
CONSISTENT RANDOM VERTEX-ORDERINGS OF GRAPHS

PAUL BALISTER, BÉLA BOLLOBÁS, AND SVANTE JANSON

Abstract. Given a hereditary graph property P, consider distributions of random
orderings of vertices of graphs G ∈ P that are preserved under isomorphisms and
under taking induced subgraphs. We show that for many properties P the only such
random orderings are uniform, and give some examples of non-uniform orderings
when they exist.

1. Introduction

For any (finite or countably infinite) graph G, write OG for the set of possible
total orderings of the vertex set V (G), and write DG for the set of all probability
distributions on OG. (For countably infinite graphs, we use the σ-algebra generated
by all events of the form u < v, u, v ∈ V (G).) Recall that H is an induced subgraph
of G if the vertex set V (H) is a subset of V (G) and an edge xy lies in H if and only
if x, y ∈ V (H) and xy is an edge of G. Note that an induced subgraph is determined
by the subset V (H) ⊆ V (G). We shall write G[S] for the induced subgraph of G
with vertex set S.

We call a distribution PG ∈ DG consistent if for any two finite isomorphic induced
subgraphs H1, H2 and any isomorphism φ : H1 → H2, the induced orders on H1 and
H2 have distributions that are mapped to each other by φ, i.e., for all v1, . . . , vk ∈ H1,

PG(v1 < v2 < · · · < vk) = PG(φ(v1) < φ(v2) < · · · < φ(vk)).

(In fact this then implies the same result even for infinite induced subgraphs.)

Example 1.1. Define the uniform random ordering on G by assigning the vertices
i.i.d. uniform U(0, 1) random variables Xv and declaring that v1 < v2 if and only
if Xv1 < Xv2 . This almost surely gives a total ordering of V (G), and the resulting
distribution of orderings is clearly consistent. For a finite graph of order n, the
uniform random ordering is just the natural uniform probability distribution on all
|OG| = n! orderings of V (G).
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There are some cases when the uniform random ordering is the only consistent
random ordering. In this case we shall call the graph G itself uniform. As an example,
consider a homogeneous graph G, namely a graph that is either a complete graph or
an empty graph. As every induced subgraph of order k is isomorphic to itself by any
permutation, we must have that the ordering on any k vertices is uniformly chosen
from the k! possible orderings. It thus agrees with the uniform model defined above
on any finite subset of vertices, and hence on the whole graph. The converse is false
in general — there exist infinite non-homogeneous graphs which are uniform. Indeed,
we shall see many examples below. However, for finite non-homogeneous graphs there
are always non-uniform consistent random orderings (see for example Theorem 2.2
and Lemma 2.3 below). Hence for finite graphs, G is uniform if and only if it is
homogeneous.

A graph property P is a collection of finite labelled graphs (typically on vertex sets
of the form [n] = {1, . . . , n}), which is closed under isomorphism, so if the labelled
graph G is isomorphic to G′ then G ∈ P if and only if G′ ∈ P . A graph property is
called hereditary if whenever G ∈ P and H is an induced subgraph of G then H ∈ P .
Hereditary properties of graphs have been studied for over two decades, and there is
a huge family of results concerning the structure of graphs, hypergraphs, and other
combinatorial structures having a certain hereditary property, the number of graphs
of order n in a property, the difficulty of approximation by graphs in the property, etc.
For a sample of results, see [1; 3; 4; 5; 7; 8; 9; 10; 13; 14; 15; 16; 17; 18; 27; 28; 29; 30].
There are two obvious ways of defining a hereditary property of graphs. First, let H
be a collection of graphs, and write FH for the hereditary property consisting of all
finite graphs G that do not contain any induced subgraph isomorphic to some graph
in H. We call the graphs in this property H-free. Second, the collection PG of all
finite graphs isomorphic to some induced subgraph of a (finite or countably infinite)
graph G is also a hereditary property.

Given a hereditary property P , consider probability models that assign to each
graph G ∈ P an element PG ∈ DG, i.e., a random total ordering of its vertex set V (G).
We call this model consistent if, whenever H,G ∈ P and H is isomorphic to an
induced subgraph H ′ of G, by say φ : H → H ′, then the random order PH has the
same distribution as the random order induced on H ′ by PG. In other words, for all
x1, x2, . . . , xk ∈ V (H),

PH(x1 < x2 < · · · < xk) = PG(φ(x1) < φ(x2) < · · · < φ(xk)). (1.1)

(Note that it follows that each PG is consistent.) For any hereditary property P ,
the uniform model, defined by choosing the uniform distribution on all orderings of
V (G) for each G ∈ P , is clearly consistent. We call the property P uniform if the
only consistent ordering model on P is the uniform one. This terminology is justified
by the following observation.

Lemma 1.2. Let G be a finite or countably infinite graph. Then any consistent ran-
dom ordering on G induces a consistent random ordering model on PG. Conversely,
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any consistent random ordering model on PG is induced from a unique and consistent
random ordering on G. In particular, G is uniform iff PG is uniform.

Proof. Given a consistent ordering PG on G, we define for each H ∈ PG the random
ordering given by (1.1), where φ : H → H ′ is any identification of H with an induced
subgraph H ′ of G. The fact that PG is consistent implies that the distribution of this
ordering is independent of the choice of φ, and the collection {PH}H∈PG

is clearly a
consistent random ordering model on PG. Conversely, suppose we have a consistent
random ordering model {PH}H∈PG

on PG. Define a random ordering on G so that
for any finite set of vertices x1, . . . , xk ∈ V (G),

P(x1 < x2 < · · · < xk) = PH(x1 < x2 < · · · < xk), (1.2)

where H = G[{x1, . . . , xk}]. Consistency of {PH}H∈PG
implies that this produces a

well defined probability distribution in DG, which is clearly itself consistent. More-
over, any distribution in DG that induces {PH}H∈PG

must satisfy (1.2), so this dis-
tribution on OG is unique. The last statement also follows as the random ordering
on G is uniform iff it is uniform when restricted to any finite subgraph. �

The study of consistent ordering models on families of graphs was started by Angel,
Kechris, and Lyons [6], who showed that the class of all graphs is uniform, as well as,
for example, the class of Kn-free graphs. In fact they studied not only graphs, but
also hypergraphs and metric spaces, and gave several applications of their results to
uniquely ergodic groups. Russ Lyons suggested to the authors that they continue the
study of consistent ordering models on hereditary properties of graphs.

The main aim of this paper is to show that for many natural choices of hereditary
property P , the only consistent ordering model is uniform, thus greatly extending
the result just mentioned in [6]. In particular we shall prove the following result in
Section 4.

Theorem 1.3. Suppose that P is a hereditary property such that for any graph
G ∈ P and any vertex v ∈ G there exists a graph G′ ∈ P which is obtained from
G by replacing v by two twin vertices v1, v2 with the same neighbourhoods as v in
G \ {v}. Suppose also that there exists a graph G ∈ P that is not a disjoint union of
cliques or a complete multipartite graph. Then P is uniform.

Recall that vertices v1, v2 ∈ G are called twins if the neighbourhoods of v1 and v2
are the same in G \ {v1, v2}. Twin vertices may be either adjacent or non-adjacent.

Remark 1.4. The hereditary properties satisfying the assumption of Theorem 1.3
have an equivalent characterization using the theory of graph limits (see [23]). Each
graph limit (or graphon) W defines a hereditary property PW consisting of all graphs
G such that the induced subgraph density tind(G,W ) > 0. Lovász and Szegedy [24,
Proposition 4.10] have shown that P equals a union

⋃
W∈W PW for some set W of

graph limits if and only if the first condition in Theorem 1.3 holds.
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The next result concerns H-free graphs introduced earlier: it follows from Theo-
rem 1.3, see Section 4.

Theorem 1.5. Suppose that H is a set of finite graphs such that either no H ∈ H
contains a pair of adjacent twins, or no H ∈ H contains a pair of non-adjacent
twins. Suppose also that H does not contain the path P3 on three vertices, or its
complement P 3. Then FH is uniform.

For example, Theorem 1.5 applies to triangle-free graphs (as a triangle does not
contain a pair of non-adjacent twins), claw-free graphs (the claw K1,3 does not contain
adjacent twins), and chordal graphs ({C4, C5, C6, . . . }-free graphs) as cycles of length
at least 4 do not contain adjacent twins. However it cannot be applied to, for example,
the hereditary property consisting of all graphs of girth at least 5 ({C3, C4}-free
graphs) as C3 contains a pair of adjacent twins and C4 contains a pair of non-adjacent
twins. We can however deduce that the class of all graphs with girth at least g is
uniform from the following more general result, proved in Section 5.

Theorem 1.6. Assume P is a hereditary property such that for any G1, G2 ∈ P and
any vertices v1 ∈ V (G1), v2 ∈ V (G2), the graph obtained from the disjoint union
G1 ∪G2 by identifying the vertices v1 and v2 also lies in P. Then P is uniform.

Remark 1.7. The condition of Theorem 1.6 is equivalent to the condition that a
graph G lies in P if and only if all its 2-connected induced subgraphs do (or P consists
only of the empty graph K1). Indeed, it is not hard to see that P is also closed under
disjoint unions. In particular, Theorem 1.6 applies to the class of all bipartite graphs,
the class of all forests, and the class of all planar graphs, thus answering Question 3.4
of [6]. It also generalises Theorem 5.1 of [6]. Indeed, it shows that the class of all
H-free graphs is uniform whenever H consists only of 2-connected graphs.

We actually derive Theorem 1.6 from the more general, but technical, Theorem 5.1
given in Section 5.

Although Theorem 1.6 applies to the class of all forests, in the case of hereditary
properties of forests we can say much more. Recall that a leaf is a vertex of degree 1.

Theorem 1.8. Suppose P is a hereditary property of forests and suppose that for
every non-empty forest F ∈ P, at least one of the following holds.

(i) There exists a leaf u of F such that any forest obtained from F by replacing
u by an arbitrary number of (non-adjacent) twins and then adding an arbitrary
number of independent vertices lies in P.

(ii) There exist two leaves u1, u2 of F adjacent to distinct vertices v1, v2 ∈ V (F )
such that the forest obtained by replacing both u1 and u2 by arbitrary numbers
of (non-adjacent) twins lies in P.

Then P is uniform.

Theorem 1.8 too is proved in Section 5. Note that the conditions of Theorem 1.8
imply that either P consists entirely of empty graphs, or P contains all graphs of
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the form K1,n ∪Km. (Consider the case when F is a single edge.) Indeed, the class
{K1,n ∪ Km}n,m>0 is an example where Theorem 1.8 applies. By comparison, the
class of all induced subgraphs of stars K1,n, n > 1, (i.e., the class of all stars and
empty graphs) is not uniform (see Example 2.1 below).

2. Some non-uniform consistent orderings

Before we prove that many properties P are uniform, we first give some examples
of properties and graphs with non-uniform consistent orderings.

Example 2.1. Suppose that every graph G ∈ P is a disjoint union of cliques, and
that some G ∈ P is non-homogeneous. We can construct a non-uniform consistent
order by first taking a uniform random order of the cliques, and then a uniform
random order of the vertices within each clique. By taking graph complements we
can similarly construct an example when every G ∈ P is a complete multipartite
graph. We take a uniform random order of the partite classes, and then a uniform
random order of the vertices within each partite class.

The following results give constructions of non-uniform consistent orderings for
large classes of graphs and properties. The first construction was suggested by
Leonard Schulman and proved by Angel, Kechris and Lyons [6]; the alternative proof
we give below was sketched to us by Lyons.

Theorem 2.2. Suppose that there exists ∆ < ∞ such that for every graph G ∈ P,
the maximum degree of G is at most ∆. Then there exists a consistent random order
model on P that is non-uniform on any non-homogeneous graph in P.

Proof. Let G ∈ P be a graph with n vertices. We first show that we can embed G
into Euclidean space Rn in such a way that the distance between vertices x, y ∈ V (G)
is c0 if x and y are not adjacent, and c1 6= c0 if x and y are adjacent in G. Indeed, let
A = (axy) be the adjacency matrix of G, defined by axy = 1 if xy ∈ E(G) and axy = 0
otherwise. Then A is symmetric and all its eigenvalues are real and lie between −∆
and ∆. Thus if ε < 1/∆, the matrix In + εA is positive definite, and so there exists
a symmetric matrix B = (bij) such that BTB = B2 = In + εA. Place each vertex
x ∈ V (G) at the point px = (bix)

n
i=1 ∈ Rn. Then the distance between any two distinct

vertices x, y ∈ V (G) is given by ‖px−py‖2 = px ·px−2px ·py+py ·py = 2−2εaxy. Thus

non-adjacent vertices are at distance c0 =
√

2 and adjacent vertices are at distance
c1 =

√
2− 2ε.

Now construct a random ordering of the vertices of G by taking a unit vector
u ∈ Rn uniformly at random, and setting x < y if px · u < py · u. This almost
surely gives a total ordering on V (G) and it is clear that it is consistent. Indeed,
any induced subgraph H is mapped to a set of points that is isometric to the set
of points produced by the same construction applied to H. We also note that this
ordering is non-uniform on G, provided that G is not homogeneous. Indeed, any
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non-homogeneous graph contains a subgraph isomorphic to either the path P3 or its
complement P 3, and so it is enough to show that the ordering is non-uniform on any
such subgraph. On such a subgraph, the ordering is given by a random projection
of a non-equilateral triangle, which it is easy to see is non-uniform. For example,
the probability that a vertex v is in the middle of the ordering is proportional to the
angle at the corresponding vertex of the triangle. �

Lemma 2.3. Let G be a non-homogeneous graph with n vertices. Then there exists
a non-uniform consistent random ordering that is uniform on any subset of n −
1 vertices. Moreover it can be realised by assigning uniform (dependent) random
variables Xv ∈ [0, 1] to vertices v ∈ V (G) in such a way that any set of n − 1
variables Xv are independent.

Proof. Fix an α ∈ [0, 1] and a v0 ∈ V (G) and define a random ordering on G by
giving each vertex v 6= v0 an i.i.d. U(0, 1) random variable Xv ∈ [0, 1]. Pick an
edge xy uniformly at random from G (independently of the Xv, v 6= v0), and define
Xv0 ∈ [0, 1] so that ∑

v∈V (H)

εvXv ≡ α mod 1, (2.1)

where εv = −1 if v ∈ {x, y} and εv = 1 otherwise. Note that for any choice of edge
xy ∈ E(G) this is essentially equivalent to assigning i.i.d. U(0, 1) random variables
to all vertices and conditioning on the event that (2.1) holds. Hence the resulting
distribution is independent of the choice of v0, and is uniform on any subset of
n−1 vertices. Moreover, the overall probability distribution on orderings is obtained
by averaging the distributions for each choice of edge xy ∈ E(G), and is therefore
invariant under any automorphism of G. Consistency follows as the distribution is
uniform on any proper induced subgraph.

We now show that, for suitable α, this ordering is not uniform on G itself. Let the
vertices of G be {1, . . . , n} and define Pj1,...,jr to be the probability that

Xj1 < Xj2 < · · · < Xjr < min
{
Xs : s /∈ {j1, . . . , jr}

}
, (2.2)

i.e., that Xj1 , . . . , Xjr are the smallest r values of the Xv, and in that order. Define

P
(x,y)
j1,...,jr

to be the probability that (2.2) holds conditioned on the chosen edge being
xy ∈ E(G). Then

Pj1,...,jr =
1

|E(G)|
∑

xy∈E(G)

P
(x,y)
j1,...,jr

.

Assume first that G is not regular and label the vertices so that the degree d1 of
vertex 1 is not equal to the degree d2 of vertex 2. Consider

δ = P1,2 − P2,1 =
1

|E(G)|
∑

xy∈E(G)

(
P

(x,y)
1,2 − P (x,y)

2,1

)
.
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By symmetry, P
(x,y)
1,2 = P

(x,y)
2,1 unless |{x, y} ∩ {1, 2}| = 1. Hence, again by symmetry,

letting d′j be the number of neighbours of j in V (G) \ {1, 2},

|E(G)|δ = d′1
(
P

(1,3)
1,2 − P

(1,3)
2,1

)
+ d′2

(
P

(2,3)
1,2 − P

(2,3)
2,1

)
= (d′1 − d′2)

(
P

(1,3)
1,2 − P

(1,3)
2,1

)
= (d1 − d2) (−1)n

(n−1)!

(
n
2

)
Bn−1(α),

where the last line follows from Lemma A.2 and Bn(x) denotes the nth Bernoulli
polynomial. In particular δ 6= 0 unless α is one of the zeros of the polynomial
Bn−1(x).

Now assume G is regular with vertex degree d. As G is not homogeneous, n > 4
and we can order the vertices so that {1, 3} ∈ E(G) but {2, 3} /∈ E(G). Consider

δ′ = P1,2,3 − P2,1,3 =
1

|E(G)|
∑

xy∈E(G)

(
P

(x,y)
1,2,3 − P

(x,y)
2,1,3

)
.

Once again by symmetry, P
(x,y)
1,2,3 = P

(x,y)
2,1,3 unless |{x, y}∩ {1, 2}| = 1. Hence, again by

symmetry,

|E(G)|δ′ =
(
P

(1,3)
1,2,3 − P

(1,3)
2,1,3

)
+ (d− 1)

(
P

(1,4)
1,2,3 − P

(1,4)
2,1,3

)
+ d
(
P

(2,4)
1,2,3 − P

(2,4)
2,1,3

)
=
(
P

(1,3)
1,2,3 − P

(1,3)
2,1,3

)
−
(
P

(1,4)
1,2,3 − P

(1,4)
2,1,3

)
.

Now

P
(1,3)
1,2 =

∑
i>2

P
(1,3)
1,2,i = P

(1,3)
1,2,3 + (n− 3)P

(1,4)
1,2,3 ,

and similarly for P
(1,3)
2,1 . Hence by Lemma A.2 (noting that n > 4)

|E(G)|δ′ =
(
P

(1,3)
1,2 − P

(1,3)
2,1

)
− (n− 2)

(
P

(1,4)
1,2,3 − P

(1,4)
2,1,3

)
= (−1)n

(n−1)!

((
n
2

)
− (n− 2)(n− 3 + 2Hn−3)

)
Bn−1(α)− (−1)n

(n−3)!Bn−2(α),

where Hn = 1 + 1
2

+ · · ·+ 1
n
. As Bn−1(α) and Bn−2(α) are linearly independent, this

is non-zero for all but a finite number of α ∈ [0, 1].
Thus in all cases the distribution is non-uniform on V (G) for suitable α. �

Theorem 2.4. Suppose P is a hereditary property and H is a graph on at least 2
vertices such that for every G ∈ P, all induced subgraphs of G isomorphic to H
are vertex disjoint. Then there is a consistent random ordering model on P that is
uniform on all graphs G ∈ P without an induced subgraph isomorphic to H, and
is non-uniform on all non-homogeneous graphs G ∈ P containing H as an induced
subgraph.

Note that H itself may be either homogeneous or non-homogeneous.
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Proof. Assume first that H is homogeneous. Fix α ∈ [0, 1] and define the following
random order for each G ∈ P . Each vertex v ∈ V (G) is assigned an i.i.d. U(0, 1)
random variable Xv, except that if G contains induced subgraphs H1, . . . , Hk isomor-
phic to H, a fixed vertex vi is chosen from each V (Hi), and Xvi ∈ [0, 1] is redefined
so that ∑

v∈V (Hi)

Xv ≡ α mod 1. (2.3)

This is essentially equivalent conditioning on the event that (2.3) occurs for each i.
The ordering on G is then obtained from the ordering of the Xv in R. Note that the
joint distribution of the Xv, v ∈ V (G), and hence the distribution on the ordering, is
independent of the choices of the vi, and hence is symmetric under all permutations
of V (Hi). Let G′ be an induced subgraph of G and assume G′ contains Hi only for
i ∈ S ⊆ {1, . . . , k}. By independence of the choice of vi we may assume vi /∈ V (G′)
for i /∈ S. Hence the induced ordering on G′ is given by exactly the same model.
By independence on the vi, the distribution is clearly invariant under automorphisms
of G′, so the random ordering model described is consistent on P . It is also clearly
uniform on any G ∈ P that does not contain H as an induced subgraph. It remains
to show that if G ∈ P does contain H as a proper induced subgraph then the ordering
on G is non-uniform. (Note that in this case G is necessarily non-homogeneous as
otherwise it would contain non vertex-disjoint copies of H.) Let v ∈ V (G) \ V (H)
and assume V (H) = {1, . . . , n}. Then by Lemma A.1,

P(Xv < X1 < · · · < Xn) = 1
(n+1)!

+ (−1)n−1

n!2
Bn(α).

Hence, for all but a finite number of choices of α, this probability is not 1/(n + 1)!
as it would be in the case of the uniform distribution. Thus the distribution is not
uniform on G for a suitable choice of α.

Assume now that H itself is not homogeneous. Fix a non-uniform distribution on
H as given by Lemma 2.3. Fix G ∈ P and suppose G contains (vertex-disjoint) copies
H1, . . . , Hk of H. Define a random ordering on the vertices of G ∈ P by giving each
vertex v ∈ V (G) an independent uniform random variable Xv ∈ [0, 1], except that on
each Hi we apply the construction of Lemma 2.3, independently for each Hi. In other
words, we fix a choice of vertex vi ∈ V (Hi) and then uniformly and independently
choose one edge from each Hi. The random variable Xvi is then redefined so that
(2.1) holds on each Hi. Once again, if G′ is an induced subgraph of G containing
only the copies Hi, i ∈ S ⊆ {1, . . . , k}, then we can without loss of generality assume
that vi /∈ V (G′) for each i /∈ S. Then the induced ordering on G′ is given by exactly
the same model. Hence the ordering model on P is consistent and has the stated
properties. �

Remark 2.5. We note that it is important in Theorem 2.4 that the copies of H be
vertex disjoint. For example, taking H as a single edge and P as any of the uniform
properties mentioned above gives examples with each copy of H being edge-disjoint



CONSISTENT RANDOM VERTEX-ORDERINGS OF GRAPHS 9

but the conclusion of Theorem 2.4 failing. Another instructive example is given in
Example 5.3 below, where the copies of H intersect in at most one vertex and each
copy has “private” vertices not included in any other copy of H. Nevertheless P is
still uniform.

Despite Remark 2.5, a construction similar to that in Theorem 2.4 is occasionally
possible even when not all copies of H are vertex disjoint. The following gives an
example.

Example 2.6. Let n > 3 and define G to be the infinite double broom consisting of
a path Pn on n vertices with an infinite number of leaves added to the end-vertices
of Pn (so that the longest path in G is Pn+2). Let the vertices of the central path
be u1, . . . , un. Assign i.i.d. U(0, 1) random variables Xv to all v ∈ V (G) except
that Xun ∈ [0, 1] is redefined so that

∑n
i=1Xui ≡ α mod 1, where α ∈ [0, 1] is a

zero of the Bernoulli polynomial Bn(x). Any induced subgraph of G that does not
contain all vertices of the central path Pn receives a uniform ordering, as does Pn
itself (by symmetry). The only remaining induced subgraphs are Pn+1, single brooms
containing Pn and at least two leaves attached at one end-vertex, and double brooms
with one or more leaves at each end. Any pair of such single brooms or double brooms
are isomorphic only by an isomorphism which either fixes Pn or reverses its direction,
and hence receive the same distribution of orderings. Any copy of Pn+1 consists of
the central Pn with one leaf at either end. Such a graph has the uniform random
ordering by Lemma A.1 as Bn(α) = 0. (The Xui are exchangeable, so it is enough to
check the distribution of the rank of the leaf v in the ordering of v, u1, . . . , un.) Thus
the ordering is consistent. On the other hand, Bn+1(α) 6= 0 by Lemma A.3, so the
second formula in Lemma A.1 implies that the random ordering is not uniform on
any Pn+2 subgraph.

Remark 2.7. Note that the ordering in Example 2.6 is not consistent for n = 2 (the
infinite double star) as the single brooms obtained by adding leaves to one end-vertex
of a P2 are in fact stars, and have many automorphisms which do not preserve the
distribution of the given random order. This is to be expected as the infinite double
star is in fact uniform by Theorem 1.8. Moreover, the class of all induced subgraphs
of double brooms with central path of length 6 n is also uniform by Theorem 1.8.
Example 2.6 demonstrates that Theorem 1.8 does not however apply when the central
path length is required to be exactly n. Indeed, the single broom subgraphs of the
double brooms do not satisfy the conditions of Theorem 1.8.

3. Templates and infinite blow-ups

Consider a (finite) template G, i.e., a graph with a set V of vertices, each vertex
labelled as either full or empty. Define the infinite blow-up G∞ of G as an infinite
graph with vertex set

⋃
v∈VWv where Wv = {vi}∞i=1, such that Wv induces an empty

or complete graph according to whether v is empty or full respectively, and for any
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distinct v, w ∈ V and all i, j > 1, viwj is an edge in G∞ if and only if vw is an edge
in G. Define the hereditary property PG as the set of all finite induced subgraphs
of G∞, i.e., PG = PG∞ . We shall call a template G uniform if G∞ (or equivalently PG)
is uniform, i.e., if the only consistent random ordering is the uniform one. Our aim
is to prove that most templates are uniform. This is, however, not always the case.

Example 3.1. Suppose that the template has no edges and at least two vertices with
at least one of the vertices full. Thus G∞ is a disjoint union of some infinite cliques
and (perhaps) some infinite empty graphs, and thus a disjoint union of at least two
cliques (infinite or singletons). Any induced subgraph is thus also a disjoint union of
cliques. We can construct a non-uniform consistent order as in Example 2.1 by first
taking a uniform random order of the cliques, and then a uniform random order of
the vertices within each clique.

Consider first each ‘blob’ Wv separately. Fix v ∈ V and vi ∈ Wv. Since any
permutation of Wv is an automorphism of G∞, and thus preserves the distribution
of the order, the random variables {1{vi > vk}}k 6=i are exchangeable. Thus, by de
Finetti’s theorem, see e.g., [22, Theorem 1.1 and Proposition 1.4], a.s. there exists a
limit

Uvi := lim
n→∞

1

n

n∑
k=1

1{vi > vk}. (3.1)

Thus each Uvi is a random variable with Uvi ∈ [0, 1]. Moreover, if vi < vj, then
1{vi > vk} 6 1{vj > vk} for every k, and thus Uvi 6 Uvj .

Lemma 3.2. For each v, {Uvi}∞i=1 is a sequence of i.i.d. uniformly distributed random
variables; Uvi ∼ U(0, 1).

Proof. The order restricted toWv has a distribution invariant under all permutations,
and thus it is the uniform random order. We may thus assume that the random
order on Wv is defined by a collection of i.i.d. uniform random variables Xvi as in
Example 1.1. But then (3.1) and the law of large numbers a.s. yield

Uvi = lim
n→∞

1

n

n∑
k=1

1{Xvi > Xvk} = Xvi . (3.2)

�

Moreover, this extends to all blobs, jointly.

Lemma 3.3. The random variables Uvi, v ∈ V and i > 1, are i.i.d. and uniform on
[0, 1].

Proof. Consider a finite subset Av of each Wv. Any permutation of Av is an auto-
morphism of G∞, and thus the induced order on Av is the uniform random order,
and this also holds even if we condition on the induced orders on all Aw, w 6= v.
Hence the induced orders on the subsets Av are independent (and uniform). Since
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the sets Av are arbitrary finite subsets of theWv, this means that the induced orders
on the sets Wv, v ∈ V , are independent, and thus the families {Uvi}∞i=1, v ∈ V , are
independent. �

Next, take two vertices v, u ∈ V and compare vertices in the two blobsWv andWu.
For every vi ∈ Wv, we see in analogy with (3.1), again by de Finetti’s theorem, that
a.s. the limit

Vu,vi := lim
n→∞

1

n

n∑
k=1

1{vi > uk} (3.3)

exists. Note that Vv,vi = Uvi . Each Vu,vi is a random variable with values in [0, 1] and
gives the ‘rank’ of vertex vi with respect toWu, i.e., the proportion of vertices inWu

that it exceeds. Note that these random variables are in general neither independent
nor uniform.

Example 3.4. Let the template consist of two full vertices and no edge; thus V =
{1, 2} and G∞ consists of two disjoint infinite cliques. For the random order described
in Example 3.1, we have V1,2i = V1,2j ∈ {0, 1} for all i, j > 1, and V1,2i ∼ Be(1/2).

Lemma 3.5. For each pair u, v ∈ V, there exists a random distribution function Fu,v
on [0, 1] such that, a.s., for every x ∈ [0, 1],

Fu,v(x) = lim
n→∞

1

n

n∑
i=1

1{Vu,vi 6 x}. (3.4)

Furthermore, conditioned on Fu,v, the random variables Vu,vi, i > 1, are i.i.d. with
cumulative distribution function Fu,v.

Remark 3.6. When v = u, this holds by Lemma 3.3 with Fu,u(x) = x a.s., so Fu,u
is non-random.

Proof. We may assume that v 6= u. Since any permutation ofWv is an automorphism
of G∞, it follows from (3.3) that the random variables {Vu,vi}∞i=1 are exchangeable.
The result follows from another application of de Finetti’s theorem. �

It follows immediately from the definition (3.3) that, for any v, w ∈ V and i, j > 1,

vi < wj =⇒ Vu,vi 6 Vu,wj
. (3.5)

Equivalently, interchanging vi and wj,

Vu,vi < Vu,wj
=⇒ vi < wj. (3.6)

Remark 3.7. The order is thus described by the variables Vu,vi , for any fixed u ∈ V ,
in the case when these random variables are a.s. distinct. (This is not necessarily the
case, as is seen in Example 3.4; in that example the variables V1,2i do not identify the
order on W2. See also Remark 3.12 below.)

Let FN be the σ-field generated by all events vi < wj for v, w ∈ V and i, j > N ,
and let F∞ :=

⋂∞
N=0FN be the tail σ-field.
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Lemma 3.8. Each Fu,v is F∞-measurable.

Proof. As the limits (3.3) and (3.4) do not depend on the first N terms in the sums,
Vu,vi , i > N , and hence Fu,v are FN -measurable for all N . �

Lemma 3.9. The i.i.d. uniform random variables Uvi, v ∈ V and i > 1, are (jointly)
independent of F∞. Thus the two families {Uvi}v,i and {Fu,v}u,v∈V are independent.

Note that the random variables {Fu,v}u,v∈V may be dependent on each other.

Proof. The induced orders on the subsets Wv,N := {vi}Ni=1, v ∈ V , are independent
and uniform, even conditioned on FN , since permutations ofWv,N are automorphisms
of G∞. Hence these induced orders are independent of F∞, and letting N →∞, we
obtain that the induced orders on the blobs Wv, v ∈ V , are (jointly) independent
of F∞. The random variables Uvi depend on these induced orders only. The result
now follows by Lemma 3.8. �

We note some useful formulae.

Lemma 3.10. Let v, u ∈ V. Then the following hold a.s.

(i) For every i > 1,
Vu,vi = sup

k
{Uuk : uk < vi}. (3.7)

(ii) For every i > 1,
Vu,vi = Fv,u(Uvi). (3.8)

(iii) For x ∈ [0, 1],
Fu,v(x) = sup{s : Fv,u(s) 6 x}. (3.9)

Hence, Fu,v is the right-continuous inverse of Fv,u.

Proof. (i): Let x := supk{Uuk : uk < vi}. Then

Uuj < x =⇒ uj < vi =⇒ Uuj 6 x.

Hence (3.7) follows from definition (3.3) and the law of large numbers.
(ii): By (3.5)–(3.6), recalling that Uvi = Vv,vi ,

Vv,uk < Uvi =⇒ uk < vi =⇒ Vv,uk 6 Uvi .

Hence, the definitions (3.3) and (3.4) yield, a.s.,

Fv,u(Uvi−) 6 Vu,vi 6 Fv,u(Uvi).

Since Uvi is a continuous random variable, and independent of Fu,v by Lemma 3.9,
Uvi is a.s. a continuity point of Fu,v, and the result follows.
(iii): By (3.4), (3.8) and the fact that {Uvi}i are i.i.d. and uniform, a.s.,

Fu,v(x) = lim
n→∞

1

n

n∑
i=1

1{Fv,u(Uvi) 6 x} = sup{s : Fv,u(s) 6 x}.

(This holds a.s. for e.g., all rational x ∈ [0, 1], and thus for all x simultaneously.) �
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Theorem 3.11. Fix any u ∈ V. Then the following are equivalent.

(i) The random order on G∞ is uniform.
(ii) The random variables Vu,vi, v ∈ V and i > 1, are i.i.d. and uniform.

(iii) The random distribution functions Fu,v, u, v ∈ V, are a.s. equal to the identity;
Fu,v(x) = x, x ∈ [0, 1].

We may assume u 6= v in (iii) as this always holds for u = v; see Remark 3.6.

Proof. (i) =⇒ (ii): We may assume that the random order is given by i.i.d. uniform
random variables Xvi as in Example 1.1, and then Vu,vi = Xvi a.s. by (3.3) and the
law of large numbers.
(ii) =⇒ (i): Immediate by (3.6).
(ii) =⇒ (iii): By (3.4) and the law of large numbers.
(iii) =⇒ (ii): By Lemma 3.10(iii), Fv,u = F−1u,v is the identity. Thus Lemma 3.10(ii)
yields Vu,vi = Uvi and (ii) follows by Lemma 3.3. �

Remark 3.12. Consider again any consistent order on G∞. It follows from Lemmas
3.3 and 3.9 together with (3.8) that, for any pair u, v ∈ V and i, j > 1, the random
variables Vu,ui = Uui and Vu,vj = Fv,u(Uvj) are independent, with Uui uniform. In
particular, these two random variables are a.s. distinct, and thus they determine the
order between ui and vj by (3.5)–(3.6). Hence, the order is a.s. determined by the
collection of all Vu,vi (u, v ∈ V , i > 1). (As remarked in Remark 3.7, it is sometimes,
but not always, possible to use just a single u.)

Note also that Lemmas 3.3 and 3.9 together with (3.8) show that the random
Vu,vi may be constructed by randomly selecting first {Fu,v}u,v with the right distri-
bution and then i.i.d. uniform Uui , and defining Vu,vi := Fv,u(Uvi). The conditional
distribution of Vu,vi given {Fw,z}w,z∈V is thus Fu,v, c.f. Lemma 3.5.

Remark 3.13. This section only uses automorphisms of G∞ that preserves eachWv

(and thus is a permutation of each Wv). Remark 3.12 thus gives a description of
all random orders that are invariant under this group of permutations of the vertices
of G∞. (Conversely, the construction above yields such a random order. In particular,
if we fix u and any distribution of {Fu,v}v such that each Fu,v is continuous, this defines
a random order of this type on G∞. If some Fu,v have atoms, we may have to further
specify the order.)

4. Uniformity of templates

Recall that a template G is uniform if the only consistent random order on G∞ is
the uniform random order.

Remark 4.1. If G is uniform, then so is its complement G (with the labels full and
empty interchanged), since the corresponding graphs G∞ and G∞ are complements
of each other, and thus have the same isomorphisms between subgraphs.
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Lemma 4.2. A template with a single vertex is uniform. More generally, any tem-
plate consisting only of empty vertices and no edges is uniform, and so is any complete
template consisting only of full vertices.

Proof. In the cases described, G∞ is homogeneous, and thus any permutation of the
vertices is an isomorphism. Hence any consistent random order is uniform. (Cf. the
proof of Lemma 3.2.) �

Given a consistent random order on G∞, we define a relation ≡ on V by letting
v ≡ w if the induced random order on Wv ∪Ww is uniform. This relation is clearly
symmetric, and it is reflexive by Lemma 4.2. We shall soon see that it also is transi-
tive.

Lemma 4.3. Suppose that v, w ∈ V. Then the following are equivalent.

(i) v ≡ w.
(ii) Vv,ui = Vw,ui a.s., for every u ∈ V and i > 1.
(iii) Fv,u = Fw,u a.s., for every u ∈ V.
(iv) Fu,v = Fu,w a.s., for every u ∈ V.
(v) Fw,v(x) = x a.s., for every x ∈ [0, 1].

Proof. (i) =⇒ (ii): Suppose v ≡ w. By Theorem 3.11 applied toWv ∪Ww, Fw,v(x) =
Fv,w(x) = x a.s. Hence, Lemma 3.10(ii) yields Vv,wi

= Uwi
.

Fix u and i. Let ε > 0 and choose first a j > 1 such that Uvj ∈ (Vv,ui − ε, Vv,ui)
and then a k > 1 such that Uwk

∈ (Vv,ui − ε, Uvj). Then Vv,wk
= Uwk

< Uvj < Vv,ui ,
so wk < ui by (3.6). Hence, (3.7) yields

Vw,ui > Uwk
> Vv,ui − ε.

Since ε is arbitrary, this yields Vw,ui > Vv,ui , Interchanging v and w we obtain (ii).
(ii) =⇒ (iii): By definition (3.4).
(iii) =⇒ (iv): By Lemma 3.10(iii).
(iv) =⇒ (v): Taking u = w we have Fw,v(x) = Fw,w(x) = x.
(v) =⇒ (i): Theorem 3.11 shows that the induced random order on Wv ∪ Ww is
uniform. �

Corollary 4.4. The relation ≡ is an equivalence relation on V.

Proof. By Lemma 4.3, since (for example) (ii) defines an equivalence relation. �

Corollary 4.5. If v ≡ w, then Vw,vi = Uvi a.s. for every i > 1.

Proof. By Lemma 4.3, Vw,vi = Vv,vi = Uvi . �

Lemma 4.6. The random order on G∞ is uniform if and only if v ≡ w for any two
vertices v, w ∈ V.

Proof. A consequence of Lemma 4.3 and Theorem 3.11. �
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(Lemma 4.9) (Lemma 4.11) (Lemma 4.12) (Lemma 4.13)

Figure 1. Subtemplates implying uniformity of G.

Lemma 4.7. Suppose that the template G contains two (not necessarily disjoint)
pairs u, v and w, z such that the induced subtemplates with vertices {u, v} and {w, z}
are isomorphic. If u ≡ v, then w ≡ z.

Proof. The induced subgraphs of G∞ on Wu ∪ Wv and Ww ∪ Wz are isomorphic,
and thus the induced random orders on these subgraphs have distributions that are
mapped to each other by the isomorphism mapping ui 7→ wi and vi 7→ zi. Hence,
if the random order induced on Wu ∪ Wv is uniform, then so is the random order
induced on Ww ∪Wz. �

Lemma 4.8. Suppose that the template G contains an induced subtemplate H such
that any consistent ordering on G∞ induces a uniform ordering on H∞. Furthermore
suppose H contains two (not necessarily disjoint) pairs of vertices u, v and u′, v′

such that u and u′ are full, v and v′ are empty, and furthermore uv ∈ E(G) and
u′v′ /∈ E(G). Then G is uniform.

Proof. Since the ordering on H∞ is uniform, we have u ≡ v ≡ u′ ≡ v′.
If z ∈ V is empty and zu ∈ E(G), then the subtemplates {z, u} and {v, u} are

isomorphic, Since v ≡ u, we have z ≡ u by Lemma 4.7.
If z ∈ V is empty and zu /∈ E(G), we argue similarly using the isomorphic sub-

templates {z, u} and {v′, u′} and obtain z ≡ u.
If z ∈ V is full we argue similarly using the pairs {z, v} and {u, v}, or {z, v} and
{u′, v′} to obtain z ≡ v.

Hence z ≡ u ≡ v for every z ∈ V , and Lemma 4.6 shows that the random order on
G∞ is uniform. �

We now show that any template G containing certain 3-vertex subtemplates are
necessarily uniform (see Figure 1).

Lemma 4.9. Suppose that the template G contains two full vertices u and v and an
empty vertex w, with uv, uw ∈ E(G) and vw /∈ E(G). Then G is uniform.

Proof. First, u ≡ v by Lemma 4.2 applied to the subtemplate {u, v}.
The two subgraphs induced byWu∪{w1, w2} andWu∪{w1, v1} are isomorphic, by

an isomorphism mapping w2 → v1 and fixing everything else; thus the distributions of
their induced random orders are mapped to each other by this isomorphism. Hence,
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by (3.3) and Corollary 4.5,

(Vu,w1 , Vu,w2)
d
= (Vu,w1 , Vu,v1) = (Vu,w1 , Uv1).

Let x, y ∈ [0, 1]. By Lemma 3.5, P(Vu,w1 6 x, Vu,w2 6 y) = E(Fu,w(x)Fu,w(y)).
Similarly, and also using Lemma 3.9, P(Vu,w1 6 x, Uv1 6 y) = E(Fu,w(x))y. Hence,

E
(
Fu,w(x)Fu,w(y)

)
= E(Fu,w(x))y, x, y ∈ [0, 1]. (4.1)

Taking x = 1 in (4.1) yields EFu,w(y) = y, and then taking x = y yields

E
(
Fu,w(x)2

)
= E(Fu,w(x))x =

(
EFu,w(x)

)2
.

Hence Var(Fu,w(x)) = 0, and thus Fu,w(x) = EFu,w(x) = x a.s. Consequently, w ≡ u
by Lemma 4.3.

We have shown that w ≡ u ≡ v. In other words, the ordering is uniform on the
subtemplate induced by {u, v, w}. The result follows from Lemma 4.8, using the pairs
u,w and v, w. �

Lemma 4.10. Let F : [0, 1] → [0, 1] be a distribution function on [0, 1], and let
F−1 : [0, 1]→ [0, 1] be its right-continuous inverse. If X and Y are random variables
such that X has distribution F and Y has distribution F−1, then

E(X2) + E(Y 2) > 2
3
,

with equality if and only if F is the uniform distribution F (x) = x.

Proof. Note first the well-known formula

EX2 = E
∫ 1

0

2x1{x < X} dx =

∫ 1

0

2x(1− F (x)) dx.

Next, if U ∼ U(0, 1), then F (U) has the distribution function F−1, so Y
d
= F (U) and

thus

EY 2 = EF (U)2 =

∫ 1

0

F (x)2 dx.

Hence,

EX2 + EY 2 =

∫ 1

0

(
2x(1− F (x)) + F (x)2

)
dx

=

∫ 1

0

(F (x)− x)2 dx+

∫ 1

0

(2x− x2) dx

=

∫ 1

0

(F (x)− x)2 dx+
2

3
.

The result follows. �

Lemma 4.11. Suppose that the template G contains two full vertices u and v and
an empty vertex w, with uw ∈ E(G), uv, vw /∈ E(G). Then G is uniform.
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Proof. Let W ′u :=Wu \ {u1}. There is an isomorphism between W ′u ∪{w1}∪Wv and

Wu ∪ Wv fixing W ′u ∪ Wv and sending w1 to u1. It follows that Vu,w1

d
= Uu1 , even

when conditioned on the order in W ′u ∪Wv. Since Fv,u is determined by the order in
W ′u ∪Wv, it follows for any x ∈ [0, 1], using also Lemma 3.9 and Remark 3.12, that

E(Fu,w(x) | Fv,u) = P(Vu,w1 6 x | Fv,u) = P(Uu1 6 x | Fv,u) = P(Uu1 6 x) = x.

Since Vu,v1 = Fv,u(Uv1) by (3.8), and Uv1 is independent of {Fu,w, Fu,v}, it follows that

E(Fu,w(Vu,v1) | Fv,u, Uv1) = E(Fu,w(Fv,u(Uv1))) | Fv,u, Uv1) = Fv,u(Uv1) = Vu,v1 . (4.2)

Next, note that by the same isomorphism, P(Vu,v1 = Vu,w1) = P(Vu,v1 = Uu1) = 0,
since Uu1 is continuous and independent of Vu,v1 . By symmetry, a.s. Vu,v1 6= Vu,wj

for every j, and thus by Remark 3.12, these random variables determine the order
between v1 and wj. It follows that, a.s., using (3.4),

Fu,w(Vu,v1) = lim
n→∞

1

n

n∑
i=1

1{Vu,wi
6 Vu,v1} = lim

n→∞

1

n

n∑
i=1

1{wi < v1}. (4.3)

However,Ww∪{v1} is an infinite empty graph, isomorphic toWw, and by Lemma 3.2
and (3.1), the r.h.s. has a uniform distribution. Thus Ũ := Fu,w(Vu,v1) ∼ U(0, 1), and

by (4.2), E(Ũ | Fv,u, Uv1) = Vu,v1 . Consequently,

1
3

= E(Ũ2) = E(Ũ − Vu,v1)2 + EV 2
u,v1
> EV 2

u,v1
. (4.4)

By the obvious isomorphism of Wu ∪Wv interchanging Wu and Wv, Vv,u1
d
= Vu,v1 , so

EV 2
v,u1
6 1

3
too.

Conditioned on Fu,v and Fv,u = F−1u,v , Vu,v1 and Vv,u1 have distributions Fu,v and
Fv,u, and thus Lemma 4.10 applies and yields

E(V 2
u,v1

+ V 2
v,u1
| Fu,v) > 2

3
. (4.5)

Thus, taking the expectation,

E(V 2
u,v1

+ V 2
v,u1

) > 2
3
. (4.6)

Consequently, there must be equality in both (4.4) and (4.6), and thus a.s. in (4.5).
By Lemma 4.10, this implies that Fv,u(x) = Fu,v(x) = x a.s. Furthermore, by (4.4),

Fu,w(Vu,v1) = Ũ = Vu,v1 a.s., where Vu,v1 = Fv,u(Uv1) = Uv1 is independent of Fu,w,
and thus Fu,w(x) = x. Thus v ≡ u ≡ w by Lemma 4.3.

This shows that the ordering is uniform on the subgraph of G induced by {u, v, w}.
Finally, G is uniform by Lemma 4.8 applied to the pairs u,w and v, w. �

Lemma 4.12. Suppose that the template G contains two full vertices u and v, and
one empty vertex w, with uw, vw ∈ E(G) and uv /∈ E(G). Then G is uniform.
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Proof. The induced subgraph of G∞ with vertex set {w1, w2, u1, v1} has an isomor-
phism w1 ↔ u1, w2 ↔ v1. Hence, the assumption that the random order of G∞ is
consistent implies

P(w1, w2 < u1) = P(u1, v1 < w1). (4.7)

By (3.5)–(3.6), and since {Vu,wi
}i are independent of Uu1 by Lemma 3.9 and (3.8) (or

Remark 3.12),

P(w1, w2 < u1) = P(Vu,w1 , Vu,w2 < Uu1) = E(Fu,w(Uu1)
2) = E

∫ 1

0

Fu,w(x)2 dx. (4.8)

Furthermore, {w1}∪Wu is an infinite complete graph, and thus Vu,w1

d
= Uui ∼ U(0, 1),

see Lemma 3.2. Thus, for x ∈ [0, 1],

x = P(Vu,w1 6 x) = EFu,w(x).

Consequently, by (4.8) and the Cauchy–Schwarz inequality,

P(w1, w2 < u1) =

∫ 1

0

E(Fu,w(x)2) dx >
∫ 1

0

(EFu,w(x))2 dx =

∫ 1

0

x2 dx = 1
3
. (4.9)

On the other hand, again using the Cauchy–Schwarz inequality,

P(u1, v1 < w1) = P(Vw,u1 , Vw,v1 < Uw1) = E(Fw,u(Uw1)Fw,v(Uw1))

6
(
E(Fw,u(Uw1)

2)
)1/2(E(Fw,v(Uw1)

2)
)1/2

. (4.10)

By (3.8), Fw,u(Uw1) = Vu,w1 and, as noted above, Vu,w1 ∼ U(0, 1). Hence we deduce
that E(Fw,u(Uw1)

2) = 1
3
. Similarly, by symmetry, E(Fw,v(Uw1)

2) = 1
3
. Consequently,

(4.10) yields

P(u1, v1 < w1) 6 1
3
. (4.11)

By (4.7), we thus must have equality in both (4.9) and (4.10). The equality in
(4.9) implies that for a.e. x, Fu,w(x) = EFu,w(x) = x a.s., which implies that a.s.
Fu,w(x) = x for all x ∈ [0, 1]. Hence w ≡ u by Lemma 4.3. By symmetry, w ≡ v also.

Suppose z is any full vertex of G. If uz ∈ E(G) then z ≡ u by Lemma 4.2, while
if uz /∈ E(G) then z ≡ u by applying Lemma 4.7 to {u, v} and {u, z}. Now suppose
z is an empty vertex of G. If zu ∈ E(G) then z ≡ w ≡ u by applying Lemma 4.7
to {u,w} and {u, z}. If zw /∈ E(G) then z ≡ w ≡ u by applying Lemma 4.2 to
{z, w}. Finally, if zw ∈ E(G) and zu /∈ E(G) then we deduce that G, and hence G,
is uniform by applying Lemma 4.11 to {z, u, w} in G. In all cases we see that z ≡ u.
Hence G is uniform by Lemma 4.6. �

Lemma 4.13. Suppose that the subgraph of G induced by the set of full vertices has
a component that is not a clique. Then G is uniform.

Proof. The assumption implies that there exist three full vertices u, v, w in G with
uw, vw ∈ E(G), but uv /∈ E(G). By Lemma 4.2, w ≡ u and w ≡ v. For any full
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vertex z 6= v, w, either the template induced by {w, z} is isomorphic to that induced
by {u, v} or that induced by {u,w}. Hence z ≡ w for every full vertex z.

Now let z be an empty vertex. We consider two cases.

Case 1: Either uz ∈ E(G) or vz ∈ E(G). In this case G is uniform by either
Lemma 4.11 or Lemma 4.12 applied to the subtemplate {u, v, z}.
Case 2: uz, vz /∈ E(G). Let W ′z := Wz \ {z1, z2}. In this case, the subgraphs of
G∞ induced by Wz and W ′z ∪ {u1, v1} are isomorphic, by an isomorphism fixing W ′z.
Again, using that the random order is consistent, it follows by (3.3) that

(Vz,u1 , Vz,v1)
d
= (Vz,z1 , Vz,z2) = (Uz1 , Uz2).

Hence, arguing as in the proof of Lemma 4.9, for x ∈ [0, 1], EFz,u(x) = P(Vz,u1 6
x) = P(Uz1 6 x) = x and

E(Fz,u(x)Fz,v(x)) = P(Vz,u1 6 x, Vz,v1 6 x) = P(Uz1 6 x, Uz2 6 x) = x2.

Furthermore, Fz,u = Fz,v a.s., by Lemma 4.3 since u ≡ v. Consequently, we have
E(Fz,u(x)2) = (EFz,u(x))2, and thus Fz,u(x) = EFz,u(x) = x a.s. Hence z ≡ u by
Lemma 4.3.

In both cases we see that z ≡ u. Hence G is uniform by Lemma 4.6. �

We call a template G reduced if if contains no adjacent twin full vertices, and no
non-adjacent twin empty vertices. Clearly any adjacent twin full vertices or non-
adjacent twin empty vertices can be merged in an non-reduced template G without
affecting G∞ and hence without affecting whether or not G is uniform. Merging all
such twins results in a reduced template, so it is enough to consider just these.

Theorem 4.14. If G is a non-uniform reduced template, then G is either an empty
graph (with at most one empty vertex) or complete (with at most one full vertex). In
particular, for any non-uniform template G, G∞ is either a disjoint union of cliques
or a complete multipartite graph.

Proof. By Lemmas 4.9 and 4.11, any empty vertex must be joined to either all the full
vertices, or none of them. By taking complements we also have that each full vertex
is either joined to all empty vertices or none of them. Thus either all full vertices are
joined to all empty vertices, or no full vertex is joined to any empty vertex. Without
loss of generality (taking complements if necessary), we may assume that every full
vertex is joined to every empty vertex.

By Lemma 4.13, the subgraph of G induced by the full vertices consists of a disjoint
union of cliques. Since we assume G is reduced and any two full vertices in a clique of
full vertices would be adjacent twins, we deduce that no two full vertices are adjacent.
Similarly, applying Lemma 4.13 to the complement of G, we may assume any two
empty vertices are adjacent.

If G contained at least two full vertices and at least one empty vertices, then G
would be uniform by Lemma 4.12. Hence we deduce that either there is no empty
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vertex, and G is an empty graph of full vertices; or there is at most one full vertex and
G is a complete graph consisting of empty vertices and at most one full vertex. �

Lemma 4.15. Suppose that G is a template and that G∞ has a consistent random
order such that for any three vertices u, v, w ∈ V (G∞), the induced random ordering
on {u, v, w} is uniform. Then the ordering is uniform.

Proof. Pick any two vertices u, v ∈ V (G), and consider the three vertices u1, u2, v1
in G∞. By Remark 3.12 (and the argument there), Uu1 , Uu2 and Vu,v1 = Fv,u(Uv1)
are independent, with Uui uniform, and these three random variables determine the
order between u1, u2 and v1. By assumption, this order is uniform, and thus

1
3

= P(u1, u2 < v1) = P(Uu1 , Uu2 < Vu,v1) = E(V 2
u,v1

).

Similarly, E(V 2
v,u1

) = 1
3
. As in the proof of Lemma 4.11, it follows from Lemma 4.10

that Fu,v(x) = x a.s., and thus u ≡ v by Lemma 4.3. As u and v were arbitrary, the
ordering on G∞ is uniform by Lemma 4.6. �

Proof of Theorem 1.3. Consider a consistent ordering model on P .
Suppose G ∈ P . By repeatedly replacing vertices by twins and using Ramsey’s

theorem on each subgraph corresponding to one of the original vertices of G, we see
that for all N > 0 there exists a GN ∈ P which is obtained from G by replacing
each vertex with either a complete graph or an empty graph on N vertices. By the
infinite pigeonhole principle, there must be a template G′ with underlying graph G
such that for infinitely many N , GN is an induced subgraph of G′∞ (with N copies
of each vertex in G). But then PG′ ⊆

⋃∞
N=1PGN

⊆ P . Hence the random ordering
model on P induces a random ordering model on PG′ .

Suppose first that G is not a disjoint union of cliques or a complete multipartite
graph. Since G′∞ contains G as an induced subgraph, Theorem 4.14 shows that the
template G′ is uniform. In particular, the random ordering on G ∈ PG′ is uniform.

As G is not a disjoint union of cliques, it contains an induced subgraph isomorphic
to the path P3 on three vertices. Similarly, as G is not complete multipartite, G
contains the graph P 3 consisting of an edge and an isolated vertex. Thus P3, P 3 ∈ P
and receive the uniform ordering on their vertices. The only other graphs on three
vertices are homogeneous, so we deduce that for any graph H ∈ P and any three
vertices u, v, w ∈ V (H), the induced random ordering on {u, v, w} is uniform.

Now suppose G is any graph in P . Let, as above, G′ be a template with underlying
graph G and PG′ ⊆ P . By what we just have shown, any set of three vertices in G′∞
receives the uniform ordering, and thus the ordering of G′∞ is uniform by Lemma 4.15.
Hence the ordering of G is uniform. �

Proof of Theorem 1.5. The hereditary property FH has the property that for any
G ∈ FH and v ∈ V (G), some graph G′ obtained by replacing v by twins v1, v2 is also
in FH. Indeed, we can take the twins to be adjacent if there is no graph H ∈ H with
adjacent twins, and we can take v1, v2 to be non-adjacent if there is no graph H ∈ H
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with non-adjacent twins. In both cases no copy of H ∈ H in G′ could use both
vertices v1, v2, and hence H would have to be an induced subgraph of G. Without
loss of generality (by taking complements if necessary), assume we are in the first
case, so that any vertex can be replaced by adjacent twins. If P3 ∈ FH then we
are done by Theorem 1.3 as FH contains blowups of P3 that are neither a disjoint
union of cliques nor complete multipartite (for example, a triangle with a pendant
edge). If P3 /∈ FH, then H must contain an induced subgraph of P3. As P3 /∈ H, H
must then contain a graph with two (or fewer) vertices. But then FH consists only
of homogeneous graphs, and is therefore uniform. �

5. Gluing graphs

In this section we show in particular that hereditary properties that are closed
under joining graphs at a single vertex, and many hereditary properties of forests,
are uniform. We start by proving the result for any hereditary property that satisfies
a certain technical condition.

Denote the disjoint union of two graphs G1 and G2 by G1 ∪ G2. Suppose G is
a graph and H is an induced subgraph. Define the graph [G]nH to be the graph
obtained by taking n copies of G (i.e., G ∪ G ∪ · · · ∪ G, n times) and identifying
the corresponding subgraphs H from each copy. Thus, for example, |V ([G]nH)| =
n|V (G) \ V (H)| + |V (H)|. Let Kn denote the empty graph on n vertices. We also
extend these notations in the obvious way to the case when n =∞.

Theorem 5.1. Suppose P is a hereditary property such that for any G ∈ P with at
least 2 vertices, there exists a proper induced subgraph H 6= ∅ of G such that for all
n > 1, [G]nH ∪ [G]nH ∪Kn ∈ P. Then P is uniform.

Proof. We may assume P contains some non-empty graph as otherwise P is clearly
uniform. Note that, by taking an induced subgraph, for any G ∈ P , G∪G∪Kn ∈ P .
(For |V (G)| < 2 take an induced subgraph of G′ ∪ G′ ∪Kn with |V (G′)| > 2.) We
shall prove by induction on |V (G)| that if G ∈ P then the ordering on G ∪ G ∪Kn

is uniform for any n. This clearly implies the result. As G∪G∪Kn is homogeneous
for |V (G)| < 2, we may assume |V (G)| > 2. Thus by assumption there exists a
proper induced subgraph H 6= ∅ of G such that for all n > 1, [G]nH ∪ [G]nH ∪Kn ∈ P .

Let G̃ = [G]∞H ∪ [G]∞H ∪ K∞. Then PG̃ ⊆ P , and so the consistent ordering on P
induces an consistent ordering on PG̃, and hence on G̃ (see Lemma 1.2). Denote
the vertices of K∞ as {ui}∞i=1, and the copies of H as Hi, i = 1, 2, with vertices
V (Hi) = {vi,1, . . . , vi,r}. Denote the remaining vertices in the jth copy of G′ := G\H
associated to Hi as wi,j,k, k = 1, . . . , s. Let G̃′ = G̃ \ (H1 ∪H2) be the graph G̃ with

the two copies of H removed, so that G̃′ consists of an infinite number of disjoint
copies of G′ together with K∞. We first consider the induced random ordering on G̃′.
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One can define random variables

Vi,j,k = Vu,wi,j,k
:= lim

n→∞

1

n

n∑
`=1

1{wi,j,k > u`}

as in Section 3 giving the order of the wi,j,k relative to the vertices in the K∞ sub-

graph. As the copies of G′ can be permuted in G̃′, the random variables Vi,j :=
(Vi,j,1, . . . , Vi,j,s) are exchangeable for i ∈ {1, 2}, j > 1. Hence, de Finetti’s theo-
rem implies that there is a random distribution µ on [0, 1]s such that, conditioned
on µ, the Vi,j are i.i.d. with distribution µ. However, we know that the joint dis-
tribution of Vi,1 and Vi,2, say, is uniform as by induction the induced subgraph
G′ ∪ G′ ∪ Kn has a uniform random order for all n, and hence G′ ∪ G′ ∪ K∞ re-
ceives a uniform random ordering. Thus for any measurable subset S ⊆ [0, 1]s,
E(µ(S)µ(S)) = |S|2 = E(µ(S))E(µ(S)). Thus µ is a.s. constant and uniform. Thus
all Vi,j are i.i.d. uniform random variables in [0, 1]s, i.e., all Vi,j,k are i.i.d. U(0, 1)
random variables.

Let E be any event determined by the ordering on H1 ∪ H2 ∪ K∞, and assume
P(E) = p > 0. The pairs (V1,j, V2,j), j > 1, are exchangeable, even conditioned
on E . Hence, there is a random measure µE on [0, 1]2s such that conditioned on E
and µE , (V1,j, V2,j) are i.i.d. with distribution µE . However, for any measurable subset
S ⊆ [0, 1]2s, a.s. on E ,

µE(S) = lim
n→∞

1

n

n∑
j=1

1{(V1,j, V2,j) ∈ S} = |S|.

Hence, the pairs (V1,j, V2,j), j > 1, are i.i.d. and uniform even conditioned on E .
In other words, all Vi,j,k are i.i.d. and uniform, and independent of the ordering on
H1∪H2∪K∞. However, by induction, the random ordering on H1∪H2∪K∞ is also
uniform as it is uniform on every subgraph H1 ∪H2 ∪Kn. The ordering on G̃ is a.s.
determined by the ordering on H1 ∪H2 ∪K∞ and the variables Vi,j,k as the Vi,j,k are
continuous. Clearly this distribution is uniform. The result follows as G ∪G ∪Kn is
an induced subgraph of G̃. �

Example 5.2. We note that the requirement that we have two copies of [G]nH in
Theorem 5.1 is essential. For example, let P be the set of all graphs that are induced
subgraphs of some [C4]

n
{u} (i.e., a collection of 4-cycles with a single vertex identi-

fied). Fix α ∈ [0, 1] and assign to each vertex an i.i.d. U(0, 1) random variable Xv,
conditioned so that the sum of Xv round any 4-cycle is α mod 1. It is not hard to see
that for suitable α this gives a consistent random ordering on P which is not uniform
(use Lemma A.1). However for any G ∈ P , |V (G)| > 2, the graph [G]nH ∪Kn lies in
P for some H ⊂ G, H 6= ∅.

Example 5.3. In contrast to Example 5.2, let P ′ be the set of all graphs that are
disjoint unions of induced subgraphs of some [C4]

n
{u}. Then P ′ satisfies the conditions
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of Theorem 5.1. Hence P ′ is uniform. Note that the ordering described in Example 5.2
is not consistent on P ′ due to the fact that there are two distinct induced distributions
on subgraphs isomorphic to P3∪P3 (the one on [C4]

2
{u} \{u} not being uniform). The

class P ′ also has the property that all C4 subgraphs are edge disjoint, and indeed also
have private vertices that do not belong to any other C4, cf. Remark 2.5.

Proof of Theorem 1.6. If P consists only of empty graphs then it is uniform and we
are done, so assume P contains some non-empty graph. Then K2 ∈ P , and so by
assumption on P , P3 ∈ P . Take any graph G ∈ P and any vertex v ∈ V (G). We can
attach multiple copies of G together at v to obtain [G]n{v} ∈ P . Joining two of these to

the end-vertices of a P3 and then removing the central vertex gives [G]n{v}∪[G]n{v} ∈ P .
Now repeatedly attaching this graph to an end-vertex of P3 and removing the central
vertex of the P3 gives [G]n{v} ∪ [G]n{v} ∪Kn ∈ P . Hence P satisfies the conditions of
Theorem 5.1, so is uniform. �

In the case when G \ H always is a set of isolated vertices, one can weaken the
conditions of Theorem 5.1 so that only one copy of [G]nH is required. Indeed, in this
case we can prove by induction that G ∪Kn is uniform and, in the proof, note that
G̃′ is an empty graph, so is automatically uniform. This implies Theorem 1.8 in the
case when (i) always holds as we can take H to be G \ {u}. We modify the proof
slightly to obtain Theorem 1.8 in its entirety.

Proof of Theorem 1.8. Given any forest F , write SF for the set of vertices of F that
are adjacent to a leaf of F . Write F ∗n for the forest obtained by adding (or deleting)
isolated vertices so that F ∗n has exactly n isolated vertices. For u ∈ SF , write F u

n

for the forest obtained by adding (or deleting) leaves attached to u so that F u
n has

exactly n leaves attached to u.
Consider a consistent random ordering on P . We prove that for every forest F ∈ P

and every u ∈ SF ∪{∗}, the random ordering on F u
n is uniform, provided these graphs

lie in P for every n. The proof is by induction on |V (F )|. If F is empty then SF = ∅
and F ∗n is empty, so uniform. Thus we may assume F is non-empty. As no F u

n is
empty, either (i) or (ii) holds for F u

n . This implies there exists vn ∈ SFu
n
∪ {∗} with

vn 6= u, such that the graph F u,vn
n,m := (F u

n )vnm lies in P . As SFu
m

= SF is finite, this
implies that there is a single v ∈ SF ∪{∗}, v 6= u, such that F u,v

n,m ∈ P for all n,m. Let
F u,v
∞,∞ be the infinite graph with infinitely many leaves or isolated vertices associated

with u and v. Let the leaves or isolated vertices associated to u be {ui}i>1 and let
the leaves or isolated vertices associated to v be {vi}i>1.

Any finite subgraph of F u,v
∞,∞ belongs to P , so the ordering on P induces a random

ordering on F u,v
∞,∞. Assume first that v 6= ∗. As in Section 3 we can define random

variables

Vi = Vu,vi := lim
n→∞

1

n

n∑
k=1

1{vi > uk}.
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As {ui}i>1 ∪ {vi}i>1 is a homogeneous set, Vi are i.i.d. U(0, 1) random variables.
Moreover, as in the proof of Theorem 5.1, these random variables are independent
of the ordering on F u,v

∞,0. But the random ordering on F u,v
∞,0 is also uniform as it is

uniform on all subgraphs F u,v
n,0 by induction applied to the proper subgraph F u,v

1,0 (or
F u,v
0,0 if u = ∗) of F . Also, a.s. the ordering on F u,v

∞,∞ is determined by the ordering on
F u,v
∞,0 and the Vi as the Vi are continuous, and this random ordering is clearly uniform.

If v = ∗ then, interchanging u and v, we again have that the ordering on F u,v
∞,∞ is

uniform. Hence in both cases the ordering on F u
n is uniform for all n.

Finally we note that for any non-empty F ∈ P conditions (i) or (ii) imply that
there is a u ∈ SF such that F u

n ∈ P for all n. Hence the ordering on F is also
uniform. �
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Appendix A. Non-uniformity of some explicit distributions

We recall the Bernoulli polynomials Bn(x), which can be defined by the generating
function

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
,

see e.g. [26, §24.2]. The first few values are B0(x) = 1, B1(x) = x − 1
2
, B2(x) =

x2 − x + 1
6
, and B3(x) = x3 − 3

2
x2 + 1

2
x. The most important property for our

purposes is the Fourier series representation of Bn(x) [26, (24.8.3)],

Bn(x) = − n!

(2πi)n

∑
k 6=0

1

kn
e2πikx, (A.1)

which is valid for x ∈ [0, 1] when n > 2 and for x ∈ (0, 1) when n = 1.

Lemma A.1. Let n > 2 and α ∈ [0, 1], and let X1, . . . , Xn−1 and X, X ′ be i.i.d.
U(0, 1) random variables. Define Xn ∈ [0, 1] so that

n∑
i=1

Xi ≡ α mod 1. (A.2)
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Then for 1 6 k 6 n,

P
[
X < Xk and X1 < X2 < · · · < Xn

]
=

k

(n+ 1)!
+

(−1)n−k

n!2

(
n− 1

k − 1

)
Bn(α),

and

P
[
X,X ′ < Xk and X1 < X2 < · · · < Xn

]
=

k(k + 1)

(n+ 2)!
+

(−1)n−k

n!(n+ 1)!

(
n− 1

k − 1

)(
(n+ 1)Bn(α) + 2HnBn+1(α)

)
,

where Hn = 1 + 1
2

+ 1
3

+ · · ·+ 1
n

.

Proof. Let P 1
k (α) = P

[
X < Xk and X1 < X2 < · · · < Xn] and P 2

k (α) = P
[
X,X ′ <

Xk and X1 < X2 < · · · < Xn]. If α is replaced by a uniform random variable on [0, 1],
independent of X1, . . . , Xn−1, X,X

′, then X1, . . . , Xn, X,X
′ are i.i.d. U(0, 1) random

variables and α satisfies (A.2). Thus the Fourier transform

P̂ j
k (t) :=

∫ 1

0

P j
k (α)e2πitα dα, t ∈ Z,

can be represented as

P̂ j
k (t) = E

(
P j
k (α)eωX1+···+ωXn

)
=

∫
X1<···<Xn

Xj
ke
ωX1+···+ωXn dX1 · · · dXn,

where ω = 2πit. If t = 0 then P̂ 1
k (0) = k/(n + 1)! and P 2

k (0) = k(k + 1)/(n +
2)! as there are k (respectively k(k + 1)) orderings of X,X1, . . . , Xn (respectively
X,X ′, X1, . . . , Xn) contributing to P j and the X,X ′, X1, . . . , Xn are i.i.d. Hence we
may now assume t 6= 0. By symmetry,

P̂ j
k (t) =

1

(k − 1)! (n− k)!

∫
X1,...,Xk−1<Xk<Xk+1,...,Xn

Xj
ke
ωX1+···+ωXn dX1 · · · dXn

=
1

(k − 1)! (n− k)!

∫ 1

0

(∫ x

0

eωy dy

)k−1(∫ 1

x

eωy dy

)n−k
xjeωx dx

=
1

(k − 1)! (n− k)!ωn−1

∫ 1

0

(
eωx − 1

)k−1(
1− eωx

)n−k
xjeωx dx

=
(−1)n−k

ωn−1(k − 1)! (n− k)!

∫ 1

0

xj
(
eωx − 1

)n−1
eωx dx.

Integrating by parts gives

P̂ j
k (t) =

(−1)n−k

ωnn(k − 1)!(n− k)!

(
xj(eωx − 1)n

∣∣1
0
−
∫ 1

0

jxj−1(eωx − 1)n dx

)
=

(−1)k+1

ωnn!

(
n− 1

k − 1

)∫ 1

0

jxj−1(1− eωx)n dx.
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For j = 1, expand (1−eωx)n using the binomial theorem and note that
∫ 1

0
esωx dx = 0

for s ∈ Z \ {0}. This gives

P̂ 1
k (t) =

(−1)k+1

ωnn!

(
n− 1

k − 1

)
.

For j = 2, we note that

In :=

∫ 1

0

x(1− eωx)n dx =
1

2
− 1

ω
Hn, (A.3)

where Hn = 1 + 1
2

+ 1
3

+ · · ·+ 1
n
. Indeed, I0 = 1

2
and, for n > 1,

In− In−1 =

∫ 1

0

x(−eωx)(1− eωx)n−1dx = 1
nω
x(1− eωx)n

∣∣∣1
0
−
∫ 1

0

1
nω

(1− eωx)ndx = − 1
nω
.

Hence

P̂ 2
k (t) =

(−1)k+1

ωnn!

(
n− 1

k − 1

)(
1− 2

ω
Hn

)
.

Now we take inverse Fourier transforms, noting that by (A.1) the inverse Fourier
transform of ω−n is∑

t6=0

1

ωn
e−2πiαt =

1

(−2πi)n

∑
t6=0

1

(−t)n
e2πiα(−t) = −(−1)n

n!
Bn(α). (A.4)

We obtain

P 1
k (α) =

k

(n+ 1)!
+
∑
t6=0

(−1)k+1

ωnn!

(
n− 1

k − 1

)
e−2πitα =

k

(n+ 1)!
+

(−1)n−k

n!2

(
n− 1

k − 1

)
Bn(α),

and

P 2
k (α) =

k(k + 1)

(n+ 2)!
+
∑
t6=0

(−1)k+1

ωnn!

(
n− 1

k − 1

)(
1− 2

ω
Hn

)
e−2πitα

=
k(k + 1)

(n+ 2)!
+

(−1)n−k

n!(n+ 1)!

(
n− 1

k − 1

)(
(n+ 1)Bn(α) + 2HnBn+1(α)

)
for almost all α ∈ [0, 1]. As in both cases both sides are continuous in α, these in
fact hold for all α ∈ [0, 1]. �

Lemma A.2. Let X1, . . . , Xn−1 be i.i.d. U(0, 1) random variables. Fix α ∈ [0, 1] and
1 6 i < ` 6 n and define Xn ∈ [0, 1] so that

n∑
i 6=i,`

Xi −Xi −X` ≡ α mod 1. (A.5)

Define P
(i,`)
j1,j2,...,jr

to be the probability that

Xj1 < Xj2 < · · · < Xjr < min(Xs : s /∈ {j1, . . . , jr}), (A.6)
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i.e., that the smallest r values of Xk are Xj1 , . . . , Xjr in that order. Then for distinct
i, j, k, `,

P
(i,`)
i,j − P

(i,`)
j,i =

(−1)n

(n− 1)!

(
n

2

)
Bn−1(α) (n > 3)

P
(i,`)
i,j,k − P

(i,`)
j,i,k =

(−1)n

(n− 1)!
(n− 3 + 2Hn−3)Bn−1(α) +

(−1)n

(n− 2)!
Bn−2(α) (n > 4)

where Hn = 1 + 1
2

+ 1
3

+ · · ·+ 1
n

.

Proof. Consider the Fourier transform

P̂
(i,`)
j1,...,jr

(t) =

∫ 1

0

P
(i,`)
j1,...,jr

(α)e2πitα dα, t ∈ Z.

If we consider α to be a uniform random variable in [0, 1] independent ofX1, . . . , Xn−1,
then X1, . . . , Xn are now i.i.d. U(0, 1) random variables and α satisfies (A.5). Thus

P̂
(i,`)
j1,...,jr

(t) =

∫
D

eε1ωX1+···+εnωXn dX1 · · · dXn,

where ω = 2πit, εs = 1 if s 6= i, ` and εi = ε` = −1, and D is the domain given
by (A.6). For the first statement we can by symmetry assume (i, j, `) = (1, 2, 3).
Then

P̂
(1,3)
1,2 (t)− P̂ (1,3)

2,1 (t)

= P̂
(1,3)
1,2 (t)− P̂ (2,3)

1,2 (t)

=

∫
X1<X2<X3,...,Xn

(
e−ωX1+ωX2 − eωX1−ωX2

)
e−ωX3+ωX4+···+ωXn dX1 · · · dXn.

For t = 0 (i.e., ω = 0) this is clearly zero, so assume now that t 6= 0. Then∫ 1

X2

eεωx dx =
1

εω
(1− eεωX2)

for ε ∈ {−1, 1}, and∫ X2

0

(
e−ωX1+ωX2 − eωX1−ωX2

)
dX1 =

1

ω
(eωX2 + e−ωX2 − 2).

Hence integrating over all Xs, s 6= 2 gives

P̂
(1,3)
1,2 (t)− P̂ (1,3)

2,1 (t) =
1

ωn−1

∫ 1

0

(eωx + e−ωx − 2)(−1 + e−ωx)(1− eωx)n−3 dx

=
1

ωn−1

∫ 1

0

(
eωx − 1

)2(
1− eωx

)n−2
e−2ωx dx

=
1

ωn−1

∫ 1

0

(
1− eωx

)n
e−2ωx dx
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=
1

ωn−1

(
n

2

)
,

where in the last line we have expanded (1− eωx)n using the Binomial Theorem and

used that
∫ 1

0
esωx dx = 0 for s ∈ Z \ {0}. Now take the inverse Fourier transform

using (A.4) to give

P
(1,3)
1,2 (α)− P (1,3)

2,1 (α) =
(−1)n

(n− 1)!

(
n

2

)
Bn−1(α)

for almost all α ∈ [0, 1]. However, as both sides are continuous in α, this holds for
all α ∈ [0, 1].

For the second statement we can assume without loss of generality that (i, j, k, `) =
(1, 2, 3, 4). Then, performing the integration over X1, X4, . . . , Xn, and finally over X2,
we have

P̂
(1,4)
1,2,3 (t)− P̂ (1,4)

2,1,3 (t)

= P̂
(1,4)
1,2,3 (t)− P̂ (2,4)

1,2,3 (t)

=

∫
X1<X2<X3<X4,...,Xn

(e−ωX1+ωX2 − eωX1−ωX2)eωX3e−ωX4+ωX5+... dX1 · · · dXn

=
1

ωn−2

∫
X2<X3

(eωX2 + e−ωX2 − 2)eωX3(−1 + e−ωX3)(1− eωX3)n−4 dX2 dX3

=
1

ωn−2

∫
X2<X3

(eωX2 + e−ωX2 − 2)(1− eωX3)n−3 dX2 dX3

=
1

ωn−1

∫ 1

0

(eωx − e−ωx − 2ωx)(1− eωx)n−3 dx.

Hence, using (A.3),

P̂
(1,4)
1,2,3 (t)− P̂ (1,4)

2,1,3 (t) =
1

ωn−1

∫ 1

0

(eωx − e−ωx − 2ωx)(1− eωx)n−3 dx

=
1

ωn−1
(
(n− 3)− ω + 2Hn−3

)
.

Taking inverse Fourier transforms, again using (A.4), gives

P
(1,4)
1,2,3 (α)− P (1,4)

2,1,3 (α) =
(−1)n

(n− 1)!
(n− 3 + 2Hn−3)Bn−1(α) +

(−1)n

(n− 2)!
Bn−2(α)

for almost all α ∈ [0, 1], and hence for all α ∈ [0, 1] by continuity. �

Finally, we record a well-known fact, easily shown by induction using symmetry
and B′n(x) = nBn−1(x).

Lemma A.3. The only zeros of Bn(x) in [0, 1] are 0, 1
2
, 1 for odd n > 3, and exactly

two values, one in (0, 1
2
) and one in (1

2
, 1), for even n > 2. �
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In particular, Bn(x) and Bn+1(x) have no common zeros in [0, 1]. (In fact, this
extends to all complex zeros; equivalently, all zeros are simple, see [19] and [20].)
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