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Abstract. We study maximal clades in random phylogenetic trees with
the Yule–Harding model or, equivalently, in binary search trees. We use
probabilistic methods to reprove and extend earlier results on moment
asymptotics and asymptotic normality. In particular, we give an expla-
nation of the curious phenomenon observed by Drmota, Fuchs and Lee
(2014) that asymptotic normality holds, but one should normalize using
half the variance.

1. Introduction

Recall that there are two types of binary trees; we fix the notation as
follows. A full binary tree is an rooted tree where each node has either 0
or 2 children; in the latter case the two children are designated as left child
and right child. A binary tree is a rooted tree where each node has 0, 1
or 2 children; moreover, each child is designated as either left child or right
child, and each node has at most one child of each type. (Both versions
can be regarded as ordered trees, with the left child before the right when
there are two children.) It is convenient to regard also the empty tree ∅ as
a binary tree (but not as a full binary tree). In a full binary tree, the leaves
(nodes with no children) are called external nodes; the other nodes (having 2
children) are internal nodes. There is a simple, well-known bijection between
full binary trees and binary trees: Given a full binary tree, its internal nodes
form a binary tree; this is a bijection, with inverse given by adding, to any
given binary tree, external nodes as children at all free places.

Note that a full binary tree with n internal nodes has n+1 external nodes,
and thus 2n + 1 nodes in total. In particular, the bijection just described
yields a bijection between the full binary trees with 2n + 1 nodes and the
binary trees with n nodes.

If T is a binary, or full binary, tree, we let TL and TR be the subtrees
rooted at the left and right child of the root, with TL = ∅ [TR = ∅] if the
root has no left [right] child.
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A phylogenetic tree is the same as a full binary tree. In this context,
the clade of an external node v is defined to be the set of external nodes
that are descendants of the parent of v. (This is called a minimal clade
by Blum and François [3] and Chang and Fuchs [6].) Note that two clades
are either nested or disjoint; furthermore, each external node belongs to
some clade (for example its own). Hence, the set of maximal clades forms
a partition of the set of external nodes. We let F (T ) denote the number of
maximal clades of a phylogenetic tree T . (Except that for technical reasons,
see Section 2, we define F (T ) = 0 for a phylogenetic tree T with only one
external node. Obviously, this does not affect asymptotics.) The maximal
clades, and the number of them, were introduced by Durand, Blum and
François [11], together with a biological motivation, and further studied by
Drmota, Fuchs and Lee [10].

The phylogenetic trees that we consider are random; more precisely, we
consider the Yule–Harding model of a random phylogenetic tree T̄n with a
given number n internal, and thus n+1 external, nodes. These can be defined
recursively, with T̄0 the unique phylogenetic tree with 1 node (the root), and
T̄n+1 obtained from T̄n (n > 0) by choosing an external node uniformly at
random and converting it to an internal node with two external children.
(Alternatively, we obtain the same random model by constructing the tree
bottom-up by Kingman’s coalescent [17], see further Aldous [2], Blum and
François [3] and Chang and Fuchs [6].) Recall that, for any n > 1, the
number of internal nodes in the left subtree T̄n,L (or the right subtree T̄n,R)
is uniformly distributed on {0, . . . , n − 1}, and that conditioned on this
number being m, T̄n,L has the same distribution as T̄m; see also Remark 5.1.

Under the bijection above, the Yule–Harding random tree T̄n corresponds
to the random binary search tree Tn with n nodes, see e.g. Blum, François
and Janson [4] and Drmota [9].

The random variable that we study is thus Xn := F (T̄n), the number of
maximal clades in the Yule–Harding model. It was proved by Durand and
François [12] that the mean number of maximal clades EXn ∼ αn, where

α =
1− e−2

4
. (1.1)

This was reproved by Drmota, Fuchs and Lee [10], in a sharper form:

Theorem 1.1 ([12; 10]).

EXn = EF (Tn) = αn+O(1), (1.2)

where α is given by (1.1).

Moreover, Drmota, Fuchs and Lee [10] found also corresponding results
for the variance and higher central moments:

Theorem 1.2 ([10]). As n→∞,

E(Xn − EXn)2 ∼ 4α2n log n, (1.3)
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and for any fixed integer k > 3,

E(Xn − EXn)k ∼ (−1)k
2k

k − 2
αknk−1. (1.4)

As a consequence of (1.3)–(1.4), the limit distribution of F (T̄n) (after
centering and normalization) cannot be found by the method of moments.
Nevertheless, [10] further proved asymptotic normality, where, unusually,
the normalizing uses (the square root of) half the variance:

Theorem 1.3 ([10]). As n→∞,

Xn − EXn√
2α2n log n

d−→ N(0, 1). (1.5)

Here and below,
d−→ denotes convergence in distribution; similarly,

p−→
will denotes convergence in probability. Unspecified limits (including im-
plicit ones such as ∼ and o(1)) will be as n→∞. Furthermore, Yp = op(an),

for random variables Yn and positive numbers an, means Yn/an
p−→ 0. We

let C,C1, C2, . . . denote some unspecified positive constants.
The purpose of the present paper is to use probabilistic methods to re-

prove these theorems, together with some further results; we hope that this
can give additional insight, and it might perhaps also suggest future gener-
alizations to other types of random trees.

In particular, we can explain the appearance of half the variance in The-
orem 1.3 as follows:

Fix a sequence of numbers N = N(n), and say that a clade is small if
it has at most N + 1 elements, and large otherwise. (We use N + 1 in the
definition only for later notational convenience; the subtree corresponding
to a small clade has at most N internat nodes.) Let XN

n be the number of
maximal small clades, i.e., the small clades that are not contained in any
other small clade. It turns out that a suitable choice of N is about

√
n; we

give two versions in the next theorem.

Theorem 1.4. (i) Let N :=
√
n. Then Var(XN

n ) ∼ 2α2n log n and

XN
n − EXN

n√
VarXN

n

d−→ N(0, 1). (1.6)

Furthermore, Xn−XN
n = op

(√
VarXN

n

)
and EXn−EXN

n = o
(√

VarXN
n

)
,

so we may replace XN
n by Xn in the numerator of (1.6). However,

Var(Xn −XN
n ) ∼ Var(XN

n ) ∼ 2α2n log n. (1.7)

(ii) Let
√
n � N �

√
n log n, for example N := n log log n. Then the

conclusions of (i) still hold; moreover, P(Xn 6= XN
n )→ 0.

The theorem thus shows that the large clades are rare, and do not con-
tribute to the asymptotic distribution; however, when they appear, the
larges clades give a large (actually negative) contribution to Xn, and as
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a result, half the variance of Xn comes from the large clades. (When there
is a large clade, there is less room for other clades, so Xn tends to be smaller
than usually. See also (2.4) and (2.2) below.)

For higher moments, the large clades play a similar, but even more ex-
treme, role. Note that (for n > 2) with probability 2/n, the root of T̄n
has one internal and one external node, and then there is a clade consist-
ing of all external nodes; this is obviously the unique maximal clade, and
thus Xn = 1. Since EXn = αn + O(1) by Theorem 1.1, we thus have
Xn − EXn = −αn+O(1) with probability 2/n, and this single exceptional
event gives a contribution ∼ (−1)k2αknk−1 to E(Xn − EXn)k, which ex-
plains a fraction (k − 2)/k of the moment (1.4); in particular, this explains
why the moment is of order nk−1.

We shall see later that, roughly speaking, the moment asymptotic in (1.4)
is completely explained by extremely large clades of size Θ(n), which appear
in the O(1) first generations of the tree.

This will also lead to a version of (1.4) for absolute central moments:

Theorem 1.5. For any fixed real p > 2, as n→∞,

E
∣∣Xn − EXn

∣∣p ∼ 2p

p− 2
αpnp−1. (1.8)

In Section 2, we transfer the problem from random phylogenetic trees to
random binary search tree, which we shall use in the proofs. The theorems
above are proved in Sections 3–7.

2. Binary trees

We find it technically convenient to work with binary trees instead of
full binary trees (phylogenetic trees), so we use the bijection in Section 1
to define F (T ) also for binary trees T . (We use the same notation F ; this
should not cause any confusion.) With this translation, our problem is thus
to study Xn := F (Tn), where Tn is the binary search tree with n nodes.

The clades in a phylogenetic tree correspond to the internal nodes that
have at least one external child, i.e., the nodes in the corresponding binary
tree that have outdegree at most 1. We call such nodes green. For a binary
tree T , the number F (T ) is thus the number of maximal green nodes, i.e.,
the number of green nodes that have no green ancestor. (This holds also for
the phylogenetic tree T with a single node, and thus for the empty binary
tree, with our definition F (T ) = 0 in this case.)

It follows that, for any binary tree T ,

F (T ) :=

{
1 if T has a green root,

F (TL) + F (TR) otherwise.
(2.1)
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Define, for a binary tree T ,

f(T ) := F (T )− F (TL)− F (TR) =


1− F (TR), TL = ∅, T 6= ∅,
1− F (TL), TR = ∅, T 6= ∅,
0, otherwise.

(2.2)

Then F (T ) is given by the recursion

F (T ) = F (TL) + F (TR) + f(T ), (2.3)

and thus

F (T ) =
∑
v∈T

f(Tv), (2.4)

where Tv is the subtree rooted at v, consisting of v and all its descendants.
In another words, F (T ) is the additive functional defined by the toll function
f(T ). The advantage of this point of view is that we have eliminated the
maximality condition and now sum over all subtrees Tv, and that we can
use general results for this type of sums, see Holmgren and Janson [16].

We let T denote the random binary search tree with a random number
of elements such that P(|T | = n) = 2/((n+ 1)(n+ 2)), n > 1. The random
binary tree T can be constructed by a continuous-time branching process:
Let (T̃t)t>0 be the growing tree that starts with an isolated root at time
t = 0 and such that each existing node gets a left and a right child after
random waiting times that are independent and Exp(1); we stop the process
at a random time τ ∼ Exp(1), independent of everything else, and can

take T = T̃τ , see Aldous [1] (where it is also proved that T is the limit in
distribution of a random fringe tree in a binary search tree).

3. The mean

Recall that Tn is the random binary search tree with n nodes. Define
νn := EF (Tn) and µn := E f(Tn), with F and f as in Section 2. (In
particular, ν0 = µ0 = 0, while ν1 = µ1 = 1 since F (T1) = f(T1) = 1.) For
n > 2, Tn,L is empty with probability 1/n, and conditioned on this event,
Tn,R has the same distribution as Tn−1. The same holds if we interchange L
and R. Hence, taking the expectation in (2.2),

µn = 2
n

(
1− EF (Tn−1)

)
= 2

n

(
1− νn−1

)
, n > 2. (3.1)

Furthermore, we see that (2.2) implies

P
(
f(Tn) 6= 0

)
6 2/n. (3.2)

Since obviously 0 6 F (T ) 6 |T |, we have by (2.2) also −|T | 6 f(T ) 6 1 and
thus

|f(T )| 6 |T | (3.3)

for any binary tree T . In particular, this and (3.2) yield

|µn| 6 E |f(Tn)| 6 nP
(
f(Tn) 6= 0

)
6 2. (3.4)
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It is now a simple consequence of general results that νn := EF (Tn) is
asymptotically linear in n. Recall the random binary tree T defined in
Section 2.

Lemma 3.1.

νn := EF (Tn) = nα+O(1), (3.5)

where

α := E f(T ) =
∞∑
n=1

2

(n+ 1)(n+ 2)
E f(Tn) =

∞∑
n=1

2

(n+ 1)(n+ 2)
µn

=

∞∑
n=1

4

n(n+ 1)(n+ 2)
(1− νn−1). (3.6)

Proof. An instance of Holmgren and Janson [16, Theorem 3.8]. More ex-
plicitly, see [16, Theorem 3.4],

EF (Tn) = (n+ 1)

n−1∑
k=1

2

(k + 1)(k + 2)
µk + µn, (3.7)

which implies the result by (3.4) and (3.1). �

In order to prove Theorem 1.1, it remains to show that α defined in (3.6)
equals (1−e−2)/4 as asserted in (1.1). In other words, we need the following.

Lemma 3.2.

E f(T ) =
1− e−2

4
. (3.8)

We can prove Lemma 3.2 by probabilistic methods, using the construction
of T by a branching process in Section 2. However, this proof is considerably
longer than the proof of Theorem 1.1 by singularity analysis of generating
functions in [12] and [10]; we nevertheless find the probabilistic proof inter-
esting, and perhaps useful for future generalizations, but since the methods
in it are not needed for other results in the present paper, we postpone our
proof of Lemma 3.2 to Section 7.

4. Variance

Let γ2n := Var(f(Tn)) and σ2n := Var(F (Tn)). Then γ20 = γ21 = σ20 = σ21 =
0 and, for n > 2, using (2.2),

γ2n = E f(Tn)2 − µ2n =
2

n
E
(
F (Tn−1)− 1

)2 − µ2n 6 2

n
n2 = 2n. (4.1)

Before proving the variance asymptotics in (1.3), we begin with a weaker
estimate.

Lemma 4.1. For n > 1,

σ2n := VarF (Tn) = O(n log2 n). (4.2)
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Proof. By [16, Theorem 3.9], where it suffices to sum to n since we may
replace f(T ) by 0 for |T | > n without changing F (Tn),

σ2n 6 Cn

(( n∑
k=1

γk
k3/2

)2

+ sup
k

γ2k
k

+
n∑
k=1

µ2k
k2

)
= O(n log2 n), (4.3)

using (4.1) and (3.4), provided n > 2. The case n = 1 is trivial. �

Write f(T ) = g(T ) + h(T ), where

g(T ) :=

{
1− ν|T |−1, TL = ∅, T 6= ∅ or TR = ∅, T 6= ∅,
0, otherwise.

(4.4)

and thus, see (2.2),

h(T ) :=


ν|TR| − F (TR), TL = ∅,
ν|TL| − F (TL), TR = ∅,
0, otherwise.

(4.5)

Then g(T1) = 1, h(T1) = 0, and, for k > 2, using (3.1) and (3.4),

E g(Tk) =
2

k

(
1− νk−1

)
= µk = O(1), (4.6)

Eh(Tk) =
2

k
E
(
νk−1 − F (Tk−1)

)
= 0, (4.7)

and, using Lemma 4.1,

Varh(Tk) =
2

k
E
(
νk−1 − F (Tk−1)

)2
=

2

k
σ2k−1 = O(log2 k). (4.8)

Let, for an arbitrary binary tree T ,

G(T ) :=
∑
v∈T

g(Tv) and H(T ) :=
∑
v∈T

h(Tv), (4.9)

so by (2.4),

F (T ) = G(T ) +H(T ). (4.10)

Lemma 4.2. For n > 1,

EG(Tn) = νn, (4.11)

EH(Tn) = 0, (4.12)

VarH(Tn) = O(n). (4.13)

Proof. By [16, Theorem 3.4], cf. (3.7), and (4.7),

EH(Tn) = (n+ 1)

n−1∑
k=1

2

(k + 1)(k + 2)
Eh(Tk) + Eh(Tn) = 0, (4.14)

which proves (4.12). This implies (4.11), since by (4.10),

EG(Tn) = EF (Tn)− EH(Tn) = νn. (4.15)
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Similarly, by [16, Theorem 3.9], cf. (4.3), and (4.7)–(4.8),

VarH(Tn) 6 Cn

(( ∞∑
k=1

log k

k3/2

)2

+ sup
k>1

log2 k

k
+ 0

)
= O(n). �

We shall see that this means that H(Tn) is asymptotically negligible, and
thus it suffices to consider G(Tn).

Note that g(T ) depends only on the sizes |TL| and |TR|. This enables us
to easily estimate the variance of G(Tn).

Theorem 4.3. For all n > 1,

VarG(Tn) = 4α2n log n+O(n). (4.16)

Proof. Write g(T ) = g(|T |, |TL|, |TR|). (We only care about g(k, j, l) when
j + l = k − 1, but use three arguments for emphasis.) Thus g(k, 0, k − 1) =
g(k, k − 1, 0) = 1− νk−1 and otherwise g(k, j, k − j − 1) = 0. Let, as in [16,
Theorem 1.29], Ik be uniformly distributed on {0, . . . , k − 1} and

ψk := E
(
νIk + νk−1−Ik + g(k, Ik, k − 1− Ik)− νk

)2
=

1

k

k−2∑
j=1

(νj + νk−1−j − νk)2 +
2

k

(
νk−1 + 1− νk−1 − νk

)2
=

1

k

k−2∑
j=1

(νj + νk−1−j − νk)2 +
2

k
(νk − 1)2

= O(1) +
2

k

(
αk +O(1)

)2
= 2α2k +O(1), (4.17)

where we used that νj = αj + O(1) by Theorem 1.1. By [16, Lemma 7.1],
then

VarG(Tn) = (n+ 1)
n−1∑
k=1

2

(k + 1)(k + 2)
ψk + ψn

= (n+ 1)
n−1∑
k=1

4α2k +O(1)

(k + 1)(k + 2)
+O(n) = (n+ 1)

n−1∑
k=1

4α2

k
+O(n)

= 4α2n log n+O(n). (4.18)

�

We can now prove (1.3) in Theorem 1.2. (Higher moments are treated in
Section 6.)

Theorem 4.4. For all n > 1,

VarF (Tn) = 4α2n log n+ o(n log n). (4.19)

This follows from (4.10), (4.16) and (4.13) by Minkowski’s inequality (the

triangle inequality for
√

Var ).
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5. Asymptotic normality

We prove the central limit theorem Theorem 1.3 by a martingale central
limit theorem for a suitable martingale that we construct in this section.

Consider the infinite binary tree T∞, where each node has two children,
and denote its root by o. We may regard any binary tree T as a subtree of
T∞ with the same root o. (In the general sense that the node set V (T ) is a
subset of V∞ := V (T∞), and that the left and right children are the same as
in T∞, when they exist.) In particular we regard the random binary search
tree Tn as a subtree of T∞.

Order the nodes in T∞ in breadth-first order as v(1) = o, v(2), . . . , and let
Vj := {v(1), . . . , v(j)} be the set of the first j nodes. Let Fj be the σ-field
generated by the sizes |Tn,v,L| and |Tn,v,R| of the two child subtrees of Tn at
each node v ∈ Vj . Equivalently, we may regard Vj as the internal nodes in
a full binary tree; let ∂Vj be the corresponding set of j + 1 external nodes.
Then Fj is generated by the subtree sizes |Tn,v| for all v ∈ ∂Vj , together
with the indicators 1{v ∈ Tn}, v ∈ Vj , that describe Tn ∩ Vj . (We regard
the subtree Tn,v as defined for all v ∈ V∞, with Tn,v = ∅ if v /∈ Tn.) Then,
conditioned on Fj , Tn consists of some given subtree of Vj together with
attached subtrees Tn,v at all nodes v ∈ ∂Vj ; these are independent binary
search trees of some given orders.

We allow here j = 0; V0 = ∅ and F0 is the trivial σ-field.

Remark 5.1. As is well-known, see e.g. [9], another construction of the
random binary search tree Tn (n > 1) is to let the random variable In be
uniformly distributed on {0, . . . , n− 1}, and to let Tn be defined recursively
such that, given In, Tn,L and Tn,R are independent binary search trees with
|Tn,L| = In and |Tn,R| = n−1− In. (When the tree is used to sort n keys, In
tells how many of the keys that are assigned to the left subtree.) The pair
(In, n − 1 − In) thus tells how the tree is split at the root, and there is a
similar pair for each node. Then Fj is generated by these pairs (i.e., splits)
for the nodes v1, . . . , vj .

Recall that g(T ) by (4.4) depends only on the sizes |TL| and |TR|. Hence,
Fj specifies the value of g(Tn,v) for every v ∈ Vj , and it follows that

E
(
G(Tn) | Fj

)
= E

( ∑
v∈V∞

g(Tn,v)
∣∣∣ Fj) =

∑
v∈Vj

g(Tn,v) +
∑
v∈∂Vj

ν|Tn,v |. (5.1)

Since the sequence of σ-fields (Fj)∞0 is increasing, the sequence Mn,j :=
E
(
G(Tn) | Fj

)
, j > 0, is a martingale (for any fixed n). It follows from (5.1)

that the martingale differences are

∆Mn,j := Mn,j−Mn,j−1 = g(Tn,v(j))+ν|Tn,v(j)L
|+ν|Tn,v(j)R

|−ν|Tn,v(j)|, (5.2)

where v(j)L and v(j)R are the children of v(j). It follows easily that, with
ψk defined in (4.17),

E
(
|∆Mn,j |2 | Fj−1

)
= E

(
|∆Mn,j |2 | |Tn,v(j)|

)
= ψ|Tn,v(j)|. (5.3)
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Consequently, the conditional square function is given by

Wn :=

∞∑
j=1

E
(
|∆Mn,j |2 | Fj−1

)
=
∑
v∈V∞

ψ|Tn,v | =
∑
v∈Tn

ψ|Tn,v |. (5.4)

(It suffices to sum over v ∈ Tn, since ψ0 = 0.) This is again a sum of
the same type as (2.4) and (4.9), for the random tree Tn. (Note that the
toll function ψ|T | here depends only on the size of T .) In particular, [16,
Theorem 3.4] applies (in this case we can also use [7], [8] or [13]); this yields

EWn = (n+ 1)
n−1∑
k=1

2

(k + 1)(k + 2)
ψk + ψn. (5.5)

If j is large enough, say j > 2n, then V (Tn) ⊆ Vj and thus Mn,j = G(Tn).
In particular, G(Tn) = Mn,∞. Thus, by a standard (and simple) martingale
identity, VarG(Tn) = VarMn,∞ = EWn; hence (5.5) yields the first equality
in (4.18). (This is no coincidence; the proof just given of (5.5) is essentially
the same as the proof of [16, Lemma 7.1] that was used in (4.18), but stated
in martingale formulation.)

We now split the sum G(Tn) into two parts, roughly corresponding to
small and large clades. We fix a cut-off N = N(n); for definiteness and
simplicity we choose N = N(n) :=

√
n, but we note that the arguments

below hold with a few minor modifications for any N >
√
n with N =

o(
√
n log n). We then define, for binary trees T ,

g′(T ) := g(T )1{|T | 6 N} (5.6)

g′′(T ) := g(T )1{|T | > N} = g(T )− g′(T ). (5.7)

In analogy with (2.4) and (4.9), we define further

G′(T ) :=
∑
v∈T

g′(Tv) and G′′(T ) :=
∑
v∈T

g′′(Tv); (5.8)

thus G(T ) = G′(T )+G′′(T ). We shall see that, asymptotically, both G′(Tn)
and G′′(T ) contribute to the variance with equal amounts, but nevertheless
G′′(Tn) is negligible (in probability).

We begin with the main term G′(Tn).

Lemma 5.2. As n→∞,

Var
(
G′(Tn)

)
= 2α2n log n+O(n), (5.9)

G′(Tn)− EG′(Tn)√
2α2n log n

d−→ N(0, 1). (5.10)

Proof. We define ν ′n := EG′(Tn). Note that g′(T ) depends only on the
sizes |TL| and |TR|. Hence we can repeat the argument above and define
a martingale M ′n,j := E

(
G′(Tn) | Fj

)
, j > 0, with G′(Tn) = M ′n,∞ and

martingale differences

∆M ′n,j = ϕ′(Tn,v(j)), (5.11)
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where we define, cf. (5.2),

ϕ′(T ) := g′(T ) + ν ′|TL| + ν ′|TR| − ν
′
|T |. (5.12)

By [16, Theorem 3.4] again, cf. (3.7) and (5.5), using E g(Tk) = µk = O(1)
by (4.6),

ν ′m = (m+ 1)
m−1∑
k=1

2

(k + 1)(k + 2)
E g′(Tk) + E g′(Tm)

= (m+ 1)

(m−1)∧N∑
k=1

2

(k + 1)(k + 2)
E g(Tk) +O(1)

= (m+ 1)

N∑
k=1

2

(k + 1)(k + 2)
µk +O(1). (5.13)

Hence, (5.12) yields, after cancellations,

ϕ′(T ) = g′(T ) +O(1) =

{
g(T ) +O(1), |T | 6 N,
O(1), |T | > N.

(5.14)

Let

ψ′k := E |ϕ′(Tk)|2. (5.15)

Then, by (5.14), (4.4) and (3.5), cf. (4.17),

ψ′k =

{
E
(
g(Tk) +O(1)

)2
= 2α2k +O(1), k 6 N,

O(1), k > N.
(5.16)

Furthermore, by (5.11) and (5.15),

E
(
|∆M ′n,j |2 | Fj−1

)
= E

(
|ϕ′(Tn,v(j))|2 | |Tn,v(j)|

)
= ψ′|Tn,v(j)|. (5.17)

Hence, the conditional square function of (M ′n,j)j is

W ′n :=
∞∑
j=1

E
(
|∆M ′n,j |2 | Fj−1

)
=
∑
v∈V∞

ψ′|Tn,v | =
∑
v∈Tn

ψ′|Tn,v |. (5.18)

Yet another application of [16, Theorem 3.4] yields, using (5.16),

EW ′n = (n+ 1)
n−1∑
k=1

2

(k + 1)(k + 2)
ψ′k + ψ′n

= (n+ 1)

N∑
k=1

4α2k

(k + 1)(k + 2)
+O(n)

= 4α2n logN +O(n) = 2α2n log n+O(n). (5.19)

Since VarG′(Tn) = Var
(
M ′n,∞

)
= EW ′n, (5.9) follows from (5.19).
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Moreover, the representation (5.18) and [16, Theorem 3.9] (again sum-
ming only to n, as we may) yield, noting that the toll function ψ′|T | depends

only on the size of T , using (5.16),

Var(W ′n) 6 Cn
n∑
k=1

(ψ′k)
2

k2
6 C1n

N∑
k=1

1 + C2n
n∑
k=1

1

k2
= O(nN) = O(n2).

(5.20)
Hence, Var

(
W ′n/(n log n)

)
→ 0 as n→∞, which together with (5.19) implies

W ′n
n log n

p−→ 2α2. (5.21)

Note also that g(T ) = O(|T |) by (4.4) and (3.5), and thus (5.14) implies
ϕ′(T ) = O(N) for all trees T . Thus (5.11) yields

sup
j

|∆Mn,j |√
n log n

= O
( N√

n log n

)
= o(1). (5.22)

We now apply the central limit theorem for martingale triangular arrays,
in the form in [5, Corollary 1] (see also [15, Theorem 3.1]), which shows that
(5.21) and (5.22) together imply

G′(Tn)− EG′(Tn)√
n log n

=
Mn,∞ − EMn,∞√

n log n

d−→ N
(
0, 2α2

)
. (5.23)

(Actually, [5, Corollary 1] assumes instead of (5.22) only a conditional
Lindeberg condition, which is a trivial consequence of the uniform bound
(5.22).) �

Remark 5.3. We used the breadth-first order above as just one convenient
order. It is perhaps more natural to consider instead of the sets Vj arbitrary
node sets V of (finite) subtrees of T∞ that include the root o. This would
give us, instead of (Mn,j)j , a martingale indexed by binary trees. However,
we have no use for this exotic object here, and use instead the standard
martingales above.

Lemma 5.4.

E |G′′(Tn)| = O
(√
n
)
, (5.24)

Var(G′′(Tn)) = 2α2n log n+O(n). (5.25)

Proof. By (5.7), (4.4) and (4.6),

E |g′′(Tk)| = |E g(Tk)| · 1{k > N} = O(1) · 1{k > N} (5.26)

and thus, using the triangle inequality and [16, Theorem 3.4],

E |G′′(Tn)| 6 (n+ 1)

n−1∑
N

2

(k + 1)(k + 2)
E |g′′(Tk)|+ E |g′′(Tn)| = O

( n
N

)
,

yielding (5.24).
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For the variance, we use either [16, Theorem 1.29] as in the proof of
Theorem 4.4, or the (essentially equivalent) martingale argument in (5.11)–
(5.19) and conclude that, with some ψ′′k satisfying

ψ′′k =

{
O(1), k 6 N,

E
(
g(Tk) +O(1)

)2
= 2α2k +O(1), k > N,

(5.27)

we have

VarG′′(Tn) = (n+ 1)
n−1∑
k=1

2

(k + 1)(k + 2)
ψ′′k + ψ′′n

= (n+ 1)

n−1∑
k=bNc+1

4α2k

k2
+O(n)

= 4α2n log(n/N) +O(n) = 2α2n log n+O(n). �

Proof of Theorem 1.3. It follows from (5.24) that

G′′(Tn)− EG′′(Tn)√
2α2n log n

p−→ 0, (5.28)

which together with (5.10) yields

G(Tn)− EG(Tn)√
2α2n log n

d−→ N(0, 1). (5.29)

Similarly, (4.13) implies

H(Tn)− EH(Tn)√
2α2n log n

p−→ 0, (5.30)

which together with (5.29) yields (1.5), recalling Xn = F (Tn) = G(Tn) +
H(Tn) by (4.10). �

Proof of Theorem 1.4. (i). Define, similarly to (5.6)–(5.7),

f ′(T ) := f(T )1{|T | 6 N}, f ′′(T ) := f(T )1{|T | > N}, (5.31)

h′(T ) := h(T )1{|T | 6 N}, h′′(T ) := h(T )1{|T | > N}, (5.32)

and corresponding sums F ′(T ) :=
∑

v∈T f
′(Tv) and similarly F ′′(T ), H ′(T ),

H ′′(T ). The argument in (2.1)–(2.4) is easily modified and shows that

XN
n = F ′(Tn) = G′(Tn) +H ′(Tn). (5.33)

The same proof as for Lemma 4.2 yields also

VarH ′(Tn) = O(n) and VarH ′′(Tn) = O(n). (5.34)

Hence, (1.6) follows from Lemma 5.2 and (5.33).
Furthermore,

Xn −XN
n = F ′′(Tn) = G′′(Tn) +H ′′(Tn). (5.35)
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By (5.33) and (5.35), (1.7) follows from (5.9) and (5.25), using (5.34) and
Minkowski’s inequality. Similarly,

E |Xn −XN
n | 6 E |G′′(Tn)|+ E |H ′′(Tn)| = O(

√
n), (5.36)

using (5.24), (5.34) and Hölder’s inequality, together with EH ′′(Tn) = 0,
which is proved as (4.12).

(ii). The conclusions of (i) hold by the same proofs (with some minor
modifications in some estimates).

Moreover, let Zn,k be the number of clades of size k+ 1. Then, for n > 2,
the expected number is given by

EZn,k =


4n

k(k+1)(k+2) , k < n,
2
n , k = n,

0, k > n,

(5.37)

see [6, Theorem 1]. (This can be seen as another example of [16, Theorem
3.4].) Consequently,

P(Xn 6= XN
n ) 6 P

(∑
k>N

Zn,k > 1
)

6 E
∑
k>N

Zn,k =

n−1∑
bNc+1

4n

k(k + 1)(k + 2)
+

2

n

= O
( n

N2

)
+O

( 1

n

)
= o(1), (5.38)

which completes the proof. �

6. Higher moments

We begin the proof of Theorem 1.5 by proving a weaker estimate. We let
‖X‖p := (EXp)1/p for any random variable X. Recall that νn := EF (Tn).

Lemma 6.1. For any fixed real p > 2, and all n > 1,

E
∣∣F (Tn)− νn

∣∣p 6 C(p)np−1. (6.1)

Equivalently, ∥∥F (Tn)− νn
∥∥
p

= O(n1−1/p). (6.2)

Proof. Fix p > 2 and let m > 1 be chosen below. (The constants Ci below
may depend on p but not on m.) Let Vj and Fj be as in Section 5, and
write V ′m := V2m−1, F ′m := F2m−1. Thus ∂V ′m consists of the 2m nodes in
T∞ of depth m, and V ′m consists of the 2m − 1 nodes of smaller depth. It
follows from (2.4) that, for any binary tree T ,

F (T ) =
∑
v∈V ′

m

f(Tv) +
∑

v∈∂V ′
m

F (Tv). (6.3)
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Furthermore, by (1.2),∑
v∈∂V ′

m

ν|Tv | =
∑

v∈∂V ′
m

(
α|Tv|+O(1)

)
= α

∑
v∈∂V ′

m

|Tv|+O(2m)

= α|T |+O(2m) = ν|T | +O(2m). (6.4)

Hence, by combining (6.3) and (6.4),

F (T )− ν|T | =
∑
v∈V ′

m

f(Tv) +
∑

v∈∂V ′
m

(
F (Tv)− ν|Tv |

)
+O(2m). (6.5)

We shall use this decomposition for the binary search tree Tn. Note first
that by (3.2)–(3.3),

E |f(Tn)|p 6 np P
(
f(Tn) 6= 0

)
6 2np−1. (6.6)

(This holds for any p > 0 and generalises (3.4) which is the case p = 1.)
Hence, for any v ∈ V∞,

E
(
|f(Tn,v)|p

∣∣ |Tn,v|) 6 2|Tn,v|p−1 6 2np−1, (6.7)

and thus

E |f(Tn,v)|p 6 2np−1. (6.8)

Let Y :=
∑

v∈V ′
m
f(Tn,v) be the first sum in (6.5) for T = Tn. By Minkowski’s

inequality and (6.8),

‖Y ‖p 6
∑
v∈V ′

m

‖f(Tn,v)‖p 6 2m21/pn(p−1)/p. (6.9)

Let Z :=
∑

v∈∂V ′
m

(
F (Tn,v)−ν|Tn,v |

)
be the second sum in (6.5) for T = Tn.

The σ-field F ′m specifies the sizes of the subtrees Tn,v for v ∈ ∂V ′m, and
conditioned on F ′m, these subtrees are independent and distributed as Tn(v)
of the given sizes n(v). Hence, conditionally on F ′m, the terms in the sum Z
are independent and have means zero, so we can apply Rosenthal’s inequality
[14, Theorem 3.9.1], which yields

E
(
|Z|p | F ′m

)
6 C1

∑
v∈∂V ′

m

E
(
|F (Tn,v)− ν|Tn,v ||

p | F ′m
)

+ C1

( ∑
v∈∂V ′

m

E
(
|F (Tn,v)− ν|Tn,v ||

2 | F ′m
))p/2

. (6.10)

We note first that by (1.3),

E
(
|F (Tn,v)− ν|Tn,v ||

2 | F ′m
)
6 C2|Tn,v| log |Tn,v| 6 C2|Tn,v| log n, (6.11)

and thus∑
v∈∂V ′

m

E
(
|F (Tn,v)− ν|Tn,v ||

2 | F ′m
)
6 C2

∑
v∈∂V ′

m

|Tn,v| log n 6 C2n log n.

(6.12)
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Hence the second term on the right-hand side in (6.10) is 6 C3(n log n)p/2.
Taking the expectation in (6.10) we thus obtain

E |Z|p 6 C1

∑
v∈∂V ′

m

E |F (Tn,v)− ν|Tn,v ||
p + C4(n log n)p/2. (6.13)

Let An := E |F (Tn)− νn|p. We can write (6.5) for T = Tn as

F (Tn)− νn = Y + Z +O(2m). (6.14)

Thus, by Minkowski’s inequality, (6.9) and (6.13),

An = E
∣∣Y + Z +O(2m)

∣∣p 6 3p
(
E |Y |p + E |Z|p +O(2m)

)
6 C52

mpnp−1 + C6 E |Z|p + C72
m 6 C6 E |Z|p + C82

mpnp−1. (6.15)

Furthermore, (6.13) can be written

E |Z|p 6 C1

∑
v∈∂V ′

m

EA|Tn,v | + C4(n log n)p/2. (6.16)

We prove the lemma by induction, and assume that Ak 6 Ckp−1 for
all k < n. Since |Tn,v| < n for every v ∈ ∂V ′m, (6.16) and the inductive
hypothesis yield

E |Z|p 6 C1C
∑

v∈∂V ′
m

E |Tn,v|p−1 + C4(n log n)p/2. (6.17)

If v is a child of the root, then |Tn,v| is uniformly distributed on {0, . . . , n−1},
so |Tn,v|

d
= bnUc 6 nU , where U ∼ U(0, 1) is uniformly distributed on [0, 1].

By induction in m, it follows that for any v ∈ ∂V ′m,

|Tn,v| 6 n
m∏
i=1

Ui, (6.18)

with U1, . . . , Um independent and U(0, 1). Consequently,

E |Tn,v|p−1 6 E
(
np−1

m∏
i=1

Up−1i

)
= np−1

m∏
i=1

EUp−1i = np−1(1/p)m, (6.19)

since EUp−1i =
∫ 1
0 u

p−1 du = 1/p. There are 2m nodes in ∂V ′m, and thus
(6.17) yields

E |Z|p 6 C1C2m(1/p)mnp−1 + C4(n log n)p/2, (6.20)

which together with (6.15) yields, since (n log n)p/2 = O(np−1) when p > 2,

An 6 C6C1C(2/p)mnp−1 + C6C4(n log n)p/2 + C82
mpnp−1

6 C6C1C(2/p)mnp−1 + C92
mpnp−1. (6.21)

Now choose m such that (2/p)mC6C1 < 1/2 (which is possible because
p > 2). Then choose C := 2mp+1C9. With these choices, (6.21) yields

An 6 1
2Cn

p−1 + 1
2Cn

p−1 = Cnp−1. (6.22)
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In other words, we have proved the inductive step: Ak 6 Ckp−1 for k < n
implies An 6 Cnp−1. Consequently, this is true for all n > 0, i.e., (6.1) holds.
(The initial cases n = 0 and n = 1 are trivial, since A0 = A1 = 0.) �

Lemma 6.2. For any fixed real p > 2, as n→∞,

‖F (Tn)‖p ∼ αn, (6.23)

‖f(Tn)‖p ∼ 21/pαn1−1/p. (6.24)

Proof. By Minkowski’s inequality, (6.2) and (1.2),∥∥F (Tn)
∥∥
p

=
∣∣EF (Tn)

∣∣+O(n1−1/p) = αn+O(n1−1/p) ∼ αn, (6.25)

which is (6.23).
For n > 2, it follows from (2.2) that

E |f(Tn)|p =
2

n
E |1− F (Tn−1)|p =

2

n
‖F (Tn−1)− 1‖pp ∼ 2αpnp−1, (6.26)

since (6.23) obviously implies also ‖F (Tn)− 1‖p ∼ αn. �

The idea in the proof of Theorem 1.5 is to approximate E |Xn−EXn|p =
E
∣∣∑

v

(
f(Tn,v) − E f(Tn,v)

)∣∣p by E
∑

v

∣∣f(Tn,v) − E f(Tn,v)
∣∣p, or simpler by

E
∑

v

∣∣f(Tn,v)
∣∣p =

∑
v E
∣∣f(Tn,v)

∣∣p. The heuristic reason for this is that the

moment E
∣∣∑

v

(
f(Tn,v)−E f(Tn,v)

)∣∣p is dominated by the event when there
is one large term (corresponding to one large clade, cf. the discussion before
Theorem 1.5), and then∣∣∣∑

v

(
f(Tn,v)− E f(Tn,v)

)∣∣∣p ≈∑
v

∣∣f(Tn,v)− E f(Tn,v)
∣∣p ≈∑

v

|f(Tn,v)|p.

(6.27)
We shall justify this in several steps. We begin by finding the expectation

of the final sum in (6.27), cf. the sought result (1.8).

Lemma 6.3. As n→∞,

E
∑
v∈Tn

|f(Tn,v)|p ∼
2p

p− 2
αpnp−1. (6.28)

Proof. We apply again [16, Theorem 3.4] and obtain

E
∑
v∈Tn

|f(Tn,v)|p = (n+ 1)
n−1∑
k=1

2

(k + 1)(k + 2)
E |f(Tk)|p + E |f(Tn)|p.

(6.29)

By (6.26),

2

(k + 1)(k + 2)
E |f(Tk)|p ∼

2

k2
· 2αpkp−1 = 4αpkp−3 (6.30)
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as k →∞, and it follows that, as n→∞, using p > 2,

E
∑
v∈Tn

|f(Tn,v)|p ∼ (n+ 1)

n−1∑
k=1

4αpkp−3 + 2αpnp−1

∼ n 4αp

p− 2
np−2 + 2αpnp−1 =

2p

p− 2
αpnp−1. �

Next we take again some m > 1 and use the notation in the proof of
Lemma 6.1. Since we now have proved (6.1), the proof of Lemma 6.1 shows
that (6.20) holds for every n, and thus, since p > 2,

‖Z‖p 6 C10(2/p)
m/pn1−1/p +O

(
(n log n)1/2

)
= C10(2/p)

m/pn1−1/p + o
(
n1−1/p

)
. (6.31)

Consequently, by (6.14) and Minkowski’s inequality,∣∣‖F (Tn)− νn‖p −‖Y ‖p
∣∣ 6 ‖Z‖p +O(2m) = C10(2/p)

m/pn1−1/p + o
(
n1−1/p

)
.

(6.32)

In particular, (6.32) and (6.2) imply ‖Y ‖p = O(n1−1/p). By the mean value
theorem,

|xp − yp| 6 p|x− y|max{xp−1, yp−1} (6.33)

for any x, y > 0; hence (6.32) implies, using also (6.2) again,

E |F (Tn)− νn|p − E |Y |p = O
(
(2/p)m/pnp−1

)
+ o
(
np−1

)
. (6.34)

Let δ > 0 be a small positive number to be chosen later, and let Jv be
the indicator of the event that v is green and |Tn,v| > δn. (The idea is that
the significant contributions only come from nodes v with Jv = 1.)

Lemma 6.4. For each fixed m > 1 and δ > 0, and all n > 1,

P
(∑
v∈V ′

m

Jv > 1
)
6 2m+1δ−1n−1 = O

(
n−1

)
, (6.35)

P
(∑
v∈V ′

m

Jv > 2
)
6 22m+1δ−2n−2 = O

(
n−2

)
. (6.36)

Proof. We use again the σ-fields Fj from Section 5. Since Fj−1 specifies
|Tn,vj |, but not how this subtree is split at vj , we have

P(Jvj = 1 | Fj−1) 6
2

|Tn,vj |
1{|Tn,vj | > δn} 6

2

δn
, (6.37)

and thus, by taking the expectation, P(Jvj = 1) 6 2/(δn). Since there are
< 2m nodes in V ′m, (6.35) follows.

Furthermore, for any two nodes vi and vj with i < j, Jvi is determined
by Fj−1, and (6.37) thus gives also

P(JviJvj = 1 | Fj−1) = E(JviJvj | Fj−1) = Jvi P(Jvj = 1 | Fj−1) 6
2

δn
Jvi .

(6.38)
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Thus, by taking the expectation and using (6.37) again, P(JviJvj = 1) 6

4/(δn)2. Summing over the less than
(
2m

2

)
< 22m−1 pairs (vi, vj) with vi, vj ∈

V ′m yields (6.36). �

Proof of Theorem 1.5. We show this in several steps.

Step 1. Define

Y1 :=
∑
v∈V ′

m

Jvf(Tn,v). (6.39)

Since f(Tn,v) = 0 unless v is green, we have

Y − Y1 =
∑
v∈V ′

m

(1− Jv)f(Tn,v) =
∑
v∈V ′

m

f(Tn,v)1{|Tn,v| < δn}. (6.40)

For each v, it follows from (6.6) by conditioning on |Tn,v| that

E
∣∣f(Tn,v)1{|Tn,v| < δn}

∣∣p 6 2(δn)p−1. (6.41)

Hence, (6.40) and Minkowski’s inequality yield∣∣‖Y ‖p − ‖Y1‖p∣∣ 6 ‖Y − Y1‖p 6 ∑
v∈V ′

m

‖f(Tn,v)1{|Tn,v| < δn}‖p

6 2m+1/p(δn)1−1/p. (6.42)

Thus ‖Y1‖p = O(n1−1/p) +O(2mδ1−1/pn1−1/p), and (6.33) yields

E |Y |p − E |Y1|p = O
(
(2mδ1−1/p + 2mpδp−1)np−1

)
. (6.43)

Step 2. Similarly, using (6.41) again,

E
(∑
v∈V ′

m

|f(Tn,v)|p −
∑
v∈V ′

m

Jv|f(Tn,v)|p
)

=
∑
v∈V ′

m

E
(
|f(Tn,v)|p1{|Tn,v| < δn}

)
6 2m+1(δn)p−1. (6.44)

Step 3. By (6.39), |Y1|p−
∑

v∈V ′
m
|Jvf(Tn,v)|p = 0 unless

∑
v∈V ′

m
Jv > 2, and

in the latter case we have by (3.3) the trivial bounds |Y1|p 6 (2mn)p and∑
v∈V ′

m
|Jvf(Tn,v)|p 6 2mnp, and thus

∣∣|Y1|p−∑v∈V ′
m
|Jvf(Tn,v)|p

∣∣ 6 2mpnp.

Consequently, by (6.36),

E
∣∣∣|Y1|p − ∑

v∈V ′
m

|Jvf(Tn,v)|p
∣∣∣ 6 2mpnp P

(∑
v∈V ′

m

Jv > 2
)

= O(np−2). (6.45)

Thus, for fixed m > 1 and δ > 0,

E |Y1|p −
∑
v∈V ′

m

E |Jvf(Tn,v)|p = O
(
np−2

)
= o
(
np−1

)
. (6.46)

Step 4. Define F (p)(T ) :=
∑

v∈T |f(Tv)|p. Then, in analogy with (6.3),

F (p)(T ) =
∑
v∈V ′

m

|f(Tv)|p +
∑

v∈∂V ′
m

F (p)(Tv). (6.47)
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Note that Lemma 6.3 implies EF (p)(Tn) = O(np−1). Hence, by first condi-
tioning on F ′m, and using (6.19),

E
∑

v∈∂V ′
m

F (p)(Tn,v) 6 C11 E
∑

v∈∂V ′
m

|Tn,v|p−1 = C11(2/p)
mnp−1. (6.48)

Taking T = Tn in (6.47) and taking the expectation, we thus find

E
∑
v∈Tn

|f(Tn,v)|p − E
∑
v∈V ′

m

|f(Tn,v)|p = O
(
(2/p)mnp−1

)
. (6.49)

Step 5. Finally, combining (6.34), (6.43), (6.46), (6.44), (6.49) and (6.28),
we obtain

E |F (Tn)− νn|p =
2p

p− 2
αpnp−1 +O

(
(2/p)m/pnp−1

)
+O

(
2mδ1−1/pnp−1

)
+O

(
2mpδp−1np−1

)
+ o(np−1). (6.50)

For any ε > 0, we can make each of the error terms on the right-hand side
less than εnp−1 by first choosing m large and then δ small, and finally n
large. Consequently, E |F (Tn)− νn|p = 2p

p−2α
pnp−1 + o(np−1). �

Proof of (1.4). Now p = k is an integer. If k is even, then (1.4) is the same
as (1.8), so we may assume that p = k > 3 is odd.

In this case, (6.33) holds for all real x, y. Thus for any random variables
X and Y , using also Hölder’s inequality,

E |Xp − Y p| 6 pE
(
|X − Y | |X|p−1 + |X − Y | |Y |p−1

)
6 p‖X − Y ‖p

(
‖X‖p−1p + ‖Y ‖p−1p

)
. (6.51)

It is now easy to modify the proof of Theorem 1.5 and obtain

E
(
F (Tn)− νn

)p
= E

∑
v∈Tn

f(Tn,v)p + o
(
np−1

)
. (6.52)

Furthermore, it follows from (2.2) that f(T ) 6 0 unless |T | = 1. Hence,∑
v∈Tn

f(Tn,v)p = −
∑
v∈Tn

|f(Tn,v)|p +O(n). (6.53)

The estimate (1.4) now follows from (6.52), (6.53) and (6.28). �

7. Proof of Lemma 3.2

Define a chain of length k in a (binary) tree T to be a sequence of k nodes
v1 · · · vk such that vi+1 is a (strict) descendant of vi for each i = 1, . . . , k−1.
In other words, v1, . . . , vk are some nodes (in order) on some path from the
root. We say that the chain v1 · · · vk is green if all nodes v1, . . . , vk are green.
(The nodes between the vi’s may have any colour.)
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For a binary tree T and k > 1, let Fk(T ) be the number of green chains
v1 · · · vk in T , and let fk(T ) be the number of such chains where v1 is the
root. Obviously, cf. (2.4),

Fk(T ) =
∑
v∈T

fk(Tv). (7.1)

These functionals are useful to us because of the following simple relations,
that are cases of inclusion-exclusion.

Lemma 7.1. For any binary tree T ,

f(T ) =
∞∑
k=1

(−1)k−1fk(T ), (7.2)

F (T ) =
∞∑
k=1

(−1)k−1Fk(T ). (7.3)

Proof. Let v be a node in T and consider the contribution to the sum in
(7.3) of all chains with final node vk = v. This is clearly 0 if 1 if v is not
green, and it is 1 if v is a maximal green node; furthermore, if v is green
but has j > 1 green ancestors, then the contribtion is easily seen to be∑j

i=0

(
j
i

)
(−1)i = (1 − 1)j = 0. Hence the right-hand side of (7.3) is the

number of maximal green nodes, i.e., F (T ).
For (7.2) we can argue similarly: Both sides are 0 unless the root o is

green. If it is, the chain o gives contribution 1, and by inclusion-exclusion,
the chains with a given final node v 6= o yield together a ycontribution
−1 if v is green and there are no green nodes between v and o, and 0
otherwise. Hence the sum equals f(T ) by (2.2). (Alternatively, (7.2) follows
by induction from (7.3), (2.4) and (7.1).) �

Lemma 7.2. For every k > 1,

E fk(T ) =
k(k + 3)

(k + 1)(k + 2)
· 2k−1

k!
=

2k−1

k!
− 2k

(k + 2)!
. (7.4)

Proof. We use the construction of T = T̃τ in Section 2, which we formulate
as follows. Consider again the infinite binary tree T∞, and grow T̃t as a
subtree of T∞, cf. Section 5. To do this, we equip each node v in T∞ with
two clocks CL(v) and CR(v). These are started when v is added to the

growing tree T̃t, and each chimes after a random time with an exponential
distribution with mean 1; when the clock chimes we add a left or right child,
respectively, to v. There is also a doomsday clock C0, started at 0 and with
the same Exp(1) distribution; when it chimes (at time τ), the process is

stopped and the tree T̃τ is output. All clocks are independent of each other.
Fix a chain v1 · · · vk in the infinite tree T∞, with v1 = o, the root. Let `i >

0 be the number of nodes between vi and vi+1. We compute the probability
that v1 · · · vk is a green chain in T = T̃τ by following the construction of
T̃t as time progresses, checking in several steps whether still v1 · · · vk is a
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candidate for a green chain, and computing the probability of this. (We use
throughout the proof the Markov property and the memoryless property of
the exponential distribution.) We assume for notational convenience that
the path from v1 to vk always uses the left child of each node. (By symmetry,
this does not affect the result.)

1. If k > 1, we first need that v1 = o has a left child but no right child
(in order to be green); in particular, of the three clocks CL(v1), CR(v1), C0

that run from the beginning, CL(v1) has to chime first. This has probability
1/3.

2. Given that Step 1 succeeds, v1 gets a left child w1. If `1 > 0, we need
a left child of w1, and still no right child at v1. (But we do not care whether
we get a right child at w1 or not.) Hence we need that CL(w1) chimes first
among the three clocks CL(w1), CR(v1), C0 (ignoring all other clocks). This
has probability 1/3.

This is repeated for `1 nodes; thus, the total probability that steps 1 and
2 succeed is 3−(`1+1).

3. This takes us to v2. If k > 2, we need a left child but no right child at
v2, and still no right child at v1. Hence, the next chime from the four clocks
CL(v2), CR(v2), CR(v1), C0 has to come from CL(v2). This has probability
1/4.

4. Similarly for each of the `2 nodes between v2 and v3; again the prob-
ability of success at each of these nodes is 1/4. Hence the probability that

Steps 3 and 4 succeed is 4−(`2+1).
5. Steps 3 and 4 are repeated for vi for each i < k, yielding a probability

(i+ 2)−(`i+1) of success for each i.
6. Finally, we have obtained vk, and wait for the doomsday clock. Until

it chimes, we must not get any right child at v1, . . . , vk−1, and we must get
at most one child at vk. Hence, among the k + 2 clocks CR(v1), . . . , CR(vk),
CL(vk), C0, the next chime must be either from C0 (probability 1/(k + 2)),
or from CL(vk) or CR(vk), followed by C0 (probability 2

k+2 ·
1

k+1). The
probability of success in this step is thus

1

k + 2
+

2

k + 2
· 1

k + 1
=

k + 3

(k + 1)(k + 2)
. (7.5)

Combining the six steps above, we see that the probability that v1 · · · vk
is a green chain in T̃τ is

k + 3

(k + 1)(k + 2)

k−1∏
i=1

( 1

i+ 2

)`i+1
. (7.6)
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Given `1, . . . , `k−1, there are
∏k−1
i=1 2`i+1 choices of the chain v1 · · · vk, all

with the same probability, so summing over all `1, . . . , `k−1 > 0, we obtain

E fk(T ) =
k + 3

(k + 1)(k + 2)

k−1∏
i=1

∞∑
`i=0

( 2

i+ 2

)`i+1
=

k + 3

(k + 1)(k + 2)

k−1∏
i=1

2

i

=
k + 3

(k + 1)(k + 2)
· 2k−1

(k − 1)!
=

k(k + 3)

(k + 1)(k + 2)
· 2k−1

k!
. �

Proof of Lemma 3.2. By Lemmas 7.1 and 7.2, and a simple calculation,

E f(T ) =
∞∑
k=1

(−1)k−1 E fk(T ) =
∞∑
k=1

(
(−2)k−1

k!
+

(−2)k

(k + 2)!

)
=

1− e−2

4
,

noting that we may take the expectation inside the sum since it also follows
from Lemma 7.2 that

∑∞
k=1 E |fk(T )| =

∑∞
k=1 E fk(T ) <∞. �

Recall that this, together with Lemma 3.1, completes our probabilistic
proof of Theorem 1.1.

Remark 7.3. If we in the proof above change the doomsday clock and let
it have an arbitrary rate λ > 0, and denote the resulting random binary tree
by T (λ), then the same argument yields

E fk(T (λ)) =
k + λ+ 2

(k + λ)(k + λ+ 1)

k−1∏
i=1

∞∑
`i=0

( 2

i+ λ+ 1

)`i+1

=
k + λ+ 2

(k + λ)(k + λ+ 1)

k−1∏
i=1

2

i+ λ− 1

=
(k + λ− 1)(k + λ+ 2)

(k + λ)(k + λ+ 1)

2k−1

λk

=
2k−1

λk
− 2k

λk+2
. (7.7)

Thus by Lemma 7.1, letting 1F1 denote the confluent hypergeometric func-
tion, see e.g. [18, §§13.1–13.2 and 16.1–16.2],

E f(T (λ)) =
∞∑
k=1

(−1)k−1 E fk(T (λ)) =
∞∑
k=1

(
(−2)k−1

λk
+

(−2)k

λk+2

)
= −1

2

(
1F1(1;λ;−2)− 1

)
+

1

4

(
1F1(1;λ;−2)−

(
1− 2

λ
+

2 · 2
λ(λ+ 1)

))
=

1

4
+

λ− 1

2λ(λ+ 1)
− 1

4
1F1(1;λ;−2). (7.8)

Furthermore, if λ > 1 we can compute EF (T (λ)) by the same method; the
only difference is that we also allow a path of length `0 > 0 from the root to
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v1, which gives an additional factor (1 + λ)−`0 for each v1 · · · vk, leading to

EFk(T (λ)) =

∞∑
`0=0

(
2

λ+ 1

)`0
E fk(T (λ)) =

λ+ 1

λ− 1
E fk(T (λ)), (7.9)

and hence, using both parts of Lemma 7.1,

EF (T (λ)) =
∞∑
k=1

(−1)k−1 EFk(T (λ)) =
λ+ 1

λ− 1
E f(T (λ)). (7.10)

Moreover, a simple argument shows that, for any n > 1,

P(|T (λ)| = n) =
n∏
i=2

i

i+ λ
· λ

n+ 1 + λ
=

λn!

(2 + λ)n
, (7.11)

and conditioned on |T (λ)| = n, T (λ) has the same distribution as Tn, i.e.,

(T (λ) | |T (λ)| = n)
d
= Tn. Hence,

EF (T (λ)) =
∞∑
n=1

λn!

(2 + λ)n
νn, (7.12)

which can be interpreted as an unusual type of generating function for the
sequence (νn); note that (7.10) and (7.8) yield an explicit expression for it.

References

[1] David Aldous, Asymptotic fringe distributions for general families of
random trees. Ann. Appl. Probab. 1 (1991), no. 2, 228–266.

[2] David Aldous, Probability distributions on cladograms. Random Dis-
crete Structures (Minneapolis, MN, 1993), 1–18, IMA Vol. Math. Appl.,
76, Springer, New York, 1996.

[3] Michael G. B. Blum and Olivier François, Minimal clade size and exter-
nal branch length under the neutral coalescent. Adv. in Appl. Probab.
37 (2005), no. 3, 647–662.

[4] Michael G. B. Blum, Olivier François and Svante Janson, The mean,
variance and limiting distribution of two statistics sensitive to phyloge-
netic tree balance. Ann. Appl. Probab. 16 (2006), no. 4, 2195–2214.

[5] B. M. Brown and G. K. Eagleson, Martingale convergence to infinitely
divisible laws with finite variances. Trans. Amer. Math. Soc. 162 (1971),
449–453.

[6] Huilan Chang and Michael Fuchs, Limit theorems for patterns in phy-
logenetic trees. J. Math. Biol. 60 (2010), no. 4, 481–512.

[7] Luc Devroye, Limit laws for local counters in random binary search
trees. Random Structures Algorithms 2 (1991), no. 3, 303–315.

[8] Luc Devroye, Limit laws for sums of functions of subtrees of random
binary search trees. SIAM J. Comput. 32 (2002/03), no. 1, 152–171.

[9] Michael Drmota, Random Trees. Springer, Vienna, 2009.



MAXIMAL CLADES IN RANDOM BINARY SEARCH TREES 25

[10] Michael Drmota, Michael Fuchs and Yi-Wen Lee, Limit laws for the
number of groups formed by social animals under the extra clustering
model. (Extended abstract.) Proceedings, 2014 Conference on Analysis
of Algorithms, AofA ’14 (Paris, 2014), DMTCS Proceedings, 2014.

[11] Eric Durand, Michael G. B. Blum and Olivier François, Prediction of
group patterns in social mammals based on a coalescent model. J. The-
oret. Biol. 249 (2007), no. 2, 262–270.

[12] Eric Durand and Olivier François, Probabilistic analysis of a genealog-
ical model of animal group patterns. J. Math. Biol. 60 (2010), no. 3,
451–468.

[13] Philippe Flajolet, Xavier Gourdon and Conrado Mart́ınez, Patterns in
random binary search trees. Random Structures Algorithms 11 (1997),
no. 3, 223–244.

[14] Allan Gut, Probability: A Graduate Course, 2nd ed., Springer, New
York, 2013.

[15] P. Hall and C. C. Heyde, Martingale Limit Theory and its Application.
Academic Press, New York, 1980.

[16] Cecilia Holmgren and Svante Janson, Limit laws for functions of fringe
trees for binary search trees and recursive trees. Preprint, 2014. arXiv:
1406.6883v1

[17] J. F. C. Kingman, The coalescent. Stochastic Process. Appl. 13 (1982),
no. 3, 235–248.

[18] NIST Handbook of Mathematical Functions. Edited by Frank W. J.
Olver, Daniel W. Lozier, Ronald F. Boisvert and Charles W. Clark.
Cambridge Univ. Press, 2010.
Also available as NIST Digital Library of Mathematical Functions,
http://dlmf.nist.gov/

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06
Uppsala, Sweden

E-mail address: svante.janson@math.uu.se
URL: http://www2.math.uu.se/∼svante/


