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Abstract. We study some properties of graphs (or, rather, graph se-
quences) defined by demanding that the number of subgraphs of a given
type, with vertices in subsets of given sizes, approximatively equals the
number expected in a random graph. It has been shown by several au-
thors that several such conditions are quasi-random, but that there are
exceptions. In order to understand this better, we investigate some new
properties of this type. We show that these properties too are quasi-
random, at least in some cases; however, there are also cases that are
left as open problems, and we discuss why the proofs fail in these cases.

The proofs are based on the theory of graph limits; and on the method
and results developed by Janson (2011), this translates the combinatorial
problem to an analytic problem, which then is translated to an algebraic
problem.

1. Introduction

Consider a sequence of graphs (Gn), with |Gn| → ∞ as n→∞. Thoma-
son [17; 18] and Chung, Graham and Wilson [4] showed that a number of
different ’random-like’ properties of the sequence (Gn) are equivalent, and
we say that (Gn) is quasi-random, or more precisely p-quasi-random, if it
satisfies these properties. (Here p ∈ [0, 1] is a parameter.) Many other equiv-
alent properties of different types have later been added by various authors.
We say that a property of sequences (Gn) of graphs (with |Gn| → ∞) is a
quasi-random property (or more specifically a p-quasi-random property) if it
characterizes quasi-random (or p-quasi-random) sequences of graphs.

One of the quasi-random properties considered by Chung, Graham and
Wilson [4] is based on subgraph counts, see (2.2) below. Further quasi-
random properties based on restricted subgraph count properties have been
found by Chung and Graham [3], Simonovits and Sós [15; 16], Shapira [11],
Shapira and Yuster [12; 13], Yuster [19], Janson [6], Huang and Lee [5], see
Section 2.

The purpose of the present paper is to continue the study of such prop-
erties by considering some further cases not treated earlier; in particular
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(Theorems 2.11 and 2.12), we prove that some further properties of this
type are quasi-random. Our main purpose is not to just add to the already
long list of quasi-random properties; we hope that this study will contribute
to the understanding of this type of quasi-random properties, and in par-
ticular explain why the case in Theorem 2.12 is more difficult than the one
in Theorem 2.11. (See also Section 9 for a discussion of further similar
properties.)

We use the method of Janson [6] based on graph limits. We assume
that the reader is familiar with the basics of the theory of graph limits
and graphons developed in e.g. Lovász and Szegedy [8] and Borgs, Chayes,
Lovász, Sós and Vesztergombi [1]; otherwise, see Janson [6] (for the present
context) or the comprehensive book by Lovász [7]. As is well-known, there
is a simple characterization of quasi-random sequences in terms of graph
limits: a sequence (Gn) with |Gn| → ∞ is p-quasi-random if and only if
Gn → Wp, where Wp is the graphon that is constant with Wp = p [1; 2; 8],
see also [7, Section 1.4.2 and Example 11.37]. (Indeed, quasi-random graphs
form one of the roots of graph limit theory.)

The idea of the method is to use this characterization to translate the
property of graph sequences to a property of graphons, and then show that
only constant graphons satisfy this property. It turns out that this leads
to both analytic (Section 4) and algebraic (Section 6) problems, which we
find interesting in themselves. We have only partly succeeded to solve these
problems, so we leave several open problems.

Remark 1.1. Many of the references above use Szemerédi’s regularity
lemma as their main tool to study quasi-random properties; it has been
known since [14] that quasi-randomness can be characterized using Sze-
merédi partitions. It is also well-known that there are strong connections
between Szemerédi’s regularity lemma and graph limits, see [1; 9; 7], so on
a deeper level the methods are related although they superficially look very
different. (It thus might be possible to translate arguments of one type
to the other, although it is far from clear how this might be done.) Both
methods lead also to the same (sometimes difficult) algebraic problems. As
discussed in [6], the method used here eliminates the many small error terms
in the regularity lemma approach; on the other hand, it leads to analytic
problems with no direct counterpart in the other approach. It is partly a
matter of taste what type of arguments one prefers.
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public, 2012; parts were also done during the workshop Combinatorics and
Probability at Mathematisches Forschungsinstitut Oberwolfach, 2013. We
thank the organisers for providing us with these opportunities.
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2. Notation, background and main results

All graphs in this paper are finite, undirected and simple. The vertex
and edge sets of a graph G are denoted by V (G) and E(G). We write
|G| := |V (G)| for the number of vertices of G, and e(G) := |E(G)| for the
number of edges. As usual, [n] := {1, . . . , n}.

All unspecified limits in this paper are as n→∞, and o(1) denotes a
quantity that tends to 0 as n→∞. We will often use o(1) for quantities that
depend on some subset(s) of a vertex set V (G); we then always implicitly
assume that the convergence is uniform for all choices of the subsets. We
interpret o(an) for a given sequence an similarly.

Let F and G be labelled graphs. For convenience, we assume throughout
the paper (when it matters) that V (F ) = [|F |] = {1, . . . , |F |}. We generally
let m = |F |.
Definition 2.1. (i) N(F,G) is the number of labelled copies of F in G
(not necessarily induced); equivalently, N(F,G) is the number of injective
maps ϕ : V (F )→ V (G) that are graph homomorphisms (i.e., if i and j are
adjacent in F , then ϕ(i) and ϕ(j) are adjacent in G).

(ii) If U1, . . . , U|F | are subsets of V (G), let N(F,G;U1, . . . , U|F |) be the
number of labelled copies of F in G with the ith vertex in Ui; equiv-
alently, N(F,G;U1, . . . , U|F |) is the number of injective graph homomor-
phisms ϕ : F → G such that ϕ(i) ∈ Ui for every i ∈ V (F ). (Note that we
consider a fixed labelling of the vertices of F and count the number of copies
where vertex i is in Ui, so the labelling and the ordering of U1, . . . , U|F | are
important.)

(iii) We also define a symmetrized version Ñ(F,G;U1, . . . , U|F |) by taking
the average over all labellings of F ; equivalently,

Ñ(F,G;U1, . . . , U|F |) :=
1

|F |!
∑
σ

N(F,G;Uσ(1), . . . , Uσ(|F |)), (2.1)

summing over all permutations σ of {1, . . . , |F |}.
In (ii) and (iii), we are often interested in the case when U1, . . . , U|F | are

pairwise disjoint, and then Ñ(F,G;U1, . . . , U|F |) is the number of labelled
copies of F in G with one vertex in each set Ui (in any order), divided by
1/|F |!.
Remark 2.2. If either U1 = · · · = U|F | or F = Km for some m, then

Ñ(F,G;U1, . . . , U|F |) := N(F,G;U1, . . . , U|F |), and the symmetrized version

Ñ is equal to N .

One of the several equivalent definitions of quasi-random graphs by Chung,
Graham and Wilson [4] is the following using the subgraph counts N(F,G):

Theorem 2.3 (Chung, Graham and Wilson [4]). A sequence of graphs (Gn)
with |Gn| → ∞ is p-quasi-random if and only if, for every graph F ,

N(F,Gn) = (pe(F ) + o(1))|Gn||F |. (2.2)
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�

It is not necessary to require (2.2) for all graphs F ; in particular, it suffices
to use the graphs K2 and C4 [4]. However, it is not enough to require (2.2)
for just one graph F . As a substitute, Simonovits and Sós [15] considered the
hereditary version of (2.2), i.e. the condition N(F,G;U, . . . , U) for subsets
U .

We note first that for quasi-random graphs, it is shown in [15] and [11]
that the restricted subgraph count N(F,G;U1, . . . , U|F |) is asymptotically
the same as it is for random graphs, for any subsets U1, . . . , U|F |. (For a
proof using graph limits, see Janson [6, Lemma 4.2].)

Lemma 2.4 ([15] and [11]). Suppose that (Gn) is a p-quasi-random sequence
of graphs, where 0 6 p 6 1, and let F be any fixed graph with e(F ) > 0.
Then, for all subsets U1, . . . , U|F | of V (Gn),

N(F,Gn;U1, . . . , U|F |) = pe(F )

|F |∏
i=1

|Ui|+ o
(
|Gn||F |

)
. (2.3)

and

Ñ(F,Gn;U1, . . . , U|F |) = pe(F )

|F |∏
i=1

|Ui|+ o
(
|Gn||F |

)
. (2.4)

�

Note that (2.4) is an immediate consequence of (2.3) by the definition
(2.1).

Conversely, Simonovits and Sós [15] showed that (2.3) implies that (Gn)
is p-quasi-random. Actually, they considered only the symmetric case U1 =
· · · = U|F | and proved the following stronger result. (In this case, (2.4) is
obviously equivalent to (2.3), see Remark 2.2.)

Theorem 2.5 (Simonovits and Sós [15]). Suppose that (Gn) is a sequence
of graphs with |Gn| → ∞. Let F be any fixed graph with e(F ) > 0 and let
0 < p 6 1. Then (Gn) is p-quasi-random if and only if, for all subsets U of
V (Gn), (2.3) holds with U1 = · · · = U|F | = U . �

Remark 2.6. The case F = K2, when N(K2, Gn;U) is twice the num-
ber of edges with both endpoints in U , is one of the original quasi-random
properties in Chung, Graham and Wilson [4].

Remark 2.7. Theorem 2.5 obviously fails when e(F ) = 0, since then (2.3)
holds trivially for any Gn. It fails also if p = 0; for example, if F = K3 and
Gn is the complete bipartite graph Kn,n.

In other words, Theorem 2.5 says that, if e(F ) > 0 and 0 < p 6 1,
then (2.3) and (2.4) (for arbitrary U1, . . . , U|F |) are both p-quasi-random
properties, and this holds also if we restrict U1, . . . , U|F | to U1 = · · · = U|F |.
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Several authors have considered other restrictions on U1, . . . , U|F | and
shown that (2.3) or (2.4) still is a quasi-random property.

Shapira [11] and Yuster [19] continued to consider U1 = · · · = U|F |, and
assumed further that |U1| = bα|Gn|c for some fixed α with 0 < α < 1; they
showed ([11] for α = 1/(|F | + 1) and [19] in general) that (2.3) for such
U1, . . . , U|F | is a quasi-random property. (The case F = K2 and α = 1/2 is
in Chung, Graham and Wilson [4].) Note that for such U1, . . . , U|F |, (2.4) is
equivalent to (2.3) by Remark 2.2.

The case when U1, . . . , U|F | are disjoint and furthermore have the same
size is considered by Shapira [11] and Shapira and Yuster [12]; they show
that (2.4) with this restriction also is a quasi-random property. (As a con-
sequence, (2.3) with this restriction is a quasi-random property.) Moreover,
by combining Shapira [11, Lemma 2.2] and the result of Yuster [19] just
mentioned, it follows that it suffices to consider disjoint U1, . . . , U|F | with
the same size bα|Gn|c, for any fixed α < 1/|F |.

We introduce some more notation.

Definition 2.8. Let F be a graph, m := |F | and (α1, . . . , αm) a vector of
positive numbers with

∑m
i=1 αi 6 1; let further p ∈ [0, 1]. We define the

following properties of graph sequences (Gn). (For convenience, we omit p
from the notations.)

(i) Let F be labelled. Then P(F ;α1, . . . , αm) is the property that (2.3)
holds for all disjoint subsets U1, . . . , Um of V (Gn) with |Ui| = bαi|Gn|c,
i = 1, . . . ,m.

(ii) Let F be unlabelled. Then P ′(F ;α1, . . . , αm) is the property that
P(F ;α1, . . . , αm) holds for every labelling of F .

(iii) Let F be unlabelled. Then P̃(F ;α1, . . . , αm) is the property that (2.4)
holds for all U1, . . . , Um as in (i).

Of course, we can use P ′ and P̃ also for a labelled F by ignoring the
labelling.

Remark 2.9. If F = Km, then all labellings of F are equivalent, and the

three properties P(F ;α1, . . . , αm), P ′(F ;α1, . . . , αm) and P̃(F ;α1, . . . , αm)

are equivalent. In general, P ′(F ;α1, . . . , αm) =⇒ P̃(F ;α1, . . . , αm) by the

definition of Ñ as an average of N over all labellings of F , but we do not
know whether the converse implication always holds.

Furthermore, for a fixed labelling of F , P ′(F ;α1, . . . , αm) is equivalent to
the conjunction of P(F ;ασ(1), . . . , ασ(m)) for all permutations (ασ(1), . . . , ασ(m))
of (α1, . . . , αm). In particular, if α1 = · · · = αm, then P ′(F ;α1, . . . , αm)
equals P(F ;α1, . . . , αm), for any labelling.

In general, trivially P ′(F ;α1, . . . , αm) =⇒ P(F ;α1, . . . , αm) for a la-
belled graph F , but we do not know whether the converse holds. Nor do we

know any general implications between P(F ;α1, . . . , αm) and P̃(F ;α1, . . . , αm).
See further Remark 2.14.
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Using this notation, it thus follows from Shapira [11] and Yuster [19]

that, for any graph F with e(F ) > 0 and 0 < p 6 1, P̃(F ;α, . . . , α) is
a quasi-random property for every α < 1/|F |. This can also be proved
by the methods of Janson [6], where the somewhat weaker statement that
P(F ;α, . . . , α) is a quasi-random property for every α < 1/|F | is shown [6,
Theorem 3.6]. We show here a more general statement in Theorem 2.11
below.

Example 2.10. For F = K2, P̃(K2, α1, α2) = P(K2, α1, α2) says that
(asymptotically) the number of edges e(U1, U2) is as expected in G(n, p)
for any two disjoint sets U1, U2 with Ui = bαi|Gn|c. Chung and Graham [3]
showed that the cut property P(K2;α, 1 − α) is a quasi-random property
for every fixed α ∈ (0, 1) except α = 1/2, when it is not; see further Janson
[6, Section 9]. Simonovits and Sós [15] showed that P(K2, 1/3, 1/3) is a
quasi-random property.

Shapira and Yuster [13, Proposition 14] showed (as a consequence of re-
lated results for cuts in hypergraphs) that P(Km, α1, . . . , αm) is a quasi-
random property, for every m > 2 and (α1, . . . , αm) 6= (1/m, . . . , 1/m) with∑m

i=1 αi = 1. This can easily be extended to subgraph counts for arbitrary
graphs F with e(F ) > 0; we give a proof using our methods in Section 6.

Theorem 2.11. Let F be a graph with e(F ) > 0, and let 0 < p 6 1.
Further, let (α1, . . . , αm) be a vector of positive numbers of length m = |F |
with

∑m
i=1 αi 6 1.

(i) If (α1, . . . , αm) 6= (1/m, . . . , 1/m), then P̃(F ;α1, . . . , αm) and the stronger
P ′(F ;α1, . . . , αm) are quasi-random properties.

(ii) If
∑m

i=1 αi < 1, then P(F ;α1, . . . , αm) is a quasi-random property.

The exceptional case α1 = · · · = αm = 1/m is more complicated; Shapira
and Yuster [13] showed that the related hypergraph cut property used by
them to prove Theorem 2.11 fails in this case; nevertheless, Huang and Lee
[5] showed that also P(Km, 1/m, . . . , 1/m) is a quasi-random property for
any m > 3. (For m = 2 it is not, see Example 2.10.)

We give a new proof of their theorem in Section 7 and extend the result
to counts of several other subgraphs. With our methods using graph limits,
the crucial fact is that while the central analytic Lemma 4.1 does not gen-
eralize to the case (α1, . . . , αm) = (1/m, . . . , 1/m), there is a weaker version
Lemma 4.3 that holds in this case, and this is sufficient to draw the conclu-
sion with some extra algebraic work. We have so far not succeded to extend
the final, algebraic, part to all graphs F , but we can prove the following, see
Section 7. (Section 7 contains also some further examples of small graphs
F for which the conclusion holds.)

Theorem 2.12. Let F be a graph with e(F ) > 1 and m = |F |. Let also
0 < p 6 1. If F is either a regular graph or a star, or disconnected, then

P(F ; 1/m, . . . , 1/m) and the weaker P̃(F ; 1/m, . . . , 1/m) are quasi-random
properties.
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One indication that this theorem is more complicated than Theorem 2.11
is that the conclusion is false for F = K2 by Example 2.10, and slightly
more generally when e(F ) 6 1. We conjecture that this is the only coun-
terexample.

Conjecture 2.13. Theorem 2.12 holds for any graph F with e(F ) > 1.

Remark 2.14. When F 6= Km, the relation between the properties P (non-

averaged) and P̃ (averaged) is not completely clear. (For F = Km, these
properties coincide, see Remark 2.9.)

Consider first α1 = · · · = αm = 1/m as in Theorem 2.12. Then P =

P ′ =⇒ P̃. (See Remark 2.9 again.) For a graph F such that Theorem 2.12
applies, the theorem implies that the properties are equivalent, but as said
above, we do not know whether that holds in general. In principle, it should
be easier to show that the property P(F ; 1/m, . . . , 1/m) is p-quasi-random

than to show that the weaker (averaged) property P̃(F ; 1/m, . . . , 1/m) is;
it is even conceivable that there exists a counterexample to Conjecture 2.13
such that nevertheless P(F ; 1/m, . . . , 1/m) is p-quasi-random. However, our
method of proof uses Lemma 4.3 below which assumes that the function f

there is symmetric, and hence our proofs use the symmetric P̃(F ; 1/m, . . . , 1/m)
and we are not able to use the extra power of P(F ; 1/m, . . . , 1/m). For ex-

ample, we cannot answer the following question. (Cf. Section 5 for P̃(F ;
1/m, . . . , 1/m).) A 2-type graphon is a graphon that is constant on the sets
Si × Sj , i, j ∈ {1, 2}, for some partition [0, 1] = S1 ∪ S2 into two disjoint
sets; we can without loss of generality assume that the sets Si are inter-
vals. (Equivalently, we may regard W as a graphon defined on a two-point
probability space.)

Problem 2.15. If F is such that P(F ; 1/m, . . . , 1/m) is not p-quasi-random,
is there always a 2-type graphon witnessing this?

For other sequences α1, . . . , αm, we note first that if
∑m

i=1 αi < 1, then

Theorem 2.11 shows that both P and P̃ are quasi-random properties, and
thus equivalent. Similarly, if

∑m
i=1 αi = 1 but (α1, . . . , αm) 6= (1/m, . . . , 1/m),

then P̃ is quasi-random by Theorem 2.11, and thus P̃ =⇒ P. However, we
do not know whether the converse holds:

Problem 2.16. Suppose that F is a labelled graph with e(F ) > 0, that
0 < p 6 1 and that

∑m
i=1 αi = 1 but (α1, . . . , αm) 6= (1/m, . . . , 1/m). Is

then P(F ;α1, . . . , αm) a quasi-random property?

If there is any case such that the answer to this problem is negative, we
can ask the same question as in Problem 2.15:

Problem 2.17. If F and (α1, . . . , αm) are such that P(F ;α1, . . . , αm) is
not p-quasi-random, is there always a 2-type graphon witnessing this?

Example 2.18. Let F = P3 = K1,2, for definiteness labelled with edges 12
and 13, and consider the property P(F ;α1, α2, α3). If α1 + α2 + α3 < 1,
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then the property is quasi-random by Theorem 2.11; thus assume α1 +α2 +
α3 = 1. In the case α1 = α2 = α3 = 1/3, the property is quasi-random
by Theorem 2.12. We can show this also in the case α2 6= α3, using the
symmetry of P3, see Remark 6.1. However, we do not know if this extends
to α2 = α3, for example in the following case:

Problem 2.19. Is (with the labelling above) P(P3,
1
2 ,

1
4 ,

1
4) a quasi-random

property?

Remark 2.20. We have considered the subgraph countsN(F,Gn;U1, . . . , Um)

and Ñ(F,Gn;U1, . . . , Um) in two cases: either U1 = · · · = Um (as in [15])
or U1, . . . , Um are disjoint. It also seems interesting to consider other, in-
termediate, cases of restrictions. This is discussed in Section 9, where we in
particular consider, as a typical example, the case U1 = U2 and U1∩U3 = ∅.

Remark 2.21. We consider in this paper not necessarily induced copies of
a fixed graph F . There are also similar results for counts of induced copies
of F , but these are more complicated and less complete, see Simonovits and
Sós [16], Shapira and Yuster [12] and Janson [6]. We hope to return to the
induced case, but leave it for now as an open problem:

Problem 2.22. Are there analogues of Theorems 2.11 and 2.12 for the
induced case?

3. Transfer to graph limits

We introduce some further notation:
The support of a function ψ is the set supp(ψ) := {x : ψ(x) 6= 0}.
λ denotes Lebesgue measure.
All functions are supposed to be (Lebesgue) measurable.
If F is a labelled graph and W a graphon, we define

ΨF,W (x1, . . . , x|F |) :=
∏

ij∈E(F )

W (xi, xj). (3.1)

If f is a function on [0, 1]m for some m, we let f̃ denote its symmetrization
defined by

f̃(x1, . . . , xm) :=
1

m!

∑
σ∈Sm

f
(
xσ(1), . . . , xσ(m)

)
, (3.2)

where Sm is the symmetric group of all m! permutations of {1, . . . ,m}.
The connection between the subgraph count properties and properties of

graph limits is given by the following lemma.

Lemma 3.1. Suppose that Gn →W for some graphon W . Let F be a fixed
graph, let m := |F | and let γ > 0 and α1, . . . , αm ∈ (0, 1) be fixed numbers
with

∑m
i=1 αi 6 1. Then the following are equivalent:
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(i) For all disjoint subsets U1, . . . , U|F | of V (Gn) with |Ui| = bαi|Gn|c,

N(F,Gn;U1, . . . , U|F |) = γ

|F |∏
i=1

|Ui|+ o
(
|Gn||F |

)
. (3.3)

(ii) For all disjoint subsets A1, . . . , A|F | of [0, 1] with λ(Ai) = αi,∫
A1×···×A|F |

ΨF,W (x1, . . . , x|F |) = γ

|F |∏
i=1

λ(Ai). (3.4)

The same holds if we replace N in (i) and ΨF,W in (ii) by the symmetrized

versions Ñ and Ψ̃F,W .

Proof. The case with N and ΨF,W and with α1 = · · · = αm < 1/|F | is part of
Janson [6, Lemma 7.2]. The case of general α1, . . . , αm, and the symmetrized

version with Ñ and Ψ̃F,W are proved in exactly the same way. �

With this lemma in mind, we make the following definitions corresponding
to Definition 2.8.

Definition 3.2. Let, as in Definition 2.8, F be a graph, m := |F |, (α1, . . . , αm)
a vector of positive numbers with

∑m
i=1 αi 6 1, and p ∈ [0, 1]. We define the

following properties of graphons W .

(i) P∗(F ;α1, . . . , αm) is the property that∫
A1×···×Am

ΨF,W (x1, . . . , xm) = pe(F )
m∏
i=1

λ(Ai), (3.5)

for all disjoint subsets A1, . . . , Am of [0, 1] with λ(Ai) = αi, i =
1, . . . ,m.

(ii) P ′∗(F ;α1, . . . , αm) is the property that P∗(F ;α1, . . . , αm) holds for ev-
ery labelling of F .

(iii) P̃∗(F ;α1, . . . , αm) is the property that∫
A1×···×Am

Ψ̃F,W (x1, . . . , xm) = pe(F )
m∏
i=1

λ(Ai) (3.6)

for all A1, . . . , Am as in (i).

Definition 3.3. A property of graphonsW is quasi-random if every graphon
W that satisfies it is a.e. equal to a constant. Furthermore, the property is
p-quasi-random if it is satisfied only by graphons W that are a.e. equal to
p.

We can now use standard arguments to translate our problem from graph
sequences to graphons. Recall that m := |F |.

Lemma 3.4. For any given graph F , p ∈ [0, 1] and α1, . . . , αm ∈ (0, 1)
with

∑m
i=1 αi 6 1, the property P(F ;α1, . . . , αm) (of graph sequences) is
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p-quasi-random if and only if the property P∗(F ;α1, . . . , αm) (of graphons)
is.

Similarly, the property P ′(F ;α1, . . . , αm) is p-quasi-random if and only if

the property P ′∗(F ;α1, . . . , αm) is, and P̃(F ;α1, . . . , αm) is p-quasi-random

if and only if P̃∗(F ;α1, . . . , αm) is.

Proof. Suppose that P(F ;α1, . . . , αm) is p-quasi-random, and let W be a
graphon satisfying P∗(F ;α1, . . . , αm). Let (Gn) be any sequence of graphs

converging to W . By assumption, Lemma 3.1(ii) holds with γ = pe(F ), and
thus Lemma 3.1 shows that (3.3) holds for all disjoint U1, . . . , Um with |Ui| =
bαi|Gn|c. In other words, (Gn) satisfies the property P(F ;α1, . . . , αm), and
since this property was assumed to be p-quasi-random, the sequence (Gn)
is p-quasi-random, and thus Gn → Wp, where Wp = p everywhere. Since
Gn →W , this implies W = Wp = p a.e.

Conversely, suppose that P∗(F ;α1, . . . , αm) is p-quasi-random, and let
(Gn) be a graph sequence satisfying P(F ;α1, . . . , αm). This means that

Lemma 3.1(i) holds with γ = pe(F ). Consider a subsequence of (Gn) that
converges to some graphon W . Lemma 3.1 then shows that (3.4) holds for
all disjoint A1, . . . , Am with λ(Ai) = αi. In other words, W satisfies the
property P∗(F ;α1, . . . , αm), and since this property was assumed to be p-
quasi-random, W = p a.e. Consequently, every convergent subsequence of
(Gn) converges to the constant graphon Wp = p. Since every subsequence
has convergent subsubsequences, it follows that the full sequence (Gn) con-
verges to Wp, i.e., (Gn) is p-quasi-random.

The same proof works for P̃(F ;α1, . . . , αm) and P̃∗(F ;α1, . . . , αm). �

In the rest of the paper we analyze the graphon properties P∗(F ;α1, . . . , αm)

and P̃∗(F ;α1, . . . , αm).

4. The analytic part

Janson [6] proved the following lemma:

Lemma 4.1 ([6, Lemma 7.3]). Let m > 1 and α ∈ (0, 1). Suppose that f is
an integrable function on [0, 1]m such that

∫
A1×···×Am f = 0 for all sequences

A1, . . . , Am of measurable subsets of [0, 1] such that λ(A1) = · · · = λ(Am) =
α. Then f = 0 a.e.

Moreover, if α < m−1, it is enough to consider disjoint A1, . . . , Am.

It was remarked in [6, Remark 7.4] that the second part (disjoint subsets)
of this lemma fails when α = 1/m, i.e., when we consider partitions of [0, 1]
into m disjoint sets of equal measure 1/m (we call these equipartitions); a
simple counterexample is provided by the following lemma.

Lemma 4.2. Let m > 1. Suppose that

f(x1, . . . , xm) = g(x1) + · · ·+ g(xm) (4.1)
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for some integrable function g on [0, 1] with
∫ 1

0 g = 0. Then f is a symmetric
integrable function on [0, 1]m and∫

A1×···×Am
f = 0 (4.2)

for all partitions {A1, . . . , Am} of [0, 1] into m disjoint measurable subsets
such that λ(A1) = · · · = λ(Am) = 1/m. �

Proof. If {A1, . . . , Am} is an equipartition of [0, 1], then∫
A1×···×Am

f(x1, . . . , xm) =
m∑
i=1

( 1

m

)m−1
∫
Ai

g(xi) dxi

= m1−m
m∑
i=1

∫
Ai

g(x) dx = m1−m
∫ 1

0
g(x) dx = 0. (4.3)

�

Moreover, it was shown in [6, Proof of Lemma 9.4 and the comments
after it], see also [6, Lemma 10.3], that if m = 2 and f is symmetric with∫
A1×A2

f = 0 for every equipartition {A1, A2}, then f has to be of the form

(4.1) a.e. We shall here extend this to any m, thus showing that the converse
to Lemma 4.2 holds.

Lemma 4.3. Let m > 1. Suppose that f : [0, 1]m → C is a symmetric
integrable function such that ∫

A1×···×Am
f = 0 (4.4)

for all partitions {A1, . . . , Am} of [0, 1] into m disjoint measurable subsets
such that λ(A1) = · · · = λ(Am) = 1/m. Then

f(x1, . . . , xm) = g(x1) + · · ·+ g(xm) a.e. (4.5)

for some integrable function g on [0, 1] with
∫ 1

0 g = 0.

Proof. The lemma is trivial when m = 1. The case m = 2 is, as said above,
proved in [6], but for completeness, we repeat the argument:

Let f1(x) :=
∫ 1

0 f(x, y) dy. Then, for every subset A ⊂ [0, 1] with λ(A) =
1/2, (4.4) with A1 := A and A2 := [0, 1] \A yields

0 =

∫
A1×A2

f(x, y) dx dy =

∫
A×[0,1]

f(x, y) dx dy −
∫
A×A

f(x, y) dx dy

=

∫
A
f1(x) dx−

∫
A×A

f(x, y) dx dy

=

∫
A×A

(
f1(x) + f1(y)− f(x, y)

)
dx dy.

(4.6)
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The integrand in the last integral is symmetric, and it follows by [6, Lemma
7.6] that it vanishes a.e., which proves (4.5) with g = f1; moreover, arguing
as in (4.3), for any equipartition {A1, A2} of [0,1],

0 =

∫
A1×A2

f(x, y) dx dy =
1

2

∫ 1

0
g(x) dx, (4.7)

and thus
∫ 1

0 g = 0, completing the proof when m = 2.
Thus suppose in the remainder of the proof that m > 3.

Step 1: Fix a subset B ⊂ [0, 1] with measure λ(B) = 2/m, and fix an
equipartition of the complement [0, 1] \ B into m − 2 sets A3, . . . , Am of
equal measure 1/m. Let

f2(x1, x2) :=

∫
A3×···×Am

f(x1, x2, . . . , xm) dx3 · · · dxm. (4.8)

Then the assumption (4.4) says that for any equipartition B = A1 ∪ A2 of
B into two disjoint subsets of equal measure,∫

A1×A2

f2(x1, x2) dx1 dx2 = 0. (4.9)

The set B is, as a measure space, isomorphic to [0, 2/m], and by a trivial
rescaling, the case m = 2 shows that there exists an integrable function h
on B with

∫
B h = 0 such that

f2(x1, x2) = h(x1) + h(x2), a.e. x1, x2 ∈ B. (4.10)

This means that if ψ1 and ψ2 are bounded functions on [0, 1] such that∫ 1
0 ψ1 =

∫ 1
0 ψ2 = 0 and supp(ψ1) ∪ supp(ψ2) ⊆ B, then∫

[0,1]m
f(x1, . . . , xm)ψ1(x1)ψ2(x2)1A3(x3) · · ·1Am(xm) dx1 · · · dxm

=

∫
B×B

f2(x1, x2)ψ1(x1)ψ2(x2) dx1 dx2

=

∫
B
h(x1)ψ1(x1) dx1

∫
B
ψ2(x2) dx2 +

∫
B
ψ1(x1) dx1

∫
B
h(x2)ψ2(x2) dx2

= 0. (4.11)

Step 2: Let us instead start with two bounded functions ψ1 and ψ2 on [0, 1]

such that
∫ 1

0 ψ1 =
∫ 1

0 ψ2 = 0, and assume that λ(supp(ψ1))+λ(supp(ψ2)) <
2/m. Let B0 := supp(ψ1) ∪ supp(ψ2) and Bc

0 := [0, 1] \ B0. Then λ(B0) <
2/m and λ(Bc

0) = 1− λ(B0) > (m− 2)/m.
Define

f3(x3, . . . , xm) :=

∫
[0,1]2

f(x1, x2, . . . , xm)ψ1(x1)ψ2(x2) dx1 dx2. (4.12)
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For any disjoint sets A3, . . . , Am ⊂ Bc
0 with λ(A3) = · · · = λ(Am) = 1/m,

we can use Step 1 with B := [0, 1]\
⋃m

3 Ai ⊃ B0 and conclude by (4.11) that∫
A3×···×Am

f3(x3, . . . , xm) = 0. (4.13)

The set Bc
0 is, as a measure space up to a trivial rescaling of the measure,

isomorphic to [0, 1]. Since λ(Bc
0) > (m− 2)/m, it follows by the second part

of Lemma 4.1 that (4.13) (for arbitrary A3, . . . , Am as above) implies

f3(x3, . . . , xm) = 0, a.e. x3, . . . , xm ∈ Bc
0. (4.14)

Step 3: Fix bounded functions ϕ3, . . . , ϕm on [0, 1]. For B ⊆ [0, 1], define

fB(x1, x2) :=

∫
(Bc)m−2

f(x1, . . . , xm)ϕ3(x3) · · ·ϕm(xm). (4.15)

If λ(B) > 0 and ψ1 and ψ2 are bounded functions with supp(ψν) ⊆ B,

λ(supp(ψν)) < 1/m and
∫ 1

0 ψν = 0, ν = 1, 2, then Step 2 shows, using
(4.15), (4.12) and (4.14), since B0 ⊆ B and thus Bc ⊆ Bc

0,∫
[0,1]2

fB(x1, x2)ψ1(x1)ψ2(x2) =

∫
(Bc)m−2

f3(x1, . . . , xm)ϕ3(x3) · · ·ϕm(xm)

= 0. (4.16)

Now suppose that B is open, and x1, x
′
1, x2, x

′
2 ∈ B. For small enough

ε > 0, the functions

ψν(x) :=
1

2ε

(
1(xν−ε,xν+ε)(x)− 1(x′ν−ε,x′ν+ε)(x)

)
, ν = 1, 2, (4.17)

satisfy the conditions above and thus (4.16) holds. Letting ε→ 0, it follows
that if (x1, x2), (x1, x

′
2), (x′1, x2), (x′1, x

′
2) are Lebesgue points of fB, then

fB(x1, x2)− fB(x1, x
′
2)− fB(x′1, x2) + fB(x′1, x

′
2) = 0. (4.18)

Thus, (4.18) holds for a.e. x1, x
′
1, x2, x

′
2 ∈ B.

Consider now the countable collection B of sets B ⊂ (0, 1) that are
unions of four open intervals with rational endpoints. It follows that for a.e.
x1, x

′
1, x2, x

′
2 ∈ [0, 1], (4.18) holds for every setB ∈ B such that x1, x

′
1, x2, x

′
2 ∈

B.
Consider such a 4-tuple x1, x

′
1, x2, x

′
2 ∈ [0, 1]. There exists a decreasing

sequence Bn of sets in B with
⋃∞

1 Bn = {x1, x
′
1, x2, x

′
2}. Then (4.18) holds

for each Bn, and by (4.15) and dominated convergence, fBn(x, y)→ f∅(x, y)
for all x, y ∈ [0, 1]; hence,

f∅(x1, x2)− f∅(x1, x
′
2)− f∅(x′1, x2) + f∅(x

′
1, x
′
2) = 0. (4.19)

Step 4: Let ϕ1, . . . , ϕm be bounded functions on [0, 1] such that
∫ 1

0 ϕ1 =∫ 1
0 ϕ2 = 0. Step 3 shows that (4.19) holds for a.e. x1, x

′
1, x2, x

′
2 ∈ [0, 1].

We may thus fix x′1, x
′
2 ∈ [0, 1] such that (4.19) holds for a.e. x1, x2. Then

multiply (4.19) by ϕ1(x1)ϕ2(x2) and integrate over x1, x2 ∈ [0, 1]. Since
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0 ϕ1 =

∫ 1
0 ϕ2 = 0, the integrals with the last three terms on the left-hand

side of (4.19) vanish, and the result is∫
[0,1]2

f∅(x1, x2)ϕ1(x1)ϕ2(x2) dx1 dx2 = 0. (4.20)

By the definition (4.15), this says∫
[0,1]m

f(x1, . . . , xm)ϕ1(x1)ϕ2(x2)ϕ3(x3) · · ·ϕm(xm) = 0. (4.21)

Step 5: We may conclude in several ways. The perhaps simplest is to take
ϕj(x) = e2πinjxj , j = 1, . . . ,m with nj ∈ Z and n1, n2 6= 0. Step 4 then
applies and (4.21) says that the Fourier coefficient

f̂(n1, . . . , nm) = 0 (4.22)

when n1, n2 6= 0. Since f is symmetric, it follows that f̂(n1, . . . , nm) = 0 as
soon as at least two of the indices n1, . . . , nm are non-zero.

Furthermore, let

g(x1) :=

∫
[0,1]m−1

f(x1, . . . , xm) dx2 · · · dxm −
∫

[0,1]m
f, (4.23)

and note that g is a function on [0, 1] with
∫ 1

0 g = 0, and let

h(x1, . . . , xm) :=
m∑
i=1

g(xi) +

∫
[0,1]m

f. (4.24)

Then ĥ(n1, . . . , nm) = 0 = f̂(n1, . . . , nm) as soon as at least two of the
indices n1, . . . , nm are non-zero. Moreover, when n1 6= 0,

ĥ(n1, 0, . . . , 0) =

∫
[0,1]m

h(x1, . . . , xn)e2πin1x1 = ĝ(n1) = f̂(n1, 0, . . . , 0)

(4.25)

and thus by symmetry ĥ(n1, . . . , nm) = f̂(n1, . . . , nm) also when exactly one

index n1, . . . , nm is non-zero. Finally, since
∫ 1

0 g(x) dx = 0,

ĥ(0, . . . , 0) =

∫
[0,1]m

h =

∫
[0,1]m

f = f̂(0, . . . , 0). (4.26)

Consequently, ĥ(n1, . . . , nm) = f̂(n1, . . . , nm) for all n1, . . . , nm and thus
h = f a.e.

Step 6: We have shown that a.e. f = h, given by (4.24). Let a :=
∫
f ; it

remains to show that a = 0. This is easy; using (4.24) and Lemma 4.2,∫
A1×···×Am

f =

∫
A1×···×Am

h =

∫
A1×···×Am

a = aλ(A1) · · ·λ(Am), (4.27)

and thus the assumption (4.4) yields a = 0. �
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Remark 4.4. As remarked in Janson [6, Remark 9.5], it is essential that
f is symmetric in Lemma 4.3 (unlike Lemma 4.1). For example, it is easily
seen that the condition (4.4) is also satisfied by every anti-symmetric f such
that the margin ∫ 1

0
f(x1, . . . , xm) dxm = 0 (4.28)

for a.e. x1, . . . , xm−1; in fact, (4.28) implies, for any partition {A1, . . . , Am},∫
A1×···×Am

f dx1 · · · dxm = −
m−1∑
k=1

∫
A1×···×Am−1×Ak

f dx1 · · · dxm = 0,

since each integral in the sum vanishes by the anti-symmetry. As a concrete
example, for any m > 2, we may take the modified discriminant

f(x1, . . . , xm) = e2πi(x1+···+xm)
∏
j<k

(
e2πixj − e2πixk

)
(4.29)

(or its real part).
For m = 2, it is easy to see that every f satisfying (4.4) for all equiparti-

tions {A1, . . . , Am} is the sum of a symmetric function satisfying (4.5) and
an anti-symmetric function satisfying (4.28), see [6, Remark 9.5]. For m > 3,
we do not know any characterization of general f satisfying (4.4), and we
leave that as an open problem:

Problem 4.5. Find all integrable functions f on [0, 1]m (not necessarily
symmetric) that satisfy (4.4) for all partitions {A1, . . . , Am} of [0, 1] into m
disjoint measurable subsets such that λ(A1) = · · · = λ(Am) = 1/m.

We end this section with another, much simpler, extension of Lemma 4.1
to α1, . . . , αm that may be different and possibly with

∑m
i=1 αi < 1, with

exception only of the exceptional case treated in Lemma 4.3 when all αi are
equal to 1/m.

Lemma 4.6. Let m > 1 and let α1, . . . , αm ∈ (0, 1) with
∑m

i=1 αi 6 1.
Suppose that f is an integrable function on [0, 1]m such that∫

A1×···×Am
f = 0 (4.30)

for all sequences A1, . . . , Am of disjoint measurable subsets of [0, 1] such that
λ(Ai) = αi, i = 1, . . . ,m. Suppose further that either

(i)
∑m

i=1 αi < 1, or
(ii)

∑m
i=1 αi = 1 but (α1, . . . , αm) 6= (1/m, . . . , 1/m), and f is symmetric.

Then f = 0 a.e.

Proof. The case m = 1 is included in Lemma 4.1. (For m = 1, (ii) cannot
occur.) The case (ii) with m = 2 is [6, Lemma 9.4]. The remaining cases
are proved by induction (on m) in the same way as the special case in [6,
Lemma 7.3]; we sketch the proof and refer to [6] for omitted details.
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We thus assumem > 2, and in the casem = 2 that (i) holds. Furthermore,
if (ii) holds, we may assume αm 6= αm−1 by permuting the coordinates.

We fix a set A1 with λ(A1) = α1 and consider the function

fA1(x2, . . . , xm) :=

∫
A1

f(x1, . . . , xm) dx1

on Bm−1 where B := [0, 1] \ A1. B is as a measure space isomorphic to
[0, 1], after rescaling the measure, and the hypothesis implies that fA1 sat-
isfies a corresponding hypothesis on Bm−1; hence fA1 = 0 a.e. on Bm−1 by
induction. It follows that (4.30) holds for all disjoint sets A1, . . . , Am with
λ(A1) = α1 and λ(A2), . . . , λ(Am) arbitrary.

Now instead fix any disjoint A2, . . . , Am with
∑m

i=2 λ(Ai) < 1 − α1, and
let B′ := [0, 1] \

⋃m
i=2Ai. Then (4.30) thus holds for any A1 ⊂ B′ with

λ(A1) = α1, and it follows from the case m = 1 applied to fA2,...,Am(x) :=∫
A2×···×Am f(x, x2, . . . , xm) dx2 · · · dxm that fA2,...,Am(x) = 0 a.e.; hence

(4.30) holds for all disjoint A1, . . . , Am with
∑m

i=2 λ(Ai) < 1 − α1. It fol-
lows that f(x1, . . . , xm) = 0 for every Lebesgue point (x1, . . . , xm) of f with
x1, . . . , xm distinct. �

Remark 4.7. In Lemma 4.6(ii), the assumption that f is symmetric is
essential, as is seen by the counterexample in Remark 4.4.

Remark 4.8. The proof shows that in the case
∑m

i=1 αi = 1, it suffices to
assume that f is symmetric in the last two variables, provided αm−1 6= αm.

We apply the results above to the property P̃∗(F ;α1, . . . , αm). By (3.6),

this property says that (4.30) holds for f := Ψ̃F,W − pe(F ) and all disjoint
subsets A1, . . . , Am of [0, 1] with λ(Ai) = αi, i = 1, . . . ,m.

Lemma 4.9. Let m > 1 and let α1, . . . , αm ∈ (0, 1) with
∑m

i=1 αi 6 1.
Suppose that W is a graphon and p ∈ [0, 1].

(a) If (α1, . . . , αm) 6= (1/m, . . . , 1/m), then P̃∗(F ;α1, . . . , αm) holds if and
only if

Ψ̃F,W (x1, . . . , xm) = pe(F ) a.e. (4.31)

(b) If (α1, . . . , αm) = (1/m, . . . , 1/m), then P̃∗(F ;α1, . . . , αm) holds if and

only if there exists an integrable function h with
∫ 1

0 h = pe(F )/m such
that

Ψ̃F,W (x1, . . . , xm) =

m∑
i=1

h(xi) a.e. (4.32)

Proof. Part (a) follows directly from (3.6) and Lemma 4.6, while (b) follows

from Lemmas 4.2 and 4.3, with h(x) = g(x) + pe(F )/m. �

We thus see that the exceptional case α1 = · · · = αm = 1/m in Theo-
rem 2.12 is more intricate than the cases covered by Theorem 2.11.

We note also a similar result for P∗.
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Lemma 4.10. If
∑m

i=1 αi < 1, then P∗(F ;α1, . . . , αm) holds if and only if

ΨF,W (x1, . . . , xm) = pe(F ) a.e. (4.33)

Proof. This too follows from (3.6) and Lemma 4.6. �

In this case we have to assume
∑m

i=1 αi < 1 for the proof, because ΨF,W

is (in general) not symmetric, cf. Remarks 4.7 and 4.4.

Problem 4.11. Does Lemma 4.10 hold also if
∑m

i=1 αi = 1 with (α1, . . . , αm)
6= (1/m, . . . , 1/m)?

5. Reduction to a two-type graphon

We next reduce the problem by showing that, as for the similar problem

considered by Simonovits and Sós [16], if the property P̃∗(F ;α1, . . . , αm)
is not quasi-random, then there exists a counterexample with a 2-type
graphon. This reduction reduces our problem to an algebraic one, which
we consider in the next section.

We state the reduction in a somewhat general form, to be used together
with Lemma 4.9, and we give two versions (Theorems 5.2 and 5.3), to handle
the two cases in parts (a) and (b) in Lemma 4.9. The proofs are given later
in this section.

Remark 5.1. Theorem 5.2 is an extension of Janson [6, Theorem 5.5], where
Φ is a multiaffine polynomial, which would be sufficient for our application
here. We nevertheless state Theorem 5.2 in order to show the similarities
between Theorems 5.2 and 5.3, and because we now can give a more elegant
proof of a more general statement than in [6], see Remark 5.9.

If Φ
(
(wij)i<j

)
is a function of the

(
m
2

)
variables wij , 1 6 i < j 6 m, for

some m > 2, and W is a graphon, we define, for x1, . . . , xm ∈ [0, 1],

ΦW (x1, . . . , xm) := Φ
(
(W (xi, xj))i<j

)
. (5.1)

Theorem 5.2. Suppose that Φ
(
(wij)i<j

)
is a continuous function of the(

m
2

)
variables wij, 1 6 i < j 6 m, for some m > 2, and let a ∈ R. Then the

following are equivalent.

(i) There exists a graphon W such that

ΦW (x1, . . . , xm) = a (5.2)

for a.e. x1, . . . , xm ∈ [0, 1], but W is not a.e. constant.
(ii) There exists a 2-type graphon W such that (5.2) holds for all x1, . . . , xm,

but W is not constant.
(iii) There exist numbers u, v, s ∈ [0, 1], not all equal, such that for every

subset A ⊆ [m], if we choose

wij :=


u, i, j ∈ A,
v, i, j /∈ A,
s, i ∈ A, j /∈ A or conversely,

(5.3)
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then

Φ((wij)i<j) = a. (5.4)

Theorem 5.3. Suppose that Φ
(
(wij)i<j

)
is a continuous function of the(

m
2

)
variables wij, 1 6 i < j 6 m, for some m > 2. Then the following are

equivalent.

(i) There exists a graphon W and a function h on [0, 1], with h not a.e.
0, such that

ΦW (x1, . . . , xm) =
m∑
i=1

h(xi) (5.5)

for a.e. x1, . . . , xm ∈ [0, 1], but W is not a.e. constant.
(ii) There exists a 2-type graphon W and a function h on [0, 1], with h not

a.e. 0, such that (5.5) holds for all x1, . . . , xm, but W is not constant.
(iii) There exist numbers u, v, s ∈ [0, 1], not all equal, and a, b ∈ R, not both

0, such that for every subset A ⊆ [m], if we choose

wij :=


u, i, j ∈ A,
v, i, j /∈ A,
s, i ∈ A, j /∈ A or conversely,

(5.6)

then

Φ((wij)i<j) = a+ b|A|. (5.7)

Remark 5.4. In part (ii) of Theorems 5.2–5.3, we may further require that
the two parts of [0, 1] are the intervals [0, 1

2 ] and (1
2 , 1]. Equivalently, we may

regard W as a graphon defined on the two-point probability space ({0, 1}, µ),
with µ{0} = µ{1} = 1

2 .

Remark 5.5. Theorem 5.3 holds also without the restrictions that h is not
a.e. 0, and a, b are not both 0; this follows by the same proof (with some
simplifications). Note that the excluded case, when h = 0 a.e. and a = b = 0,
is equivalent to Theorem 5.2. For our purposes, it is essential that the case
a = b = 0 is excluded, since there are such examples that have to be excluded
from our arguments, for example the bipartite example in Remark 2.7, which
corresponds to the case u = v = 0, s = 1 and Φ((wij)i<j) = 0 for any A.

The proofs follow the proof of Janson [6, Theorem 5.5], with some mod-
ifications. We prove the more complicated Theorem 5.3 in detail first, and
then sketch the similar but simpler proof of Theorem 5.2.

Proof of Theorem 5.3. (ii) =⇒ (i): Trivial.
(iii) =⇒ (ii): Define a 2-type graphon W by

W (x, y) :=


u, x, y > 1

2 ,

v, x, y 6 1
2 ,

s, x 6 1
2 < y or conversely,

(5.8)
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and let the function h be

h(x) :=

{
a/m, x 6 1

2 ,

a/m+ b, x > 1
2 .

(5.9)

Then
ΦW (x1, . . . , xm) = Φ((wij)i<j) (5.10)

where wij is given by (5.6) with A := {i : xi >
1
2}, and (5.5) follows from

(5.7).
(i) =⇒ (iii): Suppose that W is a graphon as in (i), but that (iii) does not

hold; we will show that this leads to a contradiction. We first use Lemma 5.8
below, which (by replacing W by W and h by h̄) shows that we may assume
that (5.5) holds for all x1, . . . , xm ∈ [0, 1].

Suppose that x, y ∈ [0, 1]. Given A ⊆ [m], let xi := x for i ∈ A and
xi := y for i /∈ A. Then W (xi, xj) = wij as given by (5.6) with u = W (x, x),
v = W (y, y), s = W (x, y). Furthermore, (5.5) holds by our assumption, and
thus

Φ((wij)i<j) = ΦW (x1, . . . , xm) =

m∑
i=1

h(xi) = |A|h(x) + (m− |A|)h(y)

= a+ b|A| (5.11)

with a = mh(y) and b = h(x) − h(y). Hence, (5.7) holds. Since (iii) does
not hold, we must have either u = v = s or a = b = 0. Note that a = b = 0
if and only if h(x) = h(y) = 0. Consequently, we have shown the following
property:

If x, y ∈ [0, 1], then W (x, x) = W (y, y) = W (x, y) or h(x) = h(y) = 0.
(5.12)

Furthermore, if W (x, x) = W (y, y) then (5.11), with A = ∅ and A = [m],
implies that

a = ΦW (y, . . . , y) = ΦW (x, . . . , x) = a+mb (5.13)

and thus b = 0 so h(x) = h(y). Consequently, (5.12) implies that

x, y ∈ [0, 1] =⇒ h(x) = h(y). (5.14)

In other words, h(x) = γ for some constant γ ∈ R.
Note that γ 6= 0, since otherwise h(x) would be 0 for all x, contrary to

the assumption (i). Hence, h(x) 6= 0 for all x and (5.12) implies

x, y ∈ [0, 1] =⇒ W (x, x) = W (y, y) = W (x, y). (5.15)

Thus W is constant, contradicting the assumption.
This contradiction shows that (iii) holds. �

Proof of Theorem 5.2. We argue as in the proof of Theorem 5.3, with b = 0
and h(x) = a/m; in the proof of (i) =⇒ (iii) we use Lemma 5.7 instead of
Lemma 5.8, and note directly that (5.11) with b = 0, which is (5.4), implies
u = v = s since (iii) is assumed not to hold. �
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Remark 5.6. In both proofs, the proof of (iii) =⇒ (ii) also works in the
opposite direction and thus shows (iii) ⇐⇒ (ii) directly; (iii) is just an
explicit version of what (ii) means.

The proofs used the following technical lemmas, which both are conse-
quences of a recent powerful general removal lemma by Petrov [10]. Recall
that a graphon W is a version of W if W = W a.e.

Lemma 5.7. Suppose that Φ
(
(wij)i<j

)
is a continuous function of the

(
m
2

)
variables wij ∈ [0, 1], 1 6 i < j 6 m, for some m > 2. Suppose further that
W : [0, 1]2 → [0, 1] is a graphon, i.e., a symmetric measurable function, and
suppose that

ΦW (x1, . . . , xm) = a (5.16)

for some a ∈ R and a.e. x1, . . . , xm ∈ [0, 1]. Then there is a version W of
W such that

ΦW (x1, . . . , xm) = a (5.17)

for all x1, . . . , xm ∈ [0, 1].

Proof. This is a direct application of [10, Theorem 1(2)], see [10, Example

1]. We let M := Φ−1(a) ⊆ [0, 1](
m
2 ) and note that (5.16) can be written(

W (xi, xj)
)
i<j
∈M for a.e. x1, . . . , xm. By [10, Theorem 1(2)], there exists

a version W of W such that
(
W (xi, xj)

)
i<j
∈ M for all x1, . . . , xm, which

is (5.17). (Petrov’s theorem is stated for an infinite sequence x1, x2, . . . , for
maximal generality, but we can always ignore all but any given finite number
of the variables.) �

Lemma 5.8. Suppose that Φ
(
(wij)i<j

)
is a continuous function of the

(
m
2

)
variables wij ∈ [0, 1], 1 6 i < j 6 m, for some m > 2. Suppose further that
W : [0, 1]2 → [0, 1] is a graphon, i.e., a symmetric measurable function, and
suppose that

ΦW (x1, . . . , xm) =

m∑
i=1

h(xi) (5.18)

for some h : [0, 1]→ R and a.e. x1, . . . , xm ∈ [0, 1]. Then there is a version
W of W and a measurable function h̄ : [0, 1]→ R such that

ΦW (x1, . . . , xm) =

m∑
i=1

h̄(xi) (5.19)

for all x1, . . . , xm ∈ [0, 1].

Proof. We translate (5.18) into the setting of [10] as follows.
By (5.18), for a.e. x1, . . . , xm, y1, . . . , ym ∈ [0, 1],

ΦW (x1, . . . , xm)− ΦW (y1, . . . , ym)

=

m∑
`=1

(
ΦW (x`, y1, . . . , ŷ`, . . . , ym)− ΦW (y1, . . . , . . . , ym)

)
, (5.20)
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where ŷ` means that this variable is omitted. Let xm+i := yi (1 6 i 6 m)
and wij := W (xi, xj) (1 6 i, j 6 2m). Then (5.20) can be written as

Φ̂
(

(wij)i 6=j

)
= 0 (5.21)

for some continuous function Φ̂ : [0, 1]2m(2m−1) → R. Let

M := Φ̂−1(0) ⊆ [0, 1]2m(2m−1). (5.22)

Since Φ̂ is continuous, M is a closed subset, and by (5.21),(
W (xi, xj)

)
i 6=j ∈M (5.23)

for a.e. x1, . . . , x2m. By [10, Theorem 1(2)], there exists a version W of W
such that (

W (xi, xj)
)
i 6=j ∈M (5.24)

for all x1, . . . , x2m. This means that Φ̂
(
(W (xi, xj))i 6=j

)
= 0 for all x1, . . . , x2m,

and thus the analogue of (5.20) for W holds for all x1, . . . , xm, y1, . . . , ym.
Now choose y1 = · · · = ym = 0. Then this analogue of (5.20) yields (5.19)
with h̄(x) = ΦW (x, 0, . . . , 0)− m−1

m ΦW (0, . . . , 0). �

Remark 5.9. Lemma 5.7, which follows from Petrov’s removal lemma [10],
is a simpler, stronger and more general version of Janson [6, Lemma 5.3].
Similarly, a modification of the proof of [6, Lemma 5.3] can be used to prove
a weaker version of Lemma 5.8; however, Petrov’s removal lemma enables
us to a simpler and stronger statement with a simpler proof.

6. An algebraic condition

It is now easy to prove Theorem 2.11.

Proof of Theorem 2.11. (i): Suppose, in order to get a contradiction, that

the property P̃(F ;α1, . . . , αm) is not p-quasi-random. By Lemma 3.4, also

P̃∗(F ;α1, . . . , αm) is not p-quasi-random. That means that there exists a

graphon W that is not a.e. equal to p such that P̃∗(F ;α1, . . . , αm) holds,
and thus by Lemma 4.9(a),

Ψ̃F,W (x1, . . . , xm) = pe(F ) a.e. (6.1)

If W a.e. equals a constant, w say, then Ψ̃F,W = we(F ) a.e., and thus we(F ) =

pe(F ) and w = p, so W = p a.e. which we have excluded. Hence, W is not
a.e. constant.

Note that Ψ̃F,W (x1, . . . , xm) by (3.1)–(3.2) is a polynomial in W (xi, xj),
1 6 i < j 6 m, and thus by (5.1) can be written as ΦW (x1, . . . , xm) for a

suitable polynomial Φ. We apply Theorem 5.2, with a = pe(F ). By (6.1),
Theorem 5.2(i) holds, and thus Theorem 5.2(iii) holds. Let u, v, s be as
there, and define wij by (5.3).

Choosing A = [m], we have wij = u for all i and j, and it is easily seen

that Φ
(
(wij)i<j

)
= ue(F ) (see also Lemma 6.2 below); hence (5.4) yields
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u = p. Similarly, the case A = ∅ yields v = p. Finally, take A = {1}, and
regard Φ

(
(wij)i<j

)
as a polynomial in s. Since u, v > 0 and e(F ) > 0, this

polynomial has non-negative coefficients and at least one non-zero term with
a positive power of s; hence the polynomial is strictly increasing in s > 0,
so (5.4) has at most one root s. However, when u = v = p, (5.4) is satisfied
by s = p, and thus this is the only root. Consequently, u = v = s = p, a
contradiction, which completes the proof.

(ii): Similar, using Lemmas 3.4 and 4.10 and Theorem 5.2. �

Remark 6.1. Suppose that the graph F contains two vertices that are twins,
i.e., such that the map interchanging these vertices and fixing all others is
an automorphism. Label F such that the twins are vertices m − 1 and m.
The argument in the proof of Theorem 2.11 shows, using Remark 4.8, that
P(F ;α1, . . . , αm) is quasi-random provided αm−1 6= αm. (We do not know
whether this extends to αm = αm−1. Cf. Problem 4.11.) In particular, this
applies to F = P3, see Example 2.18 and Problem 2.19.

For Theorem 2.12, the algebra is more complicated, and we analyse the
condition (5.7) as follows.

For a subset A of V (F ), let eF (A) be the number of edges in F with
both endpoints in A; similarly, if A and B are disjoint subsets of V (F ), let
eF (A,B) be the number of edges with one endpoint in A and the other in
B. Further, let Ac := V (F ) \A be the complement of A.

Lemma 6.2. Suppose that F is a graph with |F | = m and let W be the
2-type graphon given by (5.8) for some u, v, s ∈ [0, 1]. Let x1, . . . , xm ∈ [0, 1]
and let k := |{i 6 m : xi > 1/2}|. Then

Ψ̃F,W (x1, . . . , xm) =

(
m

k

)−1 ∑
A⊆V (F ):|A|=k

ueF (A)veF (Ac)seF (A,Ac). (6.2)

Proof. Let A := {i 6 m : xi > 1/2}. Then by (3.1) and (5.8),

ΨF,W (x1, . . . , xm) = ueF (A)veF (Ac)seF (A,Ac). (6.3)

By (3.2), Ψ̃F,W (x1, . . . , xm) is the average of this over all permutations of
x1, . . . , xm, which means taking the average over the

(
m
k

)
sets A ⊆ [m] with

|A| = k. �

Lemma 6.3. Suppose that F is a graph with |F | = m. Then the following
are equivalent.

(i) For some p ∈ (0, 1], P̃(F ; 1/m, . . . , 1/m) is not p-quasi-random.

(ii) For some p ∈ (0, 1], P̃∗(F ; 1/m, . . . , 1/m) is not p-quasi-random.
(iii) There exist numbers u, v, s > 0, not all equal, and some real a and b,

not both 0, such that∑
A⊆V (F ):|A|=k

ueF (A)veF (Ac)seF (A,Ac) =

(
m

k

)
(a+ bk), k = 0, . . . ,m.

(6.4)
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(iv) There exist numbers u, v, s > 0, not all equal, such that the polynomial
(in q)

ΛF ;u,v,s(q) :=
∑

A⊆V (F )

ueF (A)veF (Ac)seF (A,Ac)q|A|(1− q)m−|A| (6.5)

has degree at most 1, but does not vanish identically.
(v) There exist numbers u, v, s > 0, not all equal, such that the polynomial

(in x)

Λ̂F ;u,v,s(x) :=
∑

A⊆V (F )

ueF (A)veF (Ac)seF (A,Ac)(x− 1)|A| (6.6)

is divisible by xm−1, but does not vanish identically.

Note that (for q ∈ [0, 1]) ΛF ;u,v,s(q) is the expectation of ueF (A)veF (Ac)seF (A,Ac)

if A is the random subset [m]q of [m] obtain by including each element with
probability q, independently of each other.

Proof. (i)⇐⇒ (ii): This is contained in Lemma 3.4.
(ii) =⇒ (iii): If (ii) holds, then there exists a graphon W that is not a.e.

constant for which P̃∗(F ; 1/m, . . . , 1/m) holds. Then, by Lemma 4.9(b),

there exists an integrable function h with
∫ 1

0 h 6= 0 such that (4.32) holds.

As in the proof of Theorem 2.11, Ψ̃F,W (x1, . . . , xm) can be written as
ΦW (x1, . . . , xm) for a polynomial Φ. Then (4.32) is the same as (5.5) and
Theorem 5.3(i) holds. By Theorem 5.3 (and its proof) we may assume that
W is a 2-type graphon given by (5.8) for some u, v, s ∈ [0, 1], and then
Lemma 6.2 and (5.10) show that (5.7) is equivalent to (6.4), and thus (iii)
follows.

(iii) =⇒ (ii): This is similar but simpler. We may assume that u, v, s ∈
[0, 1], by multiplying them by a small positive number if necessary. Let
W be the graphon defined by (5.8). Then Lemma 6.2 and (6.4) yield

Ψ̃F,W (x1, . . . , xm) = a + bk where k = |{i : xi > 1/2}, so (4.32) holds
with h given by (5.9).

We have assumed that a and b are not both 0, and thus h(x) is not

identically 0. Furthermore, (4.32) implies h(x) > 0 a.e., and thus
∫ 1

0 h > 0.

Since Ψ̃F,W 6 1, (4.32) also implies
∫ 1

0 h 6 1/m. Hence there exists p ∈
(0, 1] with pe(F ) = m

∫ 1
0 h. (Also in the trivial case e(F ) = 0, since then

Ψ̃F,W = 1.) Lemma 4.9 now shows that P̃∗(F ; 1/m, . . . , 1/m) holds, and
since W is not a.e. constant, this yields (ii).

(iii) ⇐⇒ (iv): By multiplying (6.4) by tk and summing over k, we see
that (6.4) is equivalent to∑

A⊆V (F )

ueF (A)veF (Ac)seF (A,Ac)t|A| =
m∑
k=0

(
m

k

)
(a+ bk)tk, t ∈ R. (6.7)
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Letting t = q/(1− q) and multiplying by (1− q)m, this is equivalent to∑
A⊆V (F )

ueF (A)veF (Ac)seF (A,Ac)q|A|(1−q)m−|A| =
m∑
k=0

(
m

k

)
(a+bk)qk(1−q)m−k

where the right hand side equals a + bmq by an elementary calculation (or
by the formula for the mean of a binomial distribution). The equivalence
follows.

(iv)⇐⇒ (v): Take q = 1/x, replace A by Ac and interchange u and v to
obtain

Λ̂F ;u,v,s(x) = xmΛF ;v,u,s(1/x). (6.8)

�

Remark 6.4. It follows from the proof that the polynomial ΛF ;u,v,s(q) has
degree 0, i.e., is a (non-zero) constant ⇐⇒ (6.4) holds with b = 0 ⇐⇒
Ψ̃F,W (x1, . . . , xm) = a for some (non-zero) a. As shown above in the proof
of Theorem 2.11, this happens for some u, v, s > 0, not all equal, only in
the trivial case e(F ) = 0. (This is an equivalent way of stating the algebraic
part of the proof of Theorem 2.11, but we preferred to give a direct proof
above without the present machinery.) Hence, if e(F ) > 0 and (iv) holds,
then the degree of ΛF ;u,v,s is exactly 1.

Remark 6.5. ΛF ;u,v,s(q) is not changed if we add some isolated vertices to
F . Hence we may assume that F has no isolated vertices.

We note that the cases k = 0 and k = m of (6.4) simply are

ve(F ) = a, (6.9)

ue(F ) = a+mb. (6.10)

In particular, the assumption that not a = b = 0 means that not u = v = 0.
(This case has to be excluded, for any non-bipartite F , cf. Remark 2.7.)

Moreover, if F has degree sequence d1, . . . , dm, the cases k = 1 and k =
m− 1 of (6.4) are

1

m

m∑
i=1

ve(F )−disdi = a+ b, (6.11)

1

m

m∑
i=1

ue(F )−disdi = a+ (m− 1)b. (6.12)

Example 6.6. If F = K2, then by (6.5),

ΛF ;u,v,s(q) = uq2 + 2sq(1− q) + v(1− q)2 = v + 2(s− v)q + (u+ v − 2s)q2,

which has degree 1 if we choose any distinct u and v and let s = (u+ v)/2.

Hence Lemma 6.3 shows that P̃(K2; 1/2, 1/2) is not quasi-random, as we
already know, see Example 2.10.
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In this case, ΨK2,W (x1, x2) = W (x1, x2), so Lemma 4.9(b) shows that

P̃∗(K2; 1/2, 1/2) holds if and only if W (x, y) = h(x) + h(y) for some mea-

surable h : [0, 1] → [0, 1] with
∫ 1

0 h = p/2, see further Janson [6, Section
9].

Remark 6.7. We may add some further conditions on u, v, s in Lemma 6.3(iii)–
(v). In the trivial case e(F ) = 0 we can take any u, v, s, so let us assume
e(F ) > 0. By Remark 6.4, we then must have b 6= 0, so by (6.9)–(6.10),
u 6= v. Furthermore, we may interchange u and v (and replace q by 1 − q
in (6.5)), so we may assume u < v. In this case, (6.9)–(6.10) yield b > 0.
By (6.11) and (6.9), this implies s > v, and by (6.12) and (6.10), it implies
s < u. Hence we may assume v < s < u.

Suppose v = 0. Then a = 0 by (6.9). By Remark 6.5, we may assume
that F has no isolated vertices. If di < e(F ) for all i, then (6.11) yields
0 = a+ b = b, which is impossible. Hence we must have di = e(F ) for some
i, which means that F is a star. In the case of a star with m = |F | > 3,
v = a = 0 in (6.11) yields sm−1 = mb, while (6.10) yields um−1 = mb so
u = s, a contradiction. Hence v = 0 is impossible and we may assume v > 0.
(If m = 2, so F = K2, v = 0 is possible, but we may choose any v > 0 and
u > v by Example 6.6.)

Consequently, it suffices to consider distinct u, v, s > 0, and we may
assume 0 < v < s < u (or, by symmetry, 0 < u < s < v).

Furthermore, the equations (6.4) are homogeneous in (u, v, s), so we may
assume that any given of them equals 1; for example, we may assume v = 1,
which implies a = 1 by (6.9).

7. Completing the proof of Theorem 2.12

We say that a graph F is good if, for every p ∈ (0, 1], P̃(F ; 1/m, . . . , 1/m)
is p-quasi-random; otherwise F is bad. In this terminology, Lemma 6.3 says
(using Remark 6.7) that F is bad if and only if there exist distinct u, v, s > 0
such that (6.4) holds, or, equivalently, that ΛF ;u,v,s(q) in (6.5) has degree at
most 1.

An empty graph, i.e., a graph F with e(F ) = 0, is trivially bad; in this
case (6.5) yields ΛF ;u,v,s(q) = 1, so ΛF ;u,v,s has degree 0. By Remark 6.4,
this is the only case when deg(ΛF ;u,v,s) = 0.

The single edge K2 is also bad, see Examples 2.10 and 6.6. More generally,
any graph F with e(F ) = 1 is bad by Remark 6.5.

Conjecture 2.13 says that all other graphs are good. We proceed to verify
this in the cases given in Theorem 2.12.

Example 7.1 (regular graphs). Suppose that F is d-regular for some d > 1,
and that m = |F | > 3. (This includes the case Km, m > 3, considered by
[5].) Then e(F ) = dm/2.
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We use only (6.9)–(6.12); if we further simplify by assuming v = a = 1,
as we may by Remark 6.7, we obtain, from (6.10)–(6.12),

udm/2 = 1 +mb, (7.1)

sd = 1 + b, (7.2)

ud(m−2)/2sd = 1 + (m− 1)b, (7.3)

and thus
(1 + (m− 1)b)m = (1 +mb)m−2(1 + b)m. (7.4)

However, the function

h(x) := (m− 2) log(1 +mx) +m log(1 + x)−m log(1 + (m− 1)x) (7.5)

(defined for x > −1/m) has derivative

h′(x) =
m(m− 1)(m− 2)x2

(1 + x)(1 + (m− 1)x)(1 +mx)
> 0 (7.6)

for x > −1/m with x 6= 0, and thus h(x) is strictly increasing on (−1/m,∞)
and h(x) 6= h(0) = 0 for x 6= 0, which shows that (7.4) implies b = 0, and
thus s = u = 1 = v by (7.1)–(7.3), a contradiction. Consequently, there are
no u, v, s satisfying the conditions and thus F is good.

Example 7.2 (stars). Suppose that F is a star K1,m−1. Let A ⊆ V (F ) and
let k := |A|. If A contains the centre of F , then eF (A) = k − 1, eF (Ac) = 0
and eF (A,Ac) = m − k; otherwise, eF (A) = 0, eF (Ac) = m − k − 1 and
eF (A,Ac) = k. It follows from (6.6) and the binomial theorem that

Λ̂F ;u,v,s(x) = (x− 1)
(
u(x− 1) + s

)m−1
+
(
s(x− 1) + v

)m−1
. (7.7)

Assume m > 3, and that F is bad. Then, by Lemma 6.3(v) and Re-

mark 6.7, there exist distinct u, v, s > 0 such that Λ̂F ;u,v,s(x) is divisible by
xm−1. In particular,

0 = Λ̂F ;u,v,s(0) = −(s− u)m−1 + (v − s)m−1. (7.8)

Hence (s− u)m−1 = (v − s)m−1 and thus |s− u| = |v − s|, and since u, v, s
are real, s−u = ±(v−s). However, we assume u 6= v and thus s−u 6= s−v.
Consequently, s− u = v − s.

We may further assume s = 1, and thus u = 1− y and v = 1 + y for some
y 6= 0. Thus, by (7.7),

Λ̂F ;u,v,s(x) = (x− 1)
(
(1− y)x+ y

)m−1
+
(
x+ y

)m−1
. (7.9)

Since m > 3, Λ̂F ;u,v,s(x) is divisible by x2, so the derivative Λ̂′F ;u,v,s(0) = 0.
Hence,

0 = Λ̂′F ;u,v,s(0) = ym−1 − (m− 1)(1− y)ym−2 + (m− 1)ym−2

= mym−1 6= 0. (7.10)

This is a contradiction, which shows that F = K1,m−1 is good when m > 3.
(For m = 2, K1,1 = K2 is bad, as remarked above.)
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Example 7.3 (disconnected graphs). Suppose that F =
⋃k
i=1 Fi is discon-

nected with components F1, . . . , Fk. It follows easily from (6.5) that then

ΛF ;u,v,s(q) =
k∏
i=1

ΛFi;u,v,s(q). (7.11)

A component Fi with |Fi| = 1 has ΛFi;u,v,s(q) = 1 and can be ignored, as
said in Remark 6.5. On the other hand, if |Fi| > 2, and thus e(Fi) > 0, then
by Remark 6.4, ΛFi;u,v,s(q) has degree at least 1 whenever u, v, s > 0 are not
all equal. Consequently, if there are at least 2 components with more than
one vertex, then ΛF ;u,v,s(q) has degree at least 2, and thus F is good.

This ends our (short) list of classes of graphs that are known to be good,
and completes the proof of Theorem 2.12. We can give further examples of
individual small good graphs F as follows.

Example 7.4 (computer algebra). Fix a graph F and consider again the
four equations (6.9)–(6.12). If we set s = 1 (see Remark 6.7), we can elimi-
nate a and b and obtain the two equations

m∑
i=1

ue(F )−di = (m− 1)ue(F ) + ve(F ), (7.12)

m∑
i=1

ve(F )−di = ue(F ) + (m− 1)ve(F ). (7.13)

Since these are two polynomial equations in two unknowns, there are plenty
of complex solutions (u, v). However, if F is bad, then by Lemma 6.3 and
Remark 6.7 there exists a solution with 0 < u < 1 < v, and by symmetry
another solution with 0 < v < 1 < u. Using computer algebra (in our
case Maple), we can check this by writing (7.12)–(7.13) as f1(u, v) = 0 and
f2(u, v) = 0 and then computing the resultant R(u) of f1(u, v) and f2(u, v)
as polynomials in v. Then the roots of R(u) are exactly the values u such
that (7.12)–(7.13) have a solution (u, v) for some v. Hence, if F is bad,
then R(u) has at least one root in the interval (0, 1) and at least one root in
(1,∞). Consequently, if we compute the number of roots of R(u) in (0, 1)
and in (1,∞) (by Sturm’s theorem, this can be done using exact integer
arithmetic), and one of these numbers is 0, then F is good.

In general, this is perhaps too much to hope for. But even if there are
such roots, we can proceed by calculating the roots numerically. If the roots
of R(u) in (0, 1) are u1, . . . , up and the roots in (1,∞) are v1, . . . , vq, then a
solution of (7.12)–(7.13) with 0 < u < 1 < v has to be one of (ui, vj); hence,
if we check the pairs (ui, vj) one by one and find that none satisfies both
(7.12) and (7.13), then F is good. (Assuming that the computer calculations
are done with enough accuracy. It might be possible to find an algorithm
using exact arithmetic to test whether (7.12) and (7.13) have a common
solution in (0, 1)× (1,∞), but we have not investigated that.)

We give some explicit examples where this method succeeds.
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Example 7.5 (paths). The path P2 = K2 is bad, and the path P3 = K1,2 is
good by Example 7.2. For F = P4 we have m = 4, e(F ) = 3 and the degree
sequence 1, 2, 2, 1. The equations (7.12)–(7.13) are 2u+ 2u2 = 3u3 + v3 and
2v+ 2v2 = u3 + 3v3, and the resultant R(u) = −512u9 + 1152u8 + 288u7−
1872u6 + 288u5 + 976u4 − 112u3 − 192u2 − 16u. In this case, R(u) has no
roots in (0, 1), so P4 is good.

For P5, the resolvent R(u) (now of degree 16) has a single root in (0, 1),
but no root in (1,∞), so P5 is good. (As an illustration, the root in (0, 1)
is u = 0.23467 . . . ; for this root, (7.12) and (7.13) have a common root
v = −0.65039 . . . , but no common root in (1,∞).)

We have investigated Pm for 4 6 m 6 20, and the same pattern holds:
For even m, the resolvent has no root in (0, 1) (but one root in (0,∞)). For
odd m, the resolvent has no root in (1,∞) (but one root in (0, 1)). In both
cases, Pm is good.

We conjecture that this pattern holds for all m > 4.

Example 7.6 (Graphs of size |F | = 4). Of the 9 graphs with m = |F | =
4 and e(F ) > 1, 3 are disconnected (Example 7.3), 2 more are regular
(Example 7.1), 1 is a star (Example 7.2) and 1 is a path (Example 7.5). The
two remaining ones have degree sequences (3, 2, 2, 1) and (3, 3, 2, 2). In both
cases, the resolvent R(u) has no root in (0, 1). Thus every F with |F | = 4
and e(F ) > 1 is good.

Example 7.7 (complete bipartite graphs). We have used the method in
Example 7.4 to verify that the complete bipartite graphs K2,n (n 6 8), K3,n

(n 6 7), K4,n (n 6 5) are good. In all cases, the resolvent R(u) lacks roots
in either (0, 1) or (1,∞), and sometimes in both. (For example, for K2,n,
there is no root in (1,∞) for any n 6 8, and a root in (0, 1) only for n = 4
and n = 8. It is not clear whether this extends to larger n.)

Remark 7.8. We have so far not found any example with e(F ) > 1 where
the method in Example 7.4 fails. We thus guess that if e(F ) > 1, then
(7.12)–(7.13) have no common root with 0 < u < 1 and 1 < v < ∞.
(Equivalently, (6.9)–(6.11) have no common root with 0 < u < s < v.)
However, note that even if there is a graph F for which this fails, F still
may be good since, if m > 3, there are m−3 more equations (6.4) that have
to be satisfied, which seems very unlikely. In Examples 7.4–7.7 we consider
only the equations that only depend on the degree sequence.

8. More parts than vertices

Shapira and Yuster [13] and Huang and Lee [5] considered also (for F =
Km) the case of a partition U1, . . . , Ur of V (Gn) with r > m, where they
count the number of copies of Km with at most one vertex in each part Ui.

We can extend this to arbitrary graphs F (as in [5, Question 5.1]). In
our notation this is the same as considering (counting labelled copies and
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dividing by m!, where m = |F |)∑
i1<···<im6r

Ñ(F,G;Ui1 , . . . , Uim), (8.1)

and we define the property P̃(F ;α1, . . . , αr) for a sequence (Gn) to mean∑
i1<···<im6r

Ñ(F,Gn;Ui1 , . . . , Uim) = pe(F )
∑

i1<···<im6r

m∏
j=1

|Uij |+ o
(
|Gn|)m

)
(8.2)

for all disjoint subsets U1, . . . , Ur of V (Gn) with |Ui| = bαi|Gn|c, 1 6 i 6 r.
(For r = m, this yields the same property as before.)

In the case 0 < p < 1, r > m > 3, F = Km and
∑r

i=1 αi = 1.
Shapira and Yuster [13] ((α1, . . . , αr) 6= (1/r, . . . , 1/r)) and Huang and
Lee [5] ((α1, . . . , αr) = (1/r, . . . , 1/r)) showed that this property is p-quasi-
random. We can extend this as follows.

Theorem 8.1. Let F be a graph with e(F ) > 0, and let 0 < p 6 1. Fur-
ther, let (α1, . . . , αr) be a vector of positive numbers of length r > m = |F |
with

∑r
i=1 αi 6 1. If either (α1, . . . , αr) 6= (1/r, . . . , 1/r) or F is as in

Theorem 2.12, then P̃(F ;α1, . . . , αr) is a p-quasi-random property.

Proof. The case (α1, . . . , αr) = (1/r, . . . , 1/r) is simple; in this case (and

more generally when all αi are equal), it is easy to see that P̃(F ;α1, . . . , αr) is

the same as P̃(F∗;α1, . . . , αr), where F∗ is the graph with r vertices obtained
by adjoining r −m isolated vertices to F ; by Lemma 6.3 and Remark 6.5,

this property is p-quasi-random if and only if P̃(F ; 1/m, . . . , 1/m) is, so the
result in this case is equivalent to Theorem 2.12.

In general, we note first that Lemmas 3.1 and 3.4 extend (with the same
proofs) and show that it is equivalent to consider the property of graphons∑

i1<···<im

∫
Ai1×···×Aim

Ψ̃F,W (xi1 , . . . , xim) = pe(F )
∑

i1<···<im

m∏
j=1

λ(Aij ) (8.3)

for all disjoint subsets A1, . . . , Ar of [0, 1] with λ(Ai) = αi.
Assume this and define

Ψ̃∗F,W (x1, . . . , xr) :=
∑

i1<···<im6r
Ψ̃F,W (xi1 , . . . , xim)

∏
k/∈{i1,...,im}

α−1
k . (8.4)

Then (8.3) can be written∫
A1×···×Ar

Ψ̃∗F,W (x1, . . . , xr) = pe(F )
∑

i1<···<im

m∏
j=1

αij (8.5)

for all such subsets A1, . . . , Ar. Suppose now (α1, . . . , αr) 6= (1/r, . . . , 1/r).

Then Lemma 4.6 applies (to Ψ̃∗F,W − γ for a suitable constant γ) and shows

that Ψ̃∗F,W (x1, . . . , xr) is a.e. constant. Hence, if n1, . . . , nm are integers, not
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all 0, then thus the Fourier coefficient
(
Ψ̃∗F,W

)
(̂n1, . . . , nm, 0, . . . , 0) = 0.

However, it follows easily from (8.4) and symmetry that this Fourier coef-

ficient is a positive multiple of the Fourier coefficient
(
Ψ̃F,W

)
(̂n1, . . . , nm).

Hence
(
Ψ̃F,W

)
(̂n1, . . . , nm) = 0 when (n1, . . . , nm) 6= (0, . . . , 0), and thus

Ψ̃F,W is a.e. constant; it follows from (8.3) that the constant must be pe(F ).
By the proof of Theorem 2.11 (or by Lemma 4.9 and Theorem 2.11), this im-
plies W = p a.e. Consequently, (8.3) for disjoint A1, . . . , Ar with λ(Ai) = αi
is a p-quasi-random property, and thus so is P̃(F ;α1, . . . , αr). �

Example 8.2 (multicuts). Consider the case F = K2. Then the sum
(8.1) is the number of edges with endpoints in two different sets Ui and
Uj ; we can call this a multicut. By Theorem 8.1, as proved already by
Shapira and Yuster [13] (see also Huang and Lee [5]), the corresponding

multicut property P̃(K2;α1, . . . , αr) is a p-quasi-random property for any

(α1, . . . , αr) 6= (1/r, . . . , 1/r). However, P̃(K2; 1/r, . . . , 1/r) is not p-quasi-
random, which is shown by the same counterexamples as for the case r = 2
in Example 6.6.

If Conjecture 2.13 holds, then P̃(K2; 1/r, . . . , 1/r) is essentially the only

case when P̃(F ;α1, . . . , αr) is not p-quasi-random.

9. Less parts than vertices

As said in Remark 2.20, it is interesting to study the subgraph counts

N(F,Gn;U1, . . . , Um) and Ñ(F,Gn;U1, . . . , Um) also in situations with other
restrictions on the subsets U1, . . . , Um than the ones considered above. In
particular, we may consider the case when the sets Ui may be repeated, but
otherwise are disjoint. (We may also consider even more general situations
when sets Ui may overlap partly in some prescribed ways, but that will not
be treated here.) This suggests the following general formulation:

Let r > 1 and let m1, . . . ,mr be given non-negative integers with m1 +
· · ·+mr = m = |F |, and consider for a sequence of disjoint subsets U1, . . . , Ur
of V (G), the following three subgraph counts:

(i) N(F,G;Um1
1 , . . . , Umrr ), defined as N(F,G;U1, . . . , Ur) where the sub-

set Ui is repeated mi times. (For a given labelling of F .)

(ii) Ñ(F,G;Um1
1 , . . . , Umrr ), defined as the average ofN(F,G;Um1

1 , . . . , Umrr )
over all labellings of F . This equals, up to the constant symmetry fac-
tor | aut(F )|

∏
imi!/m!, the number of copies of F in G that have

exactly mi vertices in Ui. (For each such copy of F , there are
∏
imi!

labellings of F for which it is counted, and the total number of la-
bellings of F is m!/| aut(F )|.)

(iii) N̂(F,G;U1, . . . , Ur;m1, . . . ,mr) defined as the further average of

Ñ(F,G;Um1
1 , . . . , Umrr ) over all permutations of m1, . . . ,mr.

We then define properties Pm1,...,mr(F ;α1, . . . , αr), P̃m1,...,mr(F ;α1, . . . , αr)

and P̂m1,...,mr(F ;α1, . . . , αr) in analogy with Definition 2.8, considering all
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families of disjoint U1, . . . , Ur with |Ui| = bαi|Gn|c. If F = Km, then Ñ = N

and thus Pm1,...,mr = P̃m1,...,mr , but in general we do not know any implica-
tion, cf. Remark 2.14.

Example 9.1. Note first that this formulation includes the problems stud-
ied earlier in the paper:

(a) For r = m and m1 = · · · = mr = 1, we recover the main subject of the

paper, see Section 2. (In this case, N̂ = Ñ .)

(b) For r > m and mi = 1 for 1 6 i 6 m, mi = 0 for m + 1 6 i 6 r, N̂
equals, up to an unimportant constant factor, the sum (8.1) studied

in Section 8. Thus P̂m1,...,mr(F ;α1, . . . , αr) = P̃(F ;α1, . . . , αr).
(c) For r = 1 (and thus m1 = m), we consider N(F,G;U, . . . , U) as in

Simonovits and Sós [15] (where |U | is unspecified, see Theorem 2.5),
Shapira [11] and Yuster [19].

The new case of main interest in the formulation above is thus 1 < r < m,
with 2 6 mi < m for some i; thus some set Ui is repeated, but all are not
equal. In the remainder of this section, we consider a simple, but hopefully
typical, example of this, viz. m = 3, r = 2 and (m1,m2) = (2, 1).

Thus, assume that m = |F | = 3. For α, β > 0 with α+β 6 1, the proper-

ties P2,1(F ;α, β) and P̃2,1(F ;α, β) mean that (2.3) and (2.4), respectively,
hold for all U1, U2, U3 with U1 = U2 but disjoint from U3, and |U1| = bα|Gn|c,
|U3| = bβ|Gn|c. In the case α + β = 1, we can equivalently assume that
U1 = U2 = U and U3 = V (Gn) \ U with |U | = bα|Gn|c. (For F = K3, this
means that we count triangles crossing the the cut (U, V (Gn) \ U), with
exactly two vertices in U .) Are these properties p-quasi-random?

The analogue of Lemma 3.1 holds, and thus we can as in Lemma 3.4
transfer the problem to graphons and the properties defined by (3.5) or
(3.6) for all A1, A2, A3 with A1 = A2 and disjoint from A3, and λ(A1) = α,
λ(A3) = β.

Consider first P̃2,1(F ;α, β). In the case α+ β < 1, we have the following
results, similar to the ones above.

Lemma 9.2. Let α, β > 0 with α + β < 1. Suppose that f : [0, 1]3 → C is
a symmetric integrable function such that∫

A×A×B
f = 0 (9.1)

for all disjoint subsets A and B of [0, 1] such that λ(A) = α and λ(B) = β.
Then

f(x1, . . . , xm) = 0 a.e. (9.2)

Proof. A minor variation of the proof of Lemma 4.6, using Janson [6, Lemma
7.6]. We omit the details. �

Theorem 9.3. Let F be a graph with |F | = 3 and e(F ) > 0, let α, β > 0

with α + β < 1 and let 0 < p 6 1. Then P̃2,1(F ;α, β) is a quasi-random
property.
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Proof. Using Lemma 9.2, we argue as in the proof of Theorem 2.11 in Sec-
tion 6. �

The case α+β = 1, and thus B = Ac in (9.1), is more intricate, and there-
fore more interesting. We note first that the counterexample in Lemma 4.2
shows that Lemma 9.2 does not hold for α = 1 − β = 2/3. In fact, if

f(x1, x2, x3) = g(x1) + g(x2) + g(x3) with
∫ 1

0 g = 0 and |A| = α, then∫
A×A×Ac

f(x1, x2, x3) = 2α(1− α)

∫
A
g + α2

∫
Ac

g

= 2α(1− α)

∫
A
g − α2

∫
A
g = α(2− 3α)

∫
A
g, (9.3)

which vanishes for every such A if α = 2/3.
Moreover, there is another counterexample for α = 1 − β = 1/3: Now

consider f(x1, x2, x3) = g(x1, x2) + g(x1, x3) + g(x2, x3) for a symmetric

function g on [0, 1]2 such that
∫ 1

0 g(x, y) dy = 0 for every x. Then∫
A×A×Ac

f(x1, x2, x3) = (1− α)

∫
A2

g + 2α

∫
A×Ac

g

= (1− α)

∫
A2

g − 2α

∫
A2

g = (1− 3α)

∫
A2

g, (9.4)

which vanishes if α = 1/3.
We conjecture that these are the only counterexamples.

Conjecture 9.4. Let α ∈ (0, 1) and suppose that f : [0, 1]3 → C is a
symmetric integrable function such that

∫
A×A×Ac f = 0 for every A ⊂ [0, 1]

with λ(A) = α.

(i) If α /∈ {1
3 ,

2
3}, then f = 0 a.e.

(ii) If α = 1
3 , then f(x1, x2, x3) = g(x1, x2) + g(x1, x3) + g(x2, x3) a.e. for a

symmetric function g on [0, 1]2 such that
∫ 1

0 g(x, y) dy = 0 for every x.

(iii) If α = 2
3 , then f(x1, x2, x3) = g(x1) + g(x2) + g(x3) a.e. for a function

g on [0, 1] such that
∫ 1

0 g(x) dx = 0.

We leave this (and extensions to m > 3) as an open problem. Note that
if this conjecture holds, then Theorem 9.3 holds also for α+β = 1, provided
α 6= 1

3 ,
2
3 , by the same proof as above. For α = 1−β = 2

3 we would have the
same situation as in Lemmas 4.3 and 6.3; from the discussion in Section 7
follows that Theorem 9.3 would hold if e(F ) > 2 (P2 or K3), but not for
e(F ) 6 1 (K2 ∪K1 and the trivial empty graph K1 ∪K1 ∪K1). (Recall that
we only consider m = 3, as an example.)

For α = 1− β = 1
3 , even if the conjecture holds, it would lead to further

open problems: First, is there an analogue of Theorems 5.2 and 5.3 for this
case, showing that if the property is not quasi-random, then there is a 2-
type graphon counterexample? (This seems likely if Conjecture 9.4 holds,
using a suitable analogue of Lemma 5.8 for this case.) Secondly, analysis
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of a possible 2-type graphon counterexample would lead to a different al-
gebraic problem than the one in Section 6; we leave the formulation and
investigations of this as another open problem.

Problem 9.5. Solve these problems for the case β = 1−α, with particular
attention to the cases α = 1

3 and 2
3 , in particular for F = K3 (crossing

triangles). Moreover, consider extensions for m > 3.

Remark 9.6. Note that the set of functions satisfying the condition of
Lemma 4.1, 4.3 or 9.2, or Conjecture 9.4, is invariant under all measure
preserving bijections of [0, 1]. This suggest the following approach, where
we consider only square integrable functions so that we can use Hilbert space
theory. Let, for 0 6 k 6 m, Hm,k be the subspace of L2([0, 1]m) consisting

of all functions f such that the Fourier coefficient f̂(n1, . . . , nm) vanishes
unless exactly k indices n1, . . . , nm are non-zero. (In particular, Hm,0 is
the space of constant functions.) Let further L2

s ([0, 1]m) be the subspace

of symmetric functions in L2([0, 1]m), and let Hm,k
s := Hm,k ∩ L2

s ([0, 1]m).
Then

L2
s ([0, 1]m) =

m⊕
k=0

Hm,k
s (9.5)

and each subspace Hm,k
s is invariant under measure preserving bijections

of [0, 1]. We conjecture that every closed subspace of L2
s ([0, 1]m) invariant

under all measure preserving bijections of [0, 1] is of the form
⊕

k∈AH
m,k
s

for some set A ⊆ {0, . . . ,m}.
If this holds, it is easy to verify Conjecture 9.4.
In support of this conjecture, note that a discrete analogue holds: Let

N > m > 0 and consider the set XN,m of m-tuples of distinct elements of
[N ]. If N > 2m, then the natural representation of the symmetric group SN
in the

(
N
m

)
-dimensional space of all symmetric functions on XN,m has m+ 1

irreducible components, which correspond to the sets Hm,k
s above. (This is

easily verified by a calculation with the characters of these representations.
We omit the details.)

Finally, for the property P2,1(F ;α, β), for a directed graph F with |F | = 3,
we have the same problems as before (unless F = K3), see Remark 2.14.
Consider for example F = P3. We may note that in Lemma 9.2, it suffices
that f is symmetric in the first two variables; this implies by the argument
above that if F = P3 with the central vertex labelled 3, then P2,1(F ;α, β)
is quasi-random (since then ΨF,W is symmetric in the first two variables).
However, this argument fails for the other labellings of P3. The case α+β = 1
seems even more complicated.

Problem 9.7. Is P2,1(P3;α, β) a quasi-random property for any α, β > 0
with α+ β < 1, for any labelling of P3? Does this hold for α+ β = 1?



34 SVANTE JANSON AND VERA T. SÓS

References

[1] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós & K. Vesztergombi, Con-
vergent sequences of dense graphs I: Subgraph frequencies, metric prop-
erties and testing, Advances in Math. 219 (2008), 1801–1851.

[2] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós & K. Vesztergombi, Con-
vergent sequences of dense graphs II. Multiway cuts and statistical
physics. Ann. of Math. (2) 176 (2012), no. 1, 151–219.

[3] F. R. K. Chung & R. L. Graham, Maximum cuts and quasirandom
graphs. Random graphs, Vol. 2 (Poznań, 1989), 23–33, Wiley, New
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