
Limit Laws for Functions of Fringe trees for Binary
Search Trees and Random Recursive Trees

Cecilia Holmgren∗ Svante Janson†

26 June, 2014; revised 19 December, 2014

Abstract

We prove general limit theorems for sums of functions of subtrees of (random)
binary search trees and random recursive trees. The proofs use a new version of a
representation by Devroye, and Stein’s method for both normal and Poisson approxi-
mation together with certain couplings.

As a consequence, we give simple new proofs of the fact that the number of fringe
trees of size k = kn in the binary search tree or in the random recursive tree (of total
size n) has an asymptotical Poisson distribution if k → ∞, and that the distribution
is asymptotically normal for k = o(

√
n). Furthermore, we prove similar results for

the number of subtrees of size k with some required property P , e.g., the number of
copies of a certain fixed subtree T . Using the Cramér–Wold device, we show also that
these random numbers for different fixed subtrees converge jointly to a multivariate
normal distribution.

We complete the paper by giving examples of applications of the general results,
e.g., we obtain a normal limit law for the number of `-protected nodes in a binary
search tree or in a random recursive tree.

Keywords: Fringe trees. Stein’s method. Couplings. Limit laws. Binary search trees.
Random recursive trees.

MSC 2010 subject classifications: Primary 60C05; secondary 05C05, 60F05.

1 Introduction

In this paper we consider fringe trees of the random binary search tree as well as of the
random recursive tree; recall that a fringe tree is a subtree consisting of some node and
all its descendants, see Aldous [1] for a general theory, and note that fringe trees typically
are ”small” compared to the whole tree. (All subtrees considered in the present paper
are of this type, and we will use ’subtree’ and ’fringe tree’ as synonyms.) We will use a
representation of Devroye [10, 11] for the random binary search tree, and a well-known
bijection between binary trees and recursive trees, together with different applications of
Stein’s method for both normal and Poisson approximation to give both new general results
on the asymptotic distributions for random variables depending on fringe trees, and more
∗Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden. Supported by the

Swedish Research Council.
†Department of Mathematics, Uppsala University, SE-75310 Uppsala, Sweden. Supported in part by the

Knut and Alice Wallenberg Foundation.

1

direct proofs of several earlier results in the field. We state the main results in this section:
More precisely, we identify two main results that we present in Section 1.3, one on Poisson
approximation and one on normal approximation, for general functions of fringe trees for
the random binary search tree, as well as for the random recursive tree. In Section 1.4 we
then give some important consequences and extensions of these results.

In Section 2 we describe the representation of the binary search tree by Devroye, we
explain how it can be extended to the random recursive tree, and we also extend it to a
cyclic version. Furthermore, in Section 3 we state and prove general results on means and
variances of functions of fringe trees. Proofs of the results in Section 1 are given in Sections
4–7. We also give some examples of applications of the general results on functions of
fringe trees in Section 8, for example to the number of protected nodes in the random
binary search tree or in the random recursive tree studied by Mahmoud and Ward [35, 36]
and to the shape functionals for the random binary search tree or the random recursive tree.

1.1 Binary search trees and random recursive trees

A binary search tree is the tree representation of the sorting algorithm Quicksort, see e.g.
[33] or [14]. Starting with n distinct ordered numbers called keys, we associate the first key
to the root. The second key is then compared with the root, and is associated to the left child
if it is smaller than the key at the root, and to the right child if it is larger. We continue to
add the remaining keys to the tree until the set is exhausted. The comparison for each new
key starts at the root, and at each node the key visits, it proceeds to the left/right child if it
is smaller/larger than the key associated to that node; eventually, the new key is associated
to the first empty node it visits. In the final tree, all the n ordered numbers are sorted by
size, so that smaller numbers are in left subtrees, and larger numbers are in right subtrees.
A binary tree with such a labelling of the nodes is called a binary search tree.

The random binary search tree with n nodes, which we denote by Tn, is the binary
search tree constructed from a (uniformly) random permutation of n keys. For convenience,
we slightly abuse the notation and follow the custom of writing just “ binary search tree”
also for this random version.

We use the representation of the binary search tree by Devroye [10, 11]. We may
clearly assume that the keys are 1, . . . , n. We assign, independently, each key k a uniform
random variable Uk in (0, 1) which we regard as a time stamp indicating the time when the
key is drawn. (We may and will assume that the Uk are distinct.) The binary search tree
constructed by drawing the keys in this order, i.e., in order of increasing Uk, then is the
unique binary tree with nodes labelled by (1, U1), . . . , (n,Un) with the property that it is
a binary search tree with respect to the first coordinates in the pairs, and along every path
down from the root the values Ui are increasing. We will also use a cyclic version of this
representation described in Section 2.3.

Recall that the random recursive tree is constructed recursively, by starting with a root
with label 1, and at stage i (i = 2, . . . , n) a new node with label i is attached uniformly at
random to one of the previous nodes 1, . . . , i−1. We let Λn denote a random recursive tree
with n nodes. We may regard the random recursive tree as an ordered tree by ordering the
children of each node by their labels, from left to right.

There is a well-known bijection between ordered trees of size n and binary trees of size
n−1, see e.g. Knuth [32, Section 2.3.2] who calls this the natural correspondence (the same
bijection is also called the rotation correspondence): Given an ordered tree with n nodes,

2

eliminate first the root, and arrange all its children in a path from left to right, as right
children of each other. Continue recursively, with the children of each node arranged in a
path from left to right, with the first child attached to its parent as the left child. This yields
a binary tree with n − 1 nodes, and the transformation is invertible. As noted by Devroye
[10], see also Fuchs, Hwang and Neininger [24], the natural correspondence extends to
a coupling between the random recursive tree Λn and the binary search tree Tn−1; the
probability distributions are equal by induction because the n possible places to add a new
node to Λn correspond to the n possible places (external leaves) to add a new node to Tn−1,
and these places have equal probabilities for both models.

Note that a left child in the binary search tree corresponds to an eldest child in the
random recursive tree, while a right child corresponds to a sibling. We say that a proper
subtree in a binary tree is left-rooted [right-rooted] if its root is a left [right] child. Thus,
for 1 < k < n, subtrees of size k in the random recursive tree Λn, correspond to left-rooted
subtrees of size k − 1 in the binary search tree Tn−1, while subtrees of size 1 (i.e., leaves)
correspond to nodes without left child. (Alternatively, we can say that subtrees of size 1 in
the recursive tree correspond to empty left subtrees in the binary tree.)

An example of a bijection obtained from the natural correspondence is illustrated in
Figures 1–2. Note that the labels in the random recursive tree correspond to the time stamps
in the binary search tree (replaced by 1, 2, . . . in increasing order), while the keys in the
binary search tree are determined by the tree structure and thus redundant.

Remark 1.1. The binary search tree with its time stamps and the random recursive tree
with its labels are both increasing trees, i.e., labelled trees where the label of a node is
greater than the label of its parent. We allow the labels in an increasing tree to be arbitrary
real numbers, but we are only interested in the order relations between them and consider
two increasing trees that are isomorphic as trees and with labels in the same order to be the
same; hence we may freely relabel (preserving the order), for example by 1,2,. . . .

Note that the binary search tree yields a uniformly distributed increasing binary tree,
and the random recursive tree a uniformly distributed (unordered) increasing tree, see e.g.
[14, Sections 1.3–1.4]. Note also that the natural correspondence extends to a bijection
between increasing binary trees and increasing ordered trees that have the children of each
node ordered according to their labels.

Remark 1.2. We may consider a subtree of the binary search tree in two different ways;
either we regard it as an (unlabelled) binary tree by ignoring the time stamps (and keys), or
we may regard it as an increasing binary tree by keeping the time stamps (perhaps replacing
them, in order, by 1,2,. . . , see Remark 1.1).

Similarly, there are three different ways to look at a subtree of a random recursive tree:
as an increasing tree, as an unlabelled ordered tree (ignoring the labels but keeping the
order defined by them), or as an unlabelled unordered rooted tree (by ignoring both labels
and ordering).

The theorems and other results below, and their proofs, apply (unless explicitly stated
otherwise) to all these interpretations. (The different interpretations may be useful in differ-
ent applications.) For convenience, we state most results for the unlabelled versions (which
seem to be more common in applications), and leave the versions with increasing trees to
the reader. Recall also that an ordered tree can be regarded as unordered by ignoring the
orderings.

3

0

1 3 4

2 5 8 9

6 10 7

Figure 1: A recursive tree. The root has
label 0 instead of 1, to better illustrate the
bijection.

6,1

3,2 8,3

1,6 5,5 7,8 10,4

2,10 4,7 9,9

Figure 2: The corresponding binary
search tree. The first and second labels
are the keys and time stamps, respec-
tively, using the time stamps 1, . . . , 10
for convenience.

1.2 Properties and functionals of fringe trees

Our main theorems are stated in terms of a property P or a functional f of trees.
By a property P , in the binary tree case we formally mean any set of binary trees; we

let Pk be the set of binary trees of size k in P and we let pk,P := P(Tk ∈ P). Similarly, in
the random recursive tree case, a property P is any set of ordered (or unordered) trees, and
p̂k,P := P(Λk ∈ P). (As said in Remark 1.2, we may also, more generally, let P be a set
of increasing binary or unordered trees.)

Let XP
n,k be the number of subtrees of size k with some given property P in the binary

search tree Tn, and similarly let X̂P
n,k be the number of subtrees of size k with some given

property P in the random recursive tree Λn. As a special case (with P the set of all trees),
we let Xn,k be the number of subtrees of size k in Tn, and X̂n,k be the number of subtrees
of size k in Λn. Another important example of XP

n,k is the number of subtrees of the binary
search tree Tn that are copies of a fixed binary tree T , which we denote by XT

n ; similarly
we denote by X̂Λ

n the number of copies of an ordered (or unordered) tree Λ in the random
recursive tree Λn.

Example 1.3. Further examples come from evolutionary biology, where it is important
to study such tree patterns in phylogenetic trees. A phylogenetic tree, more precisely a
cladogram, is a (non-ordered) tree where every node has outdegree 2 (internal nodes) or 0
(external nodes). A binary tree of size n yields a phylogenetic tree with n internal nodes by
adding n+1 external nodes. An important model for a random phylogenetic tree is the Yule
model, which gives the same distribution as the correspondence just described applied to a
binary search tree, see e.g. [2] and [5]. Hence, fringe trees in random phylogenetic trees
under the Yule model correspond to fringe trees in binary search trees, and our results can
be translated. (Note that the size of a phylogenetic tree usually is defined as the number
of external nodes; a phylogenetic tree of size k thus corresponds to a binary search tree
with k − 1 nodes.) Some important examples of tree patterns that have been studied are
k-pronged nodes (trees of size k), k-caterpillars (trees of size k such that the internal nodes
form a path) and minimal clade size k (trees of size k with either left or right subtree of the
root empty); see e.g., [7] and the references there.

4

Remark 1.4. If APk is the set of permutations of length k that give rise to binary search
trees of size k with the property P , then pk,P = |APk |/k!. In particular, if Pk is nonempty,
then 1 ≥ pk,P ≥ 1/k!. Similarly, 1 ≥ p̂k,P ≥ 1/(k − 1)! unless p̂k,P = 0.

A functional is any real-valued function, of (binary, ordered or unordered) rooted trees.
(Again, we may also, more generally, consider functionals of increasing trees.) Given a
functional f and a rooted tree T , let T (v) be the fringe tree rooted at the node v ∈ T , and
define the sum over all fringe trees

F (T) = F (T ; f) :=
∑
v∈T

f(T (v)). (1.1)

Remark 1.5. Functionals F that can be written as (1.1) for some f are called additive
functionals. They can also be defined recursively by

F (T) = f(T) + F (T1) + · · ·+ F (Td), (1.2)

where T1, . . . , Td are the subtrees rooted at the children of the root of T . In this context,
f(T) is often called a toll function.

We consider the random variables F (Tn) and F (Λn), where as above Tn and Λn are
the binary search tree and the random recursive tree, respectively.

Note that the formulations using properties and functionals are closely related. In fact,
if P is a property and we choose f(T) as the indicator function 1{T ∈ Pk}, then XP

n,k =

F (Tn); in particular, Xn,k = F (Tn) with f(T) = 1{|T | = k} and XT
n = F (Tn) with

f(T ′) = 1{T ′ = T}. Conversely, for any f ,

F (Tn) =
∑
T

f(T)XT
n , (1.3)

summing over all binary trees T . The recursive tree case is similar.
Generally speaking, the formulation with properties is more convenient for results with

an asymptotic Poisson distribution, while the formulation with functionals is more general
and flexible for cases with asymptotic normality. For example, by the Cramér–Wold device,
it implies immediately also multivariate results as Theorem 1.22 below, see Remark 1.27.

We refer to Devroye [11] for several other examples showing the generality of the func-
tionals F (Tn).

1.3 Main results

In this subsection we state two main results: Theorem 1.7 on Poisson approximation for
XP
n,k and X̂P

n,k for a property P , and Theorem 1.14 on normal limits for F (Tn) and F (Λn)
for a functional f (under some conditions).

We let L(X) denote the distribution of a random variable X . Let Po(µ) denote the
Poisson distribution with mean µ, and let N (0, 1) denote the standard normal distribution.

Convergence in distribution is denoted by d−→. We recall also the definition of the total
variation distance between two probability measures.

Definition 1.6. Let (X ,A) be any measurable space. The total variation distance dTV
between two probability measures µ1 and µ2 on X is defined to be

dTV (µ1, µ2) := sup
A∈A
|µ1(A)− µ2(A)|.

5

Chang and Fuchs [7] studied fringe trees in random phylogenetic trees. The following
theorem (the binary search tree case) improves the convergence rate in their Theorem 9 and
yields in a simple way the rate stated in their Remark 1.

Theorem 1.7. Let XP
n,k be the number of subtrees of size k with some given property P in

the binary search tree Tn, and similarly let X̂P
n,k be the number of subtrees of size k with

some given property P in the random recursive tree Λn. Let pk,P be the probability that a
binary search tree of size k has property P , and similarly let p̂k,P be the probability that a
random recursive tree of size k has property P . Let k = kn where k < n. Furthermore, let
µPn,k := E(XP

n,k) and µ̂Pn,k := E(X̂P
n,k). Then

µPn,k := E(XP
n,k) =

2(n+ 1)pk,P
(k + 1)(k + 2)

, (1.4)

µ̂Pn,k := E(X̂P
n,k) =

np̂k,P
k(k + 1)

. (1.5)

Then, for the binary search tree, if k 6= (n− 1)/2,

dTV (L(XP
n,k),Po(µPn,k)) =

1

2

∑
l≥0

∣∣∣P(XP
n,k = l)− e−µ

P
n,k

(µPn,k)
l

l!

∣∣∣
=

O
(
pk,P
k

)
if µPn,k ≥ 1

O
(
pk,P
k · µ

P
n,k

)
if µPn,k < 1,

(1.6)

and if k = (n− 1)/2,

dTV (L(XP
n,k),Po(µPn,k)) = O

(p2
k,P

k

)
. (1.7)

For the random recursive tree,

dTV (L(X̂P
n,k),Po(µ̂Pn,k)) =

1

2

∑
l≥0

∣∣∣P(X̂P
n,k = l)− e−µ̂

P
n,k

(µ̂Pn,k)
l

l!

∣∣∣
=

O
(
p̂k,P
k

)
if µ̂Pn,k ≥ 1

O
(
p̂k,P
k · µ̂

P
n,k

)
if µ̂Pn,k < 1.

(1.8)

Consequently, if n → ∞ and k → ∞, then dTV (L(XP
n,k),Po(µPn,k)) → 0, and simi-

larly dTV (L(X̂P
n,k),Po(µ̂Pn,k))→ 0 .

Remark 1.8. Theorem 1.7 implies asymptotic normality in all cases when k → ∞ and
µPn,k →∞ or µ̂Pn,k →∞. Asymptotic normality holds for k = O(1) too, see Examples 1.24
and 1.28 below. For the binary tree, the asymptotic normality in these cases was proved by
Devroye [10, Theorem 1] (k fixed) and [11, Theorem 5] (at least for k = o(log n/ log logn)
which implies that µPn,k →∞ for every P unless Pk is empty).

Before stating Theorem 1.14, we give (exact) expressions for the covariances between
XT
n and XT ′

n (i.e., the number of subtrees that are copies of a fixed tree T respectively
T ′ in the binary search tree), and similar expression for the random recursive tree. (The

6

variances, i.e. the special case T = T ′, in the binary case were found by [21].) As said in
Remark 1.2, these results hold also if T or Λ is a given increasing tree, and for the random
recursive tree we may let Λ be either an ordered or unordered tree; the results are valid for
all cases, but note that e.g. p̂k,Λ and q̂Λ

Λ′ depend on the version. (In particular, for increasing
trees T and Λ, pk,T = 1/k! and p̂k,Λ = 1/(k − 1)!.)

Proposition 1.9. Let T be a binary tree of size k and let T ′ be a binary tree of sizem where
m ≤ k. Let pk,T := P(Tk = T) and pm,T ′ := P(Tm = T ′), and let qTT ′ be the number of
subtrees of T that are copies of T ′; further, let

β(k,m) :=
4(k +m+ 3)

(k + 1)(k + 2)(m+ 1)(m+ 2)

− 4(k2 + 3km+m2 + 4k + 4m+ 3)

(k + 1) (m+ 1) (k +m+ 1) (k +m+ 2) (k +m+ 3)
. (1.9)

If n > k +m+ 1, then the covariance between XT
n and XT ′

n is equal to

Cov(XT
n , X

T ′
n) = (n+ 1)σT,T ′ , (1.10)

where
σT,T ′ :=

2

(k + 1)(k + 2)
qTT ′pk,T − β(k,m)pk,T pm,T ′ . (1.11)

We note also the corresponding result for Xn,k, combining all subtrees of the same
size. (The variances σk,k are given by Feng, Mahmoud and Panholzer [16], as well as
higher moments, and the covariances are given by Dennert and Grübel [9].)

Proposition 1.10 (Dennert and Grübel [9]). Let k,m ≥ 1 and suppose n > k + m + 1.
The covariance between Xn,k and Xn,m is equal to

Cov(Xn,k, Xn,m) = (n+ 1)σk,m (1.12)

where σk,m = σm,k and

σk,m = − 4m (2k +m+ 3)

(k + 1) (k + 2) (k +m+ 1) (k +m+ 2) (k +m+ 3)
, m < k, (1.13)

σk,k =
2k
(
4k2 + 5k − 3

)
(k + 1) (k + 2)2 (2k + 1) (2k + 3)

. (1.14)

For the random recursive tree we have similar results.

Proposition 1.11. Let Λ be an ordered [or unordered] tree of size k, and let Λ′ be an
ordered [or unordered] tree of size m where m ≤ k.

Let p̂k,Λ := P(Λk = Λ) and p̂m,Λ′ := P(Λm = Λ′), and let q̂Λ
Λ′ be the number of

subtrees of Λ′ that are copies of Λ; further, let

β̂(k,m) :=
k2 + km+m2 + k +m

k(k + 1)m(m+ 1)(k +m+ 1)
. (1.15)

If n > k +m, then the covariance between X̂Λ
n and X̂Λ′

n is equal to

Cov(X̂Λ
n , X̂

Λ′
n) = nσ̂Λ,Λ′ , (1.16)

where
σ̂Λ,Λ′ :=

1

k(k + 1)
q̂Λ

Λ′ p̂k,Λ − β̂(k,m)p̂k,Λp̂m,Λ′ . (1.17)

7

Remark 1.12. Note that using the natural correspondence between ordered trees and binary
trees, if Λ corresponds to the binary tree T of size k − 1, then p̂k,Λ = pk−1,T .

Proposition 1.13. Let k,m ≥ 1 and suppose n > k + m. The covariance between X̂n,k

and X̂n,m is equal to

Cov(X̂n,k, X̂n,m) = nσ̂k,m (1.18)

where σ̂k,m = σ̂m,k and

σ̂k,m = − 1

k (k + 1) (k +m+ 1)
, m < k, (1.19)

σ̂k,k =
2k2 − 1

k (k + 1)2 (2k + 1)
. (1.20)

We are now ready to state our general limit theorem for F (Tn) and F (Λn).

Theorem 1.14. Let F be given by (1.1) for some functional f .

(i) For the binary search tree, assume that

∞∑
k=1

(Var f(Tk))1/2

k3/2
<∞, (1.21)

lim
k→∞

Var f(Tk)
k

= 0, (1.22)

∞∑
k=1

(E f(Tk))2

k2
<∞. (1.23)

Then, as n→∞,

E(F (Tn))/n→ µF :=

∞∑
k=1

2

(k + 1)(k + 2)
E f(Tk), (1.24)

Var(F (Tn))/n→ σ2
F := lim

N→∞

∑
|T |,|T ′|≤N

f(T)f(T ′)σT,T ′ <∞ (1.25)

and
F (Tn)− EF (Tn)√

n

d−→ N (0, σ2
F). (1.26)

(ii) For the random recursive tree, assume that

∞∑
k=1

(Var f(Λk))
1/2

k3/2
<∞, (1.27)

lim
k→∞

Var f(Λk)

k
= 0, (1.28)

∞∑
k=1

(E f(Λk))
2

k2
<∞. (1.29)

8

Then, as n→∞,

E(F (Λn))/n→ µ̂F :=
∞∑
k=1

1

k(k + 1)
E f(Λk), (1.30)

Var(F (Tn))/n→ σ̂2
F := lim

N→∞

∑
|Λ|,|Λ′|≤N

f(Λ)f(Λ′)σ̂Λ,Λ′ <∞ (1.31)

and
F (Λn)− EF (Λn)√

n

d−→ N (0, σ̂2
F). (1.32)

Corollary 1.15. Let F be given by (1.1) for some functional f such that f(T) = O(|T |α)
for some α < 1/2. Then the conclusions (1.24)–(1.26) and (1.30)–(1.32) hold. Further-
more, the asymptotic normality (1.26) can be written as

F (Tn)− nµF√
n

d−→ N (0, σ2
F) (1.33)

and similarly, (1.32) can be written

F (Λn)− nµ̂F√
n

d−→ N (0, σ̂2
F). (1.34)

Remark 1.16. For the binary search tree and f(T) depending on the size |T | only, Corol-
lary 1.15 was proved by methods similar to the ones used here by Devroye [11, Theorem
6] (under somewhat stronger hypotheses), and also by Hwang and Neininger [28] using
the contraction method (somewhat more generally, and with a somewhat different expres-
sion for σ2

F); Hwang and Neininger [28] also show that, for example, f(T) = |T |α with
α > 1/2 yields different limit behaviour. See further Fill and Kapur [20] for similar results
(extended to general m-ary search trees). Cf. also Fill, Flajolet and Kapur [18, Theorem
13] for related results for the mean.

A well-known case when f grows too rapidly for the results above to hold is f(T) =
|T |, when F (T) is the total path length in the tree. In this case, for the binary search tree,
the expectation grows like 2n log n and the limit is non-normal, see Régnier [39], Rösler
[40], Fill and Janson [19].

Remark 1.17. Of course, (1.25) means that (summing over all binary trees)

σ2
F =

∑
T,T ′

f(T)f(T ′)σT,T ′ , (1.35)

provided this sum is absolutely convergent. However, this fails in general, even if f is
bounded, since, as is shown in the appendix,∑

T,T ′

|σT,T ′ | =∞. (1.36)

Similarly, for the random recursive tree in (1.31),∑
Λ,Λ′

|σ̂Λ,Λ′ | =∞. (1.37)

9

Hence, in general, we need the less elegant expressions in (1.25) and (1.31). The same
applies to the special cases in (1.52) and (1.55) below.

Note that if f(T) depends on the size |T | only (a case considered in [28] and [20]), so
f(T) = µ|T | for some sequence µk, k ≥ 1, then (1.25) implies

σ2
F =

∑
k,m≥1

µkµmσk,m, (1.38)

where it is easily shown that the sum is absolutely convergent as a consequence of (1.13)–
(1.14) and the assumption (1.23), i.e.

∑
k µ

2
k/k

2 <∞. The analogous result for the random
recursive tree holds too for such f , now using (1.19)–(1.20).

The asymptotic means µF and µ̂F in (1.24) and (1.30) can also be written as follows.
Let T be the random binary search tree TN with random size N such that P(|T | = k) =
P(N = k) = 2

(k+1)(k+2) , k ≥ 1. Similarly, let Λ be the random recursive tree ΛN with
random size N such that P(|Λ| = k) = P(N = k) = 1

k(k+1) , k ≥ 1. Then, by definition,

µF = E f(T), (1.39)

µ̂F = E f(Λ). (1.40)

Moreover, as shown by Aldous [1], T is the limit in distribution of a uniformly random
fringe tree of Tn as n→∞, and similarly Λ is the limit in distribution of a uniformly
random fringe tree of Λn as n→∞, see also [10] and [12]. (In fact, this is an immediate
consequence of (1.4) and (1.5).)

Aldous [1] gave also direct constructions of T and Λ using branching processes. For Λ
we consider a tree Λt growing randomly in continuous time, starting with an isolated root
at time t = 0 and such that each existing node gets children according to a Poisson process
with rate 1. For T we similarly grow a random binary tree Tt by letting each node get a left
and a right child after waiting times that are independent and Exp(1). In both cases, we
stop the process at a random time τ ∼ Exp(1), independent of everything else; this gives
Λ and T , see [1]. This construction often simplifies the calculation of µF and µ̂F , see [12]
and examples in Section 8. (Λ and T can be regarded as increasing trees, using the birth
times of the nodes as labels.)

1.4 Some consequences and extensions

An important special case of Theorem 1.7 is to consider all trees of size k, i.e., Xn,k and
X̂n,k. This yields Theorem 1.18 below. We give also an accompanying Theorem 1.19
on normal convergence. Note that in both theorems, k = kn may depend on n. The
results in the Theorems 1.18–1.19, except the explicit rate in (1.43)–(1.44), were shown
by Feng, Mahmoud and Panholzer [16] and Fuchs [22] by using variants of the method of
moments. Theorem 1.19 was earlier proved for fixed k by Devroye [10] (using the central
limit theorem for m-dependent variables), and the means (1.41)–(1.42) are implicit in [10],
see also [11] and Flajolet, Gourdon and Martı́nez [21]. (The corresponding, weaker, laws
of large numbers were also given by Aldous [1] by another method.) The part (1.45) for
binary search trees was extended to k = kn (for a smaller range than here) by Devroye
[11] using Stein’s method for normal approximation. In the present paper we continue and
extend this approach, and use Stein’s method for both normal and Poisson approximations
(these are two completely different methods) to provide simple proofs for the full range.

10

Theorem 1.18. Let Xn,k be the number of subtrees of size k in the binary search tree Tn
and similarly let X̂n,k be the number of subtrees in the random recursive tree Λn. Let
k = kn where k < n. Furthermore, let µn,k := E(Xn,k) and µ̂n,k := E(X̂n,k). Then

µn,k := E(Xn,k) =
2(n+ 1)

(k + 1)(k + 2)
, (1.41)

µ̂n,k := E(X̂n,k) =
n

k(k + 1)
. (1.42)

Then, for the binary search tree,

dTV (L(Xn,k),Po(µn,k)) =
1

2

∑
l≥0

∣∣∣P(Xn,k = l)− e−µn,k
(µn,k)

l

l!

∣∣∣ = O
(1

k

)
, (1.43)

and for the random recursive tree,

dTV (L(X̂n,k),Po(µ̂n,k)) =
1

2

∑
l≥0

∣∣∣P(X̂n,k = l)− e−µ̂n,k
(µ̂n,k)

l

l!

∣∣∣ = O
(1

k

)
. (1.44)

Consequently, if n → ∞ and k → ∞, then dTV (L(Xn,k),Po(µn,k)) → 0, and simi-
larly dTV (L(X̂n,k),Po(µ̂n,k))→ 0 .

Theorem 1.19. Let Xn,k be the number of subtrees of size k in the binary search tree Tn
and similarly let X̂n,k be the number of subtrees of size k in the random recursive tree Λn.
Let k = kn = o(

√
n). Then, as n→∞, for the binary search tree

Xn,k − E(Xn,k)√
Var(Xn,k)

d−→ N (0, 1), (1.45)

and similarly, for the random recursive tree

X̂n,k − E(X̂n,k)√
Var(X̂n,k)

d−→ N (0, 1). (1.46)

Remark 1.20. If k/
√
n → ∞, then µn,k, µ̂n,k → 0, and the convergence result in The-

orem 1.18 reduces to the trivial Xn,k
p−→ 0 and X̂n,k

p−→ 0; the rate of convergence
in (1.43)–(1.44) is still of interest. Dennert and Grübel [9] considered instead the sum∑

k≥(1−t)nXn,k and obtained a functional central limit theorem.
If k/
√
n→ c ∈ (0,∞), then µn,k → 2c−2 and µ̂n,k → c−2; and we obtain the Poisson

distribution limits Xn,k
d−→ Po(2c−2) and X̂n,k

d−→ Po(c−2) [16, 22].

Remark 1.21. The proofs yield immediately, using the classical Berry–Esseen estimate for
Poisson distributions, also the estimate O(k/

√
n+ 1/k) of the convergence rates in (1.45)

and (1.46) for the Kolmogorov distance; however, for slowly growing k this is inferior to
the bound O(k/

√
n) given by Fuchs [22]. (We have not investigated whether this bound

can be shown by a more careful application of Stein’s method.) Other distances might also
be studied, but we have not done so.

11

Next we consider the subtree countsXT
n and X̂Λ

n for subtrees of different sizes together,
giving result on joint asymptotic normality for several sizes and properties; however, now
we do not allow the sizes to depend on n. Theorem 1.22 below shows that these numbers
are asymptotically normal, and moreover, jointly so for different trees T or Λ. (For a single
binary tree T this was shown by Devroye [10, 11], and by another method by Flajolet,
Gourdon and Martı́nez [21]; for a single unordered tree Λ this was shown by Feng and
Mahmoud [15].)

Theorem 1.22. (i) Let T 1, . . . , T d be a fixed sequence of distinct binary trees and let Xn =
(XT 1

n , XT 2

n , . . . , XT d
n). Let

µn := EXn =
(
E(XT 1

n),E(XT 2

n), . . . ,E(XT d

n)
)

and let Γ = (γij)
d
i,j=1 denote the matrix with elements

γij = lim
n→∞

1

n
Cov(XT i

n , XT j

n) = σT i,T j , (1.47)

with notation as in (1.10)–(1.11). Then Γ is non-singular and

n−1/2(Xn − µn)
d−→ N (0,Γ). (1.48)

(ii) Similarly, let Λ1, . . . ,Λd be a fixed sequence of distinct ordered (or unordered)
trees and let X̂n = (X̂Λ1

n , X̂Λ2

n , . . . , X̂Λd
n). Let

µ̂n := E X̂ =
(
E(X̂Λ1

n),E(X̂Λ2

n), . . . ,E(X̂Λd

n)
)

and let Γ̂ = (γ̂ij)
d
i,j=1 denote the matrix with elements

γ̂ij = lim
n→∞

1

n
Cov

(
X̂Λi

n , X̂Λj

n

)
= σ̂Λi,Λj (1.49)

with notation as in (1.16)–(1.17). Then Γ̂ is non-singular and

n−1/2
(
X̂n − µ̂n

) d−→ N (0, Γ̂). (1.50)

For binary search trees, (1.48) can be proved as the univariate case in Devroye [10], but
the formula (1.11) for the covariances seems to be new. For random recursive trees, as said
above, Feng and Mahmoud [15] showed the univariate case d = 1 of (1.50) (for unordered
Λ), together with formulas for the mean and variance.

Remark 1.23. Since the covariance matrices Γ and Γ̂ in Theorem 1.22 are non-singular, the
limiting multivariate normal distributions N (0,Γ) and N (0, Γ̂) are non-degenerate. Fur-
thermore, let Cov(Xn) denote the covariance matrix of Xn. Since n−1 Cov(Xn) → Γ as
n→∞, Cov(Xn) is non-singular for large enough n and thus Cov(Xn)−1/2 exists and the

conclusion (1.48) is equivalent to Cov(Xn)−1/2(Xn − µn)
d−→ N (0, Id), where Id is the

d×d identity matrix andN (0, Id) is the d-dimensional standard normal distribution with d

i.i.d. N (0, 1) components. Similarly, (1.50) is equivalent to Cov(X̂n)−1/2(X̂n − µn)
d−→

N (0, Id).

12

Example 1.24. For any property P of binary trees and any fixed k, XP
n,k =

∑
T∈Pk X

T
n ,

summing over all trees T ∈ Pk; hence the joint asymptotic normality in Theorem 1.22
implies asymptotic normality ofXP

n,k, as asserted in Remark 1.8. Moreover, this also yields
joint asymptotic normality for several properties P and several (fixed) k; in particular, we
obtain joint asymptotic normality ofXn,k for any finite set of k, as earlier shown by Dennert
and Grübel [9]. The random recursive tree case is similar.

Example 1.24 generalizes immediately to any finite linear combination of subtree counts
XT
n or X̂T

n ; in fact, this is equivalent to the joint asymptotic normality.
Next, consider again functionals. Corollary 1.15 shows, in particular, that F (Tn) or

F (Λn) is asymptotically normal for any bounded f , unless σ2
F = 0 or σ̂2

F = 0. Letting f
be the indicator function of a set of trees, we obtain the following general result. (In the
binary case, Devroye [11, Theorem 2] showed (1.51) and the corresponding weak law of
large numbers, which is a consequence of (1.53). See also Devroye [11, Lemma 4] for a
result similar to (1.53).)

Corollary 1.25. Let P be any property of binary trees and letXP
n be the number of subtrees

of Tn with this property. Then, as n→∞,

EXP
n /n→ µP := P(T ∈ P), (1.51)

VarXP
n /n→ σ2

P := lim
N→∞

∑
T,T ′∈P : |T |,|T ′|≤N

σT,T ′ <∞, (1.52)

and
XP
n − EXP

n√
n

d−→ N (0, σ2
P). (1.53)

Similarly, if P is any property of ordered (or unordered) trees and X̂P
n is the number of

subtrees of Λn with this property, then, as n→∞,

E X̂P
n /n→ µ̂P := P(Λ ∈ P), (1.54)

Var X̂P
n /n→ σ̂2

P := lim
N→∞

∑
Λ,Λ′∈P : |Λ|,|Λ′|≤N

σ̂Λ,Λ′ <∞, (1.55)

and
X̂P
n − E X̂P

n√
n

d−→ N (0, σ̂2
P). (1.56)

Furthermore, we can replace EXP
n in (1.53) and E X̂P

n in (1.56) by nµP and nµ̂P , respec-
tively.

Note that, unlike Theorem 1.7, we do not count subtrees of a given size only; we have
XP
n =

∑
kX

P
n,k and similarly for X̂P

n .

Problem 1.26. Is the asymptotic variance σ2
F or σ̂2

F in Theorem 1.14 always non-zero
except in trivial cases when F (Tn) or F (Λn) is deterministic? (We conjecture so, but
have no general proof.) Note that by (1.3) and the non-singularity of the finite covariance
matrices in Theorem 1.22, this holds for any f such that f(T) is non-zero only for finitely
many T . Another special case where this holds is given in Theorem 1.30 below.

In particular, can σ2
P = 0 or σ̂2

P = 0 occur in Corollary 1.25 except in trivial cases
when VarXP

n = 0 or Var X̂P
n = 0, respectively, for every n?

13

Note that F may be deterministic also when f is not; for example, if f(T) equals
the degree of the root of T minus 1, then F (T) = −1 for any rooted tree T . (See also
Remark 8.9 for a related example where different functionals f yield the same F for binary
trees.)

Remark 1.27. Theorem 1.14 extends immediately to joint asymptotic normality for several
functionals f and F by the Cramér–Wold device. Hence Corollaries 1.15 and 1.25 too
extend to joint asymptotic normality.

Example 1.28. For any property P , Corollary 1.25 applied to Pk, or taking f(T) = 1{T ∈
Pk} in Corollary 1.15 or in Theorem 1.14, yields again the asymptotic normality of XP

n,k

and X̂P
n,k for fixed k, obtained more directly in Example 1.24.

Remark 1.29. Similar results for conditioned Galton–Watson trees are given in [30]. Note,
however, that for the result corresponding to Theorem 1.14 there, stronger conditions on
the size of f are required than for the results above; in particular, Corollary 1.15 holds in
that setting only for α < 0. We believe that, similarly, the analogue of Corollary 1.25 does
not hold for conditioned Galton–Watson trees for arbitrary properties, although we do not
know any counter example.

We note a special case where we can give an alternative formula for the asymptotic
variance σ2

F or σ̂2
F and prove the conjecture in Problem 1.26. (Theorem 1.30, for the binary

search tree, is essentially the same as the case treated by Hwang and Neininger [28, The-
orem 2′], with an equivalent formula for the variance, except for the extra randomization
allowed there. It includes the case when F (T) only depends on the size |T |, where the
formula is the case m = 2 of Fill and Kapur [20, (5.3)]. In this case, a very similar result
was also proved by Devroye [11, Lemma 5]. Another example where Theorems 1.30–1.31
apply is provided by the 2-protected nodes in Section 8.2.)

For a rooted tree T , let v1, . . . , vd be children of the root (in order if T is an ordered
tree), where d = d(T) is the degree of the root. We call the subtrees T (v1), . . . , T (vd)
principal subtrees of T . In the case of a binary tree T , we let TL and TR by the subtrees
rooted at the left and right child of the root, and call these the left and right subtree; these
are thus the principal subtrees, except that TL and TR may be the empty tree ∅. (We define
T0 = ∅ and F (∅) = 0.)

Theorem 1.30. Suppose, in addition to the hypotheses of Theorem 1.14(i), that f(T) =
f(|T |, |TL|, |TR|) depends only on the sizes of T and of its left and right subtrees. Let
νk := EF (Tk), let Ik be uniformly distributed on {0, . . . , k − 1} and let

ψk := Var
(
νIk + νk−1−Ik + f(k, Ik, k − 1− Ik)

)
= E

(
νIk + νk−1−Ik + f(k, Ik, k − 1− Ik)− νk

)2
. (1.57)

Then

σ2
F =

∞∑
k=1

2

(k + 1)(k + 2)
ψk <∞. (1.58)

Moreover, σ2
F > 0 unless VarF (Tn) = 0 for every n ≥ 1; this happens if and only if

f(n, k, n− 1− k) = an − ak − an−1−k for some real numbers an, n ≥ 0.

Note that |T | = |TL| + |TR| + 1, so two of |T |, |TL|, |TR| determine the third; never-
theless we write f(|T |, |TL|, |TR|) for emphasis.

14

Theorem 1.31. Suppose, in addition to the hypotheses of Theorem 1.14(ii), that f(Λ) =
f(|Λ|, d(Λ), |Λv1 |, . . . , |Λvd(Λ)

|) depends only on the size |Λ| and the number and sizes of
the principal subtrees. Let νk := EF (Λk), and let

ψk := Var

(
f(k, d(Λk), |Λk,1|, . . .) +

d(Λk)∑
i=1

ν|Λk,i|

)

= E
(
f(k, d(Λk), |Λk,1|, . . .) +

d(Λk)∑
i=1

ν|Λk,i| − νk
)2

. (1.59)

Then

σ̂2
F =

∞∑
k=1

1

k(k + 1)
ψk <∞. (1.60)

Moreover, σ̂2
F > 0 unless VarF (Λn) = 0 for every n ≥ 1; this happens if and only if

f(n, d, n1, . . . , nd) = an −
∑d

i=1 ani for some real numbers an, n ≥ 0.

The distribution of (d(Λk), |Λk,v1 |, . . .) in (1.59) is the same as the distribution of the
number of cycles in a random permutation of length k − 1 and their lengths (taken in the
order of their minimal elements), see Drmota [14, Section 6.1.1].

2 Representations using uniform random variables

In this section we describe the representation of the binary search tree by Devroye [10, 11],
and extend it to the random recursive tree. Finally, we give a new cyclic representation for
both of the random trees, which leads to simpler calculations in later sections.

2.1 Devroye’s representation for the binary search tree

We use the representation of the binary search tree Tn by Devroye [10, 11] described in
Section 1, using i.i.d. random time stamps Ui ∼ U(0, 1) assigned to the keys i = 1, . . . , n.
Write, for 1 ≤ k ≤ n and 1 ≤ i ≤ n− k + 1,

σ(i, k) = {(i, Ui), . . . , (i+ k − 1, Ui+k−1)}, (2.1)

i.e., the sequence of k labels (j, Uj) starting with j = i. For every node u ∈ Tn, the fringe
tree Tn(u) rooted at u consists of the nodes with labels in a set σ(i, k) for some such i and
k, where k = |Tn(u)|, but note that not every set σ(i, k) is the set of labels of the nodes
of a fringe subtree; if it is, we say simply that σ(i, k) is a subtree. We define the indicator
variable

Ii,k := 1{σ(i, k) is a subtree in Tn}.

It is easy to see that, for convenience defining U0 = Un+1 = 0,

Ii,k = 1
{
Ui−1 and Ui+k are the two smallest among Ui−1, . . . , Ui+k

}
. (2.2)

Note that if i = 1 or i = n− k + 1, this reduces to

I1,k = 1
{
Uk+1 is the smallest among U1, . . . , Uk+1

}
, (2.3)

In−k+1,k = 1
{
Un−k is the smallest among Un−k, . . . , Un

}
. (2.4)

15

For k = n, when we only consider i = 1, we have I1,n = 1.
Let f(T) be a function from the set of (unlabelled) binary trees to R. We are interested

in the functional, see (1.1),

Xn := F (Tn) =
∑
u∈Tn

f(Tn(u)), (2.5)

summing over all fringe trees of Tn.
Since a permutation (σ1, . . . , σk) defines a binary search tree (by drawing the keys in

order σ1, . . . , σk), we can also regard f as a function of permutations (of arbitrary length).
Moreover, any set σ(i, k) defines a permutation (σ1, σ2, . . . , σk) where the values j, 1 ≤
j ≤ k, are ordered according to the order ofUi+j−1. We can thus also regard f as a mapping
from the collection of all sets σ(i, k). Note that if σ(i, k) corresponds to a subtree Tn(u) of
Tn, then Tn(u) is the binary search tree defined by the permutation defined by σ(i, k), and
thus f

(
Tn(u)

)
= f

(
σ(i, k)

)
. Consequently, see [11],

Xn :=
∑
u∈Tn

f(Tn(u)) =
n∑
k=1

n−k+1∑
i=1

Ii,kf(σ(i, k)). (2.6)

2.2 The random recursive tree

Consider now instead the random recursive tree Λn. Let f(T) be a function from the set of
ordered rooted trees to R. (The case when f is a functional of unordered trees is a special
case, and the case when f is a functional of increasing trees is similar.) In analogy with
(2.5), we define

Yn := F (Λn) =
∑
u∈Λn

f(Λn(u)), (2.7)

summing over all fringe trees of Λn.
As said in the introduction, the natural correspondence yields a coupling between the

random recursive tree Λn and the binary search tree Tn−1, where the subtrees in Λn corre-
spond to the left subtrees at the nodes in Tn−1 together with the whole tree, including an
empty left subtree ∅ at every node in Tn−1 without a left child, corresponding to a subtree
of size 1 (a leaf) in Λn. Thus, as noted by [10], the representation in Section 2.1 yields a
similar representation for the random recursive tree, which can be described as follows.

Define f̄ as the functional on binary trees corresponding to f by f̄(T) := f(T ′), where
T ′ is the ordered tree corresponding to the binary tree T by the natural correspondence.
(Thus |T ′| = |T |+ 1.) We regard the empty binary tree ∅ as corresponding to the (unique)
ordered tree • with only one vertex, and thus we define f̄(∅) := f(•).

Assume first 1 < k < n and recall that subtrees of size k in the random recursive tree
Λn correspond to left-rooted subtrees of size k − 1 in the binary search tree Tn−1. As said
in Section 2.1, a subtree of size k − 1 in Tn−1 corresponds to a set σ(i, k − 1) for some
i ∈ {1, . . . , n−k+1}. The parent of the root of this subtree is either i−1 or i+k−1; it is
i− 1, and the subtree is right-rooted, if Ui−1 > Ui+k−1 and it is i+ k − 1, and the subtree
is left-rooted, if Ui−1 < Ui+k−1. Thus, if we define

IL
i,k−1 := 1{σ(i, k − 1) is a left-rooted subtree in Tn−1}, (2.8)

16

then, using (2.2),

IL
i,k−1 = 1

{
Ui−1 ≤ Ui+k−1 < min

i≤j≤i+k−2
Uj
}
. (2.9)

Note that, since we consider Tn−1, we have defined U0 = Un = 0, and the argument above
holds also in the boundary cases i = 1 and i = n− k + 1. Furthermore, in the case k = n,
we define the whole binary tree as left-rooted, so IL

1,n−1 = 1 and (2.9) holds also for k = n
(and thus i = 1). (This is the reason for using a weak inequality Ui−1 ≤ Ui+k−1 in (2.9);
for k < n we might as well require Ui−1 < Ui+k−1 since U0, . . . , Un−1 are assumed to be
distinct.)

Finally, consider the case k = 1. Subtrees of size 1 in Λn correspond to nodes without
left child in Tn−1, and it is easily seen that a node i lacks a left child if and only ifUi ≥ Ui−1.
Hence, defining IL

i,0 := 1
{
i has no left child

}
, (2.9) holds also for k = 1 (with the empty

minimum interpreted as +∞).
Consequently, (2.9) holds for all k, and the fringe trees in Λn correspond to the sets

σ(i, k − 1) with 1 ≤ k ≤ n and 1 ≤ i ≤ n− k + 1 such that IL
i,k−1 = 1. It follows that, in

analogy with (2.6),

Yn :=
∑
u∈Λn

f(Λn(u)) =

n∑
k=1

n−k+1∑
i=1

IL
i,k−1f̄(σ(i, k − 1)). (2.10)

Note that (for k = 1) σ(i, 0) = ∅, the empty set corresponding to the empty subtree ∅,
and thus f̄(σ(i, 0)) = f̄(∅) = f(•). Note also the boundary cases, because U0 = Un = 0,

IL
1,k−1 = 1

{
Uk is the smallest among U1, . . . , Uk

}
, (2.11)

and

IL
n−k+1,k−1 =

{
0, 1 ≤ k < n,

1, k = n.
(2.12)

2.3 Cyclic representations

The representation (2.6) ofXn using a linear sequenceU1, . . . , Un of i.i.d. random variables
is natural and useful, but it has the (minor) disadvantage that terms with i = 1 or i =
n− k+ 1 have to be treated specially because of boundary effects, as seen in (2.3)–(2.4). It
will be convenient to use a related cyclic representation, where we take n+ 1 i.i.d. uniform
variables U0, . . . , Un ∼ U(0, 1) and extend them to an infinite periodic sequence of random
variables by

Ui := Ui mod (n+1), i ∈ Z, (2.13)

where i mod (n+ 1) is the remainder when i is divided by n+ 1, i.e., the integer ` ∈ [0, n]
such that i ≡ ` (mod n + 1). (We may and will assume that U0, . . . , Un are distinct.) We
define further Ii,k as in (2.2), but now for all i and k. Similarly, we define σ(i, k) by (2.1)
for all i and k. We then have the following cyclic representation of Xn. (We are indebted
to Allan Gut for suggesting a cyclic representation.)

17

Lemma 2.1. Let U0, . . . , Un ∼ U(0, 1) be independent and extend this sequence periodi-
cally by (2.13). Then, with notations as above,

Xn :=
∑
u∈Tn

f(Tn(u))
d
= X̃n :=

n∑
k=1

n+1∑
i=1

Ii,kf(σ(i, k)). (2.14)

Proof. The double sum in (2.14) is invariant under a cyclic shift of U0, . . . , Un. If we
shift these values so that U0 becomes the smallest, we obtain the same distribution of
(U0, . . . , Un) as if we instead condition on the event that U0 is the smallest Ui, i.e., on
{U0 = mini Ui}. Hence,

X̃n
d
=
(
X̃n | U0 = min

i
Ui
)
. (2.15)

Furthermore, the variables Ii,k depend only on the order relations among {Ui}, so if U0 is
minimal, they remain the same if we put U0 = 0. Moreover, in this case also Un+1 = U0 =
0 and it follows from (2.2) that Ii,k = 0 if i ≤ n+ 1 ≤ i+ k− 1; hence the terms in (2.14)
with n− k + 1 < i ≤ n+ 1 vanish. Note also that in the remaining terms, f(σ(i, k)) does
not depend on U0. Consequently,

X̃n
d
=
(n∑
k=1

n−k+1∑
i=1

Ii,kf(σ(i, k))
∣∣∣ U0 = 0

)
= Xn, (2.16)

by (2.6), showing that the cyclic and linear representations in (2.6) and (2.14) are equivalent.

Remark 2.2. In terms of the tree Tn, the construction above means that we find i0 ∈
{0, . . . , n + 1} such that Ui0 is minimal and then construct the tree Tn from the pairs
(1, Ui0+1), . . . , (n,Ui0+n) by Devroye’s construction.

For the random recursive tree Λn we argue in the same way, now using (2.10). We start
with n i.i.d. uniform random variables U0, . . . , Un−1 and extend them to a sequence with
period n; we then define σ(i, k−1) and IL

i,k−1 by (2.1) and (2.9) for all i and k. This yields
the following; we omit the details.

Lemma 2.3. Let U0, . . . , Un−1 ∼ U(0, 1) be independent and extend this sequence peri-
odically by Ui := Ui mod n. Then, with notations as above,

Yn :=
∑
u∈Λn

f(Λn(u))
d
= Ỹn :=

n∑
k=1

n∑
i=1

IL
i,k−1f̄(σ(i, k − 1)). (2.17)

We may (and will) assume that the equalities in distribution in the lemmas above are
equalities.

3 Means and variances

In this section we prove general results on means and variances for functions on fringe trees
for binary search trees and random recursive trees. The cyclic representations in Section 2.3
lead to simple calculations.

18

3.1 Binary search tree

We begin by computing the mean and variance of Xn,k, the number of subtrees of size k in
the random binary search tree Tn. This has earlier been done using the linear representation
in Section 2.1 by Devroye [10] (implicitly) and [11] (explicitly); our proof is very similar
but the cyclic representation avoids the (asymptotically insignificant) boundary terms. Ex-
plicit expressions have also been derived by other (analytic) methods, see Feng, Mahmoud
and Panholzer [16], Chang and Fuchs [7], Fuchs [22, 23]. We give a detailed proof for
completeness, and as an introduction to later proofs. (The lemma is a special case of later
results, but we find it convenient to start with the simplest case.) For completeness, note
also that Xn,k = 1 when k = n and Xn,k = 0 when k > n.

Note that Xn,k is given by (2.5) with f(T) = 1{|T | = k}, and thus by (2.6) with
f(σ(i, `)) = 1{` = k}, i.e., Xn,k =

∑n−k+1
i=1 Ii,k. However, we prefer to instead use the

cyclic representation (2.14), which in this case is

Xn,k =
n+1∑
i=1

Ii,k, (3.1)

where now Ii,k are defined by (2.2) with Ui given by (2.13). Recall that Ui thus is defined
for all i ∈ Z and has period n + 1; it is thus natural to regard the index i as an element of
Zn+1; similarly, Ii,k is defined for all i ∈ Z with period n + 1 in i, so we can regard it as
defined for i ∈ Zn+1. When discussing these variables, we will use the natural metric on
Zn+1 defined by

|i− j|n+1 := min
`∈Z
|i− j − `(n+ 1)|. (3.2)

Lemma 3.1 (Cf. Devroye [10, 11] and Feng, Mahmoud and Panholzer [16]). Let 1 ≤ k <
n. For the binary search tree Tn,

E(Xn,k) =
2(n+ 1)

(k + 1)(k + 2)
(3.3)

and

Var(Xn,k) =


EXn,k − (n+ 1) 22k2+44k+12

(k+1)(k+2)2(2k+1)(2k+3)
, k < n−1

2 ,

EXn,k + 2
n −

64
(n+3)2 , k = n−1

2 ,

EXn,k − (EXn,k)
2 = EXn,k − 4(n+1)2

(k+1)2(k+2)2 , k > n−1
2 .

(3.4)

Hence,

Var(Xn,k) = E(Xn,k) +O
(n
k3

)
, (3.5)

except when k = (n− 1)/2; in this case

Var(Xn,k) = E(Xn,k) +
2

n
+O

(n
k3

)
= E(Xn,k) +O

(1

n

)
. (3.6)

Another, equivalent, expression for the variance in the case k < (n − 1)/2 is given in
Proposition 1.10 with m = k. (It is easily checked that when n > 2k + 1, (3.4) and (1.12)
with (1.14) are equivalent.)

19

Proof. We use (3.1). By (2.2) and symmetry, for any i and 1 ≤ k < n,

E(Ii,k) =
2

(k + 2)(k + 1)
(3.7)

and thus (3.3) follows directly from (3.1).
We now consider the variance. Note that by (2.2), Ii,k and Ij,k are independent unless

the sets i−1, . . . , i+k and j−1, . . . , j+k overlap modulo n+ 1, i.e., unless |i− j|n+1 ≤
k+1. Furthermore, if 0 < |i−j|n+1 ≤ k, then (2.2) implies Ii,kIj,k = 0 (this says that two
distinct subtrees of size k are disjoint and, moreover, have their corresponding intervals of
k indices non-adjacent, which is obvious). Hence, by (3.1) and symmetry, if k < (n−1)/2,

Var(Xn,k) =
n∑
i=0

n∑
j=0

Cov(Ii,k, Ij,k)

= (n+ 1) Var(I0,k) + 2(n+ 1)
k+1∑
j=1

Cov(I0,k, Ij,k)

= (n+ 1)
(
E I0,k + 2E(I0,kIk+1,k)− (2k + 3)(E I0,k)

2
)
. (3.8)

If k = (n − 1)/2 (and thus n is odd) this has to be modified since −(k + 1) ≡ k + 1
(mod n+ 1), so the terms for j− i = ±(k+ 1) coincide and should only be counted once;
thus

Var(Xn,k) = (n+ 1)
(
E I0,k + E(I0,kIk+1,k)− (2k + 2)(E I0,k)

2
)
. (3.9)

Finally, if k > (n − 1)/2, then always Ii,kIj,k = 0 unless i = j (there is no room for two
distinct subtrees of size k ≥ n/2) and

Var(Xn,k) = (n+ 1)
(
E I0,k − (n+ 1)(E I0,k)

2
)
. (3.10)

This can also be seen directly, since in this case Xn,k ≤ 1, so Xn,k ∼ Be(µn,k) with
µn,k = EXn,k = (n+ 1)E I0,k.

It remains to compute E(I0,kIk+1,k) = E(I1,kIk+2,k). By (2.2), I1,kIk+2,k = 1
when U0 and Uk+1 are smaller than U1, . . . , Uk and Uk+1 and U2k+2 are smaller than
Uk+2, . . . , U2k+1. Consider first k < (n − 1)/2 and condition on Uk+1 = u. Then the
first condition is satisfied if either U0 < u and U1, . . . , Uk > u, which has probability
u(1 − u)k, or if U0, . . . , Uk > u and U0 is the smallest among them, which by symmetry
has the probability 1

k+1 P(U0, . . . , Uk > u) = 1
k+1(1 − u)k+1. The second condition has

the same probability, and by independence we obtain, letting x = 1− u,

E(I1,kIk+2,k) =

∫ 1

0

(
u(1− u)k + 1

k+1(1− u)k+1
)2

du

=

∫ 1

0

(
xk − k

k+1x
k+1
)2

dx =

∫ 1

0

(
x2k − 2k

k+1x
2k+1 + k2

(k+1)2x
2k+2

)
dx

=
1

2k + 1
− 2k

(k + 1)(2k + 2)
+

k2

(k + 1)2(2k + 3)

=
5k + 3

(k + 1)2(2k + 1)(2k + 3)
. (3.11)

20

(This can alternatively be obtained by a combinatorial argument, considering the 6 possible
orderings of U0, Uk+1, U2k+2 separately.)

In the case k = (n − 1)/2, U2k+2 = Un+1 = U0, and thus I1,kIk+2,k = 1 if and only
if U0 and Uk+1 are the two smallest among U0, . . . , Un; hence

E(I1,kIk+2,k) =
2

n(n+ 1)
. (3.12)

The result (3.4) now follows from (3.7)–(3.10) by elementary calculations. Finally,
(3.5)–(3.6) follow.

Lemma 3.1 is easily extended to XP
n,k, the number of subtrees of size k with some

property P . (The mean and estimates of the variance are given by Devroye [11]. The
special case when we count copies of a given tree T was given by Flajolet, Gourdon and
Martı́nez [21].)

Lemma 3.2. Let P be some property of binary trees. Let 1 ≤ k < n and let pk,P :=
P(Tk ∈ P). For the binary search tree Tn,

E(XP
n,k) =

2(n+ 1)pk,P
(k + 1)(k + 2)

(3.13)

and

Var(XP
n,k) =


EXP

n,k − (n+ 1) 22k2+44k+12
(k+1)(k+2)2(2k+1)(2k+3)

p2
k,P , k < n−1

2 ,

EXP
n,k +

(
2
n −

64
(n+3)2

)
p2
k,P , k = n−1

2 ,

EXP
n,k − (EXP

n,k)
2 = EXP

n,k −
4(n+1)2

(k+1)2(k+2)2 p
2
k,P , k > n−1

2 .

(3.14)

Hence,

Var(XP
n,k) = E(XP

n,k) +O
(n
k3
p2
k,P

)
, (3.15)

except when k = (n− 1)/2; in this case

Var(XP
n,k) = E(XP

n,k) +O
(1

n
p2
k,P

)
. (3.16)

Proof. Let IPi,k be the indicator of the event that the binary search tree defined by the per-
mutation defined by σ(i, k) belongs to P . Then the cyclic representation Lemma 2.1 with
f(T) = 1{T ∈ Pk} yields

XP
n,k =

n+1∑
i=1

Ii,kI
P
i,k. (3.17)

By (2.2), conditioning on Ii,k = 1 says nothing about the relative order ofUi, . . . , Ui+k−1;
hence Ii,k and IPi,k are independent. Consequently, by (3.7),

E(Ii,kI
P
i,k) = E(Ii,k)E(IPi,k) =

2

(k + 1)(k + 2)
P(Tk ∈ P) =

2

(k + 1)(k + 2)
pk,P ,

(3.18)
and (3.13) follows immediately.

21

Similarly, for the variance we use (3.17), (3.18) and the argument in the proof of
Lemma 3.1. Note that IP0,k and IPk+1,k are independent of I0,kIk+1,k and of each other;
thus

E
(
I0,kI

P
0,kIk+1,kI

P
k+1,k

)
= E

(
I0,kIk+1,k

)
p2
k,P .

The result follows by simple calculations.

To further extend this, we consider a real-valued functional f(T) of binary trees and the
sum F (T) defined by (1.1). We begin with two such functionals of a special type.

Lemma 3.3. Let 1 ≤ m ≤ k. Suppose that f(T) and g(T) are two functionals of binary
trees such that f(T) = 0 unless |T | = k and g(T) = 0 unless |T | = m, and let F (T) and
G(T) be the corresponding sums (1.1) over subtrees. Let

µf := E f(Tk) and µg := E g(Tm). (3.19)

(i) The means of F (Tn) and G(Tn) are given by

EF (Tn) =


2(n+1)

(k+1)(k+2)µf , n > k,

µf , n = k,

0, n < k,

(3.20)

and similarly for EG(Tn).

(ii) If n > k +m+ 1, then

Cov
(
F (Tn), G(Tn)

)
= (n+ 1)

(
2

(k + 1)(k + 2)
E
(
f(Tk)G(Tk)

)
− β(k,m)µfµg

)
where β(k,m) is given by (1.9).

(iii) If n = k +m+ 1, then

Cov
(
F (Tn), G(Tn)

)
= (n+ 1)

(
2

(k + 1)(k + 2)
E
(
f(Tk)G(Tk)

)
− β1(k,m)µfµg

)
where

β1(k,m) :=
4(k +m+ 2)

(k + 1)(k + 2)(m+ 1)(m+ 2)
− 2

n(n+ 1)
. (3.21)

(iv) If k < n < k +m+ 1, then

Cov
(
F (Tn), G(Tn)

)
= (n+ 1)

(
2

(k + 1)(k + 2)
E
(
f(Tk)G(Tk)

)
− β2(k,m)µfµg

)
where

β2(k,m) :=
4(n+ 1)

(k + 1)(k + 2)(m+ 1)(m+ 2)
. (3.22)

(v) If n = k, then

Cov
(
F (Tn), G(Tn)

)
= E

(
f(Tk)G(Tk)

)
− (n+ 1)β3(k,m)µfµg

where

β3(k,m) :=

{
2

(m+1)(m+2) , m < k,
1

k+1 , m = k.
(3.23)

22

(vi) If n < k, then F (Tn) = 0 and thus Cov
(
F (Tn), G(Tn)

)
= 0.

Proof. (i): The result is trivial for k ≥ n since F (Tn) = F (Tk) = f(Tk) if k = n and
F (Tn) = 0 if k > n.

Hence, assume k < n. Using the cyclic representation (2.14), we find

EF (Tn) =
n∑
i=0

E
(
Ii,kf(σ(i, k))

)
= (n+ 1)E

(
Ii,kf(σ(i, k))

)
. (3.24)

Recalling (2.2) and noting that f(σ(i, k)) depends only on the relative order of Ui, . . . ,
Ui+k−1, we see that Ii,k and f(σ(i, k)) are independent. Thus, using (3.7),

E
(
Ii,kf(σ(i, k))

)
= E(Ii,k)E

(
f(σ(i, k))

)
= E(Ii,k)E

(
f(Tk)

)
=

2

(k + 1)(k + 2)
µf

(3.25)
and thus

EF (Tn) = (n+ 1)E(Ii,k)E
(
f(Tk)

)
= (n+ 1)

2

(k + 1)(k + 2)
µf , (3.26)

showing (3.20) in the case k < n.
(ii)–(iv): The cyclic representation (2.14) similarly yields

Cov
(
F (Tn), G(Tn)

)
=

n∑
i=0

n∑
j=0

Cov
(
Ii,kf(σ(i, k)), Ij,mg(σ(j,m))

)
, (3.27)

where Ii,kf(σ(i, k)) and Ij,mg(σ(j,m)) are independent unless the sets {i− 1, . . . , i+ k}
and {j − 1, . . . , j + m} overlap (as subsets of Zn+1). Furthermore, as a consequence of
(2.2), if these sets overlap by more than one element but none of the sets is a subset of the
other, then Ii,kIj,m = 0, except in the case k+m = n−1 and j−1 ≡ i+k, i−1 ≡ j+m
(mod n+ 1) (again, this says that two subtrees cannot overlap or be adjacent unless one is
contained in the other).

(ii): We now assume k + m < n − 1 and k ≥ m. Then (3.27), symmetry and the
observations just made yield

Cov
(
F (Tn), G(Tn)

)
= (n+ 1)

(
E
(
I0,kf(σ(0, k))I−m−1,mg(σ(−m− 1,m))

)
+

k−m∑
j=0

E
(
I0,kf(σ(0, k))Ij,mg(σ(j,m))

)
+ E

(
I0,kf(σ(0, k))Ik+1,mg(σ(k + 1,m))

)
− (k +m+ 3)E

(
I0,kf(σ(0, k))

)
E
(
I0,mg(σ(0,m))

))
.

As seen in the proof of (i), Ii,k is independent of f(σ(i, k)), and thus (3.25) holds. Similarly,

E
(
Ij,mg(σ(j,m))

)
=

2

(m+ 1)(m+ 2)
µg, (3.28)

and
E
(
I0,kf(σ(0, k))Ik+1,mg(σ(k + 1,m))

)
= E

(
I0,kIk+1,m

)
µfµg. (3.29)

23

Furthermore, the argument for (3.11) generalizes to

E(I0,kIk+1,m) =

∫ 1

0

(
u(1− u)k + 1

k+1(1− u)k+1
)(
u(1− u)m + 1

m+1(1− u)m+1
)

du

=

∫ 1

0

(
xk − k

k+1x
k+1
)(
xm − m

m+1x
m+1

)
dx

=
1

k +m+ 1
− k

(k + 1)(k +m+ 2)
− m

(m+ 1)(k +m+ 2)

+
km

(k + 1)(m+ 1)(k +m+ 3)

=
2(k2 + 3km+m2 + 4k + 4m+ 3)

(k + 1) (m+ 1) (k +m+ 1) (k +m+ 2) (k +m+ 3)
. (3.30)

(Again, this can also be obtain by a combinatorial argument.)
The term E

(
I0,kf(σ(0, k))I−m−1,mg(σ(−m − 1,m))

)
is calculated in the same way,

and yields the same result.
Finally, for convenience shifting the indices,

k−m∑
j=0

E
(
I0,kf(σ(0, k))Ij,mg(σ(j,m))

)
= E(I1,k)E

(
f(σ(1, k))

k−m+1∑
j=1

Ij,mg(σ(j,m))
∣∣∣ I1,k = 1

)
=

2

(k + 1)(k + 2)
E
(
f(Tk)G(Tk)

)
, (3.31)

where the last equality follows because the conditioning on I1,k = 1 yields the same result
as conditioning on U0 = Uk+1 = 0, and the linear representation (2.6) shows that then the
sum is G(Tk). The result follows by collecting the terms above.

(iii): In the case k+m = n− 1, we argue in the same way, but as in the case k = (n−
1)/2 of Lemma 3.1 (a special case of the present lemma), there are only k+m+ 2 = n+ 1
terms to subtract and (3.30) is replaced by the simple

E
(
I0,kIk+1,m

)
=

2

n(n+ 1)
, (3.32)

cf. (3.9) and (3.12).
(iv): In the case k+m > n− 1, there cannot be two disjoint subtrees of sizes k and m.

Hence the arguments above yield

Cov
(
F (Tn), G(Tn)

)
= (n+ 1)

(k−m∑
j=0

E
(
I0,kf(σ(0, k))Ij,mg(σ(j,m))

)
− (n+ 1)E

(
I0,kf(σ(0, k))

)
E
(
I0,mg(σ(0,m))

))
and the result follows from (3.31) and (3.25), (3.28).

(v): In the case k = n we have F (Tn) = F (Tk) = f(Tk), and the result follows from
(3.20).

(vi): Trivial.

24

This leads to the following formulas for a general functional f . (Note that Lemmas
3.1–3.3 treat special cases. The mean (3.35) is computed by Devroye [11].)

Theorem 3.4. Let f(T) be a functional of binary trees, and let F (T) be the sum (1.1).
Further, let

µk := E f(Tk) (3.33)

and

πk,n :=


2

(k+1)(k+2) , k < n,
1

n+1 , k = n,

0, k > n.

(3.34)

Then, for the random binary search tree,

EF (Tn) = (n+ 1)
n∑
k=1

πk,nµk (3.35)

and

Var
(
F (Tn)

)
= (n+ 1)

(
n∑
k=1

πk,n E
(
f(Tk)

(
2F (Tk)− f(Tk)

))
−

n∑
k=1

n∑
m=1

β∗(k,m)µkµm

)
(3.36)

where, using (1.9) and (3.21)–(3.23),

β∗(k,m) :=



β(k,m), k +m+ 1 < n,

β1(k,m), k +m+ 1 = n,

β2(k,m), max{k,m} < n < k +m+ 1,

β3(k,m), k = n ≥ m,
β3(m, k), m = n ≥ k.

(3.37)

Proof. Let fk(T) := f(T)1{|T | = k}, and let Fk be the corresponding sum (1.1). Then
f(T) =

∑
k fk(T) and F (T) =

∑
k Fk(T). Hence, using Lemma 3.3(i),

EF (Tn) =

n∑
k=1

EFk(Tn) =

n∑
k=1

(n+ 1)πk,nµk, (3.38)

which shows (3.35).
Similarly, using symmetry and Lemma 3.3(ii)–(v), noting E fk(Tk) = E f(Tk) = µk,

Var
(
F (Tn)

)
=

n∑
k=1

k∑
m=1

(2− δkm) Cov
(
Fk(Tn), Fm(Tn)

)
=

n∑
k=1

k∑
m=1

(2− δkm)(n+ 1)
(
πk,n E

(
fk(Tk)Fm(Tk)

)
− β∗(k,m)µkµm

)
(where δkm denotes the Kronecker delta). Furthermore, Fm(Tk) = 0 for m > k, and
Fk(Tk) = fk(Tk) = f(Tk), and thus

k∑
m=1

(2− δkm)Fm(Tk) = 2
∞∑
m=1

Fm(Tk)− Fk(Tk) = 2F (Tk)− f(Tk)

and (3.36) follows, noting that β∗(k,m) by definition is symmetric in k and m.

25

The formula (3.35) for the expectation is also easily obtained by induction, using a
simple recurrence, see Hwang and Neininger [28, Lemma 1].

The notation above is a little cheating, since not only πk,n but also β∗(k,m) depends on
n; however, if n > k +m+ 1, neither depends on n, and we obtain the following. Define

πk :=
2

(k + 1)(k + 2)
(3.39)

and recall that T is the random binary search tree TN with random sizeN such that P(|T | =
k) = P(N = k) = πk.

Corollary 3.5. In the notation above, assume further that f(T) = 0 when |T | > K, for
some K <∞. If n > 2K + 1, then

EF (Tn) = (n+ 1)E f(T) (3.40)

and

Var
(
F (Tn)

)
= (n+ 1)

(
E
(
f(T)

(
2F (T)− f(T)

))
−

K∑
k=1

K∑
m=1

β(k,m)µkµm

)
.

(3.41)

We can now prove Propositions 1.9 and 1.10 as two special cases of the results above.

Proof of Proposition 1.9. Apply Lemma 3.3(ii) with f(T1) := 1{T1 = T} and g(T1) :=
1{T1 = T ′}. Then XT

n = F (Tn) and XT ′
n = G(Tn). We have µf = pk,T and µg = pm,T ′ .

Furthermore, if f(Tk) 6= 0, then Tk = T and G(Tk) = G(T) = qTT ′ . Hence,

E
(
f(Tk)G(Tk)

)
= qTT ′ E f(Tk) = qTT ′pk,T .

Proof of Proposition 1.10. In principle, this follows from Proposition 1.9 by summing over
all trees of sizes k and m, and evaluating the resulting sum; however, it is easier to give
a direct proof. By symmetry we may assume k ≥ m. We apply Lemma 3.3(ii) with
f(T) := 1{|T | = k} and g(T) := 1{|T | = m}. Then Xn,k = F (Tn) and Xn,m = G(Tn).
Furthermore, f(Tk) = 1, g(Tm) = 1 and G(Tk) = Xk,m. Hence µf = µg = 1, and, using
(3.3),

E
(
f(Tk)G(Tk)

)
= EXk,m =

{
2(k+1)

(m+1)(m+2) , m < k,

1, m = k.
(3.42)

Hence, Lemma 3.3(ii) yields (1.12) with

σk,m =

{
4

(k+2)(m+1)(m+2) − β(k,m), m < k,
2

(k+1)(k+2) − β(k, k), m = k,
(3.43)

which yields (1.13)–(1.14) by elementary calculations.

Lemma 3.6. Let T1, . . . , TN be a finite sequence of distinct binary trees. Then the matrix
(σTi,Tj)

N
i,j=1 in Proposition 1.9 is non-singular and thus positive definite.

26

Proof. Let K := maxi |Ti|. For any real numbers a1, . . . , aN and any n > 2K + 1,
Proposition 1.9 yields

Var

(N∑
i=1

aiX
Ti
n

)
=

N∑
i,j=1

aiaj Cov
(
XTi
n , X

Tj
n

)
= (n+ 1)

N∑
i,j=1

aiajσTi,Tj . (3.44)

Since a variance always is nonnegative, it follows that the matrix (σTi,Tj)
N
i,j=1 is positive

semi-definite.
Suppose that the matrix is singular. Then, using (3.44), there exist a1, . . . , aN , not all

0, such that if Zn :=
∑N

i=1 aiX
Ti
n , then Var(Zn) = 0 for every n > 2K + 1. Hence Zn

is a constant, i.e., it takes the same value (possibly depending on n) for every realization of
Tn. We shall see that this leads to a contradiction.

We may assume that ai 6= 0 for every i (otherwise we just ignore the remaining trees
Ti). We may further assume that T1, . . . , TN are ordered with k := |T1| = mini |Ti|. For
n > K + k + 1, let T0,n be the tree consisting of a path to the right from the root with n
nodes, and let T1,n consist of a path to the right from the root with n − k nodes together
with a left subtree T1 at the root. The subtrees of T1,n with size in [k,K] are paths to the
right, one each of each length l ∈ [k,K], and in addition one copy of T1; T0,n have the same
paths as subtrees but no other subtrees of these sizes. Thus, denoting the values of Zn for a
realization T of Tn by Zn(T), and similarly for XTi

n , we have XT1
n (T1,n) = XT1

n (T0,n) + 1
and XTi

n (T1,n) = XTi
n (T0,n) for i > 1, and hence Zn(T1,n) = Zn(T0,n) + a1. This

exhibits two possible realizations of Tn with different values of Zn. Hence Var(Zn) > 0, a
contradiction which completes the proof.

Lemma 3.7. For every N ≥ 1, the matrix (σk,m)Nk,m=1 of the values defined in Proposi-
tion 1.10 is non-singular and thus positive definite.

Proof. This can be proved in exactly the same way as Lemma 3.6. Alternatively, it is an
easy corollary of Lemma 3.6, since Xn,k =

∑
|T |=kX

T
n for every k.

In the finitely supported case in Corollary 3.5, both EF (Tn) and VarF (Tn) grow lin-
early in n+ 1. Asymptotically, this is true under much weaker assumptions. We begin with
the mean. (The binary tree case (3.45) was shown by Devroye [11, Lemma 1].)

Theorem 3.8. Under the assumptions in Theorem 3.4, assume further that E |f(T)| < ∞
and µn = o(n) as n→∞. Then

EF (Tn) = nE f(T) + o(n). (3.45)

More generally, if E |f(T)| <∞ and µn = o(nα) for some α ∈ (0, 1], then

EF (Tn) = nE f(T) + o(nα), (3.46)

and if E |f(T)| <∞ and µn = O(nα) for some α ∈ [0, 1), then

EF (Tn) = nE f(T) +O(nα). (3.47)

27

Proof. We have

∞∑
k=1

πk|µk| ≤
∞∑
k=1

πk E |f(Tk)| = E |f(T)| <∞ (3.48)

and similarly

E f(T) =
∞∑
k=1

πk E f(Tk) =
∞∑
k=1

πkµk, (3.49)

where the sum converges absolutely by (3.48). Thus (3.35) implies∣∣∣∣ 1

n+ 1
EF (Tn)− E f(T)

∣∣∣∣ ≤ ∞∑
k=1

|πk,n − πk| |µk| ≤
|µn|
n

+

∞∑
k=n+1

πk|µk|, (3.50)

which tends to 0 by the assumption µn = o(n) and (3.48). This implies (3.45).
This is the case α = 1 of (3.46). For α < 1, (3.50) similarly implies (3.46) and (3.47)

under the stated assumptions.

For the variance we begin with an upper bound that is uniform in n and f .

Theorem 3.9. There exists a universal constant C such that, under the assumptions and
notations of Theorem 3.4, for all n ≥ 1,

Var(F (Tn)) ≤ Cn

((∞∑
k=1

(Var f(Tk))1/2

k3/2

)2

+ sup
k

Var f(Tk)
k

+
∞∑
k=1

µ2
k

k2

)
. (3.51)

Proof. We split f(T) = f (1)(T) + f (2)(T), where for a tree T with |T | = k we define
f (1)(T) := E f(Tk) = µk and f (2)(T) := f(T) − µk; thus E f (2)(Tk) = 0. This yields
a corresponding decomposition F (Tn) = F (1)(Tn) + F (2)(Tn), and it suffices to estimate
the variance of each term separately. For convenience, we drop the superscripts, and note
that the two terms correspond to the two special cases f(T) = µk when |T | = k (i.e., f(T)
depends on |T | only), and µk = E f(Tk) = 0, respectively.
Case 1: f(T) = µ|T |. In this case, f(T) =

∑∞
k=1 µk1{|T | = k} and F (Tn) =∑n

k=1 µkXn,k; furthermore, Xn,n = 1 is deterministic. Hence,

Var
(
F (Tn)

)
=

n−1∑
k=1

n−1∑
m=1

Cov(Xn,k, Xn,m)µkµm. (3.52)

These covariances are evaluated by Lemma 3.3(ii)–(iv), as in the special case n > k+m+1
treated in Proposition 1.10; this yields, assuming m ≤ k < n and recalling (3.42),

1

n+ 1
Cov

(
Xn,k, Xn,m

)
=

2

(k + 1)(k + 2)
EXk,m − β∗(k,m). (3.53)

Suppose first thatm < k < n. If n > k+m+1, then Cov
(
Xn,k, Xn,m

)
< 0 by (1.13).

If n = k +m+ 1, then, similar calculations as in the proof of Proposition 1.10, now using
(3.42) and (3.21), yield

1

n+ 1
Cov

(
Xn,k, Xn,m

)
= − 4

(k + 1)(k + 2)(m+ 2)
+

2

n(n+ 1)
≤ 2

n(n+ 1)
, (3.54)

28

and when k < n < k +m+ 1, (3.22) similarly implies,

1

n+ 1
Cov

(
Xn,k, Xn,m

)
= − 4(n− k)

(k + 1)(k + 2)(m+ 1)(m+ 2)
< 0. (3.55)

In the case m = k < n we obtain similarly, or simpler from (3.5)–(3.6),

1

n+ 1
Var
(
Xn,k

)
= O

(1

k2

)
. (3.56)

Suppose now that all µk ≥ 0. The (3.52), (1.13) and (3.54)–(3.56) yield, for some C1,
using the Cauchy–Schwarz inequality,

1

n+ 1
Var
(
F (Tn)

)
≤ C1

n−1∑
k=1

µ2
k

k2
+ 2

n−2∑
k=1

µkµn−1−k
n2

≤ C1

n−1∑
k=1

µ2
k

k2
+

2

n2

n−2∑
k=1

µ2
k

≤ (C1 + 2)

∞∑
k=1

µ2
k

k2
. (3.57)

This proves (3.51) in the case f(T) = µ|T |, if we further assume µk ≥ 0, i.e., f(T) ≥ 0.
For a general sequence µk, we split f (and thus µk) into its positive and negative parts, and
apply the estimate just obtained to each part. This yields (3.51) in general for Case 1.

Case 2: µk = 0, k ≥ 1. Let

a2
k := Var(f(Tk)) and b2n :=

1

n+ 1
Var(F (Tn)). (3.58)

Then (3.36) implies, since we assume µk = 0, using the Cauchy–Schwarz inequality and
recalling (3.34),

b2n =
n∑
k=1

πk,n E
(
f(Tk)

(
2F (Tk)− f(Tk)

))
≤ 2

n∑
k=1

πk,n E (f(Tk)F (Tk))

≤ 2

n∑
k=1

πk,nak(k + 1)1/2bk ≤ 4

n−1∑
k=1

k−3/2akbk + 2n−1/2anbn. (3.59)

Now let A := max
{∑∞

k=1 akk
−3/2, supk k

−1/2ak
}

. We find from (3.59)

b2n ≤ 4Amax
k<n

bk + 2Abn (3.60)

and thus (bn −A)2 ≤ 4Amaxk<n bk +A2, which by induction implies bn ≤ 6A.
In other words,

Var
(
F (Tn)

)
≤ 36A2(n+ 1) ≤ 36(n+ 1)

((∞∑
k=1

akk
−3/2

)2

+ sup
k

a2
k

k

)
, (3.61)

which proves (3.51) in Case 2.

29

Remark 3.10. In the proof of Case 1, it was convenient to reduce to the case µk ≥ 0 in
order to require only upper bounds for Cov

(
Xn,k, Xn,m

)
. This is not necessary, however.

An alternative is to note that by (1.13) and (3.54)–(3.55), whenever m < k < n,

1

n+ 1
Cov

(
Xn,k, Xn,m

)
> − 8

k2m
. (3.62)

Hence, the proof can be concluded (for general µk) by the additional estimate

∞∑
k=1

∞∑
m=1

|µkµm|
kmmax{k,m}

≤ 2

∞∑
k=1

∞∑
m=1

|µkµm|
(k +m)km

≤ C2

∞∑
k=1

µ2
k

k2
, (3.63)

which (by the substitution xk = |µk|/k) is an application of Hilbert’s inequality saying that
the infinite matrix (1/(k + m))∞k,m=1 defines a bounded operator on `2, see [26, Chapter
IX].

Remark 3.11. In order for the estimate in Theorem 3.9 to be useful, the three terms in the
right-hand side of (3.51) have to be finite. These conditions are the best possible that imply
Var(F (Tn)) = O(n) in general, as is seen in the following examples. (We do not claim
that these terms have to be finite in all cases for Var(F (Tn)) = O(n) to hold, but at least in
some examples they have to.)

Consider first the case f(T) = µ|T |. By (3.52) and the estimates above,

VarF (Tn)

n+ 1
=

n−1∑
k=1

(2

k2
+O

(
k−3

))
µ2
k +

n−2∑
k=1

2

n2
µkµn−1−k +

∑
m<k<n

O
(1

k2m

)
µkµm.

(3.64)

Note that the factor 2/k2 + O
(
k−3

)
≥ 1/k2 unless k ≤ k0, for some k0, and suppose for

simplicity that µk = 0 for k ≤ k0. Then the first sum is at least
∑n−1

k=1 µ
2
k/k

2.
Now consider instead of the sequence (µk) a random thinning (µ′k) obtained by letting

µ′k = µk with some small fixed probability p > 0, and µk = 0 otherwise, independently
for all k. Replacing µk by µ′k in (3.64) and taking the expectation over the thinnings yields,
using the Cauchy–Schwarz inequality and (3.63),

E
VarF (Tn)

n+ 1
≥

n−1∑
k=1

pµ2
k

k2
+

n−2∑
k=1

2

n2
p2µkµn−1−k +

∑
m<k<n

O
(1

k2m

)
p2µkµm

≥ p
n−1∑
k=1

µ2
k

k2
− p2C3

n−1∑
k=1

µ2
k

k2
. (3.65)

Choose p ≤ 1/2C3; then the right-hand side is at least p2
∑n−1

k=1 µ
2
k/k

2. Suppose now that∑∞
k=1 µ

2
k/k

2 = ∞. By choosing n large we then can make EVarF (Tn)/n arbitrarily
large, so there exists an n and a thinning with VarF (Tn)/n arbitrarily large. This holds
also if we fix a finite number of the elements µ′k of the thinning, and it follows by using
this argument recursively that there exists a (deterministic) thinning (µ′k) and a sequence
nν →∞ such that VarF (Tn)/n→∞ as n→∞ along this sequence.

For the case µk = 0, suppose that (ak)
∞
3 is a given sequence of positive numbers.

Define f1 = f2 := 0 and let g3(T) := #{leaves in T} − 4/3 when |T | = 3, where

30

the constant 4/3 is chosen such that E g3(T3) = 0, cf. (1.41). Let f3(T) = c3g3(T) for
a constant c3 > 0 such that Var f3(T3) = a2

3. Continue recursively as follows: If we
have chosen f1, . . . , fk−1, let for a tree T with |T | = k, gk(T) :=

∑′
v∈T f|T (v)|(T (v)),

where
∑′ denotes summation over all nodes except the root. Define fk(T) = ckgk(T)

for a constant ck > 0 such that Var fk(Tk) = a2
k. Note that, by induction using (3.35),

E fk(Tk) = E gk(Tk) = 0 for every k.
Consider f :=

∑
k fk and the corresponding F . By construction, for k > 3, F (T) =

fk(T) + gk(T) = (1 + ck)gk(T) for every tree T with |T | = k. If we let d2
k := Var gk(Tk),

we have a2
k = c2

kd
2
k and

E
(
f(Tk)

(
2F (Tk)−f(Tk)

))
= E

(
ckgk(Tk)(ck+2)gk(Tk)

)
= ck(ck+2)d2

k = ak(2dk+ak).
(3.66)

Similarly,

VarF (Tk) = (1 + ck)
2 Var gk(Tk) = (1 + ck)

2b2k = (ak + dk)
2. (3.67)

(For k = 3, F (T3) = f3(T3), and (3.66)–(3.67) hold if we redefine d3 := 0.)
Note first that we have VarF (Tk) = (ak + dk)

2 ≥ a2
k = Var f(Tk); hence, if

VarF (Tn) = O(n), then a2
n = Var f(Tn) = O(n), i.e., supk Var f(Tk)/k <∞.

Next, (3.36) and (3.66)–(3.67) yield

(dn + an)2 = VarF (Tn) = (n+ 1)

n∑
k=3

πk,nak(2dk + ak)

= 2andn + a2
n +

n−1∑
k=3

2(n+ 1)

(k + 1)(k + 2)
ak(dk + 2ak) (3.68)

and thus

d2
n =

n−1∑
k=3

2(n+ 1)

(k + 1)(k + 2)
ak(2dk + ak). (3.69)

It follows that, for n ≥ 4, d2
n > na2

3/10, and thus dn ≥ c1n
1/2 for some c1 > 0. Using this

in (3.69) we obtain

d2
n > c2n

n−1∑
k=4

k−3/2ak. (3.70)

Hence, if
∑∞

k=1 k
−3/2ak =∞, then VarF (Tn)/n→∞ as n→∞.

3.2 Random recursive tree

For the random recursive tree we similarly compute mean and variance using the cyclic
representation (2.17). Again, these have earlier been computed using the linear represen-
tation (see Section 2.2) by Devroye [10], and also by other (analytic) methods, see Feng,
Mahmoud and Panholzer [16], Fuchs [22].

The representation (2.17) gives, recalling that subtrees of size k correspond to subtrees
of size k − 1 in the corresponding binary tree,

X̂n,k =
n∑
i=1

IL
i,k−1, 1 ≤ k ≤ n. (3.71)

31

Lemma 3.12. Let 1 ≤ k < n. For the random recursive tree,

E(X̂n,k) =
n

k(k + 1)
(3.72)

and

Var(X̂n,k) =

{
E X̂n,k − n 3k+2

k(k+1)2(2k+1)
, k < n

2 ,

E X̂n,k − (E X̂n,k)
2 = E X̂n,k − n2

k2(k+1)2 , k ≥ n
2 .

(3.73)

Hence, for 1 ≤ k < n,

Var(X̂n,k) = E(X̂n,k) +O
(n
k3

)
. (3.74)

Proof. We use (3.71) and argue as in the proof of Lemma 3.1, replacing k and n by k − 1
and n− 1. By (2.9) and symmetry, for any i and 1 ≤ k < n,

E(IL
i,k−1) =

1

k(k + 1)
(3.75)

and thus (3.72) follows from (3.71).
For the variance, we obtain as in the proof of Lemma 3.1, if k < n/2,

Var(X̂n,k) = n
(
E IL

0,k−1 + 2E(IL
0,k−1I

L
k,k−1)− (2k + 1)(E IL

0,k−1)2
)
. (3.76)

If k ≥ n/2, then IL
i,kI

L
j,k = 0 unless i = j and thus, or because X̂n,k ≤ 1,

Var(X̂n,k) = n
(
E IL

0,k−1 − n(E IL
0,k−1)2

)
= E X̂n,k −

(
E X̂n,k

)2
. (3.77)

(There is no exceptional case when k = n/2, since IL
0,k−1I

L
k,k−1 = 0 in this case.)

It remains to compute E(IL
0,k−1I

L
k,k−1) = E(IL

1,k−1I
L
k+1,k−1). We can argue as in the

proof of Lemma 3.1, recalling also the condition Ui−1 ≤ Ui+k−1 in (2.9), which yields

E(IL
1,k−1I

L
k+1,k−1) =

∫ 1

0
u(1− u)k−1 · 1

k
(1− u)k du

=

∫ 1

0

1

k
(1− x)x2k−1 dx =

1

2k2(2k + 1)
. (3.78)

Alternatively, it is this time easy to use a combinatorial argument; IL
1,k−1I

L
k+1,k−1 = 1 if

U0 is the smallest of U0, . . . , U2k, Uk is the smallest of the rest, and U2k is the smallest of
Uk+1, . . . , U2k; these events are independent and have probabilities 1/(2k+1), 1/(2k) and
1/k.

Finally, (3.73)–(3.74) follow by simple calculations from (3.75)–(3.78).

Lemma 3.13. Let P be some property of ordered rooted trees. Let 1 ≤ k < n and let
p̂k,P := P(Λk ∈ P). For the random recursive tree Λn,

E(X̂P
n,k) =

np̂k,P
k(k + 1)

. (3.79)

32

Furthermore,

Var(X̂P
n,k) =

{
E X̂P

n,k − n
3k+2

k(k+1)2(2k+1)
p̂2
k,P , k < n

2 ,

E X̂P
n,k − (E X̂P

n,k)
2 = E X̂P

n,k −
n2

k2(k+1)2 p̂
2
k,P , k ≥ n

2 ,
(3.80)

and hence

Var(X̂P
n,k) = E(X̂P

n,k) +O
(np̂2

k,P

k3

)
. (3.81)

Proof. Let I P̄i,k−1 be the indicator of the event that the binary search tree defined by the
permutation defined by σ(i, k − 1) belongs to P̄ , where P̄ is the property of binary trees
corresponding to (by the natural correspondence) the property P of ordered rooted trees.
Then the cyclic representation Lemma 2.3 with f(Λ) = 1{Λ ∈ Pk} and thus f̄(T) =
1{T ∈ P̄k−1} yields

X̂P
n,k =

n∑
i=1

IL
i,k−1I

P̄
i,k−1. (3.82)

The rest of the proof is analogous to the proof of Lemma 3.2.

Lemma 3.14. Let 1 ≤ m ≤ k. Suppose that f(Λ) and g(Λ) are two functionals of ordered
rooted trees such that f(Λ) = 0 unless |Λ| = k and g(Λ) = 0 unless |Λ| = m, and let
F (Λ) and G(Λ) be the corresponding sums (1.1) over subtrees. Let

λf := E f(Λk) and λg := E g(Λm). (3.83)

(i) The means of F (Λn) and G(Λn) are given by

EF (Λn) =


n

k(k+1)λf , n > k,

λf , n = k,

0, n < k,

(3.84)

and similarly for EG(Λn).

(ii) If n > k +m, then

Cov
(
F (Λn), G(Λn)

)
= n

(
1

k(k + 1)
E
(
f(Λk)G(Λk)

)
− β̂(k,m)λfλg

)
where β̂(k,m) is given by (1.15).

(iii) If k < n ≤ k +m, then

Cov
(
F (Λn), G(Λn)

)
= n

(
1

k(k + 1)
E
(
f(Λk)G(Λk)

)
− β̂2(k,m)λfλg

)
where

β2(k,m) :=
n

k(k + 1)m(m+ 1)
. (3.85)

33

(iv) If n = k, then

Cov
(
F (Λn), G(Λn)

)
= E

(
f(Λk)G(Λk)

)
− nβ̂3(k,m)λfλg

where

β̂3(k,m) :=

{
1

m(m+1) , m < k,
1
k , m = k.

(3.86)

(v) If n < k, then F (Λn) = 0 and thus Cov
(
F (Λn), G(Λn)

)
= 0.

Proof. The proof is similar to the proof of Lemma 3.3.
(i): The result is trivial for k ≥ n since F (Λn) = F (Λk) = f(Λk) if k = n and

F (Λn) = 0 if k > n. Hence, assume k < n. Using the cyclic representation (2.17), we
find by similar calculations as in (3.25), using (3.75),

EF (Λn) =
n∑
i=1

E
(
IL
i,k−1f̄(σ(i, k − 1))

)
= nE

(
IL
i,k−1f̄(σ(i, k − 1)

)
= nE(IL

i,k−1)E
(
f(Λk)

)
=

n

k(k + 1)
λf , (3.87)

showing (3.84) in the case k < n.
(ii)–(iii): The cyclic representation (2.17) similarly yields

Cov
(
F (Λn), G(Λn)

)
=

n∑
i=1

n∑
i=1

Cov
(
IL
i,k−1f̄(σ(i, k−1)), IL

j,m−1ḡ(σ(j,m−1))
)
, (3.88)

where IL
i,k−1f̄(σ(i, k − 1)) and IL

j,m−1ḡ(σ(j,m− 1)) are independent unless the sets {i−
1, . . . , i + k − 1} and {j − 1, . . . , j + m − 1} overlap (as subsets of Zn). Furthermore,
as a consequence of (2.2), if these sets overlap by more than one element but none of the
sets is a subset of the other, then IL

i,k−1I
L
j,m−1 = 0. (Note that there is no exception with

k +m = n; there is not room for two disjoint subtrees of sizes k and m.)
(ii): We now assume k + m < n and k ≥ m. Then (3.88), symmetry and the observa-

tions just made yield

Cov
(
F (Λn), G(Λn)

)
= n

(
E
(
IL

0,k−1f̄(σ(0, k − 1))IL
−m,m−1ḡ(σ(−m,m− 1))

)
+

k−m∑
j=0

E
(
IL

0,k−1f̄(σ(0, k − 1))IL
j,m−1ḡ(σ(j,m− 1))

)
+ E

(
IL

0,k−1f̄(σ(0, k − 1))IL
k,m−1ḡ(σ(k,m− 1))

)
− (k +m+ 1)E

(
IL

0,k−1f̄(σ(0, k − 1))
)
E
(
IL

0,m−1ḡ(σ(0,m− 1))
))
.

As seen in the proof of (i), IL
0,k−1 is independent of f̄(σ(i, k − 1)), and thus, cf. (3.87),

E
(
IL
i,k−1f̄(σ(i, k − 1))

)
=

1

k(k + 1)
λf ; (3.89)

34

similarly,

E
(
IL
j,m−1ḡ(σ(j,m− 1))

)
=

1

m(m+ 1)
λg, (3.90)

E
(
IL

0,k−1f̄(σ(0, k − 1))IL
k,m−1ḡ(σ(k,m− 1))

)
= E

(
IL

0,k−1I
L
k,m−1

)
λfλg. (3.91)

Furthermore, the argument for (3.78) generalizes to

E(IL
0,k−1I

L
k,m−1) =

∫ 1

0
x(1− x)k−1 1

m
(1− x)m dx =

1

m (k +m) (1 + k +m)
. (3.92)

(Again, this can also be obtain by a combinatorial argument.) By analogous calculations
we obtain

E
(
IL

0,k−1f̄(σ(0, k − 1))IL
−m,m−1ḡ(σ(−m,m− 1))

)
=

1

k (k +m) (1 + k +m)
λfλg.

(Note that this differs from (3.91)–(3.92), unlike the corresponding terms for the binary
search tree case where (3.30) is symmetric in k and m.) Finally, for convenience shifting
the indices,

k−m∑
j=0

E
(
IL

0,k−1f̄(σ(0, k − 1))IL
j,m−1ḡ(σ(j,m− 1))

)
= E(IL

1,k−1)E
(
f̄(σ(1, k − 1))

k−m+1∑
j=1

IL
j,m−1ḡ(σ(j,m− 1))

∣∣∣ IL
1,k−1 = 1

)
=

1

k(k + 1)
E
(
f(Λk)G(Λk)

)
, (3.93)

where the last equality follows from the linear representation in (2.10). The result follows
by collecting the terms above.

(iii): In the case k + m ≥ n, there cannot be two disjoint subtrees of sizes k and m.
Hence the arguments above yield

Cov
(
F (Λn), G(Λn)

)
= n

(k−m∑
j=0

E
(
IL

0,k−1f̄(σ(0, k − 1))IL
j,m−1ḡ(σ(j,m− 1))

)
− nE

(
IL

0,k−1f̄(σ(0, k − 1))
)
E
(
IL

0,m−1ḡ(σ(0,m− 1))
))

and the result follows from (3.93) and (3.89), (3.90).
(iv): In the case k = n we have F (Λn) = F (Λk) = f(Λk), and the result follows from

(3.84).
(v): Trivial.

Theorem 3.15. Let f be a functional of ordered rooted trees, and let F be the sum (1.1).
Further, let

λk := E f(Λk) (3.94)

35

and

π̂k,n :=


1

k(k+1) , k < n,
1
n , k = n,

0, k > n.

(3.95)

Then, for the random recursive tree,

EF (Λn) = n

n∑
k=1

π̂k,nλk (3.96)

and

Var
(
F (Λn)

)
= n

(
n∑
k=1

π̂k,n E
(
f(Λk)

(
2F (Λk)− f(Λk)

))
−

n∑
k=1

n∑
m=1

β̂∗(k,m)λkλm

)
(3.97)

where, using (1.15) and (3.85)–(3.86),

β̂∗(k,m) :=


β̂(k,m), k +m < n,

β̂2(k,m), max{k,m} < n ≤ k +m,

β̂3(k,m), k = n ≥ m,
β̂3(m, k), m = n ≥ k.

(3.98)

Proof. Analogous to the proof of Theorem 3.4, using Lemma 3.14.

Recall that Λ is the random recursive tree ΛN with random size N such that P(|Λ| =
k) = P(N = k) = π̂k := 1/(k(k + 1)).

Corollary 3.16. In the notation above, assume further that f(Λ) = 0 when |Λ| > K, for
some K <∞. If n > 2K, then

EF (Λn) = nE f(Λ) (3.99)

and

Var
(
F (Λn)

)
= n

(
E
(
f(Λ)

(
2F (Λ)− f(Λ)

))
−

K∑
k=1

K∑
m=1

β̂(k,m)λkλm

)
. (3.100)

We can now prove Propositions 1.11 and 1.13 as two special cases of the results above.
The proofs are analogous to the proofs of Propositions 1.9 and 1.10, but we include them
for completeness.

Proof of Proposition 1.11. Apply Lemma 3.14(ii) with f(Λn(u)) := 1{Λn(u) = Λ} and
g(Λn(u)) := 1{Λn(u) = Λ′}. Then X̂Λ

n = F (Λn) and X̂Λ′
n = G(Λn). We have λf = p̂k,Λ

and λg = p̂m,Λ′ . Furthermore, if f(Λk) 6= 0, then Λk = Λ and G(Λk) = G(Λ) = q̂Λ
Λ′ .

Hence,
E
(
f(Λk)G(Λk)

)
= q̂Λ

Λ′ E f(Λk) = q̂Λ
Λ′ p̂k,Λ.

36

Proof of Proposition 1.13. In principle, this follows from Proposition 1.11 by summing
over all trees of sizes k and m, and evaluating the resulting sum; however as noted for
the binary search tree, it is easier to give a direct proof. By symmetry we may assume
k ≥ m. We apply Lemma 3.14(ii) with f(Λ) := 1{|Λ| = k} and g(Λ) := 1{|Λ| = m}.
Then X̂n,k = F (Λn) and X̂n,m = G(Λn). Furthermore, f(Λk) = 1, g(Λm) = 1 and
G(Λk) = X̂k,m. Hence λf = λg = 1, and, using (3.72),

E
(
f(Λk)G(Λk)

)
= E X̂k,m =

{
k

m(m+1) , m < k,

1, m = k.
(3.101)

Hence, Lemma 3.14(ii) yields (1.18) with

σk,m =

{
1

(k+1)m(m+1) − β̂(k,m), m < k,
1

k(k+1) − β̂(k, k), m = k,
(3.102)

which yields (1.19)–(1.20) by elementary calculations.

Lemma 3.17. Let Λ1, . . . ,ΛN be a finite sequence of distinct ordered or unordered rooted
trees. Then the matrix (σ̂Λi,Λj)

N
i,j=1 in Proposition 1.11 is non-singular and thus positive

definite.

Proof. The proof is analogous to the proof of Lemma 3.6.

Lemma 3.18. For every N ≥ 1, the matrix (σ̂k,m)Nk,m=1 of the values defined in Proposi-
tion 1.13 is non-singular and thus positive definite.

Proof. The proof is analogous to the proof of Lemma 3.7.

In the finitely supported case in Corollary 3.16, both EF (Λn) and VarF (Λn) grow
linearly in n. Asymptotically, this is true under much weaker assumptions.

Theorem 3.19. Under the assumptions in Theorem 3.15, assume further that E |f(Λ)| <
∞ and λn = o(n) as n→∞. Then

EF (Λn) = nE f(Λ) + o(n). (3.103)

More generally, if E |f(Λ)| <∞ and λn = o(nα) for some α ≤ 1, then

EF (Λn) = nE f(Λ) + o(nα), (3.104)

and if E |f(Λ)| <∞ and λn = O(nα) for some α < 1, then

EF (Λn) = nE f(Λ) +O(nα). (3.105)

Proof. The proof is analogous to the proof of Theorem 3.8.

Theorem 3.20. There exists a universal constant C such that, under the assumptions and
notations of Theorem 3.15, for all n ≥ 1,

Var(F (Λn)) ≤ Cn

((∞∑
k=1

(Var f(Λk))
1/2

k3/2

)2

+ sup
k

Var f(Λk)

k
+
∞∑
k=1

λ2
k

k2

)
. (3.106)

Proof. The proof is analogous to the proof of Theorem 3.20.

37

4 Poisson approximation by Stein’s method and couplings

To prove Theorems 1.7 and 1.18 we use Stein’s method with couplings as described by
Barbour, Holst and Janson [3]. In general, let A be a finite index set and let (Iα, α ∈ A)
be indicator random variables. We write W :=

∑
α∈A Iα and λ := E(W). To approximate

W with a Poisson distribution Po(λ), this method uses a coupling for each α ∈ A between
W and a random variable Wα which is defined on the same probability space as W and has
the property

L(Wα) = L(W − Iα | Iα = 1). (4.1)

A common way to construct such a coupling (W,Wα) is to find random variables (Jβα, β ∈
A) defined on the same probability space as (Iα, α ∈ A) in such a way that for each α ∈ A,
and jointly for all β ∈ A,

L(Jβα) = L(Iβ | Iα = 1). (4.2)

Then Wα =
∑

β 6=α Jβα is defined on the same probability space as W and (4.1) holds.
Suppose that Jβα are such random variables, and that, for each α, the setAα := A\{α}

is partitioned into A−α and A0
α in such a way that

Jβα ≤ Iβ if β ∈ A−α , (4.3)

with no condition if β ∈ A0
α. We will use the following result from [3] (with a slightly

simplified constant). ([3] also contain similar results using a third part A+
α of Aα, where

(4.3) holds in the opposite direction; we will not need them and note that it is always
possible to include A+

α in A0
α and then use the following result.)

Theorem 4.1 ([3, Corollary 2.C.1]). Let W =
∑

α∈A Iα and λ = E(W). Let Aα =
A\{α} and A−α ,A0

α be defined as above. Then

dTV (L(W),Po(λ)) ≤ (1 ∧ λ−1)
(
λ−Var(W) + 2

∑
α∈A

∑
β∈A0

α

E(IαIβ)
)
.

4.1 Couplings for proving Theorems 1.7 and 1.18

Returning to the binary search tree, we use the cyclic representation Xn,k =
∑n+1

i=1 Ii,k in
(3.1). Recall the construction of Ii,k in (2.2) and the distance |i − j|n+1 on Zn+1 given by
(3.2).

Lemma 4.2. Let k ∈ {1, . . . , n − 1} and let Ii,k be as in Section 2.3. Then for each
i ∈ {1, . . . , n + 1}, there exists a coupling ((Ij,k)j , (Z

k
ji)j) such that L(Zkji) = L(Ij,k |

Ii,k = 1) jointly for all j ∈ {1, . . . , n+ 1}. Furthermore,
Zkji = Ij,k if |j − i|n+1 > k + 1,

Zkji ≥ Ij,k if |j − i|n+1 = k + 1,

Zkji = 0 ≤ Ij,k if 0 < |j − i|n+1 ≤ k.

38

Proof. We define Zkji as follows. (Indices are taken modulo n + 1.) Let m and m′ be the
indices in i− 1, . . . , i+ k such that Um and Um′ are the two smallest of Ui−1, . . . , Ui+k; if
one of these is i−1 we choosem = i−1, and if one of them is i+k we choosem′ = i+k,
otherwise, we randomize the choice ofm among these two indices so that P(m < m′) = 1

2 ,
independently of everything else. Now exchange Ui−1 ↔ Um and Ui+k ↔ Um′ , i.e., let
U ′i−1 := Um, U ′m := Ui−1, U ′i+k := Um′ , U ′m′ := Ui+k, and U ′l := Ul for all other indices
l. Finally, let, cf. (2.2),

Zkji = 1
{
U ′j−1 and U ′j+k are the two smallest among U ′j−1, . . . , U

′
j+k

}
. (4.4)

Then, L
(
U ′1, . . . , U

′
n

)
= L

(
(U1, . . . , Un) | Ii,k = 1

)
and thus L(Zkji) = L(Ij,k | Ii,k = 1)

jointly for all j.
Note that U ′l = Ul if l /∈ {i− 1, . . . , i+ k} and thus Zkji = Ij,k if |j − i|n+1 > k + 1.

On the other hand, if 0 < j − i < k+ 1, then Zkji = 0 since i+ k lies in {j, . . . , j + k− 1}
and U ′i+k is smaller than U ′j−1 by construction; the case −k − 1 < j − i < 0 is similar.
(This says simply that two different fringe trees of the same size cannot overlap, which is
obvious.)

Finally, if j = i + k + 1 with j + k + 1 < i + n + 1 (i.e., k + 1 < (n + 1)/2),
then j − 1 = i + k and thus U ′j−1 ≤ Uj−1 while U ′l = Ul for l ∈ {j, . . . , j + k}; hence
Zkji ≥ Ij,k. The cases j = i + k + 1 with j + k + 1 = i + n + 1 and j = i − k − 1 with
j − k − 1 > i− n− 1 are similar.

Figures 3–4 show an example of this coupling, illustrated by the corresponding binary
search trees; in this example i = 4, k = 3, m = i− 1 = 3, m′ = 6 and U0 = 0.

6,1

3,2 8,3

1,6 5,5 7,8 10,4

2,10 4,7 9,9

Figure 3: A binary search tree with
no fringe subtree of size three con-
taining the keys {4, 5, 6}.

7,1

3,2 8,3

1,6 5,5

6,8

10,4

2,10 4,7 9,9

Figure 4: A coupling forcing a
fringe subtree of size three contain-
ing the keys {4, 5, 6} in the tree in
Fig. 3.

For proving the Poisson approximation result in (1.44) for the random recursive tree
there is a similar coupling using the representation (3.71) where IL

i,k−1 is defined by (2.9)
and the indicators Ui have period n: Ui := Ui mod n.

39

Lemma 4.3. Let k ∈ {1, . . . , n− 1} and let IL
i,k−1 be as in Section 2.3. Then for each i ∈

{1, . . . , n}, there exists a coupling ((IL
j,k−1)j , (Z

k−1
ji)j) such that L(Zk−1

ji) = L(IL
j,k−1 |

IL
i,k−1 = 1) jointly for all j ∈ {1, . . . , n}. Furthermore,{

Ẑk−1
ji = IL

j,k−1 if |j − i|n > k,

Ẑk−1
ji = 0 ≤ IL

j,k−1 if 0 < |j − i|n < k.

In contrast to Lemma 4.2, there is no monotonicity (in any direction) between Ẑk−1
ji

and IL
j,k−1 when |j − i|n = k, as easily is seen by simple examples.

Proof. We use the same construction as in the proof of Lemma 4.2 except that if U ′i−1 >
U ′i+k then we make a final additional interchange U ′i−1 ↔ U ′i+k. Denote the result by
U ′′1 , . . . , U

′′
n−1. The rest of the argument is as above, now defining

Ẑk−1
ji = 1

{
U ′′j−1 < U ′′j+k−1 < min

j≤l≤j+k−2
U ′′l
}
. (4.5)

Theorem 1.18 is a special case of Theorem 1.7. However, we prefer to prove Theo-
rem 1.18 first, to show the main ideas of the proof more clearly, and then give the modifi-
cations needed for Theorem 1.7.

Proof of Theorem 1.18. The means are given in Lemmas 3.1 and 3.12.
We prove the Poisson approximation result first for the binary search tree, using the

representation Xn,k =
∑n+1

i=1 Ii,k in (3.1). Let A := {1, . . . , n+ 1}. From Lemma 4.2 we
see that for each i ∈ A we can apply Theorem 4.1 with

A−i := A \ {i, i± (k + 1)}, A0
i := {i± (k + 1)};

this yields, using Lemma 3.1 and (3.11), provided k 6= (n− 1)/2,

dTV (L(Xn,k),Po(µn,k)) ≤
(
1 ∧ µ−1

n,k

)(
µn,k −Var(Xn,k) + 4

∑
1≤i≤n+1

E(Ii,kIi+k+1,k)
)

= O
(1

µn,k
· n
k3

)
= O

(1

k

)
,

which shows (1.43); the case k = (n− 1)/2 follows similarly from Lemma 3.1 and (3.12).
For the random recursive tree, we argue similarly, using the representation X̂n,k =∑n
i=1 I

L
i,k−1 in (3.71) and Theorem 4.1 together with Lemmas 4.3 and 3.12, and (3.78).

Lemmas 4.2 and 4.3 can be extended to include a property P . We state only the binary
search tree case, and leave the random recursive tree to the reader. Recall that IPi,k is the
indicator of the event that the binary search tree defined by the permutation defined by
σ(i, k) belongs to P .

Lemma 4.4. Let k ∈ {1, . . . , n−1}, and let ĨPi,k := Ii,kI
P
i,k. Then for each i ∈ {1, . . . , n+

1} , there exists a coupling ((ĨPj,k)j , (W
k
ji)j) such that L(W k

ji) = L(ĨPj,k | ĨPi,k = 1) jointly
for all j ∈ {1, . . . , n+ 1}. Furthermore,

W k
ji = ĨPj,k if |j − i|n+1 > k + 1,

W k
ji ≥ ĨPj,k if |j − i|n+1 = k + 1,

W k
ji = 0 ≤ ĨPj,k if 0 < |j − i|n+1 ≤ k.

(4.6)

40

Proof. We use the same notations as in the proof of Lemma 4.2. (In particular, indices are
taken modulo n + 1.) Let m and m′ be the indices in i − 1, . . . , i + k defined in proof of
Lemma 4.2, and exchange Ui−1 ↔ Um and Ui+k ↔ Um′ . So far we have used exactly the
same coupling as in Lemma 4.2. However, since we want σ(i, k) to have the property P ,
we also exchange the values U ′i , . . . , U

′
i+k−1 with each other so that this property is fulfilled

(choosing uniformly at random between the orderings satisfying P). We abuse notation and
write U ′i , . . . , U

′
i+k−1 for the new values after this exchange. Write

σi(j, k) = {(j, U ′j), . . . , (j + k − 1, U ′j+k−1)}

and note that σi(j, k) = σ(j, k) if |j − i| ≥ k + 1. Finally, let

W k
ji := Zkji · 1

{
σi(j, k) has property P

}
, (4.7)

where Zkji is defined by (4.4). Then, L
(
U ′1, . . . , U

′
n

)
= L

(
(U1, . . . , Un) | ĨPi,k = 1

)
and

thus L(W k
ji) = L(ĨPj,k | ĨPi,k = 1) jointly for all j. To see that (4.6) holds, we argue as in

the proof of Lemma 4.2.

Proof of Theorem 1.7. We prove the result for XP
n,k, the result for X̂P

n,k follows by similar
calculations.

The mean µPn,k := E(XP
n,k) is given by Lemma 3.2. From Theorem 4.1 together with

Lemma 4.4, Lemma 3.2 and (3.11)–(3.12), we deduce that for k 6= (n− 1)/2,

dTV
(
L(XP

n,k),Po(µPn,k)
)

≤ (1 ∧ (µPn,k)
−1)
(
µPn,k −Var(XP

n,k) + 4
∑

1≤i≤n+1

(
E(ĨPi,kĨ

P
i+k+1,k)

)

=

O
(
pk,P
k

)
if µPn,k ≥ 1

O
(
pk,P
k

)
· µPn,k if µPn,k < 1

and for k = (n− 1)/2,

dTV
(
L(XP

n,k),Po(µPn,k)
)

= O
(p2

k,P

k

)
,

which shows Theorem 1.7 in the binary tree case.

5 Normal approximation by Stein’s method

In this section we will prove Theorem 1.19 and Theorem 1.22. As in [11, Theorem 5] we
use Stein’s method in the following form, see e.g. [31, Theorem 6.33] for a proof, and for
the definition of a dependency graph.

Lemma 5.1. Suppose that (Sn)∞1 is a sequence of random variables such that Sn =∑
α∈Vn Znα, where for each n, {Znα}α is a family of random variables with dependency

graph (Vn, En). Let N(·) denote the closed neighborhood of a node or set of nodes in this
graph. Suppose further that there exist numbers Mn and Qn such that∑

α∈Vn

E(|Znα|) ≤Mn

41

and for every α, α′ ∈ Vn, ∑
β∈N(α,α′)

E(|Znβ| | Znα, Znα′) ≤ Qn .

Let σ2
n = Var(Sn). If

lim
n→∞

MnQ
2
n

σ3
n

= 0 , (5.1)

then
Sn − E(Sn)√

Var(Sn)

d−→ N (0, 1).

Proof of Theorem 1.19. We consider the binary search tree. The random recursive tree is
similar.

From Lemma 3.1 we have

E(Xn,k) =
2(n+ 1)

(k + 2)(k + 1)
(5.2)

and

Var(Xn,k) = E(Xn,k) +O
(n
k3

)
. (5.3)

By the usual argument with subsequences, it suffices to consider the two cases k →∞
and k = O(1).

If k → ∞ and k = o(
√
n), then Theorem 1.18 shows that Xn,k can be approximated

by a random variable with a Po(E(Xn,k)) distribution, where by (5.2)–(5.3), Var(Xn,k) ∼
E(Xn,k) → ∞ as n→∞. Thus, from Theorem 1.18 and the central limit theorem for

Poisson distributions, it follows that Xn,k−E(Xn,k)√
Var(Xn,k)

d−→ N (0, 1) as n→∞.

Thus, it remains to only show Theorem 1.19 for k = O(1). We repeat the arguments
used in [11, Theorem 5], but using the representation (3.1). (In fact, it suffices to consider
a fixed k and then the result follows by Theorem 1.22. However, we prefer to give a direct,
and somewhat more general, proof.)

We define the dependency graph (Vn, En) for the collection of random variables {Ii,k, 1 ≤
i ≤ n+ 1} by taking

Vn = {1, . . . , n+ 1}

and En := {(i, j) : 0 < |i − j|n+1 ≤ k + 1}. Then |N(α, α′)| ≤ 2(2k + 3) for all
α, α′ ∈ Vn, and thus we may take Qn = 4k + 6 in Lemma 5.1. We further take Mn =
EXn,k = O(n/k2). Thus, MnQ

2
n = O(n), and to show (5.1) and thus Theorem 1.19 for

the binary search tree it is enough to show that

n

Var(Xn,k)3/2

n→∞−→ 0. (5.4)

For k = O(1), Proposition 1.10 shows that Var(Xn,k) ≥ cn, and (5.4) follows, which
completes the proof.

More generally, Proposition 1.10 shows that Var(Xn,k) ≥ cn/k2 for all k < (n−1)/2.
Thus n/Var(Xn,k)

3/2 = O(k3/n1/2), and it follows that (5.4) holds if k = o(n1/6).

42

Proof of Theorem 1.22. We show the result for the binary search tree, for the random recur-
sive tree the proof follows by analogous calculations. Recall that Xn = (XT 1

n , XT 2

n , . . . , XT d
n)

and let Zd = (Z1, . . . , Zd), where Zd is multivariate normal with the distribution N (0,Γ),
where Γ is the matrix with elements γij = limn→∞

1
n Cov(XT i

n , XT j
n), see (1.47). Note

that Γ is non-singular by Lemma 3.6.
By the Cramér–Wold device [4, Theorem 7.7], to show that n−

1
2 (Xn − µn) converges

in distribution to Zd, it is enough to show that for every fixed vector (t1, . . . , td) ∈ Rd we
have ∑d

j=1 tjX
T j
n − E

(∑d
j=1 tjX

T j
n

)
√
n

d−→
d∑
j=1

tjZj , (5.5)

where
∑d

j=1 tjZj ∼ N
(
0, γ2

)
with

γ2 :=

d∑
j,k=1

tjtkγjk. (5.6)

Let Sn :=
∑d

j=1 tjX
T j
n . Proposition 1.9 implies that, as n→∞,

Var(Sn) ∼ n
d∑

j,k=1

tjtkσT i,T j = n
d∑

j,k=1

tjtkγij = nγ2. (5.7)

In particular, if γ2 = 0, then (5.5) is trivial, with the limit 0.
To show that (5.5) holds when γ2 > 0, we will use the same method as was used in [11,

Theorem 5] for proving this theorem (in a more general form) in the 1-dimensional case
d = 1. Let |T j | = kj , 1 ≤ j ≤ d. We use the cyclic representation (2.14), which in this
case can be written as, see (3.17),

XT j

n =

n+1∑
i=1

Iji

for some indicator variable Iji = Ii,kjI
T j

i,kj
depending only on Ui−1, . . . , Ui+kj . We define

Vn := {(i, j) : 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ d}

and let for each (i, j) ∈ Vn,Ai,j be the set {i−1, . . . , i+kj}, regarded as a subset of Zn+1.
Thus Iji depends only on {Uk : k ∈ Ai,j}, and thus we can define a dependency graph Ln
with vertex set Vn by connecting (i, j) and (i′, j′) when Ai,j ∩Ai′,j′ 6= ∅.

Let K := max{k1, k2, . . . , kd} and M := max{t1, t2, . . . , td}. It is easy to see that for
the sum

Sn :=

d∑
j=1

tjX
T j

n =
n+1∑
i=1

d∑
j=1

tjI
j
i =

∑
(i,j)∈Vn

tjI
j
i ,

we can choose the numbers Mn and Qn in Lemma 5.1 as Mn = (n+ 1)dM and

Qn = 2M sup
(i,j)∈Vn

|N((i, j))| ≤ 2Md(2K + 3).

Since σn ∼ n1/2 by (5.7), (5.1) holds and Lemma 5.1 shows that (5.5) holds.

43

6 Proof of Theorem 1.14

We prove Theorem 1.14 by combining Theorem 1.22 with a truncation argument to deal
with more general additive functionals.

Proof of Theorem 1.14. We consider again the binary search tree. The random recursive
tree is similar.

Note first that (1.21)–(1.22) imply

∞∑
k=1

Var f(Tk)
k2

≤
(

sup
k

Var f(Tk)
k

)1/2 ∞∑
k=1

(Var f(Tk))1/2

k3/2
<∞, (6.1)

and thus, using also (1.23),

∞∑
k=1

E |f(Tk)|2

k2
=
∞∑
k=1

Var f(Tk)
k2

+
∞∑
k=1

(E f(Tk))2

k2
<∞. (6.2)

It follows that
∑∞

k=1
E |f(Tk)|

k2 < ∞, and thus, see (3.48) and (3.39), that E |f(T)| < ∞.
Since (1.23) also implies E f(Tk)/k → 0 as k → ∞, (1.24) follows by Theorem 3.8 and
(3.49).

Next, define the truncations fN (T) := f(T)1{|T | ≤ N}, and the corresponding sums
FN (T). Then

FN (Tn) =
∑
|T |≤N

f(T)XT
n , (6.3)

and thus Proposition 1.9 yields, as n→∞,

VarFN (Tn)/n→ σ2
F,N :=

∑
|T |,|T ′|≤N

f(T)f(T ′)σT,T ′ . (6.4)

Moreover, Theorem 3.9 applied to f − fN yields

1

n
Var
(
F (Tn)− FN (Tn)

)
≤ CδN (6.5)

where

δN :=

(∑
k>N

(Var f(Tk))1/2

k3/2

)2

+ sup
k>N

Var f(Tk)
k

+
∑
k>N

µ2
k

k2
. (6.6)

Note that δN is independent of n, and by the assumptions (1.21)–(1.23), δN → 0 as
N → ∞. It follows by Minkowski’s inequality that the sequences (Var(FN (Tn))/n)n≥1

converge uniformly to (Var(F (Tn))/n)n≥1. This and (6.4) imply (1.25) (including the
existence of the limit in (1.25)).

For the convergence in distribution (1.26), we use again the truncation fN and FN , and
note that Theorem 1.22 implies

FN (Tn)− EFN (Tn)√
n

d−→ N (0, σ2
F,N) (6.7)

as n→∞, for each fixed N . This together with the uniform bound (6.5) where δN → 0 as
N →∞ implies (1.26), see e.g. [4, Theorem 4.2].

44

Proof of Corollary 1.15. The assumption f(T) = O(|T |α) with α < 1/2 implies (1.21)–
(1.23) and (1.27)–(1.29). The result follows by Theorem 1.14. The version (1.33) of the
asymptotic normality (1.26) follows by (3.47) and (1.39), and similarly for the random
recursive case (1.34).

7 Proofs of Theorems 1.30–1.31

Finally, we prove Theorems 1.30 and 1.31, beginning with exact formulas for finite n.

Lemma 7.1. Let F (T) be given for binary trees T by (1.1), with a functional f(T) =
f(|T |, |TL|, |TR|) that depends only on the sizes of T and of its left and right subtrees. Let
ψk be as in Theorem 1.30. Then

Var(F (Tn)) = (n+ 1)

n−1∑
k=1

2

(k + 1)(k + 2)
ψk + ψn. (7.1)

Proof. We use the notation in Theorem 1.30, and let σ2
n := Var(F (Tn)).

Condition the random tree Tn on having a left subtree of size |Tn,L| = k; then the two

subtrees Tn,L and Tn,R are independent random trees with the distributions Tn,L
d
= Tk and

Tn,R
d
= Tn−1−k. Hence, (1.2) implies that the conditional distribution of F (Tn) is given by(

F (Tn) | |Tn,L| = k
) d

= f(n, k, n− 1− k) + F (Tk) + F (T ′n−k−1), (7.2)

where T ′n−k−1
d
= Tn−k−1 is independent of Tk.

Taking the expectation in (7.2) we obtain the conditional expectation of F (Tn) as

E
(
F (Tn) | |Tn,L| = k

)
= g(k) := f(n, k, n− 1− k) + νk + νn−1−k. (7.3)

Since |Tn,L|
d
= In, it follows that

E
(
F (Tn) | |Tn,L|

) d
= g(In). (7.4)

Consequently,
Var
(
E
(
F (Tn) | |Tn,L|

))
= Var(g(In)) = ψn (7.5)

by (1.57); the last equality in (1.57) follows because taking the expectation in (7.4) yields

E g(In) = EF (Tn) = νn. (7.6)

Furthermore, taking the variance in (7.2) we obtain the conditional variance

Var
(
F (Tn) | |Tn,L| = k

)
= Var(F (Tk)) + Var(F (T ′n−1−k)) = σ2

k + σ2
n−1−k. (7.7)

Consequently, by a standard variance decomposition formula (“the law of total vari-
ance”), see, e.g., [25, Exercise 10.17-2], together with (7.5) and (7.7),

σ2
n = Var(F (Tn)) = E

(
Var
(
F (Tn) | |Tn,L|

))
+ Var

(
E
(
F (Tn) | |Tn,L|

))
= E

(
σ2
In + σ2

n−1−In
)

+ ψn. (7.8)

If we define Ψ(T) by (1.2) using the toll function ψ(T) := ψ|T |, it follows from (7.8) and
induction that E(Ψ(Tn)) = σ2

n, and thus (7.1) follows from (3.35).

45

Lemma 7.2. Let F (Λ) be given for rooted trees T by (1.1), with a functional f(Λ) =
f(|Λ|, d(Λ),Λv1 , . . . ,Λvd(Λ)

) that depends only on the size |Λ| and the number and sizes of
the principal subtrees. Let ψk be as in Theorem 1.31. Then

Var(F (Λn)) = n
n−1∑
k=1

1

k(k + 1)
ψk + ψn. (7.9)

Proof. Similar to the proof of Lemma 7.1 with mainly notational changes, now condition-
ing on the degree d = d(Λn) and the sizes of the principal subtrees Λn,v1 , . . . ,Λn,vd , and
using (3.96).

Proof of Theorem 1.30. By Theorem 1.14, Var(F (Tn))/(n+ 1)→ σ2
F <∞. Since ψn ≥

0, this and (7.1) imply that

∞∑
k=1

2

(k + 1)(k + 2)
ψk <∞ (7.10)

and

σ2
F =

∞∑
k=1

2

(k + 1)(k + 2)
ψk + lim

n→∞

ψn
n+ 1

, (7.11)

where the limit has to exist. However, if limn→∞ ψn/(n+ 1) 6= 0, then (7.10) cannot hold.
Hence limn→∞ ψn/(n+ 1) = 0 and (1.58) follows from (7.11).

It follows from (1.58) and (7.1) that σ2
F = 0 ⇐⇒ ψk = 0 ∀k ⇐⇒ Var(F (Tn)) =

0 ∀n. The final conclusion follows by (1.57). (If f(n, k, n− 1− k) = an − ak − an−1−k,
then F (T) = a|T | − (|T |+ 1)a0 is deterministic.)

Proof of Theorem 1.31. Similar.

8 Applications

In this section we give some simple examples of applications of the results above.

8.1 Outdegrees

First we consider the number of nodes in Tn or Λn of a certain outdegree (number of chil-
dren) d ≥ 0; we denote these numbers byDn,d and D̂n,d, respectively. These equalXP

n and
X̂P
n , where P is the property that the root has degree d. Consequently, Corollary 1.25 im-

mediately yields convergence of the expectation and variance divided by n, and asymptotic
normality provided the asymptotic variance does not vanish. By Remark 1.27, this extends
to joint convergence for several outdegrees d.

The case d = 0 is simple; the vertices with outdegree 0 are the leaves, and thus
Dn,0 = Xn,1 and D̂n,0 = X̂n,1 with means given by (1.41)–(1.42) and variances given
in Propositions 1.10 and 1.13. (In this case, the asymptotic normality also follows by The-
orem 1.19 or 1.22.) To find the asymptotic variances for d > 0 (and covariances) directly
from Corollary 1.25 seems much more difficult. However, as noted already by Devroye

46

[10], for the binary search tree, when the only outdegrees are 0, 1, 2, it is possible to reduce
to the case d = 0, because

Dn,0 +Dn,1 +Dn,2 = n and Dn,1 + 2Dn,2 = n− 1, (8.1)

and hence

Dn,2 = Dn,0 − 1 and Dn,1 = n+ 1− 2Dn,0. (8.2)

Hence we recover the result by Devroye [10, Theorem 2]:

Example 8.1 (Devroye [10]). Dn,d, the number of vertices with outdegree d in the binary
search tree, d = 0, 1, 2, has expectation (for n > 1)

E(Dn,0) = E(Dn,1) =
n+ 1

3
, E(Dn,2) =

n− 2

3
(8.3)

and variance (for n > 3)

VarDn,0 = VarDn,2 =
2

45
(n+ 1), VarDn,1 =

8

45
(n+ 1) (8.4)

and for each d ∈ {0, 1, 2}, as n→∞,

Dn,d − E(Dn,d)√
Var(Dn,d)

d−→ N
(
0, 1
)
. (8.5)

Remark 8.2. The asymptotic means µD,d := limn→∞ EDn,d/n can also be calculated
by (1.51) or (1.24). For (1.51), we note that the growing binary tree Tt has root degree
distributed as Bin(2, 1− e−t), and thus, by the definition of T := Tτ ,

µD,d :=

∫ ∞
0

(
2

d

)
(1− e−t)d(e−t)2−de−t dt =

(
2

d

)∫ 1

0
(1− x)dx2−d dx =

1

3
, (8.6)

for each d = 0, 1, 2, see Aldous [1]. If we instead use (1.24), we obtain

µD,d =
∞∑
k=1

2

(k + 1)(k + 2)
pk,d,

where pk,d is the probability that the root of Tk has degree d. For d = 0 we have p1,0 = 1
and pk,0 = 0 for k > 1; hence µD,0 = 2

2·3 = 1
3 . For d = 1 we have p1,1 = 0 and pk,1 = 2/k

for k ≥ 2, since the binary search tree generated by a sequence of keys has root degree 1 if
and only if the first key is either the largest or the smallest. Hence (1.24) yields

µD,1 =
∞∑
k=2

2

(k + 2)(k + 1)
· 2

k
=

1

3
. (8.7)

We can similarly show µD,2 = 1
3 too by (1.24).

For the random recursive tree, Corollary 1.25 yields the following, which was proved
(using an urn model) by Janson [29], extending earlier results by Mahmoud and Smythe
[34]. In fact, [29] gave also a generating function for the variances σ2

D̂,d
(and the covari-

ances), enabling us to calculate them; as said above, it seems difficult to obtain σ2
D̂,d

by the

methods of this paper except for d = 0, when σ2
D̂,0

= σ̂1,1 = 1
12 by (1.20). (The asymptotic

formula (8.8) for the expectation was shown earlier by Na and Rapoport [38]. The conver-
gence in probability D̂n,d/n

p−→ 2−d−1, which follows from (8.9), was shown by Meir and
Moon [37].)

47

Theorem 8.3. For D̂n,d, the number of vertices with outdegree d ≥ 0 in the random recur-
sive tree, it holds that, as n→∞,

E D̂n,d

n
→ 2−d−1 (8.8)

and furthermore

D̂n,d − 2−d−1n√
n

d−→ N
(

0, σ2
D̂,d

)
(8.9)

for some constant σ2
D̂,d
≥ 0.

Proof. By Corollary 1.25, it remains only to calculate µD̂,d := limn→∞ E D̂n,d/n. We
use (1.54) and note that the growing random tree Λt has root degree with the Poisson
distribution Po(t). Since we stop the process at a random time τ ∼ Exp(1) it follows that

µD̂,d =

∫ ∞
0

tde−t

d!
· e−t dt = 2−d−1,

as calculated by Aldous [1].

Remark 8.4. An alternative approach for finding µD̂,d is to use the the natural correspon-
dence between the recursive tree and the binary search tree. A node of outdegree d in the
recursive tree (except the root of the whole tree) corresponds to a left-rooted subtree in the
binary search tree with a rightmost path of length d− 1, and thus to a left-rooted right path
of length d−1, considering here only paths that cannot be continued further to the right. By
symmetry, the expected number of such paths equals the expected number of rightrooted
right paths of length d − 1, but these paths are the right paths of length d. By symmetry
again, on the average half of these paths (except paths from the root) are left-rooted, and
thus E D̂n,d+1 = 1

2 E D̂n,d + O(1). Hence, µD̂,d = 2−d−1 follows by induction since
µD̂,0 = 1

2 (see (1.42)).

8.2 Protected nodes

We proceed to use fringe trees to study the so-called protected nodes that recently have been
studied in several types of random trees, see, e.g., [6, 8, 12, 35, 36] and the references there.
A node is `-protected if the shortest distance to a descendant that is a leaf is at least `. The
most studied case is ` = 2: a node is two-protected if it is neither a leaf nor the parent of a
leaf.

Remark 8.5. The case ` = 1 is a bit trivial, at least for the random trees studied here: a
node is 1-protected if and only if it is a non-leaf. Hence, for binary search trees and random
recursive trees, where the number of nodes is given, it is equivalent to study the number of
leaves, which was done in Section 8.1. (However, for random trees with a random number
of nodes, for example the ternary search tree studied in [27], this case too is interesting.)

Corollary 1.25 implies immediately that for any `, the number of `-protected nodes
is asymptotically normal in both the binary search tree and the random recursive tree, at
least provided the asymptotic variances below are non-zero, which is an obvious conjecture
although we have no rigorous proof for ` ≥ 3, cf. Problem 1.26.

48

Theorem 8.6. Let ` ≥ 1 and let Y`,n denote the number of `-protected nodes in a binary
search tree Tn. Then, for some constants µY,` = P(the root of T is `-protected) > 0 and
σ2
Y,` ≥ 0, with at least σ2

Y,2 > 0,

E(Y`,n)

n
→ µY,`, (8.10)

Var(Y`,n)

n
→ σ2

Y,`, (8.11)

and

Y`,n − nµY,`√
n

,
Y`,n − E(Y`,n)√

n

d−→ N
(
0, σ2

Y,`

)
. (8.12)

Similarly, let Z`,n denote the number of `-protected nodes in a random recursive tree
Λn. Then, for some constants µZ,` = P(the root of Λ is `-protected) > 0 and σ2

Z,` ≥ 0,
with at least σ2

Z,2 > 0,

E(Z`,n)

n
→ µZ,`, (8.13)

Var(Z`,n)

n
→ σ2

Z,` (8.14)

and

Z`,n − E(Z`,n)√
n

,
Z`,n − nµZ,`√

n

d−→ N
(
0, σ2

Z,`

)
. (8.15)

Proof. Let P be the class of trees such that the root is `-protected and apply Corollary 1.25,
noting that Y`,n = XP

n and Z`,n = X̂P
n .

That σ2
Y,2 > 0 and σ2

Z,2 > 0 follows from Theorems 1.30 and 1.31.

By Remark 1.27, we also obtain joint normality for several `.
Theorem 8.6 includes several earlier results, proved by several different methods: (8.10)

was shown by Mahmoud and Ward [35] for ` = 2 and by Bóna [6] and Devroye and Janson
[12] in general; [35] also shows (8.11)–(8.12) for ` = 2; (8.13) was shown by Mahmoud
and Ward [36] for ` = 2 and by Devroye and Janson [12] in general; [36] also shows for
` = 2 the weaker version of (8.14) that Var(Z2,n) = O(1/n).

To calculate the asymptotic means and variances is more complicated, however. For the
binary search tree, the asymptotic means µY,` were calculated for ` ≤ 4 by Bóna [6] (using
generating functions) and Devroye and Janson [12] (using the formula (1.51) as here) to be
µY,1 = 2

3 , µY,2 = 11
30 , µY,3 = 1249

8100 , µY,4 = 103365591157608217
2294809143026400000 ; the methods in these papers

apply to arbitrary ` (and yield rational numbers) but explicit calculations quickly become
cumbersome.

For the random recursive tree, µZ,1 = 1
2 as a consequence of Theorem 8.3 (with d = 0)

and µZ,2 = 1
2 − e

−1 by Mahmoud and Ward [36] and Devroye and Janson [12]; the method
in [12] is based on (1.54) as here and yields (recursively) a complicated integral expression
for every `, but we do not know any closed form for ` ≥ 3.

For the asymptotic variances, the formulas (1.52) and (1.55) do not seem to easily yield
explicit formulas (although they might be useful for numerical approximations). The only

49

value that we know, except for ` = 1 when σ2
Y,1 = σ1,1 = 2

45 (cf. (8.4)) and σ2
Z,1 = σ̂1,1 =

1
12 , is σ2

Y,2 = 29
225 . In fact, for the binary search tree and ` = 2 we can compute the mean

and variance of Y2,n exactly by a special trick; the result is stated in the following theorem
earlier shown by Mahmoud and Ward [35, Theorems 2.1, 2.2 and 3.1] (using generating
functions and recurrences), which is a more precise version of the special case ` = 2 of
Theorem 8.6 for the binary search tree. (See also [27, Theorem 1.2] for a different proof of
the asymptotic normality using Pólya urns.)

Theorem 8.7 (Mahmoud and Ward [35]). Let Y2,n denote the number of two-protected
nodes in a binary search tree Tn. Then

E(Y2,n) =
11

30
n− 19

30
, for n ≥ 4, (8.16)

and

Var(Y2,n) =
29

225
(n+ 1), for n ≥ 8. (8.17)

Furthermore, as n→∞,

Y2,n − 11
30n√

n

d−→ N
(

0,
29

225

)
. (8.18)

We provide a simple proof of this theorem using our results on fringe trees. Moreover,
our approach using fringe trees also allows us to provide a simple proof of the following
result which was conjectured in [35, Conjecture 2.1].

Theorem 8.8. For each fixed integer k ≥ 1, there exists a polynomial pk(n) of degree k,
the leading term of which is (11

30)k, such that E(Y k
2,n) = pk(n) for all n ≥ 4k.

Proof of Theorem 8.7. In a binary tree (with at least 2 nodes), the number of nodes that are
not two-protected equals two times the number of leaves (counting all the leaves and all the
parents of the leaves) minus the number of cherry subtrees, i.e., subtrees consisting of a root
with one left and one right child that both are leaves (since these are the only cases when a
parent is counted twice). Thus, writing L for a tree that is a single leaf and C for a tree that
is a cherry,

Y2,n = n− 2XL
n +XC

n . (8.19)

Hence,

E(Y2,n) = n− 2E(XL
n) + E(XC

n) (8.20)

and

Var(Y2,n) = 4 Var(XL
n) + Var(XC

n)− 4 Cov(XL
n , X

C
n). (8.21)

By (1.4), the expected number of subtrees of Tn isomorphic to a tree T of size |T | = k
is

E(XT
n) =

2(n+ 1)

(k + 2)(k + 1)
pk,T , (8.22)

50

where pk,T = P(Tk = T) = |ATk |/k! where ATk is the set of permutations of length k that
give rise to the binary search tree T . Evidently p1,L = 1, and for the cherry C we have
|C| = 3 and p3,C = 1

3 . Thus E(XL
n) = (n+ 1)/3 (for n ≥ 2), as already seen in (8.3), and

E(XC
n) = (n+ 1)/30 (for n ≥ 4). Hence (8.20) yields (8.16).

To calculate Var(Y2,n) we use Proposition 1.9. Using the notations there qLL = qCC = 1
and qCL = 2, and simple calculations yield (for n ≥ 8) Var(XL

n) = 2
45(n + 1) (as shown

in (8.4)), Cov(XL
n , X

C
n) = 2

105(n+ 1) and Var(XC
n) = 43

1575(n+ 1), which together with
(8.21) yield (8.17).

Since any linear combination of the components in a random vector with a multivariate
normal distribution is normal, the asymptotic normality (8.18) follows from (8.19) and
Theorem 1.22.

Remark 8.9. Alternatively, (8.19) shows that Y2,n = F (Tn) for the functional

f(T) := 1− 2 · 1{T = L}+ 1{T = C} (8.23)

and the results follow by Theorem 1.14 (with the same calculations as above).

Proof of Theorem 8.8. We use again (8.19) and the cyclic representation (2.14), which
show that

Y2,n = n+
n+1∑
i=1

g(σ(i− 1, 4)) (8.24)

for some functional g defined by g(σ(i − 1, 5)) := −2Ii,1 + Ii,3fC(σ(i, 3)) where fC
is the indicator that the permutation defines a cherry. Thus EY k

2,n can be calculated by
substituting (8.24) and expanding, and the result follows easily by collecting terms that are
equal since the random variables g(σ(i− 1, 5)) are i.i.d. and 4-dependent.

Remark 8.10. The asymptotic mean µY,2 in (8.10) can also be directed directly from (1.24)
in Theorem 1.14. We give this alternative calculation to illustrate our results, although in
this case (1.39) (see [12]) or (8.20) yield simpler calculations. Let pk be the probability
that the root of Tk is two-protected. Since the complement of the two-protected nodes
consists of the leaves and the parents of the leaves we obtain (for k ≥ 2), that the root
is not two-protected if and only if it has a child that is a leaf, which going back to the
construction of the binary search tree by a sequence of keys means that the first key is either
the second smallest or the second largest key. Hence, pk = 1−2/k for k ≥ 4. Furthermore,
p1 = p2 = 0 and p3 = 2/3. Consequently, (1.24) yields

µY,2 =
2

4 · 5
· 2

3
+
∞∑
k=4

2

(k + 2)(k + 1)
·
(

1− 2

k

)
=

11

30
. (8.25)

Mahmoud and Ward [35] also discuss the two-protected nodes in the extended binary
search tree. Recall that an extended binary search tree is a binary search tree where the n+1
external children are added. The leaves in the extended binary tree are the external vertices;
hence the two-protected nodes are those that have at least distance two to an external vertex,
i.e., the internal vertices that have no external children. In other words, the two-protected
nodes are precisely the nodes in the binary search tree that have outdegree 2. Thus Example
8.1 directly implies the following theorem in [35].

51

Theorem 8.11 (Mahmoud and Ward [35]). Let Zn denote the number of two-protected
nodes in an extended binary search tree. Then

E(Zn) =
n

3
− 2

3
, for n ≥ 2, (8.26)

and

Var(Zn) =
2

45
(n+ 1), for n ≥ 4. (8.27)

Furthermore, as n→∞,

Zn − n
3√

n

d−→ N
(

0,
2

45

)
. (8.28)

We can also show the following result which was conjectured in [35, Conjecture 4.1].

Theorem 8.12. Let Zn denoted the number of two-protected nodes in the extended binary
search tree. For each fixed integer k ≥ 1, there exists a polynomial pk(n) of degree k, the
leading term of which is 1

3k
, such that E(Zkn) = pk(n) for all n ≥ 2k.

Proof of Theorem 8.12. By the comments above, (8.2) and (3.1),

Zn = Dn,2 = Dn,0 − 1 = Xn,1 − 1 =

n+1∑
i=1

Ii,1 − 1. (8.29)

The result follows from the fact that the indicator functions Ii,1 are 2-dependent, cf. the
proof of Theorem 8.8.

8.3 Shape functionals

8.3.1 Binary search trees

Consider first a binary tree T with |T | = n, and define P (T) := pn,T = P(Tn = T). It is
easy to see that

P (T) := P(Tn = T) =
∏
v∈T
|T (v)|−1, (8.30)

see e.g. (more generally form-ary search trees) Dobrow and Fill [13]. The functional P (T)
is known as the shape functional for binary trees.

By (8.30), the functional F (T) := − logP (T) is given by (1.1) with f(T) = log |T |.

Example 8.13 (Fill [17]). Theorems 1.14 and 1.30 apply to F (T) = − logP (T), and it
follows immediately that, as shown by Fill [17] (with some further details), see also Fill
and Kapur [20] for m-ary search trees, as n→∞,

− E logP (Tn) ∼ n
∞∑
k=2

2 log k

(k + 1)(k + 2)
(8.31)

and
logP (Tn)− E logP (Tn)√

n

d−→ N (0, σ2) (8.32)

for some σ2 > 0 which can be computed from (1.58). (We have σ2 > 0 by Theorem 1.30,
since e.g. P (T3) is not deterministic.)

52

8.3.2 Unordered random recursive trees

For an unordered rooted tree Λ with |Λ| = n, we similarly define P̂ (Λ) := p̂n,Λ = P(Λn =
Λ) (regarding Λn as an unordered tree).. Then, see Feng and Mahmoud [15],

P̂ (Λ) := P(Λn = Λ) = n
∏
v∈Λ

s(Λ, v)−1|Λ(v)|−1, (8.33)

where s(Λ, v) is the number of permutations of the children of v that can be extended to
automorphisms of the tree Λ, i.e., if v has ν1 children v1i such that Λ(v1i) ∼= Λ1 for some
rooted tree Λ1, ν2 children v2i such that Λ(v2i) ∼= Λ2 for some different rooted tree Λ2, . . . ,
then s(Λ, v) =

∏
j νj !. This functional P̂ (T) is the shape functional for unordered rooted

trees.
By (8.33), the functional − log P̂ (Λ) = F (Λ) − log |Λ|, where F (Λ) is given by (1.1)

with f(Λ) = log |Λ| + log s(Λ, o), where o is the root. Note that this functional is more
complicated that the corresponding one for binary trees, and that f(Λ) no longer depends
only on the size |Λ| (nor only on the size of Λ and of the principal subtrees as in Theo-
rem 1.31). Nevertheless, Theorem 1.14 applies and yields the following. (It seems obvious
that σ̂2 > 0, but we have no rigorous proof. We have not attempted any numerical estimate.)

Theorem 8.14. As n→∞,
− E log P̂ (Λn) ∼ nµ̂ (8.34)

and
log P̂ (Λn)− E log P̂ (Λn)√

n

d−→ N (0, σ̂2) (8.35)

for some µ̂ > 0 and σ̂2 ≥ 0 which in principle can be computed from (1.30)–(1.31).

Proof. Let d(Λ) be the degree of the root o of Λ. Then, crudely, s(o,Λ) ≤ d(Λ)! and thus

log s(o,Λ) ≤ d(Λ) log d(Λ) ≤ d(Λ) log |Λ|. (8.36)

From the definition of the random recursive tree, d(Λk)
d
=
∑k−1

i=1 Ii, where Ii ∼ Be(1/i)
are i.i.d., and a simple calculation shows that

E d(Λk)
2 = O

(
log2 k

)
. (8.37)

By (8.36) and (8.37) we have, rather crudely,

E
(
f(Λk)

2
)

= E
(
(log s(o,Λk) + log k)2

)
≤ 2E

(
d(Λk)

2 log2 k
)

+ 2 log2 k

= O(log4 k). (8.38)

Hence, (1.27)–(1.29) hold, and Theorem 1.14(ii) applies.

8.3.3 Ordered random recursive trees

Now consider the random recursive tree Λn as an ordered tree. For an ordered rooted tree
Λ with |Λ| = n, we define P̂ (Λ) := p̂n,Λ = P(Λn = Λ). It is easily seen that if we denote
the children of a node v by v1, . . . , vd(v), then

P̂ (Λ) := P(Λn = Λ) =
∏
v∈Λ

d(v)∏
i=1

d(v)∑
j=i

|Λ(vj)|

−1

(8.39)

53

This functional P̂ (T) is the shape functional for ordered rooted trees.
By (8.39), the functional − log P̂ (Λ) = F (Λ), where F (Λ) is given by (1.1) with

f(Λ) =

d∑
i=1

log

d∑
j=i

|Λj | (8.40)

where d is the degree of the root and Λ1, . . . ,Λd are the principal subtrees. This functional
is of the type in Theorem 1.31, and we obtain the following.

Theorem 8.15. As n→∞,
− E log P̂ (Λn) ∼ nµ̂ (8.41)

and
log P̂ (Λn)− E log P̂ (Λn)√

n

d−→ N (0, σ̂2) (8.42)

for some µ̂ > 0 and σ̂2 > 0 which in principle can be computed from (1.30) and (1.60).

Proof. Let again d(Λ) be the degree of the root of Λ. Then, f(Λ) ≤ d(Λ) log |Λ|, and
(8.37) shows that (8.38) holds in the ordered case too; thus the result follows by Theorems
1.14 and 1.31.

A Appendix: proof of (1.36)–(1.37)

Let |T | = k and |T ′| = m < k. By (1.9),

β(k,m) =
4

(k + 2)(m+ 1)(m+ 2)
+O

(1

k2m

)
(A.1)

and thus (1.11) yields

σT,T ′ =
2

(k + 1)(k + 2)
pk,T

(
qTT ′ −

2(k + 1)

(m+ 1)(m+ 2)
pm,T ′

)
+O

(pk,T pm,T ′
k2m

)
. (A.2)

Note first that we may ignore the O term in (A.2), since

∞∑
m=1

∑
k>m

∑
|T |=k

∑
|T ′|=m

pk,T pm,T ′

k2m
=
∞∑
m=1

∑
k>m

1

k2m
<∞; (A.3)

hence it suffices to show that

S1 :=
∞∑
m=1

∑
k>m

∑
|T |=k

∑
|T ′|=m

2

(k + 1)(k + 2)
pk,T

∣∣∣∣qTT ′ − 2(k + 1)

(m+ 1)(m+ 2)
pm,T ′

∣∣∣∣ =∞.

(A.4)
Note that qTT ′ is an integer. Thus, if 2(k+1)

(m+1)(m+2)pm,T ′ ≤
1
2 , then∣∣∣∣qTT ′ − 2(k + 1)

(m+ 1)(m+ 2)
pm,T ′

∣∣∣∣ ≥ 2(k + 1)

(m+ 1)(m+ 2)
pm,T ′ . (A.5)

54

Hence,

S1 ≥
∞∑
m=1

∑
|T ′|=m

m2/(4pm,T ′)∑
k=m+1

∑
|T |=k

2

(k + 1)(k + 2)
pk,T

2(k + 1)

(m+ 1)(m+ 2)
pm,T ′

=

∞∑
m=1

∑
|T ′|=m

4

(m+ 1)(m+ 2)
pm,T ′

m2/(4pm,T ′)∑
k=m+1

1

k + 2

≥
∞∑
m=1

∑
|T ′|=m

4

(m+ 1)(m+ 2)
pm,T ′ log

m2

4pm,T ′(m+ 3)

≥
∞∑
m=6

1

m2

∑
|T ′|=m

pm,T ′ log
1

pm,T ′
=
∞∑
m=6

1

m2
E log

1

pm,Tm
. (A.6)

However, we saw in (8.31) that E log p−1
m,Tm ∼ µm as m→∞ for some constant µ > 0,

and thus the sum in (A.6) diverges, which as said above implies (1.36) by (A.2)–(A.3).
The proof of the random recursive case (1.37) is similar, using (1.17), (1.15) and (8.34).

(It suffices to consider the versions with unlabelled binary trees and unordered rooted
trees, since the versions with increasing trees or ordered trees have larger E log p−1

m,Tm and
E log p̂−1

m,Λm
.)

Remark A.1. The proof above needs only lower bounds for E log p−1
m,Tm and E log p̂−1

m,Λm
.

We can use the simple bounds log p−1
m,Tm ≥ Xm,2 log 2 and log p̂−1

m,Λm
≥ X̂m,2 log 2 −

logm, see (8.30) and (8.33), together with (1.41)–(1.42) instead of (8.31) and (8.34).

Remark A.2. Recalling the notation in Section 1, qTT ′ is the value of XT ′
k when Tk = T ,

and it follows, using (1.4), that∑
|T |=k

pk,T

∣∣∣∣qTT ′ − 2(k + 1)

(m+ 1)(m+ 2)
pm,T ′

∣∣∣∣ = E
∣∣∣XT ′

k − EXT ′
k

∣∣∣ (A.7)

and thus, dropping the prime,

S1 =
∑
T

∑
k>|T |

2

(k + 1)(k + 2)
E
∣∣XT

k − EXT
k

∣∣ . (A.8)

A similar sum appears in the proof for the random recursive tree.

References

[1] Aldous D., Asymptotic fringe distributions for general families of random trees. Ann.
Appl. Probab. 1 (1991), no. 2, 228–266.

[2] Aldous D., Probability distributions on cladograms. Random Discrete Structures
(Minneapolis, MN, 1993), 1–18, IMA Vol. Math. Appl., 76, Springer, New York,
1996.

[3] Barbour A. D., Holst L. and Janson S., Poisson Approximation. Oxford University
Press, New York, 1992.

55

[4] Billingsley P., Convergence of Probability Measures. John Wiley and Sons, New York,
1968.

[5] Blum M. G. B., François O. and Janson S., The mean, variance and limiting distri-
butions of two statistics sensitive to phylogenetic tree balance. Ann. Appl. Prob. 16
(2006), 2195–2214.

[6] Bóna M., k-protected nodes in binary search trees. Adv. Appl. Math. 53 (2014), 1–11.

[7] Chang H. and Fuchs M., Limit theorems for patterns in phylogenetic trees. J. Math.
Biol. 60 (2010), 481–512.

[8] Cheon G.-S. and Shapiro L. W., Protected points in ordered trees. Applied Mathemat-
ics Letters 21 (2008), no. 5, 516–520.

[9] Dennert F. and Grübel R., On the subtree size profile of binary search trees, Combin.
Probab. Comput. 19 (2010), no. 4, 561–578.

[10] Devroye L., Limit laws for local counters in random binary search trees. Random
Structures Algorithms 2 (1991), no. 3, 303–315.

[11] Devroye L., Limit laws for sums of functions of subtrees of random binary search
trees. SIAM J. Comput. 32 (2002/03), no. 1, 152–171.

[12] Devroye L. and Janson S., Protected nodes and fringe subtrees in some random trees.
Electronic Communications in Probability 19 (2014), no. 6, 1–10.

[13] Dobrow R. P. and Fill J. A., Multiway trees of maximum and minimum probability
under the random permutation model. Combin. Probab. Comput. 5 (1996), no. 4, 351–
371.

[14] Drmota M., Random Trees. Springer, Vienna, 2009.

[15] Feng Q. and Mahmoud H. M., On the variety of shapes on the fringe of a random
recursive tree. J. Appl. Probab. 47 (2010), no. 1, 191–200.

[16] Feng Q., Mahmoud H. M. and Panholzer A., Phase changes in subtree varieties in
random recursive and binary search trees. SIAM J. Discrete Math. 22 (2008), no. 1,
160–184.

[17] Fill J. A., On the distribution of binary search trees under the random permutation
model. Random Structures Algorithms 8 (1996), no. 1, 1–25.

[18] Fill J. A., Flajolet P. and Kapur N., Singularity analysis, Hadamard products, and tree
recurrences. J. Comput. Appl. Math. 174 (2005), no. 2, 271–313.

[19] Fill J. A. and Janson S., Smoothness and decay properties of the limiting Quick-
sort density function. Mathematics and Computer Science (Versailles, 2000), 53–64,
D. Gardy and A. Mokkadem, eds., Birkhäuser, Basel, 2000.

[20] Fill J. A. and Kapur N., Transfer theorems and asymptotic distributional results for
m-ary search trees. Random Structures Algorithms 26 (2005), no. 4, 359–391.

56

[21] Flajolet P., Gourdon X. and Martı́nez C., Patterns in random binary search trees. Ran-
dom Structures Algorithms 11 (1997), no. 3, 223–244.

[22] Fuchs M., Subtree sizes in recursive trees and binary search trees: Berry–Esseen
bounds and Poisson approximations. Combin. Probab. Comput. 17 (2008), no. 5, 661–
680.

[23] Fuchs M., Limit theorems for subtree size profiles of increasing trees. Combin.
Probab. Comput. 21 (2012), no. 3, 412–441.

[24] Fuchs M., Hwang H.-K. and Neininger R., Profiles of random trees: limit theorems
for random recursive trees and binary search trees. Algorithmica 46 (2006), no. 3-4,
367–407.

[25] Gut A., Probability: A Graduate Course, 2nd ed., Springer, New York, 2013.

[26] Hardy G. H., Littlewood J. E. and Pólya G., Inequalities. 2nd ed., Cambridge Univer-
sity Press, Cambridge, 1952.

[27] Holmgren C. and Janson S., Asymptotic distribution of two-protected nodes in ternary
search trees. Preprint, 2014. arxiv:1403.5573.

[28] Hwang H. K. and Neininger R., Phase change of limit laws in the quicksort recurrence
under varying toll functions. SIAM J. Comput. 31 (2002), no. 6, 1687–1722.

[29] Janson S., Asymptotic degree distribution in random recursive trees. Random Struc-
tures Algorithms 26 (2005), no. 1-2, 69–83.

[30] Janson S., Asymptotic normality of fringe subtrees and additive functionals in condi-
tioned Galton–Watson trees. Random Structures Algorithms, to appear.

[31] Janson S., Łuczak T., and Ruciński A., Random Graphs. John Wiley, New York, 2000.

[32] Knuth D. E., The Art of Computer Programming. Volume 1: Fundamental Algorithms.
Third ed., Addison-Wesley, Reading, Mass., 1997.

[33] Knuth D. E., The Art of Computer Programming. Volume 3: Sorting and Searching.
Second ed., Addison-Wesley, Reading, Mass., 1998.

[34] Mahmoud H. M. and Smythe R. T., Asymptotic joint normality of outdegrees of nodes
in random recursive trees. Random Structures Algorithms 3 (1992), no. 3, 255–266.

[35] Mahmoud H. M. and Ward M. D., Asymptotic distribution of two-protected nodes in
random binary search trees. Appl. Math. Lett. 25 (2012), no. 12, 2218–2222.

[36] Mahmoud H. M. and Ward M. D., Asymptotic properties of protected nodes in random
recursive trees. Preprint, 2014.

[37] Meir A. and Moon J. W., Recursive trees with no nodes of out-degree one. Congr.
Numer. 66 (1988), 49–62.

[38] Na N. S. and Rapoport A., Distribution of nodes of a tree by degree. Math. Biosci. 6
(1970), 313–329.

57

[39] Régnier M., A limiting distribution for quicksort. RAIRO Inform. Théor. Appl. 23
(1989), 335–343.

[40] Rösler U., A limit theorem for ‘Quicksort’. RAIRO Inform. Théor. Appl. 25 (1991),
85–100.

58

	Introduction
	Binary search trees and random recursive trees
	Properties and functionals of fringe trees
	Main results
	Some consequences and extensions

	Representations using uniform random variables
	Devroye's representation for the binary search tree
	The random recursive tree
	Cyclic representations

	Means and variances
	Binary search tree
	Random recursive tree

	Poisson approximation by Stein's method and couplings
	Couplings for proving Theorems 1.7 and 1.18

	Normal approximation by Stein's method
	Proof of Theorem 1.14
	Proofs of Theorems 1.30–1.31
	Applications
	Outdegrees
	Protected nodes
	Shape functionals
	Binary search trees
	Unordered random recursive trees
	Ordered random recursive trees

	Appendix: proof of (1.36)–(1.37)

