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Abstract

We study protected nodes in m-ary search trees, by putting them in context of gen-
eralised Pélya urns. We show that the number of two-protected nodes (the nodes that
are neither leaves nor parents of leaves) in a random ternary search tree is asymptot-
ically normal. The methods apply in principle to m-ary search trees with larger m
as well, although the size of the matrices used in the calculations grow rapidly with
m; we conjecture that the method yields an asymptotically normal distribution for all
m < 26.

The one-protected nodes, and their complement, i.e., the leaves, are easier to ana-
lyze. By using a simpler Pélya urn (that is similar to the one that has earlier been used
to study the total number of nodes in m-ary search trees), we prove normal limit laws
for the number of one-protected nodes and the number of leaves for all m < 26.

Keywords: Random trees, Pdlya urns, Normal limit laws, M -ary search trees.
MSC 2010 subject classifications: Primary 60C05; secondary 05C05, 60F05, 68P05.

1 Introduction

There are many recent studies of so-called protected nodes in various classes of random
trees, see e.g. [1, 3, 6, 8, 11, 18, 19]. A node is protected (more precisely, two-protected) if
it is not a leaf and none of its children is a leaf.

In this paper we consider the number of protected nodes in m-ary search trees (see
Section 1.1.2 for definitions), by putting them in context of generalised Pélya urns. The
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following result is our main theorem. We let — denote convergence in distribution and
denote a normal distribution with mean y and variance o by N'(u, o2).

Theorem 1.1. Let Z,, be the number of protected nodes in a ternary search tree with n keys.
Then
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For a binary search tree, we obtain by the same method a new proof of the following
result, which earlier has been obtained by different methods, first by Mahmoud and Ward
[18] (using generating functions), and later in [11] (using fringe trees).

Theorem 1.2. LetY,, be the number of protected nodes in a binary search tree with n keys.

Then "
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—2 . SN0, —].
NLD 225

Remark 1.3. Theorems 1.1 and 1.2 imply that Z" LN 75070 and Y’”‘ LN %. It follows from

[12, Theorem 3.21] that moreover, for the sequence of search trees generated by an infinite
57

sequence of i.i.d. keys, % 25 o0 and Y" 2% %. (Similarly, convergence almost surely
holds in the other limit theorems below too ) Since also 0 < Z" <land0 < Y" < 1,
the dominated convergence theorem implies that ( ) and ( ) converge in L' to 700 and

%, respectively; in particular, (Z") — 75070 and ( CI RN 5(1) We conjecture that also the

variances (and higher moments) converge in Theorems 1.1 and 1.2.

The methods apply to larger m too, at least in principle, see Sections 1.1.3 and 5.

Similarly, we may consider the one-protected nodes, i.e. the non-leaves. These are
easier to analyze than the two-protected nodes and using a minor variation of a Pélya urn
earlier used to study the total number of nodes [15, 12, 16], we prove in Sections 4 and 5.2
normal limit laws for the number of one-protected nodes and the number of leaves in an
me-ary search tree for all m < 26.

1.1 Protected nodes in m-ary search trees described as generalised Polya urns
1.1.1 A generalised Pélya urn

A (generalised) PSlya urn process is defined as follows, see e.g. [12] or [16]. There are balls
of g types (or colours) 1, ..., ¢, and for each n a random vector X,, = (Xp1,...,X54) .,
where X, ; is the number of balls of type ¢ in the urn at time 7. The urn starts with a given
vector X. For each type 7, there is an activity (or weight) a; > 0, where a; € R, and a
random vector & = (&1, - . ., &iq), Where & € Z%,,. The urn evolves according to a discrete
time Markov process. At each time n > 1, one ball is drawn at random from the urn, with

the probability of any ball proportional to its activity. Thus, the drawn ball has type ¢ with
;i Xn—1i )

probability # If the drawn ball has type 4, it is replaced together with AX (Z
balls of type 7, j = 1,...,n, where the random vector AX,(J) (Aqu )1, .. ,AX,%) has
the same distribution as &; and is independent of everything else that has happened so far.
(We allow AX 7(122 = —1, which means that the drawn ball is not replaced.) We let A denote
the g X ¢ matrix
A= (aj Egji)g,j:l‘ (11)

The matrix A with its eigenvalues and eigenvectors is central for proving limit theorems.

The basic assumptions in [12] are the following. We say that a type ¢ is dominating, if
every other type j can be found with positive probability at some time in an urn started with
a single ball of type 7.

(A1) For each type i, there is an integer d; > 1, such that X¢; and all §;; a.s. are divisible
by d;, &; > 0 for j # i (i.e., balls of other types than the drawn ball are never
removed) and &; > —d;.



(A2) E(¢%) < ocoforalld,je{1,...,q}.
(A3) The largest real eigenvalue A; of A is positive.
(A4) The largest real eigenvalue A is simple.

(A5) There exists a dominating type ¢ with Xq; > 0, i.e., we start with at least one ball of
a dominating type.

(A6) A is an eigenvalue of the submatrix of A given by the dominating types.

Furthermore, [12] says that the process becomes essentially extinct if at some time there are
no balls of any dominating type left. We will also use the following simplifying assumption.

(A7) With probability 1, the urn never becomes essentially extinct.

Condition (A1) is stated here somewhat more generally than in [12], where d; = 1 is
assumed, but the general case follows by replacing X, ; by %; see [12, Remark 4.2].

In the P6lya urns used in this paper, it is easily seen (frorﬁ the definitions using trees)
that every type with non-zero activity is dominating. If we remove rows and columns cor-
responding to the types with activity O from A, then the removed columns are identically O,
so the set of non-zero eigenvalues of A is not changed. The remaining matrix is irreducible,
and using the Perron—Frobenius theorem, it is easy to verify all conditions (A1)—(A6), see
[12, Lemma 2.1]. Furthermore, in our urns there will always be a ball of positive activity,
so essential extinction is impossible.

Before stating the results that we use, we need some notation. With a vector v we mean
a column vector, and we write v’ for its transpose (a row vector). More generally, we denote
the transpose of a matrix A by A’. By an eigenvector of A we mean a right eigenvector;
a left eigenvector is the same as the transpose of an eigenvector of the matrix A’. If « and
v are vectors then u/v is a scalar while uv’ is a ¢ x ¢ matrix of rank 1. We also use the
notation u - v for v’'v. We let \; denote the largest real eigenvalue of A. (This exists by our
assumptions and the Perron—Frobenius theorem.) Let a = (a1, . .., a4) denote the (column)
vector of activities, and let v} and v denote left and right eigenvectors of A corresponding
to the largest eigenvalue A1, i.e., vectors satisfying

u’lA = )\1’1/1, AU1 = /\1U1.
We assume that v; and u; are normalized such that
a-vy =dv = U'la =1, Ul - v = u’lvl = U’lul =1, (1.2)

see [12, equations (2.2)—(2.3)]. We write v = (v11,. .., V1g).
We define
Py, = vuf,
and Py = I, — Py, where I, is the ¢ x ¢ identity matrix. (Thus Py, is the one-dimensional
projection onto the eigenspace corresponding to A; such that Py, commutes with the matrix
A, see [12, equation (2.2)]; note that Py, typically is not orthogonal). We define the matrices

B; := E(&&)) (1.3)
q
B := ZvuaiBl' (1'4)
=1
5, = / PresABesA pleNsds, (1.5)
0



where we recall that ¢4 = >0 t1 AT /51,

It is proved in [12] that, under assumptions (A1)—-(A7), X,, is asymptotically normal if
Re A < A1/2 for each eigenvalue A # A;; more precisely, if Re A < A1 /2 for each such A,
then n~1/2(X,, — np) 4 N(0,3) for some p = (p1, ..., ) and ¥ = (am)ﬁjﬂ. (If X =
A1/2, then X, is still asymptotically normal, however with another normalisation.) The
asymptotic covariance matrix > may be calculated in different ways; we use the following
results from [12], which apply under different additional assumptions.

Theorem 1.4 ([12, Theorem 3.22 and Lemma 5.4]). Assume (A1)—(A7) and that we have
normalized as in (1.2). Also assume that Re A < \1/2 for each eigenvalue A # \1. Suppose
that a - B(&;) = m for some m > 0 and every i. Then, as n — oo,

n V(X —np) 4 N(0,5),

with ;. = \jv1 and covariance matrix 3 equal to mX., with X1 as in (1.5). O

Theorem 1.5 ([12, Theorem 3.22 and Lemma 5.3]). Assume (A1)—(A7), and that we have
normalized as in (1.2). Also assume that Re A\ < \1/2 for each eigenvalue \ # \y. If
the matrix A is diagonalisable, and {u}}]_, and {v;}{_, are dual bases of left and right
eigenvectors, respectively, i.e., u;A = \u,, Av; = \v; and u; - v; = 6;5 (where 0;; is the
Kronecker delta). Then, as n — oo,

nY2(X, —np) S N(0, ),

with ;n = A\v1 and covariance matrix 3 equal to

q
— E J )
Y= ‘ m?}jvk, (16)
with the matrix B as in (1.4). ]

1.1.2 M-ary search trees

We recall the definition of m-ary search trees, see e.g. [14] or [7]. An m-ary search tree,
where m > 2, is constructed recursively from a sequence of n keys (numbers). We assume
that the keys are i.i.d. uniform random numbers in [0, 1]. (Only the order of the keys matter,
so alternatively, we may assume that the keys form a uniformly random permutation of
{1,...,n}.) Each node may contain up to m — 1 keys. We start with a tree containing just
an empty root. The first m — 1 keys are put in the root, and are placed in increasing order
from left to right; they divide the set of real numbers into m intervals Jy, . . ., J;,. When the
root is full (after the first m — 1 keys are added), it gets m children that are initially empty,
and each further key is passed to one of the children depending on which interval it belongs
to; a key in J; is passed to the ¢:th child. (The binary search tree is the simplest case where
keys are passed to the left or right child depending on whether it is larger or smaller than the
key in the root.) The procedure repeats recursively in the subtrees until all keys are added
to the tree.

Nodes that contain at least one key are called internal, while empty nodes are called
external. We regard the m-ary search tree as consisting only of the internal nodes; the
external nodes are places for potential additions, and are useful when discussing the tree
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(e.g. below), but are not really part of the tree. Thus, a leaf is an internal node that has no
internal children, but it may have external children. (It will have external children if it is
full, but not otherwise.) Similarly, a protected node is an internal node that is not a leaf, and
has no child that is a leaf. (It may have external nodes as children.)

We say that a node with ¢« < m — 2 keys has ¢ + 1 gaps, while a full node has no gaps.
It is easily seen that a m-ary search tree with n keys has n + 1 gaps; the gaps correspond
to the intervals of real numbers between the keys (and +00), and a new key has the same
probability 1/(n+1) of belonging to any of the gaps. Thus the evolution of the m-ary search
tree may be described by choosing a gap uniformly at random at each step. Equivalently,
the probability that the next key is added to a node is proportional to the number of gaps at
that node.

Pélya urns have been used in some earlier studies, e.g. [15, 12], to describe the number
of nodes in m-ary search trees containing ¢ keys where 0 < ¢ < m — 1; then a node
containing ¢ keys is called a node of type ¢ and thus the generalised P6lya urn has m different
types. It has been shown that for this process, when m < 26 the number of different types
has an asymptotic multivariate normal distribution, but this does not hold for larger m.
(Since the condition Re A < A1/2 for A # \; on the eigenvalues of the matrix A in (1.1)
holds only if m < 26.) Since the number of nodes in the whole tree is a linear combination
of these numbers, this implies in particular that the distribution of the random number of
nodes in an m-ary search tree containing n keys is asymptotically normal for m < 26. In
this Pdlya urn, with one ball representing each node, the activity of a ball is the number of
gaps, i.e., ¢ + 1 for a ball of type ¢ < m — 2, and 0 for a ball of type m — 1.

Alternatively, see [12], we can use a Pélya urn where each ball represents a gap; thus a
node with ¢ keys corresponds to ¢ + 1 balls for 0 < ¢ < m — 2, and these balls are all given
type ¢. (Full nodes are ignored.) This is thus an urn with m — 1 types, all with activities 1.

1.1.3 Protected nodes and generalised Pélya urns

We will see that it is possible to use a generalised PSlya urn also to study protected nodes
in an m-ary search tree, although the urn consists of quite a few different types.

Description of the Types in the Polya urn. Given an m-ary search tree 1" with n keys
together with its external nodes, erase all edges that connect two internal non-leaves. This
yields a forest of small trees, where (assuming n > m) each tree has a root that is a non-
leaf in 1" while all other nodes are leaves or external nodes in 7. We regard these small
trees as the balls in our generalised Polya urn. The type of a ball (tree) is the type of the
tree as an unordered tree, i.e., up to permutations of the children. The type of a tree in the
urn is thus described by the numbers k;, ¢ = 0,...,m — 1, of children of the root with ¢
keys; each of these children is an external node (¢ = 0) or a leaf ( > 1), and it has itself
children only when ¢ = m — 1 when it has m external children; thus the type is uniquely
determined by ko, . .., ky,—1, and we can label the type by (ko, ..., kn—1). Since the root
of any of the small trees has m children (including external ones) in the original tree 7T,
we have Z?;Bl k; < m, (with the remainder m — Z;Z_ol k; equal to the number of erased
edges to children in the original tree 7" that are non-leaves). Furthermore, the case kg = m
is excluded, since the root of the small tree is a non-leaf in 7. The total number of types
is thus one less than the number of compositions of m into m + 1 non-negative parts, i.e.,
ey -1

The activity in the PSlya urn of one of these types is the number of gaps that it contains.
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Figure 1: The different types characterizing protected and unprotected nodes in binary
search trees. Type 4 and type 5 are the only ones that include protected nodes.

The root has no gaps, so a tree with type (ko,...,kn,—1) has activity Z?:Ol(i + 1)k;.
Moreover, if we add a new key to a leaf, it is still a leaf, so in the Pdlya urn, this corresponds
to replacing a tree by another tree where we have increased by 1 the number of keys of one
of the children of the root. The same holds if we add a key to an external node that is a child
of the root. However, if we add a key to an external node that is a child of a leaf, then that
leaf becomes a non-leaf, so the edge from it to the root is erased and the tree is split into
two (one of which always has the type (m — 1,1,0,...,0)). See Section 2 for examples.
Note that in general, a small tree may be transformed in several different ways when we
add a new key, depending on which gap it goes into. Hence, the additions &; in the Pélya
urn will be random.

A protected node in 7" is a non-leaf, and is therefore a root in one of the small trees.
Moreover, it must not have any child that is a leaf, so all its children are external nodes.
Thus, the number of protected nodes in 1" equals the number of balls in the urn that have
types (ko,0,...,0) with0 < ko < m — 1.

2 Protected nodes in binary search trees and Pélya urns

In this section we demonstrate the technique of using the Pélya urn defined above to study
the number of protected nodes, by applying it to the simplest case m = 2, the binary search
tree. This gives us a new proof of Theorem 1.2; for earlier proofs, see [18] and [11].

For a binary tree, the number of types in the Pdlya urn defined above is (3) -1 =
5. We show the different types in Figure 1, with a numbering that will be used below.
(For convenience we omit the external nodes in the figures. We use dotted lines for edges
attached to external nodes.) With our characterization of the types in Section 1.1.3, the
typesi € {1,...,5} correspond to (0, 2), (1,1), (0,1), (1,0) and (0, 0), respectively.

Let X,, = (Xn1, Xn2, X033, Xn 4, Xpn5), where X, ; is the number of balls of type ¢
in the urn corresponding to n keys (i.e., the number of trees that correspond to type ¢ in our
forest). Recall that we assume that n > m = 2; the initial conditions are X292 = 1 and
Xo,; = 0fori # 2. In a binary search tree, each leaf contains one key, so it has two external
children, whereas other internal nodes have either 1 or 0 external children. There is one gap
at each external node, and no gaps at any internal node. As explained in Section 1.1.2, each
gap (i.e. external node) has activity 1.

When a ball is drawn from the urn (i.e., a new key is added to the tree), as explained
in general in Section 1.1.3, a key is either added to an external node that is a child of the
root (we return a ball of another type), or to an external node that is a child of a leaf (we
return two balls). Figures 2-5 show the transitions in the P6lya urn when a ball of type 7 for



Type 1 Type 2 Type 3
[ J |
J — L+

Figure 2: Adding a key to type 1.
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Figure 3: Adding a key to type 2.
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Figure 4: Adding a key to type 3 Figure 5: Adding a key to type 4

i € {1,2,3,4} is drawn (where the types are shown in Figure 1), so that the drawn ball is
replaced by a new set of balls. (As said above, this set could depend on which of the nodes
in the drawn type the key is added to, see Figure 3.) The activities of the different types
depend on their number of gaps; the total activities for the types 1,2, 3,4,5 are 4, 3,2, 1,0,
respectively; thus a = (4, 3,2, 1,0)’".

From the transitions that are shown in Figures 2-5, we easily obtain the matrix A =
(aj Egji)?,jzl in (21)

4 0 0 0
4 -1 2 00
A= 4 2 10 2.1)
0 2 0 -1 0
0 0 2 00

To do the matrix operations in this paper we use computer algebra (in our case Mathemat-
ica).



The eigenvalues of A are 1,0, —2, —3, —4. Corresponding right eigenvectors of A are:

1 0 1 1 1
5 0 2 1 0

1 1 1 1

30 31,101,-1]-3 5 =3,-1-2]1, 2.2)
5 0 —4 -1 0
6 1 3 2 1

and corresponding left eigenvectors of A are:

AN -1\ o2\ -4\ /1’
3 -1 0 1 -3
21, 0], 11,]1-21, 31 . (2.3)
1 0 -1 1 -1
0 1 0 0 0

Since the eigenvalues for the matrix A are distinct it follows automatically that u; - v; = 0
for i # j (recalling that {u}}?_, and {v;}{_, are the left and right eigenvectors of A,
respectively). Note that we have scaled the eigenvectors so that u; - v; = 1 and (1.2) hold.
Note also that u; is equal to the activity vector a. This is a consequence of the fact that the
total activity always increases by 1 when we draw a ball from the urn, and thus a - E§; = 1
for each ¢, see [12, Lemma 5.4].

It is easy to see that we can apply Theorem 1.5 for this generalised Pdlya urn. Note
that it is obvious that the matrix A is diagonalisable since all eigenvalues are simple. From
Theorem 1.5 we obtain that X,, = (X, 1, Xpn 2, Xn 3, Xn4, Xy 5) has asymptotically a
multivariate normal distribution. Let Y, be equal to the number of protected nodes in the
binary search tree with n nodes. Since type 4 and type 5 each contains exactly one protected
node, while the other types contain no protected nodes,

Yn = Xn,4 + Xn,5-

Thus, Theorem 1.5 implies that

n"Y2(Y, — nuy) 4 N(0,0%) 2.4
with parameters py = p4 + p5 and

01% =044+ 045+ 054+ 055. (2.5)

Since A\; = 1, Theorem 1.5 implies, using v; in (2.2), that

5 6 11
MY—M4+M5—30+30—30- (2.6)
Thus, to show Theorem 1.2 it remains to calculate the sum in (2.5).

To calculate the matrix B in (1.4) we need to calculate B; = E(&;¢)) in (1.3). In all
cases except for By these are deterministic and equal to &;&. We only show how to obtain
Bs (since the other cases are simpler). As shown in Figure 3 when adding a key to type
2 we can either add it to the leaf or to the external node. In case we add it to the external
node (which happens with probability 1/3) a node of type 2 is replaced by a node of type 1;
this change corresponds to the column vector (1, —1,0,0,0)". If the key is instead added to



the leaf (which happens with probability 2/3) a node of type 2 is replaced by another node
of type 2 (the change of type 2 is 0) and a node of type 4; this change corresponds to the
column vector (0,0, 0,1,0)". Hence

By = %-(1,-1,0,0,0)'(1,-1,0,0,0) + 2 - (0,0,0,1,0)'(0,0,0,1,0)
1 1
-0 o00
1 1
-3 5 000
= 0 00 00 2.7)
2
0 00 35 0
0 00 00
By calculating the B;’s we obtain the matrix B in (1.4) as
3 3 2
0 "0 "1 O 0
_3 1 _1 g 1
10 2 15 5
_ 2 1 1 1 1
B=|-% -5 3 —5 5 (2:8)
0 0 -3 4§ 0
1 1 1
5 5 0 3

From (1.6) in Theorem 1.5 it follows that the covariance matrix ¥ for the asymptotic

multivariate normal distribution of X,, = (X,,.1, Xy 2, Xpn 3, Xn.4, X5 5), is given by

43 _ 67 _ 113  _ 29 1
1575 2520 12600 2520 1400
_ 67 23 1 _ 13 71
2520 120 12 1260 2520
— 113 1 443 1 59
=1 —130 T2 6300 T30 1800 (29)
_.20 _ 13 _ 1 181 _ 11
2520 1260 30 1260 504
1 71 _ 59 _ 11 13
1400 2520 1800 504 150
Thus, it follows that
181 13 11 29
2
Oy =044+ 045+054+055=""77+— =2 — = —. (2.10)
Y 1260 © 450 504 225
Thus, the proof of Theorem 1.2 is completed. O

3 Protected nodes in ternary search trees and Polya urns

We now proceed by analyzing the number of protected nodes in ternary search trees, by
using the Pélya urn in Section 1.1.3 (described for general m-ary search trees ) when m =
3. The 19 different types we get are shown in Figure 6 (with a numbering that will be
used below). From our characterization of the types in Section 1.1.3, for example type 2
corresponds to (0,1,2). Note that type 17, type 18 and type 19 contain one protected node
each, while the other types contain no protected nodes.

To determine the matrix A we proceed (as for the binary search tree) to find the transi-
tions when a ball (in our case one of the 19 trees in our forest) of type ¢ is chosen. Figure



Type 10
(2,0,1)

Type 15
(1,1,0)

Type 16 Type 17 Type 18 Type 19
(0,1,0) (2,0,0) (1,0,0) (0,0,0)

Figure 6: The different types characterizing protected and unprotected nodes in ternary
search trees. Type 17, type 18 and type 19 are the only ones that include protected nodes.

7 illustrates the different situations for how a new key could be added to a ball (a tree) of

type 2. All the other cases are similar, and we leave these cases as an exercise to the reader.
From the different transitions for changing a node of type i we get the matrix A for

ternary search trees in Figure 8. The example in Figure 7 gives the second column of A.

Figure 7: The two possibilities for adding a key to a node in a tree of type 2 of a ternary
search tree.

The tree of type 2 has activity 8. If it is drawn, and the new key is added to the node
with only one key which happens with probability %, then a tree of type 2 is replaced with
a tree of type 1. If the new key is instead added to one of the nodes containing two keys
which happens with probability g, then the tree of type 2 is replaced by a tree of type 8 and
one tree of type 13. Thus, the second column of the matrix A for the ternary search tree is
given by

8-(%,-1,0,0,0,0,0, 8,0,0,0,0,%,0,0,0,0,0,0)".
In this way we obtain A in Figure 8.
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-9 2 0 0 0 0 0 00 0 0 0 0 0 0 0000
0o-8 4 1.0 0 OO0 0O 0O O OO O0OO0OUO0OO0O OO
o 0o- 0 6 01 0 0600 0 0 O0O0OO0OO0OO0O0
o o0 0-r 0 0 2 0 0 0O O O O O OO0 O0 0O O
0o 0o 0o 0-6 00 01 00 0O O0OO0OO0OO0OO0OO0OO0
90 0 0O 0-6 02 0 0 0 O0O0O0OO0OO0OO0 O0O
0o 0o o0 0 06 04 2 000 O0O0O0O0 0 O
0o 6 00 0 0 0-5 00 4 1 00 00 0 0 O
0o o o o0 0 00 0-5 0002 0O0 0 0 00

A= o 0 0o o o0 000050402 00400 00
o0 3 00 0000 0—-4 0001 0 0 0O
o o0 o6 0 00 0 0 0 04 00 2 00 0 O0
96 3 6 0 6 3 3 0 3 0 3—-4 3 0 0 0 0 O
0o 0o 0o 0o 0o 60 0 0 0 0 0 0-3 02 0 00
o o o o000 3 00O0OO0OO0OO0OO0-3 0 2 00
o o 0o 0 0o 00 3 0 0 0 O0O0OO0OO0-21010
o 0 o0 o o0 0 o000 3 0000 O0O0-2 00
o o0 o o0 o0 0 00000 3 0 0O0O0O0-1 0
o 0 o0 o o0 0 o000 00003 00 0 00O

Figure 8: The transition matrix A for the Pélya urn defined in Section 1.1.3 in the case of
the ternary search tree.

The activities of the different types are given by the vector
a=1(9,8,7,7,6,6,6,55,5,4,4,4,3,3,2,2,1,0)".

These correspond to the number of gaps for the different types. The eigenvalues of the
matrix A are

1,0,—-2,—3,—3,—4, —4, —4, -4, —5,—5, 5, —6, —6, —6, —7, —7, —8, —9.

The eigenspace belonging to the eigenvalue —4 (which has algebraic multiplicity 4) has
dimension 3. Since the dimension of the eigenspace belonging to the eigenvalue —4 is
not equal to the algebraic multiplicity, the matrix A is not diagonalisable. (However, all
other eigenspaces have full dimension.) Hence, we can not apply Theorem 1.5. However,
Theorem 1.4 can be applied since a - E(&;) = 1 for each i (this follows since we always add
exactly one key when a tree of type ¢ is chosen).

From Theorem 1.4 we obtain that the vector X,, = (X, 1,...,Xp 19), where X, ; are
the number of balls of type ¢ (in our case the number of trees that correspond to type 7 in
our forest obtained from the ternary search tree), has asymptotically a multivariate normal
distribution. Let Z, be the number of protected nodes in the ternary search tree with n
nodes. Since type 17, type 18 and type 19 each contains exactly one protected node, while
the other types contain no protected nodes,

Zn = Xpa7 + X 18 + Xp 0. 3.1

Thus, Theorem 1.4 implies that

nY2(Z, —npz) S N(0,0%), (3.2)
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with parameters
Pz = p17 + pi1s + H19

and, writing ¥ = (Ui,j)ll%:l’

19 19
oy => > o (3.3)

i=17 j=17

Using the normalization in (1.2), we see that

1
V] = 2100 (1,5,9,9,6,7,36,20,42,42, 15, 30, 126, 28, 48, 35, 42, 45, 84)’ (3.4
and that

uy = (9,8,7,7,6,6,6,5,5,5,4,4,4,3,3,2,2,1,0).
(As in the binary case, u; = a since a - E&; = 1 for each 4, see [12, Lemma 5.4].) Since

A1 =1, Theorem 1.4 and (3.4) yield

42 45 84 57

#z = pr o+ s+ e = orae 9100 T 2100 7000

(3.5)

Thus, to show Theorem 1.1 it remains to calculate the sum in (3.3).

Since we want to determine the matrix >; in (1.5) we need to determine the matrices
Py and B. We have Py = 19 — vyu), which is a 19 x 19 matrix that is shown in (A.1) in
the appendix. To calculate the matrix B in (1.4) we need to calculate B; = E(&;&]) in (1.3).
We only describe how to get Bs since the other cases are analogous. From Figure 7 (and
the explanation of that figure above) it is easy to see that

By = % b1y + % - bobly, where,
b = (1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)" and
b, = (0,-1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0)".
Note that By is a 19 x 19 matrix. The matrix B is shown in (A.2) in the appendix. Now we
can use Mathematica to evaluate the integral in (1.5), which yields 3. Finally, > = 3; by

Theorem 1.4 with m = 1. This matrix is given last in the appendix.
By (3.1) and (3.3), we only need the submatrix

156031 826069 3453169

017,17 017,18 017,19 8085000 1387386000 15030015000
I = | _ _ 826069 2222557 439517549 . (3.6
P 018,17 018,18 018,19 1387386000 118918800 87603516000 (3.6)
. o o 3453169 439517549 142536826
19,17 019,18 019,19 15030015000 ~ 87603516000 12384425625

Summing the o; ; in (3.6), which is equivalent to calculating (1,1,1)%,(1,1,1)’, we find

19 19
1692302314867
2 _ o
9% =2 2 % = 1360953605000
=17 j=17
which completes the proof of Theorem 1.1. O
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a) An external b) A leaf c) A leaf d) An internal

node which is not containing one containing two node with two

a child of a leaf. key. keys and its three keys which is not
external children. a leaf.

Figure 9: The different types characterizing leaves and non-leaves in ternary search trees.

4 Leaves in ternary search trees

Recall that a leaf is an internal node without internal children, i.e., a node that contains at
least one key and has no children except possibly external ones. The proof of Theorem 1.1
yields also the following theorem. (The corresponding result for a binary search tree was
considered already by Devroye [5] using two different methods, one of them a Pélya urn as
here.)

Theorem 4.1. Let L,, be the number of leaves in a ternary search tree. Then,
Ly—3n 4 89
In 4% 4, (o, 50,
vn N( 2100

First proof. Counting the number of leaves (of the original ternary search tree) in each type
in Figure 6, we see that the number of leaves in a subtree of type ¢, ¢ = 1,...,19, is given
by the vector

(=(3,3,3,2,3,2,2,2,2,1,2,1,1,1,1,1,0,0,0)’. .1

Hence, L,, = ¢ - X,,. By the proof of Theorem 1.1, the vector X, has asymptotically a
multivariate normal distribution, and it follows that

nY2(Ly, —nur) % N(0,02) (4.2)
with, using (3.4) and (4.1),
3
pL=tov = 4.3)

and, using the covariance matrix > shown in the appendix,

89

2 /

of =0'Y0 = ——. 4.4
L 2100 ( )

O]

However, it is also possible to show Theorem 4.1 using a much simpler Pélya urn pro-
cess, where we only need to consider four different types. We again chop up the ternary
search tree into small trees, now using the following types of trees.
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Type 1 is an external node which is not a child of a leaf. Type 2 is a node containing one
key. Type 3 is a leaf containing two keys together with its three external children. Type 4 is
an internal node containing two keys which is not a leaf (i.e., it has less than three external
children). The types are shown in Figure 9. Note that all nodes in the ternary search tree
belong to exactly one such subtree.

A ball of type 1 has activity 1; when it is drawn it is replaced by one ball of type 2. A
ball of type 2 has activity 2; when it is drawn it is replaced by one ball of type 3. A ball of
type 3 has activity 3; when it is drawn it is replaced by one ball of type 2, two balls of type
1 and one ball of type 4. A ball of type 4 has activity O and is thus never drawn. The types
that contain leaves are type 2 and type 3.

To simplify we can study another urn using the gaps as balls. Type 1 has one gap, type
2 has two gaps, type 3 has three gaps and type 4 has 0 gaps. We label each gap with the
type it belongs to; thus the gaps have only the three types 1-3. The gaps evolve as an urn
with three types, with all activities 1 and the matrix A in (1.1) given by

-1 0 2
2 -2 2. 4.5)
0 3 -3

Since we consider the gaps (with activity 1) it is obvious that all columns add to 1 (since we
always add one ball to the urn). The eigenvalues of A are 1, —3, —4. Theorem 1.5 shows
that (X, 1, X, 2, X5, 3) has asymptotically a multivariate normal distribution, where X, ;
is the number of balls of type ¢ in the Pdlya urn, i.e., the number of gaps of type 7. Note
that the number of subtrees of Types 1-3 thus is (X, 1, Xy, 2/2, X;,3/3), which thus also is
asymptotically multivariate normal.

Since the number of leaves L, = X, 2/2 + X, 3/3, it follows that L,, has asymptoti-
cally a normal distribution (4.2).

To find the parameters py, and O‘%, we note that right eigenvectors of A corresponding
to the eigenvalues 1, —3, —4 are:

3 -1 -2
1 1 1
3 1 3

and corresponding left eigenvectors of A are:

/ / !/

1 -3 2
1], 3], -3]. A4.7)
1 1 2

Note that we have scaled the eigenvectors so that u; - v; = d;; and (1.2) holds. We have
a = (1,1,1)". Since type 2 has two gaps and one leaf and type 3 has three gaps and one
leaf, it follows that

11)23

1
pu— p— 4 . ( J— —
1295 p2 + p3 (37 73) 07 27 3 107

10

corresponding to (4.3). By calculating B, we get from Theorem 1.5, that the covariance
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matrix X is given by

479 7 127
2100 150 700
_T 32 _19 |, (4.8)
150 75 50
127 19 393
700 50 700
We thus obtain
479 _ 7 _ 127 0
2100 150 700 39
2 _(nl1 e 32 19 1l = 27
0= (0,3,3) | —1% 75 50 2 2100 )
_ 127 19 393 1
700 50 700 3

(corresponding to (4.4)), which completes the proof of Theorem 4.1 with the simpler Pélya
urn model.

S Higher m

5.1 The Pélya urn defined in Section 1.1.3

The P6lya urn defined in Section 1.1.3 can be used for any given m, although the size of
the matrices used in the calculations grow rapidly with m. (For m = 4 we have 69 types;
for m = 10 we would have 184755.) However, the central condition Re A < A;/2 is not
satisfied for large m. We do not know any general formula for the eigenvalues of the matrix
A, but some of them are given as follows.

Lemma 5.1. Let m > 2. Then every root of the polynomial
m—1
dm(N) = [J A +1) - m! (5.1)
=1
is an eigenvalue of the matrix A for the Pdlya urn in Section 1.1.3.

Proof. Let M := (*™) — 1 be the number of types, and let as above X,, € Z be the
composition of the P6lya urn described in Section 1.1.3. Furthermore, let V; ,, be the number
of nodes containing exactly 7 keys (thus Vp ,, is the number of external nodes), and consider
the vector W), = (W1, ..., Wy—1,,) where W ,, = iVj_1 j,; thus W; ,, is the total number
of gaps at nodes with ¢ gaps. The random vector W,, can also be described by a Pélya urn,
see e.g., [12, Example 7.8] and [16, Section 8.1.3]; we denote the activity vector and the
matrix (1.1) for this urn by ay = (1,...,1) and Ay, where the (m — 1) x (m — 1)
matrix Ay has elements a;; = —ifori € {1,...,m —1},a,;,1 =ifori € {2,...,m},
a1,m—1 = m and all other elements a; ; = 0, i.e.,

1 0 0 0 m
2 —2 0 0 0
0 3 -3 0 0

Aw =1 0 0o 4 0 0 (5.2)
0o 0 0 ... m—1 —(m-1)

15



As is well-known, the matrix Ay has characteristic polynomial ¢,, (), see e.g., [12, Ex-
ample 7.8] or [16, Section 8.1.3].

Since the vector X,, determines the number of nodes with different numbers of keys,
there is a linear map 7' : RM — R™1 guch that W,, = TX,,. T is determined by the
description of the types in Section 1.1.3, and it is easily seen that 7" is onto. Furthermore,
starting the urns with an arbitrary (deterministic) non-zero vector Xy € Z% and Wy =
T X, the urn dynamics yield -

AX,
E(Xy — Xy = 5.3
(X1 0) @ Xo (5.3)
Aw W
EW; —-Wy) = ———. 5.4
(W 0) p—T (5.4

Consequently, since also a - Xg = aw - W,
TAXO = (a : XO)T E(Xl - X()) = (CLW . W()) E(Wl — W()) = Awwo = AwTXo,

and thus TA = Ay T.
Suppose that A is a root of ¢,,(A) = 0. Then A is an eigenvalue of Ay and thus there
exists a left eigenvector u” with v’ Ay = Au’. Consequently,

WTA =uAwT = \T, (5.5)

sou'T = (T'u)’ is aleft eigenvector of A. Since T is onto, T” is injective and thus T"u # 0.
This shows that A is an eigenvalue of A too. O

The largest eigenvalue A\; = 1 for the matrix A, since the total activity increases by 1
at each step, see [12, Lemma 5.4]. Let A1, Ag, ..., Apy—1 be the roots of (5.1) in order of
decreasing real parts. It is well-known that A; = 1 and, moreover, that Re Ao < 1/2 if and
only if m < 26, see [17] and [9]. Consequently, if m > 27, then Lemma 5.1 shows that
A has an eigenvalue A = Ao # A\ with Re Ao > 1/2, and then X, is nor asymptotically
normal. (See [12] for general results suggesting this, and [4] for a rigorous proof in the
present case, showing that the total number of internal nodes is not asymptotically normal.)
Furthermore, if & := Re Ay > 1/2, then (X,, — E X,,)/n® is stochastically bounded, but
has no limit in distribution (the distribution oscillates), see [4, 2, 12].

Some exceptional linear combinations of the variables X, ; are asymptotically normal
also in such cases [12], but we conjecture that for any m > 27, the number of protected
nodes is not one of these exceptional cases and that it has the same non-normal behaviour
as just described for the number of internal nodes.

On the other hand, if m < 26, although A has a much larger dimension that Ay, and
thus presumably many more eigenvalues, we conjecture that all additional eigenvalues also
have Re A < 1/2, so that Theorem 1.4 applies showing that the number of protected vertices
is asymptotically normal, with asymptotic variance linear in n, just as for m = 2 and 3 in
Theorems 1.2 and 1.1. (This conjecture has been verified for m < 6 by Heimbiirger [10].)

5.2 One-protected nodes and leaves in m-ary search trees.

As mentioned in Section 1, the number of one-protected nodes and the number of leaves
(the complement of the one-protected nodes) are easier to analyze than the two-protected
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nodes, and we prove normal limit laws for all m-ary search trees where m < 26. In these
cases we can use a Polya urn that is similar to the Pélya urn that has earlier been used to
study the total number of internal nodes in an m-ary search tree, see e.g. Mahmoud [15]
and [16, Section 8.1.3] or [12, Example 7.8].

We can generalise the study of the number of leaves in ternary search tree in Section 4
to arbitrary m > 2. (For m = 2, there are minor modifications in the formulas below; we
leave these to the reader. As mentioned above, the case m = 2 was considered by Devroye
[5].) We have in general m + 1 types, defined in analogy with Figure 9: Type 1 is as before,
Type ¢ with 2 < ¢ < m — 1 is a leaf with ¢+ — 1 keys, Type m is a leaf with m — 1 keys
together with its m external children, and Type m + 1 is an internal non-leaf.

Let V/, =V, », be the number of nodes containing exactly i keys fori € {1,...,m—2};
let Vol,n be the number of nodes containing 0 keys (external nodes) that are not children of
leaves; let V,;,_; ,, be the number of nodes containing m — 1 keys that are leaves (i.e.,
they have only external children); finally, let Vrf%n be the number of internal nodes that are
not leaves (all containing m — 1 keys). We consider again another, slightly simpler, urn

with the balls representing the gaps, giving them types 1, ..., m, and consider the vector
W, = Wi, Wy, ,,) where W/~ = 4V | is the total number of gaps of type i.

The random vector W can be described by a Pélya urn, with all activities 1. We denote the
mxm matrix (1.1) for this urn by Ay. It is a minor modification of the matrix Ay described

in Section 5.1, see (5.2); the entries of Ay, are given by a;,; = —i fori € {1,...,m},
a;j;—1 =iforie{2,...,m}, a1m =m — 1, ag,, = 2, and all other entries a; ; = 0. Le.,
-1 0 0o ... 0 0 m—1
2 =2 0 ... 0 0 2
0 3 =3 ... 0 0 0
A = 0o 0 4 0 0 0 (5.6)
0 0 0 m—1 —(m—1) 0
0 0 0 0 m -m

We can easily calculate the characteristic polynomial of A7, and find that it is

Om(X) = (m + \)dm(N),

where ¢,,(A) is the characteristic polynomial of Ay in (5.1). Thus, Az has the same
eigenvalues as A, plus the additional eigenvalue A = —m. Since ¢,, has only simple roots
[14, Section 3.3], and —m is not one of them, also qﬁf;z has only simple roots. Hence, Ay,
has m distinct eigenvalues, and is thus diagonalisable.

The largest eigenvalue of Ay, is A; = 1 (as for A) and this eigenvalue corresponds to
the right and left eigenvectors

(5.7)

m—1 1 /
2(m+1)
1 1
! 1
1 4 .
v = H. 1 1 , up=\|:1, (5.8)
m—1 1
1 1
T 1
m+1



where we have normalized so that (1.2) holds (H,,, denotes the mth harmonic number).
Let L,, be the number of leaves in an m-ary search tree with n keys. Then

PSS

i=1 k=2

Wi, (5.9

7TL

=

Theorem 5.2. Suppose that 3 < m < 26. Let Ly, be the number of leaves in an m-ary
search tree. Then,

Ly —prn 4
V- — N(0,0%), (5.10)
where
= > _ 1 m-l (5.11)
M H, -1 k() Hy—1 2(m+1) ‘
and 0’% can be evaluated as
2 ~ Tij
= — 5.12
of ; T (5.12)

where (0i;)";_, is given by (1.6).

Proof. As said above, for m < 26, Re A < A1/2 = 1/2 for all eigenvalues A # \; of A,
and thus also of Ay. Furthermore, A is diagonalisable. Hence, Theorem 1.5 applies and
shows asymptotic normality of W, . The result follows by (5.9), using v in (5.8). ]

Remark 5.3. Theorem 5.2 implies that ( DN wr, by the same argument as in Remark
1.3.

For m > 27, we expect the same non-normal asymptotic behaviour as for the number
of internal nodes [4, 2], see Section 5.1.

For the one-protected nodes we can use the first P6lya urn described above for the
leaves, with m + 1 types. For the leaves we could simplify by considering the gaps and
use a Pélya urn with m types, with all activities 1. However, now we also need to consider
type m + 1, which has 0 gaps. So in the analysis of the one-protected nodes we use the urn
with m + 1 different types (as explained in the beginning of this subsection) where types
i € {1,...,m} have activities 1,2, ..., m and type m + 1 has activity 0. In this Pélya urn,
the one-protected nodes correspond to type m + 1. All other types correspond to leaves
or external nodes. Theorem 1.5 implies the following result (the proof is analogous to the
proof of Theorem 5.2).

Theorem 5.4. Suppose that 3 < m < 26. Let QQ,, be the number of one-protected nodes in
an m-ary search tree. Then,

Q\/%‘Q” N(0,03), (5.13)
where ) )
Fo="g —1 my1)y (5.14)
and 0622 can be evaluated as
0H = Omt1mil (5.15)

where (O'U) L is given by (1.6).

18



This urn can obviously also be used to study the number of leaves (the types 2 < i < m
correspond to the leaves), giving another proof of Theorem 5.2. (Note that o;; refers to
different urns and thus has different meanings in Theorems 5.2 and 5.4.) Moreover, we can
study L,, and @, together and obtain joint asymptotic normality for m < 26; the covariance
orq of the limit variables in (5.10) and (5.13) equals )" | 0 ;41 With (Ul-j)zl;;ll as in
Theorem 5.4. In particular, this implies the well-known asymptotic normality of the total
number of internal nodes I,, = L,, + @, see e.g. [17, 14, 13, 4, 15, 9, 16].

Example 5.5. For a binary search tree (m = 2), a straightforward calculation of the covari-
ance matrix ¥ = (Uij)?, j—1 in Theorem 5.4 yields

8 4 4

15 45 45
¥r=1 -4 2 -2 |- (5.16)

4 2 2

15 45 45

Hence
2 / 2

OrLa2 = (07170)2(0717()) =022 = g, (517)
as shown by Devroye [5]. Similarly, 02272 =033 = % and opgo = 093 = —%. (We have
0%72 = 05’2 = —0r,2 since the total number of internal nodes L,, + Q,, = I, = n is

deterministic when m = 2.)

Example 5.6. For a ternary search tree (m = 3), similarly (cf. (4.8) for the corresponding
urn using the gaps as in Theorem 5.2)

79 7 127 101
2100 300 2100 1400
__T 8 _19 1
Y — 300 75 300 100 (5.18)
127 19 131 43 ' )
2100 300 2100 1400
101 1 43 9
1400 100 1400 350

Hence, cf. (4.4) and (4.9),

89

2 /

= 1,1 by 1.1 = — 1

0L,3 (07 ’ 70) (07 ) 70) 21007 (5 9)
9

0% = (0,0.0,1)£(0,0,0,1)' = o, (5.20)
29

orgs = (0,1,1,0)%(0,0,0,1)" = ~T100° (5.21)

We also obtain the corresponding asymptotic variance (0,1,1,1)¥(0,1,1,1)" = 0%73 +
02273 +20103 = % for the number of internal nodes L,, + @), as found by Mahmoud and
Pittel [17].

Acknowledgements: We would like to thank Hosam M. Mahmoud and Mark D. Ward
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ing of figures.
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