
m→∞

Ent(Wm) ≤ Ent(W ).

Remark 3.4. Ent(·) is not continuous. For example, let Gn be a quasirandom
sequence of graphs with Gn → W = 1

2 (a constant graphon); then WGn →
W = 1

2 in W0, but Ent(WGn) = 0 and Ent(W ) = 1.

Proof. Part (i) follows from Jensen’s inequality and concavity of h.
To prove (ii), note that we can assume ‖Wm−W‖� → 0. For every k ≥ 1,

let Pk be the partition of [0, 1] into k consecutive intervals of equal measure
1/k. Consider the step graphons E[Wm | BPk ] and E[W | BPk ]. For each k,
E[Wm | BPk ] converges to E[W | BPk ] almost everywhere as m→∞, and
thus by (1.4) and dominated convergence,

lim
m→∞

Ent(E[Wm | BPk ]) = Ent(E[W | BPk ]).

Consequently, using (i),

lim sup
m→∞

Ent(Wm) ≤ lim sup
m→∞

Ent(E[Wm | BPk ]) = Ent(E[W | BPk ]).

Finally, let k → ∞. Then E[W | BPk ] → W almost everywhere, and thus
Ent(E[W | BPk ])→ Ent(W ). �

4. Number of graphs and Szeméredi partitions

In this section we prove some of the key lemmas needed in this paper.
These lemmas provide various estimates on the number of graphs on n ver-
tices that are close to a graphon in cut distance. For an integer n ≥ 1, a
parameter δ > 0, and a graphon W , define

N̂�(n, δ;W ) := |{G ∈ Ln : d�(WG,W ) ≤ δ}| (4.1)

and

N�(n, δ;W ) := |{G ∈ Ln : δ�(G,W ) ≤ δ}| . (4.2)

Since δ�(G,W ) ≤ d�(WG,W ), cf. (3.3), we have trivially

N̂�(n, δ;W ) ≤ N�(n, δ;W ). (4.3)

We will show an estimate in the opposite direction, showing that for our
purposes, N̂�(n, δ;W ) and N�(n, δ;W ) are not too different. We begin with
the following estimate. We recall that W k := E[W | BPk ] is obtained by
averaging W over squares of side 1/k, see (3.4).
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Lemma 4.1. Let W be a graphon. If G ∈ Ln, then there is a graph G̃ ∈ Ln
isomorphic to G such that

d�(G̃,W ) ≤ δ�(G,W ) + 2d�(W,Wn) +
18√
log2 n

. (4.4)

Proof. Regard Wn as a weighted graph on n vertices, and consider the ran-
dom graph G(Wn) on [n], defined by connecting each pair {i, j} of nodes
by an edge ij with probability Wn(i/n, j/n), independently for different
pairs. By [Lov12, Lemma 10.11], with positive probability (actually at least
1− e−n),

d�(G(Wn),Wn) ≤ 10√
n
.

Let G′ be one realization of G(Wn) with

d�(G′,Wn) ≤ 10√
n
. (4.5)

Then, by the triangle inequality and (4.5),

δ�(G,G′) ≤ δ�(G,W ) + δ�(W,Wn) + δ�(Wn, G
′)

≤ δ�(G,W ) + d�(W,Wn) +
10√
n
.

(4.6)

Since G and G′ both are graphs on [n], we can by [Lov12, Theorem 9.29]
permute the labels of G and obtain a graph G̃ ∈ Ln such that

d�(G̃,G′) ≤ δ�(G,G′) +
17√
log2 n

. (4.7)

Consequently, by the triangle inequality again and (4.5)–(4.7),

d�(G̃,W ) ≤ d�(G̃,G′) + d�(G′,Wn) + d�(Wn,W )

≤ δ�(G,G′) +
17√
log2 n

+
10√
n

+ d�(W,Wn)

≤ δ�(G,W ) + 2d�(W,Wn) +
17√
log2 n

+
20√
n
.

The claim follows for n > 220, say; for smaller n it is trivial since d�(G̃,W ) ≤
1 for every G̃. �

Lemma 4.2. For any graphon W , δ > 0 and n ≥ 1,

N�(n, δ;W ) ≤ n!N̂�(n, δ + εn;W ), (4.8)

where εn := 18/
√

log2 n+ 2d�(Wn,W )→ 0 as n→∞.

Proof. By Lemma 4.1, if G ∈ Ln and δ�(G,W ) ≤ δ, then d�(G̃,W ) ≤ δ+εn
for some relabelling G̃ of G. There are at most N̂�(n, δ+εn;W ) such graphs
G̃ by (4.1), and each corresponds to at most n! graphs G. Finally, note the
well-known fact that d�(Wn,W ) ≤ ‖Wn −W‖L1 → 0 as n→∞. �
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Remark 4.3. The bound (4.4) in Lemma 4.1 is not valid without the term
d�(W,Wn). For a simple example, let n be even and let G be a balanced
complete bipartite graph. Further, let W := WG({nx}, {ny}), where {x}
denotes the fractional part. (Thus W is obtained by partitioning [0, 1]2 into
n2 squares and putting a copy of WG in each. Furthermore, W = WG′

for a blow-up G′ of G with n2 vertices.) Then W is equivalent to WG, so
δ�(G,W ) = 0. Furthermore, Wn = 1/2 (the edge density), and it is easily
seen that for any relabelling G̃ of G, d�(G̃,W ) ≥ d�(G̃,Wn) ≥ 1

8 . Hence
the left-hand side of (4.4) does not tend to 0 as n→∞; thus the term
d�(W,Wn) is needed.

After these preliminaries, we turn to estimating N̂�(n, δ;W ) andN�(n, δ;W )
using Ent(W ).

Lemma 4.4. For every graphon W and for every δ > 0,

lim inf
n→∞

log2 N̂�(n, δ;W )(
n
2

) ≥ Ent(W ).

Proof. Consider the random graph G(n,W ) ∈ Ln. As shown in [LS06],
G(n,W ) → W almost surely, and thus in probability; in other words, the
probabilities pn := P[δ�(G(n,W ),W ) ≤ δ] converge to 1 as n→∞. More-
over it is shown in [Ald85] and [Jan13a, Appendix D] that

lim
n→∞

Ent(G(n,W ))(
n
2

) = Ent(W ), (4.9)

where Ent(·) denotes the usual entropy of a (discrete) random variable.
Let In := 1[δ�(G(n,W ),W )≤δ] so that E[In] = pn. We have, by simple

standard results on entropy,

Ent(G(n,W )) = E[Ent(G(n,W ) | In)] + Ent(In)

= pnEnt(G(n,W ) | In = 1) + (1− pn)Ent(G(n,W ) | In = 0) + h(pn)

≤ pn log2N�(n, δ;W ) + (1− pn)

(
n

2

)
+ h(pn)

≤ log2N�(n, δ;W ) + (1− pn)

(
n

2

)
+ 1

= log2N�(n, δ;W ) + o
(
n2
)
.

By Lemma 4.2, this yields

Ent(G(n,W )) ≤ log2 N̂�(n, δ + εn;W ) + o
(
n2
)

for some sequence εn → 0. The result follows now from (4.9), if we replace
δ by δ/2. �

We define, for convenience, for x ≥ 0,

h∗(x) := h
(
min(x, 1

2)
)
; (4.10)
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thus h∗(x) = h(x) for 0 ≤ x ≤ 1
2 , and h

∗(x) = 1 for x > 1
2 . Note that h∗ is

non-decreasing.

Lemma 4.5. Let W be a graphon, n ≥ k ≥ 1 be integers and δ > 0. For
any equipartition P of [n] into k sets, we have

log2 N̂�(n, δ;W )

n2
≤ 1

2
Ent(E[W | BP ]) +

1

2
h∗(4k2δ) + 2k2 log2 n

n2
.

Proof. Denote the sets in P by V1, . . . , Vk ⊆ [n] and their sizes by n1, . . . , nk,
and let I1, . . . , Ik be the subsets in the corresponding partition of [0, 1].

Let wij denote the value of E[W | BP ] on Ii × Ij . Suppose that G ∈ Ln
and ‖WG −W‖� ≤ δ. Let e(Vi, Vj) be the number of edges in G from Vi
to Vj when i 6= j, and twice the number of edges with both endpoints in Vi
when i = j. Then

e(Vi, Vj) = n2

∫
Ii×Ij

WG(x, y) dx dy,

and thus∣∣e(Vi, Vj)− wijninj∣∣ = n2

∣∣∣∣∣
∫
Ii×Ij

(WG(x, y)−W (x, y)) dx dy

∣∣∣∣∣ ≤ δn2.

Hence ∣∣∣∣e(Vi, Vj)ninj
− wij

∣∣∣∣ ≤ δn2

ninj
≤ δ

(
n

bn/kc

)2

≤ 4k2δ. (4.11)

Fix numbers e(Vi, Vj) satisfying (4.11), and let N1 be the number of graphs
on [n] with these e(Vi, Vj). By Lemma 3.1, for i 6= j, the edges in G between
Vi and Vj can be chosen in(

ninj
e(Vi, Vj)

)
≤ 2ninjh(e(Vi,Vj)/ninj) (4.12)

number of ways. For i = j, the edges in Vi may be chosen in( (
ni
2

)
1
2e(Vi, Vi)

)
≤ 2(ni2 )h( 1

2
e(Vi,Vi)/(ni2 )) ≤ 2

1
2
n2
i h(e(Vi,Vi)/n

2
i ) (4.13)

number of ways, where the second inequality holds because h is concave with
h(0) = 0 and thus h(x)/x is decreasing.

Consequently, by (4.12) and (4.13),

log2N1 ≤
∑
i<j

ninjh
(
e(Vi, Vj)/ninj

)
+

1

2

∑
i

n2
ih
(
e(Vi, Vi)/n

2
i

)
=

1

2

k∑
i,j=1

ninjh
(
e(Vi, Vj)/ninj

)
.



GRAPH PROPERTIES, GRAPH LIMITS AND ENTROPY 17

Using (4.11) and (3.1), we obtain

log2N1 ≤
1

2

k∑
i,j=1

ninj
(
h(wij) + h∗(4k2δ)

)
,

and thus

n−2 log2N1 ≤
1

2

∑
i,j

|Ii||Ij |
(
h(wij) + h∗(4k2δ)

)
=

1

2
Ent(E[W | BP ]) +

1

2
h∗(4k2δ).

Each e(Vi, Vj) may be chosen in at most n2 ways, and thus the total
number of choices is at most n2k2 , and we obtain N̂�(n, δ;W ) ≤ n2k2 maxN1.
Consequently,

n−2 log2 N̂�(n, δ;W ) ≤ 1

2
Ent(E[W | BP ]) +

1

2
h∗(4k2δ) + 2k2 log2 n

n2
. �

Lemma 4.6. Let W be a graphon. Then for any k ≥ 1, δ > 0 and any
equipartition P of [0, 1] into k sets,

lim sup
n→∞

log2N�(n, δ;W )(
n
2

) ≤ Ent(E[W | BP ]) + h∗(4k2δ).

Consequently

lim
δ→0

lim sup
n→∞

log2N�(n, δ;W )(
n
2

) ≤ Ent(E[W | BP ]).

Proof. By a suitable measure preserving re-arrangement σ : [0, 1] → [0, 1],
we may assume that P is the partition Pk into k intervals ((j− 1)/k, j/k] of
length 1/k.

For every n > 1, let Pn be the corresponding equipartition of [n] into k
sets Pn1, . . . , Pnk where Pnj := {i : b(j − 1)n/kc < i ≤ bjn/kc}. Note that
E[W | BPn ] converges to E[W | BP ] almost everywhere as n→∞, and hence

lim
n→∞

Ent(E[W | BPn ]) = Ent(E[W | BP ]).

Then by Lemmas 4.2 and 4.5, we have, with εn → 0,

log2N�(n, δ;W )

n2
≤ log2(n!)

n2
+

1

2
Ent(E[W | BPn ])

+
1

2
h∗
(
4k2 (δ + εn)

)
+ 2k2 log2 n

n2

and the result follows by letting n→∞. �

We can now show our main lemma. As usual, if A is a set of graph limits,
we define δ�(G,A) := infW∈A δ�(G,W ).
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Lemma 4.7. Let A ⊆ Û be a closed set of graph limits and let

N�(n, δ;A) := |{G ∈ Ln : δ�(G,A) ≤ δ}| .

Then

lim
δ→0

lim inf
n→∞

log2N�(n, δ;A)(
n
2

) = lim
δ→0

lim sup
n→∞

log2N�(n, δ;A)(
n
2

) = max
W∈A

Ent(W ).

(4.14)

Proof. First note that the maximum in the right-hand side of (4.14) exists
as a consequence of the semicontinuity of Ent(·) in Lemma 3.3 (ii) and the
compactness of A.

Let δ > 0 and k ≥ 1. Since A is a compact subset of Û , there exists a
finite set of graphons {W1, . . . ,Wm} ⊆ A such that mini δ�(W,Wi) ≤ δ for
each W ∈ A. Hence

N�(n, δ;A) ≤
m∑
i=1

N�(n, 2δ;Wi). (4.15)

By (3.5), for eachWi, we can choose an equipartition Pi of [0, 1] into at most
k sets such that

‖Wi − E[Wi|BPi ]‖� ≤
4√

log2 k
. (4.16)

By (4.15) and Lemma 4.6,

lim sup
n→∞

log2N�(n, δ;A)(
n
2

) ≤ max
i≤m

lim sup
n→∞

log2N�(n, 2δ;Wi)(
n
2

)
≤ max

i≤m
Ent(E[Wi | BPi ]) + h∗(8k2δ).

(4.17)

For each k ≥ 1, take δ = 2−k and let i(k) denote the index maximizing
Ent(E[Wi|BPi ]) in (4.17); further letW ′k := Wi(k) andW ′′k := E[Wi(k)|BPi(k) ].
Thus W ′k ∈ A, and by (4.16)–(4.17),

‖W ′k −W ′′k ‖� ≤
4√

log2 k
(4.18)

and

lim sup
n→∞

log2N�(n, 2−k;A)(
n
2

) ≤ Ent(W ′′k ) + h∗(8k22−k). (4.19)

Since A is compact, we can select a subsequence such that W ′k converges,
and then W ′k →W ′ for some W ′ ∈ A. By (4.18), also W ′′k →W ′ in W0 and
thus Lemma 3.3 shows that

lim sup
k→∞

Ent(W ′′k ) ≤ Ent(W ′). (4.20)
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Since N�(n, δ;A) is an increasing function of δ, letting k → ∞, it follows
from (4.19) and (4.20) that

lim
δ→0

lim sup
n→∞

log2N�(n, δ;A)(
n
2

) = lim
k→∞

lim sup
n→∞

log2N�(n, 2−k;A)(
n
2

)
≤ Ent(W ′) ≤ max

W∈A
Ent(W ),

which shows that the right-hand side in (4.14) is an upper bound.
To see that the right-hand side in (4.14) also is a lower bound, note that

(4.3) implies that for every W ∈ A,

N�(n, δ;A) ≥ N�(n, δ;W ) ≥ N̂�(n, δ;W ).

The sought lower bound thus follows from Lemma 4.4, which completes the
proof. �

5. Proofs of Theorems 1.1–1.8

Proof of Theorem 1.1. Let δ > 0. First observe that for sufficiently large n,
if G ∈ Qn, then δ�(G, Q̂) < δ. Indeed, if not, then we could find a sequence
Gn with |Gn| → ∞ and δ�(G, Q̂) ≥ δ. Then, by compactness, Gn would
have a convergent subsequence, but the limit cannot be in Q̂ which is a
contradiction. Consequently for sufficently large n, we have |Qn| ≤ |QLn | ≤
N�(n, δ; Q̂). Thus

lim sup
n→∞

log2 |Qn|(
n
2

) ≤ lim sup
n→∞

log2N�(n, δ; Q̂)(
n
2

) .

The result now follows from the Lemma 4.7. �

Proof of Theorem 1.5. Let W be a graphon representing some Γ ∈ Q̂ and
consider the random graph G(n,W ) ∈ Ln. Since Q is hereditary, it is easy to
see that almost surely G(n,W ) ∈ QLn , see Lemma 3.2 and (1.3) or [Jan13b].
Consequently, letting Ent(G(n,W )) denote the entropy of the random graph
G(n,W ) (as a random variable in the finite set QLn),

Ent(G(n,W )) ≤ log2 |QLn |.

Hence, (4.9) and (1.6) show that, for every W ∈ Q̂,

lim inf
n→∞

log2 |Qn|(
n
2

) = lim inf
n→∞

log2 |QLn |(
n
2

) ≥ Ent(W ).

The result now follows from Theorem 1.1. �

Proof of Theorem 1.6. (i). Let δ > 0 and let B(δ) = {G : δ�(G,ΓQ) < δ}.
The conclusion means that, for any δ, P[Gn ∈ B(δ)]→ 1 as n→∞, i.e.

|Qn ∩B(δ)|
|Qn|

→ 1.
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If this is not true, then for some c > 0 there are infinitely many n with

|Qn \B(δ)| ≥ c|Qn|. (5.1)

Consider the graph property Q∗ := Q \ B(δ). By (5.1) and the assumption
(1.7)

lim sup
n→∞

log2 |Q∗n|(
n
2

) = Ent(ΓQ).

Hence Theorem 1.1 shows that Ent(ΓQ) ≤ max
Γ∈Q̂∗ Ent(Γ). So there exists

Γ∗ ∈ Q̂∗ such that Ent(ΓQ) ≤ Ent(Γ∗).
On the other hand, Q∗ ⊆ Q and ΓQ 6∈ Q∗ so Q̂∗ = Q∗ ∩ Û ⊆ Q̂ \ {ΓQ},

but by assumption Ent(Γ) < Ent(ΓQ) for Γ ∈ Q̂ \ {ΓQ}. This yields a
contradiction which completes the proof of (i).

(ii). The labelled case follows in the same way, now using QLn and (1.6).
�

Proof of Theorem 1.8. Let δ > 0 and let Bδ = {G : δ�(G, supp(µ)) < δ}.
Then Bδ is an open neighborhood of supp(µ) in U and thus the assumption
that Gn converges in distribution to µ implies that limn→∞ P[Gn ∈ Bδ] = 1.
We have, similarly to the proof of Lemma 4.4,
Ent(Gn) = E[Ent(Gn | 1[Gn∈Bδ])] + Ent(1[Gn∈Bδ])

= P[Gn ∈ Bδ]Ent(Gn | Gn ∈ Bδ) + P[Gn 6∈ Bδ]Ent(Gn|Gn 6∈ Bδ)
+ h∗(P[Gn ∈ Bδ])

≤ Ent(Gn | Gn ∈ Bδ) + P[Gn 6∈ Bδ]
(
n

2

)
+ 1

≤ log2N�(n, δ; supp(µ)) + P[Gn /∈ Bδ]
(
n

2

)
+ 1.

Hence using limn→∞ P[Gn 6∈ Bδ] = 0,

lim sup
n→∞

Ent(Gn)(
n
2

) ≤ lim sup
n→∞

log2N�(n, δ, supp(µ))(
n
2

) .

The result follows from Lemma 4.7 by letting δ → 0. �

6. Proof of Theorem 1.9

The stability version of Turán’s theorem, due to Erdős and Simonovits
[Erd67, Sim68], is equivalent to the following statement for graphons, see
[Pik10, Lemma 23] for a detailed proof and further explanations of the con-
nection.

Theorem 6.1 ([Pik10]). If a graphon W is Kr+1-free, then
∫∫

W ≤ 1 − 1
r

with equality if and only if W is equivalent to the graphon WKr .

Recall the definition of randomness support and randomness support gra-
phon, see (1.8).
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Lemma 6.2. Let 1 ≤ r < ∞. If Q is a hereditary graph class and W ∈ Q̂
has a randomness support graphon that is not Kr-free, then there exists s ∈
{0, 1, . . . , r} such that W ∗r,s ∈ Q̂. In particular, Q̂ ∩Rr 6= ∅.

Proof. First defineW ′(x, y) := W (x, y) ifW (x, y) ∈ {0, 1} andW ′(x, y) := 1
2

if 0 < W (x, y) < 1. Then W ′(x, y) ∈ {0, 1
2 , 1} for all (x, y). Moreover, W ′

has the same randomness support as W and it is easily seen that for any
graph F , p(F ;W ) = 0 if and only if p(F ;W ′) = 0. It follows from Lemma 3.2
that W ′ ∈ Q̂.

Let x1, . . . , xr ∈ (0, 1) be chosen at random, uniformly and independently.
By assumption, with positive probability, we have W ′(xi, xj) = 1/2 for all
pairs i 6= j. Choose one such sequence x1, . . . , xr such that furthermore
x1, . . . , xr are distinct and (xi, xj) is a Lebesgue point of W ′ when i 6= j;
this is possible since the additional conditions hold almost surely. Let m be
a positive integer, and set Ji,ε = (xi − ε, xi + ε) for ε > 0 and i = 1, . . . , r. If
ε is sufficiently small, then these intervals are disjoint subintervals of (0, 1),
and further, if i 6= j, then

λ
({

(x, y) ∈ Ji,ε × Jj,ε : W ′(x, y) = 1
2

})
>
(
1− 1

m

)
|Ji,ε| · |Jj,ε|, (6.1)

where λ denotes the Lebesgue measure.
Take such an ε and let W ′m be the graphon obtained by scaling the re-

striction of W ′ to (
⋃r
i=1 Ji,ε) × (

⋃r
i=1 Ji,ε) to a graphon in the natural way,

by mapping Ii := ( i−1
r ,

i
r ] linearly to Ji,ε for every i = 1, . . . , r. Then

p(F ;W ) = 0 =⇒ p(F ;W ′) = 0 =⇒ p(F ;W ′m) = 0,

for every graph F , and it follows from Lemma 3.2 that W ′m ∈ Q̂.
By construction and (6.1), if i 6= j,

λ
({

(x, y) ∈ Ii × Ij : W ′m(x, y) = 1
2

})
≥
(
1− 1

m

)
|Ii| · |Ij |. (6.2)

Regard W ′m|Ii×Ii as a graphon (rescaling Ii to [0, 1]), and choose a subse-
quence of W ′m such that W ′m|Ii×Ii converges for each i to some limit Ui.
It then follows from (6.2) that W ′m → W ∗ along the subsequence, where
W ∗ = 1

2 on Ii × Ij when i 6= j and W ∗ = Ui on Ii × Ii. Thus W ∗ ∈ Q̂.
Furthermore, for any n, if N is large enough, then by Ramsey’s theorem,

the random graph G(N,Ui) contains a copy of Kn or its complement Kn,
and hence G(n,Ui) equals Kn or Kn with positive probability. It follows
easily, using (1.3), that either p(Kn;Ui) > 0 for all n or p(Kn;Ui) > 0 for
all n (or both). In the first case we may modify W ∗ by replacing Ui by the
constant 1 on Ii × Ii, and in the second case we may instead replace Ui by
0; using Lemma 3.2 and (1.3), it is easily seen that the modification still
belongs to Q̂. Doing such a modification for each i, we obtain (possibly after
a rearrangement of the intervals Ii) a graphon W ∗r,s ∈ Q̂ for some s. �

Remark 6.3. We allow r = 1 in Lemma 6.2. Since no graphon is K1-free,
it then says that if Q is any (infinite) hereditary class of graphs, then Q̂
contains some graphon in R1, i.e., some random-free graphon, and more
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precisely, at least one of the constant graphons W ∗1,0 = 0 and W ∗1,1 = 1.
(The proof above is valid, but may be much simplified in this case. See also
[Jan13b].)

Lemma 6.4. Let 1 ≤ r < ∞. If the randomness support graphon of W is
Kr+1-free, then Ent(W ) ≤ 1 − 1

r with equality if and only if W ∈ Rr up to
equivalence.

Proof. Let W ′(x, y) by the randomness support graphon of W . By as-
sumption, W ′ is Kr+1-free, so by Theorem 6.1, we have

∫∫
W ′ ≤ 1 − 1

r .
Moreover since h(x) ≤ 1 always, and h(x) = 0 when x ∈ {0, 1}, we have
h(W (x, y)) ≤W ′(x, y) for all x, y and thus

Ent(W ) =

∫∫
h(W ) ≤

∫∫
W ′ ≤ 1− 1

r
,

with equality holding only if W = 1
2 almost everywhere on its randomness

support and W ′ is equivalent to WKr , which implies that W is equivalent
to a graphon in Rr. (For a rigorous proof of the latter fact, we may use
[Pik10, Lemma 23], which implies that W ′ a.e. equals WKr up to a measure-
preserving bijection of [0, 1].)

Conversely, it is obvious that Ent(W ) = 1 − 1
r for every W ∈ Rr, see

(1.9). �

Proof of Theorem 1.9. Let r ≤ ∞ be defined by (1.11). If r < ∞, then
every W ∈ Q̂ has a randomness support graphon that is Kr+1-free and
thus Ent(W ) ≤ 1 − 1

r by Lemma 6.4. Moreover, there exists W ∈ Q̂ with
a randomness support graphon that is not Kr-free and thus by Lemma 6.2
there existsW ′ ∈ Q̂ withW ′ ∈ Rr, which by (1.9) implies Ent(W ′) = 1−1/r.
Hence,

max
W∈Q̂

Ent(W ) = 1− 1

r
, (6.3)

and by Lemma 6.4 the maximum is attained only for W ∈ Q̂ ∩ Rr. Thus
Q̂∗ = Q̂ ∩ Rr. Furthermore, by Lemma 6.2, some W ∗r,s ∈ Q̂, and W ∗t,s /∈ Q̂
for t > r since Ent(W ∗t,s) = 1− 1/t > 1− 1/r; hence (1.12) holds.

If r = ∞, there is for every s < ∞ a graphon in Q̂ whose randomness
support graphon is not Ks-free and thus Lemma 6.2 shows that there exists
a graphon Ws ∈ Q̂ ∩ Rs. But then Ws converges to the constant graphon
1
2 in cut norm (and even in L1) as s → ∞. Thus the constant graphon 1

2

belongs to Q̂. Since Ent(1
2) = 1, it follows that max

W∈Q̂ Ent(W ) = 1, i.e.,
(6.3) holds in the case r = ∞ too. Moreover, 1

2 is the only graphon with
entropy 1, see Remark 1.3, and thus Q̂∗ = {1

2} = R∞.
We have shown (6.3) for any r ≤ ∞, and thus (1.10) follows by Theo-

rem 1.5.
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By (6.3), r = 1 if and only if Ent(W ) = 0 for every W ∈ Q̂, i.e., if and
only if every W ∈ Q̂ is random-free, which by definition means that Q is
random-free.

Finally, if r =∞, then we have established that 1
2 ∈ Q̂. Since p(F ; 1

2) > 0
for every F by (1.1), Lemma 3.2 shows that Q is the class of all graphs.
Hence, every graphon belongs to Q̂, so (1.12) holds trivially in this case
too. �
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