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Abstract. It is known that in an irreducible small Pólya urn process,
the composition of the urn after suitable normalization converges in dis-
tribution to a normal distribution. We show that if the urn also is bal-
anced, this normal convergence holds with convergence of all moments,
thus giving asymptotics of (central) moments.

1. Introduction

A Pólya urn process is defined as follows. Consider an urn containing balls
of different colours, with s possible colours which we label 1 . . . , s. At each
time step, we draw a ball at random from the urn; we then replace it and,
if its colour was i, we add rij further balls of colour j, for each j = 1, . . . , s.
Here

R := (rij)
s
i,j=1 (1.1)

is a given matrix, called the replacement matrix. The state of the urn at time
n is described by a vector Xn = (Xn1, . . . , Xns), where Xnj is the number
of balls of colour j. We start with some given (deterministic) X0, and it is
clear that Xn evolves according to a Markov process.

As usual, we assume that rij > 0 when i 6= j, but we allow rii to be
negative, meaning removal of balls, provided the urn is tenable, i.e., that
it is impossible to get stuck. (See (2.2)–(2.3), and see Remark 1.8 for an
extension that allows some negative rij .)

Urn processes of this type have been studied by many different authors,
with varying generality, going back to Eggenberger and Pólya [5]; see for
example Janson [8], Flajolet, Gabarró and Pekari [6], Pouyanne [14], Mah-
moud [12], and the further references given there.

In the present paper we study only the balanced case, meaning that the
total number of balls added each time is deterministic, i.e., that the row sums
of the matrix (1.1) are constant, say m; we assume further that m > 0.

We define, for an arbitrary vector (x1, . . . , xn), |(x1, . . . , xn)| :=
∑n

i=1 |xi|.
In particular, the total number of balls in the urn is |Xn|. Note that when
the urn is balanced, this number is deterministic, with |Xn| = |X0|+ nm.
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In the description above, it is implicit that the numbers rij are integers.
However, it has been noted many times that the process is also well-defined
for real rij , see e.g. [8, Remark 4.2], [9] and [14] (cf. also [11] for the related
case of branching processes); this can be interpreted as an urn containing a
certain amount (mass) of each colour, rather than discrete balls. We give a
detailed definition of this, more general, version in Section 2, and use it in
our results below.

Results on the asymptotic distribution of Xn as n→∞ have been given
by many authors under varying assumptions, using different methods. It is
well-known that the asymptotic behaviour of Xn depends on the eigenvalues
of R, or equivalently of its transpose A = Rt, see e.g. [8, Theorems 3.22–
3.24]. By the Perron–Frobenius theory of positive matrices (applied to R+cI
for some c > 0), R has a largest real eigenvalue λ1, and all other eigenvalues
λ satisfy Reλ < λ1. We say that an eigenvalue λ is large if Reλ > 1

2λ1,

small if Reλ 6 1
2λ1 and strictly small if Reλ < 1

2λ1. Similarly, we say that
the Pólya process (or urn) is small (strictly small) if λ1 is simple and all
other eigenvalues are small (strictly small); a process is large whenever it
is not small. We call a Pólya process critically small if it is small but not
strictly small, i.e., if the process is small and R admits an eigenvalue λ such
that Reλ = λ1/2. We define, letting Λ be the set of eigenvalues,

σ2 :=

{
max

{
Reλ : λ ∈ Λ \ {λ1}

}
, λ1 is a simple eigenvalue;

λ1, λ1 is not simple.
(1.2)

Thus the Pólya urn is strictly small if σ2 < λ1/2, critically small if σ2 = λ1/2,
and large if σ2 > λ1/2.

In the main results we assume that the urn is irreducible, i.e., that the
matrix R is irreducible. (In other words, every colour is dominating in the
sense of [8].) Then, the largest eigenvalue λ1 is simple. (Thus the second
case in (1.2) does not occur.) As said above, we also assume the urn to
be balanced, with all row sums of R equal to m, and then λ1 = m, with
a corresponding right eigenvector (1, . . . , 1). Furthermore, there exists a
positive left eigenvector v1 of R with eigenvalue m; we assume that v1 is
normalized by |v1| = 1, and then v1 is unique.

If the urn is irreducible and small, then Xn is asymptotically normal [8,
Theorems 3.22–3.23]. More precisely, if v1 is the positive eigenvector of R
defined above, and ν = 0 if the urn is strictly small and ν > 1 is the integer
defined in Theorem 1.2 below if the urn is critically small, then, as n→∞,

Xn − nλ1v1√
n logν n

d−→ N(0,Σ), (1.3)

where the asymptotic covariance matrix Σ can be computed from R. (See
e.g. [8, Lemma 5.3 and Lemma 5.4 with (2.15) and (2.17)].) On the other
hand, by [8, Theorems 3.24] and, in particular, [14, Theorems 3.5–3.6], if
the urn is large, then there exist (complex) random variables Wk, (complex)
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left eigenvectors vk of R and an integer ν > 0 such that, a.s. and in any Lp,

Xn = nλ1v1 +
∑

k:Reλk=σ2

nλk/λ1 logν nWkvk + o
(
nσ2/λ1 logν n

)
. (1.4)

In general, there will be oscillations (coming from complex eigenvalues λk)
and Xn will not converge in distribution (after any non-trivial normaliza-
tion). Mixed moments of the limit distributions Wk in (1.4) can be com-
puted, see [14]. However, there is in general no explicit description of the
limit laws for a large urn. See [2], [4], [3] and Mailler [13] for some recent
improvements on these distributions. Note also that (1.4) is valid as soon
as the urn is large and λ1 a simple eigenvalue, the urn being irreducible or
not (see [14]).

Results of this type have been proven by several authors, under varying
assumptions, using several different methods. The proofs in Janson [8] use
an embedding in a continuous-time multi-type branching process, a method
that was introduced by Athreya and Karlin [1]. This method leads to general
results on convergence in distribution, but not to results on the moments. A
different method was developed by Pouyanne [14], where algebraic expres-
sions were obtained for (mixed) moments of various components of Xn, and
asymptotics were derived. For large urns, the resulting moment estimates
and some simple martingale arguments give the limit results, with conver-
gence a.s. and in Lp, and thus convergence of all moments (after suitable
normalization). The method applies also to small urns, and yields limits for
the moments. In principle, it should be possible to use the resulting expres-
sions and the method of moments to show (1.3). However, the expressions
for the limits are a bit involved, and it seems difficult to do this in general.

The purpose of the present paper is to show moment convergence for
small urns by combining these two methods. We use the convergence in
distribution (1.3) proven in [8], and we use the estimates of moments proven
in [14] to show that any moment of the left-hand side of (1.3) is bounded
as n→∞; these together imply moment convergence in (1.3). (We thus do
not have to calculate the limits provided by [14] exactly; it suffices to find
bounds of the right order of magnitude.) This yields the following theorems,
which are our main results.

All limits and o(. . . ) in this paper are as n→∞.

Theorem 1.1. Suppose that the urn is balanced, irreducible and strictly
small. Then (1.3) holds, with ν = 0, with convergence of all moments. In

particular, EXn = nλ1v1 + o
(
n1/2

)
and the covariance matrix Var(Xn) =

nΣ + o(n).

Theorem 1.2. Suppose that the urn is balanced, irreducible and critically
small. Let 1 + d be the dimension of the largest Jordan block of R cor-
responding to an eigenvalue λ with Reλ = λ1/2 (d > 0). Then (1.3)
holds, with ν = 2d + 1, with convergence of all moments. In particular,
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EXn = nλ1v1 + o
(
(n logν n)1/2

)
and the covariance matrix Var(Xn) =(

n logν n
)
Σ + o(n logν n).

Corollary 1.3. Suppose that the urn is balanced, irreducible and small,
so (1.3) holds. Let w = (w1, . . . , ws) be any vector in Rs and let Yn :=

〈w,Xn〉 =
∑s

i=1wiXni. Then EYn = nλ1〈w, v1〉 + o
(
(n logν n)1/2

)
and

VarYn =
(
γ + o(1)

)
n logν n, where γ = wtΣw. Moreover, if γ 6= 0, then

Yn − EYn√
VarYn

d−→ N(0, 1) (1.5)

with convergence of all moments.

The remainder of this section is devoted to remarks and problems that
can be skipped on a first reading.

Remark 1.4. For the mean and variance, similar results are also proven
in [10] by a related but somewhat different method (under somewhat more
general assumptions); that method does not seem to generalise easily to
higher moments.

Remark 1.5. If the urn is strictly small, then it can be verified from [8,
Lemma 5.4 and (2.13)–(2.15)] that γ = 0 in Corollary 1.3 only in the trivial
case when w = cu1 + u0 with c ∈ R, u1 = (1, . . . , 1) and Ru0 = 0, which
implies that 〈u0, Xn〉 is constant and thus Yn = 〈w,Xn〉 = Y0 + ncm is
deterministic, see [10, Theorem 3.6].

On the other hand, in the critically small case, the rank of Σ is typically
only 1 or 2, and there are non-trivial vectors w such that γ = 0 and thus
Var(Yn) = o(n logν n).

Remark 1.6. More precise error estimates in Theorems 1.1 and 1.2 can be
obtained from the proofs below. In particular, for the expectation we have
in the strictly small case EXn = nλ1v1 +O

(
nσ2/λ1 logν1 n

)
+O(1) for some

ν1. See also [10].

Remark 1.7. It is possible to let balls of different colours have different
activities, say ai > 0 for balls of colour i, with the probability of a ball
being drawn proportional to its activity [8]. The condition that the urn is
balanced is now that the total activity added each time is a constant. In the
case when all activities are positive, this is easily reduced to the standard
case ai = 1 by using the real version above; we just multiply the number
of balls of colour i by ai (both in the urn and in the replacement matrix).
In general, where there are “dummy balls” of activity 0, which thus never
are drawn (see e.g. [8] for the use of such balls), the results above still hold,
assuming that the urn is irreducible if dummy balls are ignored. (Note that
we get another Pólya process by ignoring dummy balls, and that the non-
zero eigenvalues remain the same.) This can be shown by the same proofs
as given below; we only have to modify the definitions of balanced in (2.4)
and of A and Φ in (2.5) and (2.6) by replacing the vectors `k used there by
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ak`k, and note that it is easy to verify that the results in [14] still hold (with
the corresponding modification of Φ∂ defined there).

Remark 1.8. The condition rij > 0 when i 6= j (and (2.2)–(2.3) below) is
customary but can be relaxed if we assume that the urn is tenable for some
other reason. (Typically because balls of two different colours always occur
together in a fixed proportion, and are added or subtracted together.) See
[14, Example 7.2.(5)] for a typical example and [7, Remark 6.3] for another.
As remarked in [14, page 295], the results in [14] that we use hold in this
case too, and it follows that all moment estimates in the present paper hold.
Also (1.3) holds, at least under some supplementary assumptions, see [8,
Remark 4.2], and then the results above hold. (In the examples from [14]
and [7] just mentioned, (1.3) holds because there is an equivalent urn with
random replacements that satisfies the conditions of [8].)

Remark 1.9. It is possible to let the replacement vectors (rij)
s
j=1 be ran-

dom, see [8]: with our notations of Section 2, assume that random V -valued
increment vectors W1, . . . ,Ws are given and that they admit moments of
order p, p ≥ 2 being an integer or∞. In this case, the conditional transition

probabilities (2.1) keep the same form, and Xn+1 = Xn+W
(n)
K , where, given

K = k, W
(n)
K is a copy of Wk, independent of everything that has happened

so far. The tenability assumptions (2.2)–(2.3) must be modified: it is suffi-
cient that `j(Wk) > 0 a.s. for all j, k; more generally (2.2) should hold a.s.,
while for each k either `k(Wk) > 0 a.s. or there exists dk > 0 such that a.s.
`k(Wk) ∈ {−d, 0, d, . . . } while `k(X0), `k(Wi) ∈ {d, 2d, . . . } for j 6= k. As-
sume further that the urn is almost surely balanced, which means that (2.4)
is a.s. satisfied (replacing wk by Wk).

Then, our results extend to this case, the moment convergence being valid
up to order p.

To see this, note first that in this random replacement context, all results
of [8] hold. The techniques developed in [14] and the arguments given in
the present paper remain also valid after the following adaptations: the
replacement operator (2.5) is now

A(v) :=

s∑
k=1

`k(v)EWk (1.6)

while the transition operator (2.6), restricted to polynomials f of degree not
more than p, becomes

Φ(f)(v) :=
s∑

k=1

`k(v)E
(
f(v +Wk)− f(v)

)
. (1.7)

Remark 1.10. For an example of applications of the results above on ran-
dom tree processes (m-ary search trees and preferential attachment trees),
one can refer to [7, Remark 3.3].
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Problem 1.11. As said above, we consider in this paper only balanced
urns. It is a challenging open problem to extend the results to non-balanced
urns.

2. Preliminaries

We follow [14] and use the following coordinate-free description of the urn
process. It is easily seen to be equivalent to the traditional description in
Section 1, with rij = `j(wi) and allowing these numbers to be real and not
necessarily integers.

Let V be a real vector space of finite dimension s > 1 and let `1, . . . , `s be
a basis of the dual space V ′; let V+ := {v ∈ V : `j(v) > 0, j = 1, . . . , s} \ {0}
be the positive orthant. Let X0 and w1, . . . , ws be given vectors in V , with
X0 ∈ V+.

Given Xn ∈ V+, for some n > 0, we let Xn+1 := Xn + wK , where the
random index K is chosen with conditional probability, given Xn,

P(K = k | Xn) =
`k(Xn)∑s
j=1 `j(Xn)

. (2.1)

This defines the Pólya process (Xn)∞0 (as a Markov process), provided the
process is tenable, i.e., Xn ∈ V+ for all n.

The standard sufficient set of conditions for tenability, used by many
authors, is in our formulation: for all j, k = 1, . . . , s,

`j(wk) > 0 if j 6= k, (2.2)

`k(wk) > 0 or `k(X0)Z +
s∑
i=1

`k(wi)Z = `k(wk)Z. (2.3)

We assume (2.2)–(2.3) for simplicity, but as said in Remark 1.8, the results
hold more generally under suitable conditions.

In the present paper, we also assume that the process is balanced, which
in this context means

s∑
k=1

`k(wj) = m, j = 1, . . . , s, (2.4)

for some fixed m. We assume further m > 0, and we may without loss of gen-
erality assume m = 1, since we may divide all Xn and wk (or, alternatively,
all `j) by m.

We shall also use the following notation from [14], where further details
are given.

The replacement matrix R (or rather its transpose) now corresponds to
the replacement operator A : V → V defined by

A(v) :=
s∑

k=1

`k(v)wk. (2.5)
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We choose a basis (vk)
s
1 in the complexification VC that yields a Jordan

block decomposition of A, and let (uk)
s
1 be the corresponding dual basis

in V ′C. We may assume that these vectors are numbered such that u1 and
v1 correspond to the eigenvalue λ1 = m = 1, and, moreover, for each k
either uk ◦ A = λkuk (so uk is an eigenvector of the dual operator A′) or
uk ◦ A = λkuk + uk−1, for some eigenvalue λk. Since the urn is supposed
to be irreducible, λ1 = 1 is a simple eigenvalue; furthermore, the balance
condition (2.4) (with m = 1) implies that

∑s
j=1 `j ∈ V ′ is an eigenvector of

A′ with eigenvalue 1; hence we may assume that u1 =
∑s

j=1 `j . This means

that v1 is normalized by
∑s

j=1 `j(v1) = 1.

Let λ := (λ1, . . . , λs), the vector of eigenvalues of A (repeated according
to algebraic multiplicity).

Let πk denote the projection of VC onto Cvk defined by πk(v) := uk(v)vk.
Note that

∑s
k=1 πk = I.

For a multi-index α = (α1, . . . , αs) ∈ Zs>0, let uα :=
∏s
i=1 u

αi
i ; this is a

homogeneous polynomial function on V s
C . We call such multi-indices α pow-

ers, and we say that α is a small power if only linear forms ui corresponding
to small eigenvalues appear in uα, i.e., if Reλi 6 1

2 when αi > 0; we define
strictly small power in the same way.

Let Φ be the linear operator in the space of (complex-valued) functions
on V defined by

Φ(f)(v) :=

s∑
k=1

`k(v)
(
f(v + wk)− f(v)

)
. (2.6)

Then, using (2.1), E f(Xn+1 | Xn) = f(Xn) +
∑s

j=1 `j(Xn) · Φ(f)(Xn), and
thus the expected evolution of any function f of Xn is described by Φ. Note
also that Φ is the infinitesimal generator of the Markov branching process
defined by (Xn)n after embedding in continuous time (see [1; 8; 2; 3]).

We order the multi-indices by the degree-antialphabetic order, see [14],
and define Sα := span{uβ : β 6 α}. Then Sα is a finite-dimensional space
of polynomials, and Sα is Φ-stable [14, Proposition 3.1]. Thus Sα has a
decomposition into generalized eigenspaces ker(Φ− z)∞ :=

⋃
n ker(Φ− z)n,

and we define the reduced polynomial Qα as the projection of uα onto ker(Φ−
〈λ, α〉)∞ in this decomposition. Then, for any α ∈ Zs>0, {Qβ : β 6 α} is a
basis in Sα [14, Proposition 4.8(2)]. Furthermore, the following statement
follows from the more precise [14, Proposition 5.1].

When α is any power, we denote by να the index of nilpotence of Qα for
Φ− 〈λ, α〉, defined by

1 + να = min
{
p > 1 :

(
Φ− 〈λ, α〉

)p(
Qα
)

= 0
}
. (2.7)

Since Qα belongs to the generalized eigenspace space ker
(
Φ−〈λ, α〉

)∞
, this

index is finite. In particular, να = 0 if and only if Qα is an eigenfunction
of Φ.
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Proposition 2.1. For any α ∈ Zs>0,

EQα(Xn) = O
(
nRe〈λ,α〉 logνα n

)
, (2.8)

where να is the index of nilpotence of Qα defined in (2.7).

Our proofs use the whole machinery of [14]. We define a polyhedral
cone Σ and, for every power α, a polyhedron Aα (to be precise, the set of
integer points in a convex polyhedron). Let δj denote the multi-index α
with αi = δij , i.e., a single 1 in the j-th place. The cone1 Σ can be defined
by its spanning edges, as the Minkowski sum

Σ :=
∑

(i,j)∈{1,...s}2, i 6=j

R>0 (2δi − δj) (2.9)

or equivalently as an intersection of half-spaces:

Σ :=
⋂

I⊆{1,...,s}

{x ∈ Rs : δ∗I (x) > 0} (2.10)

where

δ∗I (x1, . . . , xs) =
∑

16i6s

xi +
∑
i∈I

xi (2.11)

for every subset I of {1, . . . , s}; the equivalence between the two definitions
is proven in [14]. (Moreover, it suffices to consider I with 1 6 #I 6 s− 1 in
(2.10); these I correspond to the faces of Σ, see [14].)

When α ∈ Zs>0, the polyhedron Aα is defined as

Aα = (α−Dα) ∩ Zs>0 (2.12)

where α − Dα denotes {α − d : d ∈ Dα} and Dα is2 the set of Z≥0-linear
combinations of all vectors δk − δk−1 such that uk is not an eigenfunction of
A′. Note that for such k, λk−1 = λk; hence, if α′ ∈ Aα, then∑

k:λk=z

α′k =
∑

k:λk=z

αk for every z ∈ C; (2.13)

as a consequence, |α′| = |α| and 〈λ, α′〉 = 〈λ, α〉. Note also that always
α ∈ Aα, and that if A is diagonalizable, then Dα = {0}, and thus Aα = {α}.

We use the following theorem, proven in [14]. It describes more precisely
the action of Φ on the generalized eigenspace ker (Φ− 〈λ, α〉)∞, which has
{Qβ : 〈λ, β〉 = 〈λ, α〉} as a basis. Aα−Σ denotes {α′−σ : α′ ∈ Aα, σ ∈ Σ}.

Theorem 2.2 ([14, Proposition 4.8(5) and Theorem 4.20]). Let α ∈ Zs>0.

(i)
(
Φ− 〈λ, α〉

)(
Qα
)
∈ span{Qβ : β < α, 〈λ, β〉 = 〈λ, α〉}.

1There should be no risk of confusion with the covariance matrix Σ in (1.3); we denote
this cone too by Σ in order to fit with the notation in [14].

2The definition of Dα corrects a minor error in [14].
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(ii) The subspace

S′α := span{uβ : β ∈ (Aα − Σ) ∩ Zs>0} (2.14)

is Φ-stable, and

S′α = span{Qβ : β ∈ (Aα − Σ) ∩ Zs>0}. (2.15)

In particular,
(
Φ− 〈λ, α〉

)(
Qα
)
∈ S′α.

(iii) As a consequence,(
Φ− 〈λ, α〉

)(
Qα
)
∈ span

{
Qβ : β ∈ Kα

}
, (2.16)

where

Kα :=
{
β ∈ (Aα − Σ) ∩ Zs>0 : β < α, 〈λ, β〉 = 〈λ, α〉

}
. (2.17)

3. Proofs

Recall that we for convenience, and without loss of generality, assume
λ1 = m = 1.

3.1. Powers and nilpotence indices. We begin with the strictly small
case, which is rather simple.

Lemma 3.1. If α is a strictly small power, then Re〈λ, β〉 6 |α|/2 for any
β ∈ Zs>0 ∩ (Aα − Σ), with equality only if β = cδ1 with c = |α|/2.

Proof. Let α′ ∈ Aα and σ ∈ Σ such that β = α′ − σ. Also, let I := {k :
Reλk >

1
2} and recall (2.11). Since each βk > 0 and each Reλk 6 1,

Re〈λ, β〉 =
∑
k

βk Reλk 6
∑

k:Reλk<
1
2

1
2βk +

∑
k:Reλk>

1
2

βk (3.1)

= 1
2δ
∗
I (β) = 1

2δ
∗
I (α
′)− 1

2δ
∗
I (σ). (3.2)

Since α is a strictly small power, (2.13) implies that α′ ∈ Aα also is a strictly
small power and that δ∗I (α

′) = |α′| = |α|. Furthermore, the definition (2.10)

of Σ by its faces guarantees that δ∗I (σ) > 0. Hence, Re〈λ, β〉 6 1
2 |α|.

Finally, suppose that equality holds. This implies equality in (3.1), which
can hold only if βk = 0 when Reλk 6= 1, which means that β = cδ1 with
c = β1. Furthermore, then |α|/2 = 〈λ, β〉 = c〈λ, δ1〉 = cλ1 = c. �

The rest of this subsection is devoted to the critically small case, where
we have to pay special attention to eigenvalues λ with Reλ = 1

2 ; such eigen-
values are called critical. Recall that we have chosen a basis (v1, . . . , vs) that
yields a Jordan block decomposition of A. A set of indices J ⊆ {1, . . . , s}
that corresponds to a Jordan block is called a monogenic block of indices [14];
if the corresponding eigenvalue is critical, J is called a critical monogenic
block.

The support of a power or another vector α = (α1, . . . , αs) ∈ Zs is
supp(α) := {k : αk 6= 0}. The power (vector) α is called critical if
αk 6= 0 =⇒ Reλk ∈ {1, 1

2}, and α is called strictly critical if αk 6=
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0 =⇒ Reλk = 1
2 . Furthermore, α is called monogenic when its support

in contained in some monogenic block J , and α is called a quasi-monogenic
power when supp(α) ⊆ {1} ∪ J for some monogenic block J . We consider
only critical monogenic blocks, i.e., blocks associated to a critical eigenvalue.
(Note that a power α = cδ1 is critical and quasi-monogenic, and associated
to any monogenic block J ; otherwise J is determined by α.)

Recall that Kα is the set of powers defined in (2.17).

Lemma 3.2. Assume that the urn is critically small.

(i) Let α be a critical power and let β ∈ (Aα−Σ)∩Zs>0. Then, Re〈λ, β〉 6
Re〈λ, α〉, with equality only if β is critical.

(ii) If α is a critical power, then any β ∈ Kα is critical.

Proof. (i): Let β := α′ − σ with α′ ∈ Aα and σ ∈ Σ. Then

〈λ, β〉 = 〈λ, α′〉 − 〈λ, σ〉 = 〈λ, α〉 − 〈λ, σ〉. (3.3)

Furthermore, since α is critical, it follows from (2.13) that α′ too is critical.
Hence for an index k with Reλk <

1
2 , we have α′k = 0 and thus βk = −σk

so σk 6 0. Since the urn is critically small, it follows that

Re〈λ, σ〉 = σ1 +
∑

k:Reλk<
1
2

σk Reλk +
∑

k:Reλk= 1
2

1
2σk

> σ1 +
∑

k:Reλk<
1
2

1
2σk +

∑
k:Reλk= 1

2

1
2σk =

1

2
δ∗{1}(σ) > 0, (3.4)

where the last inequality comes from (2.10). Hence, (3.3) yields Re〈λ, β〉 6
Re〈λ, α〉; moreover, equality holds only if Reλk <

1
2 implies σk = 0 and thus

βk = α′k = 0, i.e., β is critical. (Equality also requires δ∗{1}(σ) = 0.)

(ii): Let α be a critical power. If β ∈ Kα, then β ∈ (Aα − Σ) ∩ Zs>0 and
equality holds in (i). Then β is critical. �

As a consequence of Lemma 3.2 and Theorem 2.2, the space C of polyno-
mial functions on V defined by

C := span
{
Qα : α critical

}
(3.5)

is Φ-stable; thus, when α is a critical power, να is also the index of Qα for
the nilpotent endomorphism induced by Φ − 〈λ, α〉 on C. This property is
the basic fact that allows us to prove Proposition 3.3 which constitutes the
key argument of Theorem 1.2.

Proposition 3.3. Assume that the urn is critically small. If α is a quasi-
monogenic critical power associated with a Jordan block of size 1 + r, r > 0,
then να 6

(
r + 1

2

)
|α|.

The remainder of this section is devoted to the proof of Proposition 3.3.
We assume that α is a critical power with supp(α) ⊆ {1} ∪ J for some
monogenic block J , and we may without loss of generality assume that
J = {2, . . . , r + 2} for some r > 0, since we otherwise may permute the
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Jordan blocks of the chosen basis. In this case, we define for vectors γ with
supp(γ) ⊆ {1} ∪ J ,

M(γ) :=
r+2∑
k=1

kγk − 2
r+2∑
k=1

γk + Re〈λ, γ〉 =
r+2∑
k=2

(
k − 3

2

)
γk. (3.6)

Note that M(γ) is a linear function of γ.

Lemma 3.4. Assume that α is a quasi-monogenic critical power with mono-
genic block J = {2, . . . , r + 2}, r > 0. Let α′ ∈ Aα \ {α}. Then, α′ is
also a critical quasi-monogenic power with monogenic block J and M(α′) 6
M(α)− 1.

Proof. By (2.12) and (2.13), only the inequality is non-trivial. Furthermore,
(2.12) implies that α′ can be written, with J ′ := {k : k, k − 1 ∈ J} =
{3, . . . , r + 2},

α′ = α−
∑
k∈J ′

εk
(
δk − δk−1

)
(3.7)

where the εk are nonnegative integers, not all 0 since α 6= α′. Then, since
M
(
δk − δk−1

)
= 1 for k ∈ J ′,

M(α′) = M(α)−
∑
k∈J ′

εkM
(
δk− δk−1

)
= M(α)−

∑
k∈J ′

εk 6M(α)− 1. (3.8)

�

Lemma 3.5. Assume that the urn is critically small. Let α be a quasi-
monogenic critical power with monogenic block J = {2, . . . , r + 2}, r > 0.
Assume that β ∈

(
α − Σ

)
∩ Zs>0 satisfies Re〈λ, β〉 = Re〈λ, α〉 and β 6= α.

Then, β is also a critical quasi-monogenic power with monogenic block J
and M(β) 6M(α)− 1.

Proof. When i, j ∈ {1, . . . , s} are distinct, denote by δ(i,j) the s-dimensional
vector δ(i,j) = 2δi− δj . These vectors span Σ, see (2.9). We divide the proof
into three steps.

1© Let i, j be distinct indices in {1, . . . , s}. Then δ∗{1}(δ(i,j)) > 0 with

equality if and only if j = 1.
Indeed, by (2.11), δ∗{1}(δ(i,j)) = 2 + 2δi1 − 1− δj1 and the result follows.

2© Let σ = α − β ∈ Σ. Then, σ is a linear combination of δ(k,1), k ∈ J ,
with nonnegative coefficients.

Indeed, Lemma 3.2 guarantees that β is critical, so that σ is also crit-
ical. Consequently, by (2.11), δ∗{1}(σ) = 2 Re〈λ, σ〉. Furthermore, by the

assumption, Re〈λ, σ〉 = Re〈λ, α〉 − Re〈λ, β〉 = 0. Hence, δ∗{1}(σ) = 0.

Since σ is a linear combination of vectors δ(i,j) with nonnegative coeffi-
cients (definition (2.9) of Σ by edges), 1© proves that all j that appear are
equal to 1. Thus

σ =
s∑

k=2

εkδ(k,1) (3.9)
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where the εk are nonnegative (real) numbers. Furthermore, if k > 2 and
k /∈ J , then 0 = αk > αk − βk = σk = 2εk > 0 and thus εk = 0.

3© It follows from 2© that supp(σ) ⊆ {1} ∪ J , and thus this is also true
for β, proving the assertion that β is critical and quasi-monogenic with
monogenic block J . Furthermore, by (3.9) and (3.6),

M(σ) =

r+2∑
k=2

εkM(δ(k,1)) =

r+2∑
k=2

εk(2k − 3) >
r+2∑
k=2

εk = −σ1 > 1 (3.10)

since σ1 is an integer and the sum is nonnegative and nonzero (because
β 6= α). Consequently, M(β) = M(α)−M(σ) 6M(α)− 1. �

Lemma 3.6. Assume that the urn is critically small. Let α be a quasi-
monogenic critical power with monogenic block {2, . . . , r + 2}, r > 0. Then
να 6M(α).

Proof. Let J = {2, . . . , r+2} be a critical monogenic block and fix ` ∈ 1
2Z>0.

Let

I` :=
{
α ∈ Zs>0 : supp(α) ⊆ {1} ∪ J, Re〈λ, α〉 = `

}
. (3.11)

We show by induction on α (using the degree-antialphabetical order) that
the inequality να 6M(α) is true for every α ∈ I`. Note that I` is finite and
thus well-ordered.

Take any α ∈ I` and suppose by induction that νβ 6M(β) for any β ∈ I`
such that β < α. By Theorem 2.2, (2.16)–(2.17) hold. In particular, by the
definition of the index of nilpotence,

να 6

{
0, Kα = ∅,
1 + max{νβ : β ∈ Kα}, Kα 6= ∅.

(3.12)

In particular, if Kα = ∅, then να = 0 6M(α).
Assume Kα 6= ∅ and let β ∈ Kα. Then β = α′ − σ with α′ ∈ Aα

and σ ∈ Σ. By Lemmas 3.4 and 3.5, α′ and β are also critical quasi-
monogenic powers with monogenic block J . Thus β ∈ I`. Furthermore, if
α′ 6= α, then Lemmas 3.4 and 3.5 also yield M(β) 6 M(α′) 6 M(α) − 1,
while if α′ = α, then Lemma 3.5 yields M(β) 6 M(α) − 1. Hence, in
any case, M(β) 6 M(α) − 1. By the inductive assumption, we thus have
νβ 6M(β) 6M(α)− 1.

Consequently, (3.12) shows that if Kα 6= ∅, then να 6 1 + (M(α)− 1) =
M(α), which completes the induction. �

Remark 3.7. Since να is an integer, in fact, να 6 bM(α)c. Strict inequality
is possible. For example, if λ2 = 1

2 + it is a critical eigenvalue with t 6= 0,
then Q2δ2 is an eigenfunction of Φ and thus ν2δ2 = 0.

Proof of Proposition 3.3. Let J be a Jordan block of size 1 + r associated
to α. As said above, we may assume that J = {2, . . . , r + 2}. Then, by
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Lemma 3.6 and (3.6),

να 6M(α) =

r+2∑
k=2

(
k − 3

2

)
αk 6

(
r + 1

2

)
|α|. (3.13)

�

Remark 3.8. The upper bound in Proposition 3.3 is reached only for α =
|α|δmax J where J is a critical Jordan block. Moreover, it is reached only
when |α| is even, explaining why the odd moments of Xn are asymptotically
negligible after normalization.

3.2. Moments.

Lemma 3.9. If α is a strictly small power, then Euα(Xn) = O
(
n|α|/2

)
.

Proof. Since uα ∈ S′α by definition (2.14), it follows from (2.15) that we
have a decomposition

uα =
∑

β∈Zs>0∩(Aα−Σ)

qα,βQβ (3.14)

for some constants qα,β.
If β ∈ Zs>0 ∩ (Aα − Σ) and β 6= (|α|/2)δ1, then Re〈λ, β〉 < |α|/2 by

Lemma 3.1. Furthermore, by [14, Proposition 5.1], for some νβ > 0,

EQβ(Xn) = O
(
nRe〈λ,β〉 logνβ n

)
= o
(
n|α|/2

)
. (3.15)

On the other hand, if β = (|α|/2)δ1 (and thus |α| is even), then Qβ is an
eigenfunction of Φ and by [14, Proposition 5.1(1)], (3.15) holds with νβ = 0,
so

EQβ(Xn) = O
(
n〈λ,β〉

)
= O

(
n|α|/2

)
. (3.16)

In fact, in this case Qβ = u1(u1 + 1) · · · (u1 + |α|/2− 1) so Qb(Xn) is deter-
ministic, and a polynomial in n of degree |α|/2, see [14, Remark 4.10]. �

Lemma 3.10. Assume that the urn is critically small. Let, as in Theo-
rem 1.2, 1 + d be the largest dimension of a critical Jordan block of the
replacement matrix R. Then, if α is a strictly critical power α,

Euα(Xn) = O
(
n log2d+1 n

)|α|/2
. (3.17)

Proof. Decomposing uα = uα1 . . .uαt where the αk are monogenic critical
powers, thanks to the Cauchy–Schwarz inequality applied t − 1 times, it
suffices to show the lemma when α is strictly critical and monogenic.

Suppose thus that α is strictly critical and monogenic. Note that, since
α is strictly critical, Re〈λ, α〉 = |α|/2. As above, we use the decomposition
(3.14) of uα; we now split it as

uα =
∑

β∈Aα−Σ,Re〈λ,β〉=Re〈λ,α〉

qα,βQβ +
∑

β:Re〈λ,β〉<Re〈λ,α〉

qα,βQβ. (3.18)
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When Re〈λ, β〉 < Re〈λ, α〉, Proposition 2.1 yields EQβ(Xn) = o
(
n|α|/2

)
.

To deal with the first sum in (3.18), suppose that β ∈ Aα − Σ satisfies
Re〈λ, β〉 = Re〈λ, α〉. Then, thanks to Lemmas 3.4 and 3.5, β is also critical
and quasi-monogenic so that Proposition 3.3 asserts that νβ ≤ (d + 1

2)|α|.
Thus Proposition 2.1 yields

EQβ(Xn) = O
(
nRe〈λ,β〉 log(d+ 1

2
)|α| n

)
= O

(
n

1
2
|α| log(d+ 1

2
)|α| n

)
. (3.19)

Putting the small o and the big O together, one gets the result. �

3.3. Proofs of Theorems 1.1 and 1.2, and of Corollary 1.3.

Proof of Theorems 1.1 and 1.2. Assume that the urn is small. Let PI :=∑
k:Reλk<

1
2
πk and PII :=

∑
k:Reλk= 1

2
πk, so that idCs = π1 + PI + PII .

Remember that πk(v) = uk(v)vk.
•We first deal with PI . Let JI := {k : Reλk <

1
2}. Then, for any v ∈ Cs,∣∣PI(v)

∣∣2 =

∣∣∣∣∑
k∈JI

uk(v)vk

∣∣∣∣2 =
∑
k,j∈JI

〈vk, vj〉uk(v)uj(v). (3.20)

Taking the `-th power and expanding, we see that for any ` > 1, there exists
a set of strictly small powers β with |β| = 2`, and constants cβ, such that,
for all v, ∣∣PI(v)

∣∣2` =
∑
β

cβu
β(v). (3.21)

Hence, Lemma 3.9 yields

E
∣∣PI(Xn)

∣∣2` =
∑
β

cβ Euβ(Xn) = O
(
n`
)
. (3.22)

• For PII , we argue as in (3.20) and obtain an identity similar to (3.21),
now for a set of strictly critical powers β with |β| = 2`. Hence, Lemma 3.10
yields

E
∣∣PII(Xn)

∣∣2` =
∑
β

c′β Euβ(Xn) = O
(
n log2d+1 n

)`
. (3.23)

• Finally, because of the balance assumption (2.4) (with m = 1), π1(Xn)
is nonrandom and

π1(Xn) = u1(Xn)v1 =
(
u1(X0) + n

)
v1 = nv1 +O(1). (3.24)

When the urn is strictly small (Theorem 1.1), PII = 0 and thus

Xn = π1(Xn) + PI(Xn) = nv1 + PI(Xn) +O(1), (3.25)

and (3.22) implies

E |Xn − nv1|2` = O
(
n`
)
. (3.26)

When the urn is critically small (Theorem 1.2), we instead have

Xn = π1(Xn)+PI(Xn)+PII(Xn) = nv1 +PI(Xn)+PII(Xn)+O(1), (3.27)
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so that (3.22) and (3.23) imply

E |Xn − nv1|2` = O
(
n log2d+1 n

)`
. (3.28)

In other words, if X̃n denotes X̃n := (Xn − nv1)/n1/2 when the urn is

strictly small and X̃n := (Xn−nv1)/
√
n log2d+1 n when the urn is critically

small, then E |X̃n|2` = O(1), for every positive integer `. Consequently,

if 0 6 p < 2`, then the sequence E |X̃n|p is uniformly integrable. Since
` is arbitrary, this sequence is uniformly integrable for every fixed p > 0.

Furthermore, by [8, Theorems 3.22 and 3.23], X̃n
d−→ N(0; Σ), for some

covariance matrix Σ. The uniform integrability just shown implies that any

mixed moment E X̃α
n converges to the corresponding moment of N(0,Σ). �

Proof of Corollary 1.3. The estimates for EYn and VarYn follow directly
from the results for EXn and Var(Xn) in Theorem 1.1 or 1.2. Furthermore,
(1.3) yields

Yn − nλ1〈w, v1〉√
n logν n

d−→ N(0, γ), (3.29)

and (1.5) follows when γ 6= 0. Moreover, the moment convergence in (1.3)
asserted in Theorems 1.1 and 1.2 implies moment convergence in (3.29), and
thus in (1.5). �
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equations for large Pólya urns, J. Theor. Probab. 28 (2015), 923–957.
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