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Abstract. Borgs, Chayes, Cohn and Holden (2016+) recently extended
the definition of graphons from probability spaces to arbitrary σ-finite
measure spaces, in order to study limits of sparse graphs. They also
extended the definition of the cut metric, and proved various results on
the resulting metric space.

We continue this line of research and give various further results on
graphons and the cut metric in this general setting, extending known
results for the standard case of graphons on probability spaces. In par-
ticular, we characterize pairs of equivalent graphons, and we give new
results on completeness and compactness.

1. Introduction

The theory of graph limits and graphons has become a successful tool to
study large dense graphs. First, any sequence of graphs, with orders tending
to infinity, has at least a subsequence that converges to a graph limit, which
can be represented (non-uniquely) by a graphon, which in this context is a
[0, 1]-valued symmetric function defined on S × S where S is a probability
space (that often is taken to be [0, 1]). Secondly, any such graphon W defines
a sequence of random graphs G(n,W ), which gives a large family of dense
random graphs with different properties. See e.g. Lovász and Szegedy [23],
Borgs, Chayes, Lovász, Sós and Vesztergombi [7, 8], Austin [2], Diaconis
and Janson [13] and Lovász [22].

There have been several partial extensions of the theory to sparse graphs,
using more general graphons. Bollobás and Riordan [3] considered graphons
that are bounded (but not necessarily [0, 1]-valued), and this was extended
by Borgs, Chayes, Cohn and Zhao [5] to unbounded graphons, assuming
that the graphons are integrable (and usually in Lp for some p > 1). These
papers also consider signed graphons (in connection with weighted graphs
where the weigths may be negative).

Another leap in increasing generality was taken by Veitch and Roy [26]
and Borgs, Chayes, Cohn and Holden [4], with some special cases studied by
Caron and Fox [9] and Herlau, Schmidt and Mørup [17]; the new idea is to
let the graphons be defined on S×S for an arbitrary σ-finite measure space
S (and not just a probability space, as earlier); it turns out that without
loss of generality, the measure space S can be taken to be R+ with Lebesgue
measure [4, Proposition 2.8]. (Only this case is considered in [26].) The
graphons in [26] and [4] are mainly [0, 1]-valued and generate random graphs

Date: 5 August, 2016; revised 16 August 2016.
2010 Mathematics Subject Classification. 05C99; 05C80.

1



2 SVANTE JANSON

by the construction described in Section 3.2 below; however, [4] considers
also unbounded and signed graphons (that may occur as limits of weighted
graphs). (The version of the construction in [26] also includes additional
stars and isolated edges; we do not treat these parts in the present paper.)

Veitch and Roy [26] is focussed on properties of the resulting random
graphs, and in particular the fact that, as a consequence of results by Kallen-
berg [19, 21], all random graphs that are exchangeable in a certain sense
can be obtained in this way. Borgs, Chayes, Cohn and Holden [4] contains
related results on exchangeable random graphs, and also many results on
convergence of graphs and graphons in the cut metric δ�, as well as some
results for the related metrics δ1 and δp.

The present paper is mainly inspired by Borgs, Chayes, Cohn and Holden
[4], and gives various further results on convergence in the cut metric for
(unbounded, possibly signed) graphons defined on σ-finite measure spaces.
We also give some related results for the metrics δ1 and δp. The results
should be compared to the corresponding results for standard graphons on
probability spaces in [18].

Sections 2–4 contain definitions, some earlier results and other prelimi-
naries.

Section 5 extends a result by Bollobás and Riordan [3] to the present
generality and shows that for Borel spaces, the infimum in the definition of
the cut distance is attained (Theorem 5.1). This leads to a characterisation
(Theorem 5.3) of equivalent graphons on such spaces as having a pair of
pullbacks that are a.e. equal, also extending a result by [3], and another,
completely general, characterisation of equivalence (Theorem 5.6) as being
generated by pull-backs and trivial extensions, extending [18, Theorem 8.3].
Several consequences of the latter characterisation are also given.

Section 6 gives results on completeness of sets for the cut metric (Theo-
rem 6.6), after some preliminary results for the cut norm. Several counter
examples are also given, illustrating the conditions in the theorem; the set
of all graphons is, unfortunately, not complete.

Sections 7–8 give results on (relative) compactness in the cut metric that
extend and improve results in [4]. We give a complete characterisation
of totally bounded sets (Theorem 7.3); however, since we do not have a
complete characterisation of complete sets, we do not obtain a complete
characterisation of (relatively) compact sets of graphons without adding
extra conditions (for example Theorems 7.5–7.7).

Remark 1.1. The present paper thus studies the cut metric for graphons
on σ-finite measure spaces. Since graphs may be represented by graphons,
this includes results on convergence of graphs to graphons in this sense,
see Section 3.1. Note, however, that the cut metric is only one of several
conceivable metrics (or other ways of defining limits), see e.g. [7], [8], [3], [4],
[27]. In the standard case of [0, 1]-valued graphons on probability spaces, a
number of different metrics and topologies are equivalent, basically because
they define compact topologies that are comparable and thus equal, see
e.g. [7; 8]. In extensions like the one treated here, compactness is lost,
and there is no reason to expect various notions to be equivalent, although
there are some partial results under extra assumptions, see e.g. [3]. On
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the contrary, there are counter examples, see for example [4, Proposition
2.24(iv)], showing that different notions of convergence are not equivalent.

The cut metric has been hugely successful in the standard setting, but
it is not at all clear that it is of equal importance in extensions like the
one studied here. (For one thing, the fact that the metric is not complete
on the space of graphons studied here, see Section 6, is a warning that
the definitions may be not optimal. Moreover, [26] considers also some
non-integrable graphons, although the definition of the cut metric requires
integrability.) Nevertheless, the present paper considers exclusively the cut
metric (and the related δ1 and δp), hoping that this will inspire future studies
of other metrics and modes of convergence for general graphons and (sparse)
graphs.

2. Definitions and notation

We follow Borgs, Chayes, Cohn and Holden [4], with minor variations
in the notation. For the readers convenience, and to set our notation, we
repeat the basic definitions in this section. See [4] for further details and
references, and see also [18] for further details in the (standard) special case
of probability spaces.

For any topological space S, B = B(S) denotes the Borel σ-algebra on S.
λ denotes the Lebesgue measure on R.
A measure space is, as usual, a triple (S,F , µ), where S is a set, F a

σ-algebra on S and µ a (non-negative) measure on (S,F). We shall often
omit F and µ from the notation when they are clear from the context and
denote the measure space just by S. (In contrast to [4] which is more careful
with the notation.) In particular, we let R+ := [0,∞) denote the measure
space (R+,B, λ), and similarly for [0, 1] and other intervals [0, a] and [0, a)
with 0 < a 6∞.

A subspace of a measure space (S,F , µ) is a measure space (A,FA, µA),
where A is a measurable subset of S, FA = {B ∈ F : B ⊆ A} and µA is the
restriction of µ to FA.

If f1 : S1 → R and f2 : S2 → R are two functions, then f1⊗f2 : S1×S2 →
R is the function f1 ⊗ f2(x, y) := f1(x)f2(y).

2.1. Graphons. A graphon W = (W,S) = (W,S,F , µ) is a symmetric
integrable function W : S × S → R, where S = (S,F , µ) is a σ-finite
measure space. The space S, its σ-algebra F and its measure µ are important
components of the graphon, but for convenience we often omit them from the
notation. (Again, [4] is more careful.) We generally identify two graphons
that are equal a.e.

Note that in the present paper, as in [4], in general, a graphon is neither
required to be bounded nor non-negative. Note also that we assume our
graphons to be integrable, as in [4] (with minor exceptions, see [4, Remarks
2.3 and 2.25]), while [26] allows for somewhat more general graphons, see
[26, Theorem 4.9].

We repeat for emphasis that the essential feature of [4] and the present
paper is that µ is allowed to be any σ-finite measure, and that the standard
theory in e.g. [7], [22], [18] is the special case when µ is a probability measure.
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A trivial extension of a graphon (W,S, µ) is a graphon (W̃ , S̃, µ̃) such that

the measure space (S, µ) is a subspace of (S̃, µ̃) and

W̃ (x, y) =

{
W (x, y), x, y ∈ S,
0, otherwise.

(2.1)

Remark 2.1. We assume, following [4], that the measure space where a
graphon is defined is σ-finite. This is mainly because the standard construc-
tion of product measures such as µ×µ assumes µ to be σ-finite, since there
are serious technical problems otherwise. (For example, Fubini’s theorem
may fail, see e.g. [10, Exercise 5.2.1].) Nevertheless, it is possible to consider
more general measure spaces, provided we only consider W that vanish out-
side S1×S1 for some σ-finite subset S1 (which is reasonable since W should
be integrable); then W is a trivial extension of its restriction to S1. We shall
not treat this rather trivial extension of the definition in general and leave
it to the reader, but note that an example of a non-σ-finite measure space
occurs in the proof of Theorem 5.1 below.

2.2. Cut Norm. If (S,F , µ) is a σ-finite measure space and F ∈ L1(S × S,
µ× µ), then the cut norm of F is defined by

‖F‖� := sup
T,U

∣∣∣∣∫
T×U

F (x, y) dµ(x) dµ(y)

∣∣∣∣ , (2.2)

taking the supremum over all measurable T,U ⊆ S. We use also notations
such as ‖F‖�,S or ‖F‖�,S,µ. Note that

‖F‖� 6 ‖F‖L1(S×S). (2.3)

It is easily verified that all properties in [18, Section 4 and Appendix E.1–E.2]
hold also in the σ-finite case studied here. (This includes other, equivalent,
versions of the cut norm.) In particular, for any F ∈ L1(S × S),

‖F‖� = 0 ⇐⇒ F = 0 (µ× µ)-a.e. (2.4)

Moreover,

‖F‖�,S,µ =

∣∣∣∣∣sup
g,h

∫
S×S

F (x, y)g(x)h(y) dµ(x) dµ(y)

∣∣∣∣∣ (2.5)

with the supremum taken over all measurable functions g, h : S → [0, 1]. As
a consequence, for any bounded f1, f2 : S → R+, cf. [18, (4.5)],

‖f1(x)f2(y)F (x, y)‖� 6 ‖f1‖L∞‖f2‖L∞‖F‖�. (2.6)

2.3. Measure-preserving maps and couplings. If ϕ is a function S1 →
S2, we define for any functions f on S2 and W on S2

2 , the pull-backs fϕ(x) :=
f(ϕ(x)) and Wϕ(x, y) := W (ϕ(x), ϕ(y)); these are functions on S1 and S2

1 ,
respectively.

Similarly, if ϕ : S1 → S2 is measurable, for two measurable spaces (Si,Fi),
and µ is a measure on (S1,F1), then the push-forward of µ is the measure
µϕ on (S2,F2) defined by µϕ(A) := µ(ϕ−1(A)). Note that

∫
S1
fϕ dµ =∫

S2
f dµϕ for any measurable function f on S2 and measure µ1 on S1 such
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that one of the integrals is defined (finite or +∞). Similarly, if W ∈ L1(S2×
S2), then

∫
S2
1
Wϕ dµ2 =

∫
S2
2
W d(µϕ)2 and

‖Wϕ‖�,S1,µ = ‖W‖�,S2,µϕ . (2.7)

A map ϕ : (S1,F1, µ1) → (S2,F2, µ2) is measure-preserving if it is mea-
surable and µϕ1 = µ2. Note that all properties in [18, Section 5] hold also in
the σ-finite case studied here.

A coupling of two measure spaces (S1,F1, µ1) and (S2,F2, µ2) is a pair
(ϕ1, ϕ2) of measure-preserving maps ϕi : S → Si defined on a common
measure space (S,F , µ). We consider in this paper only the σ-finite case.
(Note that S automatically is σ-finite if S1 or S2 is.) An important special
case is when S = S1 × S2 and ϕi = πi, the projection of S1 × S2 onto Si,
i = 1, 2; we call such couplings special. In this case µ is thus a measure on
S1 × S2 such that µπi = µi; we call such a measure µ a coupling measure of
µ1 and µ2.

If (ϕ1, ϕ2) is a general coupling of S1 and S2 with ϕi : S → Si, then
ϕ := (ϕ1, ϕ2) is a measurable map S → S1 × S2, and the push-forward
measure µϕ is a coupling measure of µ1 and µ2. Using this, it is easy to
see that it suffices to consider special couplings in, for example, (2.8), (2.11)
and (2.13) below. (In fact, [4] consider only special couplings.)

Note that a coupling of S1 and S2 exists only if µ1(S1) = µ2(S2); in that
case there always exist coupling measures, see [4, Lemma 3.2].

2.4. The cut metric and equivalence. The cut metric δ�(W1,W2) for
two graphons W1,W2, possibly defined on different spaces, is defined by [4]
in two steps:

(i) If µ1(S1) = µ2(S2), then (as in the standard case of probability spaces,
see e.g. [7; 22; 18])

δ�(W1,W2) := inf
(ϕ1,ϕ2)

‖Wϕ1
1 −W

ϕ2
2 ‖�, (2.8)

taking the infimum over all couplings (ϕ1, ϕ2) of S1 and S2 (or, as in
[4], only over special couplings).

(ii) In general, take trivial extensions (W̃i, S̃i, µ̃i) of (Wi, Si, µi) such that

µ̃1(S̃1) = µ̃2(S̃2) and define δ�(W1,W2) := δ�(W̃1, W̃2).

It is shown in [4] that this is well-defined, and that the cut metric satisfies
the triangle inequality and thus is a pseudo-metric.

Remark 2.2. By (2.5), for a special coupling with coupling measure µ we
have explicitly

‖W π1
1 −W

π2
2 ‖� = sup

f,g

∣∣∣∣∫
(S1×S2)2

(
W1(x1, y1)−W2(x2, y2)

)
×

f(x1, x2)g(y1, y2) dµ(x1, x2) dµ(y1, y2)

∣∣∣∣, (2.9)

taking the supremum over measurable f, g : S1 × S2 → [0, 1].

Two graphons W1 and W2 are equivalent if δ�(W1,W2) = 0; in this case
we write W1

∼= W2. (This is sometimes called ’weakly equivalent’.) Since
δ� is a pseudo-metric, ∼= is an equivalence relation, and δ� is a metric
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on the set of equivalence classes. When we talk about metric properties
such as completeness and compactness for δ�, this should be interpreted as
properties in the metric space of equivalence classes, but for convenience,
we usually talk about graphons rather than equivalence classes.

Note that if W̃ is a pull-back Wϕ or a trivial extension of a graphon W ,

then W̃ ∼= W .
We shall repeatedly use the following propositions shown in [4]:

Proposition 2.3 ([4, Proposition 2.8]). Every graphon is equivalent to a
graphon defined on the space [0,∞).

(Just as a graphon on a probability space is equivalent to a graphon on [0, 1],
see e.g. [18, Section 7].)

Proposition 2.4 ([4, Proposition 4.3(c)]). If W1 and W2 are graphons
defined on R+, then

δ�(W1,W2) := inf
ϕ
‖W1 −Wϕ

2 ‖�, (2.10)

taking the infimum over all measure-preserving bijections ϕ : R+ → R+.

(In other words, in this case, the infimum in (2.8) can be restricted to
couplings with ϕ1 the identity and ϕ2 a bijection.)

Remark 2.5. We sometimes allow ourselves to talk about the set of all
graphons, ignoring the technical set-theoretical fact that strictly speaking
the graphons, as defined in this paper, form a class and not a set. This can
when necessary be circumvented by the standard method of restricting the
allowed measure spaces S to some sufficiently large set. In particular, note
that by Proposition 2.3, the equivalence classes of graphons form a set.

2.5. The invariant L1 and Lp metrics δ1 and δp. The invariant L1-
metric δ1(W1,W2) is defined by [4] in the same way as the cut metric, re-
placing (2.8) in Case (i), i.e. when µ1(S1) = µ2(S2), by

δ1(W1,W2) := inf
(ϕ1,ϕ2)

‖Wϕ1
1 −W

ϕ2
2 ‖L1 , (2.11)

and again using trivial extensions as in (ii) above for the general case. It
is shown in [4] that this too is well-defined, and a quasi-metric. Note that
(2.3) implies

δ�(W1,W2) 6 δ1(W1,W2). (2.12)

Moreover, [4] more generally defines the invariant Lp-metric δp(W1,W2),
where 1 6 p <∞, in the same way: when µ1(S1) = µ2(S2),

δp(W1,W2) := inf
(ϕ1,ϕ2)

‖Wϕ1
1 −W

ϕ2
2 ‖Lp , (2.13)

and in general trivial extensions are used as in (ii) above. However, for p > 1
we consider only graphons that satisfy

Wi ∈ L1(µi × µi) ∩ Lp(µi × µi) and Wi > 0; (2.14)

for such graphons, [4] shows that δp is well-defined and a quasi-metric.
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Remark 2.6. To understand the conditions (2.14), first recall that we, and
[4], assume that a graphon is integrable, i.e., belongs to L1. (As said in Sec-
tion 1, [26] allows somewhat more general graphons, see also [4, Remark 2.3],
but it seems that the cut distance cannot be defined for them.) Secondly,
taking, for example, W2 = 0, (2.13) yields δp(W1, 0) = ‖W1‖Lp , so we have to
assumeW1,W2 ∈ Lp in order to have δp(W1,W2) finite in general; conversely,
if W1,W2 ∈ Lp then (2.13) yields δp(W1,W2) 6 ‖W1‖Lp + ‖W2‖Lp <∞, so
δp is finite. The third condition, Wi > 0, is perhaps more surprising, but it
is used in the proof in [4] that δp is invariant under trivial extensions, and
it is, in fact, necessary for this when p > 1, see Example 2.7.

Example 2.7 (for signed graphons, δp is in general not invariant under
trivial extensions). Let W1 = 1 and W2 = −1, on the one-point set S = {1}
with measure µ{1} = 1. Let W̃1 and W̃2 be the trivial extensions to S̃ =
{1, 2}, with µ̃{1} = µ̃{2} = 1. Then δp(W1,W2) = ‖W1 −W2‖p = 2 but,

letting σ : S̃ → S̃ denote the transposition σ(1) = 2, σ(2) = 1,

δp(W̃1, W̃2) 6 ‖W̃1 − W̃ σ
2 ‖Lp = 21/p < δp(W1,W2). (2.15)

(In fact, equality holds, since there are only two special couplings.) Hence,
without the positivity condition in (2.14), δp is not preserved by trivial
extensions.

As just said, δ1 and δp (when defined) are quasi-metrics. Moreover, as
will be shown in Theorems 5.6 and 5.7,

δ�(W1,W2) = 0 ⇐⇒ δ1(W1,W2) = 0 ⇐⇒ δp(W1,W2) = 0, (2.16)

with the final equivalence assuming that p > 1 and (2.14) holds. Hence, the
equivalence W1

∼= W2 is also characterised by δ1(W1,W2) = 0, and when
(2.14) holds, by δp(W1,W2) = 0. Consequently δ1 is a metric on the set of
equivalence classes of graphons, and δp is a metric on the set of equivalence
classes of non-negative graphons in Lp ∩ L1.

Furthermore, by (2.12), convergence in δ1 implies convergence in δ�. How-
ever, this fails for δp with p > 1, see Example 2.8.

Example 2.8 (convergence in δp with p > 1 does not imply convergence in
cut norm). Let Wn := n−21[0,n]×[0,n] on R+. Then, for any p > 1,

δp(Wn, 0) 6 ‖Wn‖Lp = n−2(1−1/p) → 0 as n→∞. (2.17)

However, δ�(Wn, 0) = infϕ ‖Wn − 0ϕ‖� = ‖Wn‖� = ‖Wn‖L1 = 1 for every
n. Thus convergence in δp does not imply convergence in cut norm for any
p > 1. (This is in contrast to the case of graphons on probability spaces,
where δp > δ1 > δ� because ‖ · ‖Lp > ‖ · ‖L1 .)

2.6. Stretched graphons and the stretched metrics δs�, δs1, δ
s
p. Borgs,

Chayes, Cohn and Holden [4] introduce also a new rescaling of graphons
called stretching.

In general, given a graphon W = (W,S, µ) and u > 0, we define the
rescaled graphon

Υ(1)
u W := (W,S, u1/2µ). (2.18)

In other words, Υ
(1)
u W equals W as a function on S2, but we multiply the

underlying measure by u1/2.
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In the special (and standard) case (S, µ) = (R+, λ), we can alternatively
keep (S, µ) and define

Υ(2)
u W (x, y) := W (u−1/2x, u−1/2y). (2.19)

It is easily seen that the two definitions are equivalent up to equivalence:

Υ
(1)
u W ∼= Υ

(2)
u W , since Υ

(2)
u W = (Υ

(1)
u W )ϕ where ϕ : x 7→ u−1/2x is a

measure-preserving map (R+, λ)→ (R+, u
1/2λ). (It is the version (2.19) that

motivates the name ’stretching’.) Therefore, the choice of version usually

does not matter, and then we use the notation ΥuW for any of Υ
(1)
u W and

Υ
(2)
u W (when defined).
Note that (2.18) immediately implies

‖ΥuW‖L1 = u‖W‖L1 . (2.20)

As a consequence, again following [4], we can normalize any non-zero graphon
W to the stretched graphon W s defined by

W s := Υ‖W‖−1

L1
(W ) (2.21)

with ‖W s‖L1 = 1. For completeness, we also define W s = 0 when W = 0
a.e.

Furthermore, [4] define the stretched metric δs� by

δs�(W1,W2) := δ�(W s
1 ,W

s
2). (2.22)

This is obviously a pseudo-metric on the set of all graphons, and thus a
metric on the corresponding set of equivalence classes; moreover

δs�(W1,W2) = 0 ⇐⇒ W2
∼= Υu(W1) for some u > 0. (2.23)

We can similarly define the pseudo-metrics δs1(W1,W2) := δ1(W
s
1 ,W

s
2)

and, for p > 1 and non-negative graphons in Lp, δsp(W1,W2) := δp(W
s
1 ,W

s
2).

As a consequence of (2.16),

δs�(W1,W2) = 0 ⇐⇒ δs1(W1,W2) = 0 ⇐⇒ δsp(W1,W2) = 0, (2.24)

with the final equivalence holding for p > 1 and non-negative graphons in
Lp.

3. Graphons and graphs

Although the present paper is mainly about graphons, it should be re-
membered that the main motivation for studying graphons is the connection
to (large) graphs. For the standard case of dense graphs and graphons on a
probability space, see e.g. [23], [7], [8] and the book [22].

Two aspects of this connection are treated separately in the following
subsections.

3.1. Graphons as limits of graphs. Given a finite graph G, the corre-
sponding graphon WG is defined by considering the vertex set V (G) as a
probability space, with the uniform measure, and defining WG on V (G)2 by
WG(x, y) := 1{x ∼ y}. (This is just the adjacency matrix.) Alternatively,
as is well-known, one can define an equivalent version of WG on the standard
space [0, 1] by identifying the vertices of G with disjoint intervals of lengths
1/|V (G)|, see e.g. [22], [18].
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In the standard theory [22], one says that a sequence of graphs Gn con-
verges to a graphon W if |V (Gn)| → ∞ and

δ�(WGn ,W )→ 0. (3.1)

In the case of sparse graphs, i.e., when the edge density |E(Gn)|/|V (Gn)|2 →
0, (3.1) just gives convergence to the graphon 0. In order to get interesting
limits, Borgs, Chayes, Cohn and Holden [4] propose instead using stretched
graphons (see Section 2.6 above) and thus the condition

δs�(WGn ,W )→ 0. (3.2)

Given a graph G, we can also define a graphon WG by taking the same
function WG as above (i.e., the adjacency matrix) but consider it as a
graphon defined on the measure space V (G) with the counting measure (i.e.,
each point has measure 1). If G is a finite graph, then WG is a stretching
of WG, see (2.18), and thus by (2.23)

δs�(WG,WG) = 0. (3.3)

Consequently, we can replace WGn by WGn in (3.2). (We can also use any
other stretching, for example W s

Gn
.) One technical advantage of WG is that

it also is defined for countable infinite graphs G; however, since we want our
graphons to be integrable, we still have to assume that G has only a finite
number of edges.

Remark 3.1. There is also another theory for sparse graphs due to Bollobás
and Riordan [3] and further developed by Borgs, Chayes, Cohn and Zhao
[5], where instead of stretching WGn , it is rescaled to WGn/‖WGn‖L1 . As
discussed in [4], it seems that the two theories have applications to different
types of sparse graphs. We shall not consider the theory of [3] here.

3.2. Random graphs defined by graphons. In the standard theory for
graphons on a probability space, there is a standard definition of a random
graph G(n,W ) (with n vertices) for a given graphon W and any n > 1.
Borgs, Chayes, Cohn and Holden [4] define a version of this for the present
setting as follows. (Essentially the same construction is given by Veitch and
Roy [26].)

Let W be a [0, 1]-valued graphon on a measure space (S, µ), and assume
that W is not 0 a.e. Consider a Poisson point process Γ on [0,∞) × S,
with intensity λ× µ. A realization of Γ is a countably infinite set of points
{(ti, xi)}. Given such a realization, let G̃ = G̃(W ) be the infinite graph with
vertex set {(ti, xi)}, where two vertices (ti, xi) and (tj , xj) are connected
by an edge with probability W (xi, xj), independently of all other edges
(conditionally on Γ).

Moreover, let G̃t = G̃t(W ) be the induced subgraph of G̃ consisting of all
vertices (ti, xi) with ti 6 t. (It is useful to think of the parameter ti as the
time the vertex is born; then Γt is the subgraph existing at time t.)

Finally, we let Gt = Gt(W ) be the induced subgraph of G̃t consisting of

all non-isolated vertices. Note that the vertex set of G̃t is a.s. infinite for
every t > 0 if µ(S) =∞, but the expected number of edges is

E |E(G̃t)| = E |E(Gt)| =
1

2
t2
∫∫

W (x, y) dµ(x) dµ(y) <∞, (3.4)
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so Gt is a.s. finite for every t <∞.
Note also that the definition defines growing processes (G̃t)t>0 and (Gt)t>0

of random graphs. (With G̃0 = G0 empty with no vertices.)

Remark 3.2. The graphs are usually regarded as unlabelled, so the iden-
tification (labelling) of the vertices by points in [0,∞) × S is mainly for
convenience. Some, equivalent, interesting alternative labellings are the fol-
lowing.

(i) Since the measure µ is σ-finite, the coordinates ti in the point process
Γ = {(ti, xi)} are a.s. distinct. Hence, we may just as well use ti
as the label, and let the vertex set of G̃ be {ti}. (With the edge

probabilities still given by the xi as above.) The random graph G̃ then
is exchangeable in the sense that its edge set is an exchangeable point
process on R2

+, see further Veitch and Roy [26], where this property is
explored in depth.

(ii) If the measure µ is atomless, then the coordinates xi are also a.s.
distinct, so we can use xi as label and regard the vertex set of the
random graphs defined above as (random) subsets of S. The vertex

set of G̃t then is a Poisson process on S with intensity tµ. (If µ has
atoms, then this vertex set generally has multiple points that have to
be distinguished.)

(iii) We may use an arbitrary measurable enumeration of the points in Γ or
Γt as {(xi, ti)}, and then use i as the label; this means that the vertex

set of G̃ is N. The vertex set of G̃t is N if µ(S) = ∞ and a random
finite set {1, . . . , N} when µ(S) <∞, with N ∼ Po(tµ(S)).

Remark 3.3. Two stretched graphons define the same random graphs up
to a change of time. In fact, if u > 0 then, by the definition above and (2.18),

the random graphs G̃t(Υ
(1)
u W ) are constructed using a Poisson point process

Γ(u) on [0,∞)×S with intensity λ×u1/2µ. The map (t, x) 7→ (u1/2t, x) maps
this to the Poisson process Γ with intensity λ× µ, and thus

G̃t(ΥuW )
d
= G̃u1/2t(W ), (3.5)

in the strong sense that both sides have the same distribution as processes
on {t > 0}.

For the limit theory, we consider the corresponding graphons defined in
Section 3.1. We have δs�(WGt ,WGt) = 0 by (3.3). Moreover, since Gt is

obtained from G̃t by deleting isolated vertices, W G̃t
is a trivial extension

of WGt , and thus δ�(WGt ,W G̃t
) = 0, which implies δs�(WGt ,W G̃t

) = 0,

see (2.23). Hence, when using the stretched metric δs�, it does not matter

whether we use W G̃t
, WGt or WGt .

Borgs, Chayes, Cohn and Holden [4] prove that the graphs Gt(W ) a.s.
converge to W in the strectched metric δs�, i.e., as t→∞,

δs�(W G̃t
,W ) = δs�(WGt ,W ) = δs�(WGt ,W )→ 0. (3.6)

4. Topological preliminaries

Although the definitions and main results are purely measure-theoretic
and do not involve any topology, we shall use some topological notions in
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some results and proofs. We use various standard results that can be found
in several references; for convenience we give some specific references to [10].

A Polish space is a complete separable metric space. (Or, more generally,
a topological space homeomorphic to such a space.)

A measurable space is Borel (also called standard [10] or Lusin [12]) if it
is isomorphic to a Borel subset of a Polish space with its Borel σ-field. In
fact, a Borel measurable space is either isomorphic to [0, 1] (with the usual
Borel σ-field) or countable (with every subset measurable). A measure space
(Ω,F , µ) is Borel if (Ω,F) is a Borel measurable space; equivalently, if the
measure space is isomorphic to a Borel subset of a Polish space equipped
with a Borel measure. See further [18, Appendix A.2].

Compact and locally compact spaces have the standard definitions. We
consider only Hausdorff spaces; as said above, properties of the cut metric
should be interpreted in the metric space of equivalence classes of graphons.

Second countable also has its standard definition, i.e., that the topology
has a countable basis. Recall that a compact space is second countable if
and only if it is metrizable [10, Proposition 7.1.12].

If K is a compact space, then C(K) is the Banach space of continuous
functions K → R. If X is a locally compact space, then Cc(X) is the space
of continuous functions f : X → R with compact support

supp(f) := {x ∈ X : f(x) 6= 0}. (4.1)

Furthermore, we let C[0,1](K) and Cc,[0,1](X) denote the subsets of functions
with values in [0, 1].

If X is locally compact and second countable, then a Radon measure on
X is a Borel measure µ such that µ(K) < ∞ for every compact K ⊆ X.
A Radon measure µ defines a positive linear functional f 7→

∫
X f dµ on

Cc(X), and by the Riesz representation theorem, this yields a one-to-one
correspondence between Radon measures and positive linear functionals on
Cc(X) [10, Theorem 7.2.8]. (This extends to general locally compact spaces
if one considers only measures that are regular [10, Section 7.2]; we only
need this for second countable spaces, and then regularity is automatic [10,
Proposition 7.2.3].)

Note that a locally compact second countable space is σ-compact. Hence
a Radon measure on such a space is σ-finite.

We say that a sequence µn of Radon measures on a locally compact second
countable space X converges vaguely to a Radon measure ν if

∫
X f dµn →∫

X f dν for every f ∈ Cc(X); this is denoted by µn
v−→ ν. (See [20, Theorem

A2.3] for some properties of the vague topology.)
We shall use the following simple lemma. It is presumably well-known,

but we have not found a reference so for completeness we include a proof.
(We state it for one vaguely convergent sequence. The lemma and its proof
generalize to two vaguely convergent sequences on two, possibly different,
spaces X and Y ; this says that the product operation is vaguely continuous
for Radon measures on locally compact second countable spaces.)

Lemma 4.1. Let X be a locally compact second countable space, and let µn,

n = 1, 2, . . . ,∞, be Radon measures on X such that µn
v−→ µ∞ as n→∞.

Then µn × µn
v−→ µ∞ × µ∞ on X ×X.



12 SVANTE JANSON

Proof. Note that since the spaces are second countable, the Borel σ-algebra
B(X ×X) = B(X)× B(X).

Let f ∈ Cc(X × X). Then there exists a compact set K ⊆ X such
that supp(f) ⊆ K ×K. Let K1 be a compact subset of X with K ⊆ K◦1 ,
the interior of K1. Then there exists a function ψ ∈ Cc,[0,1](X) such that
supp(ψ) ⊆ K1 and ψ(x) = 1 for x ∈ K.

The set of linear combinations
∑N

1 gi(x)hi(y) with gi, hi ∈ C(K1) is dense
in C(K1 ×K1), for example as a consequence of the Stone–Weierstrass the-
orem [11, V.8.1]. Hence, given any ε > 0, there exists such a linear combi-

nation fε(x, y) =
∑N

1 gi(x)hi(y) with supK1×K1
|f(x, y)− fε(x, y)| < ε. Let

rε := f − fε. Since f(x, y) 6= 0 implies x, y ∈ K and thus ψ(x) = ψ(y) = 1,
it follows that for x, y ∈ K1,

f(x, y) = ψ(x)ψ(y)f(x, y) = ψ(x)ψ(y)fε(x, y) + ψ(x)ψ(y)rε(x, y)

=
N∑
1

g̃i(x)h̃i(y) + r̃ε(x, y), (4.2)

where g̃i(x) := ψ(x)gi(x) and similarly for h̃i(x) and r̃ε(x, y). We extend

g̃i and h̃i to X by letting them be 0 outside K1; since supp(ψ) ⊆ K1, then

g̃i, h̃i ∈ Cc(X). We similarly define r̃ε(x, y) = 0 when (x, y) /∈ K1 × K1.

Then (4.2) holds for all x, y ∈ X, with |r̃ε(x, y)| < ε. Since µn
v−→ µ∞, we

have, as n→∞, for each i 6 N ,∫
X×X

g̃i(x)h̃i(y) dµn(x) dµn(y) =

∫
X
g̃i(x) dµn(x)

∫
X
h̃i(y) dµn(y)

→
∫
X
g̃i(x) dµ∞(x)

∫
X
h̃i(y) dµ∞(y) =

∫
X×X

g̃i(x)h̃i(y) dµ∞(x) dµ∞(y)

and hence by (4.2),∫
X×X

f(x, y) dµn(x) dµn(y)−
∫
X×X

f(x, y) dµ∞(x) dµ∞(y)

=

∫
X×X

r̃ε(x, y) dµn(x) dµn(y)−
∫
X×X

r̃ε(x, y) dµ∞(x) dµ∞(y) + o(1).

(4.3)

Furthermore, choose a function ψ1 ∈ Cc(X) such that ψ1(x) = 1 when
x ∈ K1. Then |r̃ε(x, y)| 6 εψ1(x)ψ1(y), and thus∣∣∣∣∫

X×X
r̃ε(x, y) dµn(x) dµn(y)

∣∣∣∣ 6 ∫
X×X

εψ1(x)ψ1(y) dµn(x) dµn(y)

= ε

(∫
X
ψ1 dµn

)2

, n 6∞. (4.4)

Moreover,
∫
X ψ1 dµn →

∫
X ψ1 dµ∞ < ∞, and thus there exists a constant

M (independent of ε) such that
∫
X ψ1 dµn 6 M for all n 6 ∞. As a

result, if Rn is the right-hand side of (4.3), then |Rn| 6 2M2ε + o(1) and
thus lim supn→∞ |Rn| 6 2M2ε. Since ε is arbitrary, this yields Rn → 0.
Consequently, (4.3) shows that, as n→∞,
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X×X

f d(µn × µn) =

∫
X×X

f(x, y) dµn(x) dµn(y)

→
∫
X×X

f(x, y) dµ∞(x) dµ∞(y) =

∫
X×X

f d(µ∞ × µ∞). (4.5)

Since f ∈ Cc(X) is arbitrary, this shows µn × µn
v−→ µ∞ × µ∞. �

Lemma 4.2. Let µ be a finite Borel measure on a compact metric space X.
Then, for any F ∈ L1(K ×K),

‖F‖�,K,µ = sup
g,h∈C[0,1](K)

∣∣∣∣∫
K×K

F (x, y)g(x)h(y) dµ(x) dµ(y)

∣∣∣∣ . (4.6)

Proof. Temporarily denote the right-hand side of (4.6) by ‖F‖C . Then, by
(2.5), ‖F‖C 6 ‖F‖�, so it suffices to prove the opposite inequality.

Suppose first that F is bounded, say |F (x, y)| 6 M for some M . Let
T,U ⊂ S be measurable, and let ε > 0. Since C(K) is dense in L1(K,µ),
see [10, Proposition 7.4.2 (and 7.2.3)], there exists a function g ∈ C(K) such
that ‖1T − g‖L1 < ε. By replacing g(x) by min(1,max(0, g(x))), we may
further assume that g ∈ C[0,1](K). Similarly, there exists h ∈ C[0,1](K) such
that ‖1U − h‖L1 < ε. Then∣∣F (x, y)

(
1T (x)1U (y)− g(x)h(y)

)∣∣ 6M(|1T (x)− g(x)|+ |1U (u)− h(y)|
)

and thus∫
K×K

∣∣F (x, y)
(
1T (x)1U (y)− g(x)h(y)

)∣∣dµ(x) dµ(y) 6 2Mµ(K)ε. (4.7)

Hence,∣∣∣∣∫
T×U

F (x, y) dµ(x) dµ(y)

∣∣∣∣ =

∣∣∣∣∫
K×K

F (x, y)1T (x)1U (y) dµ(x) dµ(y)

∣∣∣∣
6

∣∣∣∣∫
K×K

F (x, y)g(x)h(y) dµ(x) dµ(y)

∣∣∣∣+ 2Mµ(K)ε

6 ‖F‖C + 2Mµ(K)ε.

Taking the supremum over all T and U and letting ε→ 0, we obtain ‖F‖� 6
‖F‖C , which completes the proof for bounded F .

For a general F , consider the truncations

FM (x, y) := F (x, y)1{|F (x, y)| 6M}. (4.8)

By the first part of the proof, ‖FM‖� = ‖FM‖C , and thus

‖F‖� 6 ‖FM‖� + ‖F − FM‖� = ‖FM‖C + ‖F − FM‖�
6 ‖F‖C + ‖F − FM‖C + ‖F − FM‖� 6 ‖F‖C + 2‖F − FM‖L1 .

Furthermore, as M →∞, ‖F − FM‖L1 → 0. Consequently, ‖F‖� 6 ‖F‖C ,
which completes the proof. �
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5. Equivalence

We first extend a result by Bollobás and Riordan [3, Lemma 2.6] to the
present setting of σ-finite measure spaces.

Theorem 5.1. Let (W1, S1) and (W2, S2) be graphons where Si = (Si,Fi, µi)
are σ-finite Borel spaces, i = 1, 2. Then there exist trivial extensions (W̃i, S̃i)

of (Wi, Si) and a coupling (ϕ1, ϕ2) of S̃1 and S̃2 such that

δ�(W1,W2) = δ�(W̃1, W̃2) = ‖W̃ϕ1
1 − W̃

ϕ2
2 ‖�. (5.1)

The coupling may be assumed to be special.

In other words, the infimum in (2.8) is attained for W̃1 and W̃2. We shall
see in Example 5.11 that in general it is necessary to take trivial extensions

W̃1 and W̃2, even if µ1(S1) = µ2(S2), unlike the corresponding result for
graphons on probability spaces in [3] (see also [18, Theorem 6.16]). Note
also that the result is not true for arbitrary measure spaces, not even in the
standard probability space case, see [6] for a counter example.

Proof. First, we note that we may assume that S1 and S2 are atomless. In

general, we let Ŝi := Si×[0, 1] and Ŵi := W πi
i , the pull-back to Ŝi. The proof

below applies to (Ŵi, Ŝi) and shows that there exist trivial extensions W̌i to

Ši := Ŝi∪Ei and a coupling (ϕ1, ϕ2) of Š1 and Š2 such that ‖W̌ϕ1
1 −W̌

ϕ2
2 ‖� =

δ�(Ŵ1, Ŵ2) = δ�(W1,W2). Here ϕi : S → Ŝi for some measure space (S, µ),

and Ei = (Ei, νi) are some measure spaces with Ei disjoint from Ŝi. We

may assume that Ei also is disjoint from Si and define S̃i := Si ∪ Ei. Let

W̃i be the trivial extension of Wi to S̃i. Define ψi : Ši → S̃i by ψi = πi on
Si × [0, 1], and ψi the identity on Ei. Then ψi is measure-preserving, and

W̌i = (W̃i)
ψi . Hence, the pair of mappings ϕ∗i := ψi ◦ ϕi : S → S̃i give the

desired coupling.
We may thus assume that S1 and S2 are atomless Borel spaces. In this

case, by [4, Lemma 3.1], there exists a measure-preserving bijection of Si
onto

(
[0, µi(Si)),B, λ

)
. Hence we may without loss of generality assume that

the measure space Si is
(
[0,mi),B, λ

)
for some mi ∈ [0,∞]. Moreover, if

mi < ∞, we may make a trivial extension of Wi to [0,∞). Hence we may,
and shall, assume that S1 = S2 = R+.

Let δ := δ�(W1,W2). By the definition (2.8), there exists for every n a
coupling measure µ̂n on R2

+ with both marginals equal to λ such that

‖W π1
1 −W

π2
2 ‖�,µ̂n < δ + 1/n. (5.2)

Let Z := [0,∞] × [0,∞] \ {(∞,∞)}. Then, Z is an open subset of the
compact metric space [0,∞]2, so Z is a locally compact second countable
space. Moreover, Z is a Polish space [10, Proposition 8.1.1] and R2

+ ⊂ Z ⊂
[0,∞]2. The measure µ̂n is defined on R2

+, and we can regard it as a measure
on Z.

Let, for N ∈ N, KN := ([0, N ] × [0,∞]) ∪ ([0,∞] × [0, N ]). Then each
KN is a compact subset of Z and Z =

⋃
N>1KN ; moreover, every compact

subset of Z is a subset of some KN .
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For each n, since µ̂n has marginals λ,

µ̂n(KN ) 6 µ̂n([0, N ]× [0,∞]) + µ̂n([0,∞]× [0, N ])

= λ([0, N ]) + λ([0, N ]) = 2N. (5.3)

Hence, µ̂n(K) < ∞ for every compact K ⊂ Z, so µ̂n is a Radon measure
on Z. Moreover, (5.3) implies that the sequence µ̂n(K) is bounded for each
compact K ⊂ Z, which means that the sequence µ̂n is relatively compact in
the vague topology, see [20, Theorem A2.3(ii)]. Furthermore, by [20, The-
orem A2.3(i)], the set of Radon measures on Z with the vague topology is
metrizable. (In fact, a Polish space.) Consequently, there exists a subse-
quence (µ̃n) of (µ̂n) that converges vaguely to some Radon measure ν on Z,
i.e.,

lim
n→∞

∫
Z
f dµ̃n =

∫
Z
f dν, f ∈ Cc(Z). (5.4)

Since Z ⊂ [0,∞]2, we may also regard ν as a measure on [0,∞]2. Since Z
is σ-compact, ν is σ-finite on Z and thus on [0,∞]2. (But note that ν is
an infinite measure and thus not a Radon measure on the compact space
[0,∞]2.)

We next consider the marginals νπi of ν; these are measures on [0,∞].
If g ∈ Cc(R+), then the function gπ1(x, y) = g(x) has compact support
supp(g) × [0,∞] in Z, so gπ1 ∈ Cc(Z) and (5.4) yields, recalling that each
µ̃n has marginals (µ̃n)π1 = λ,∫
R+

g dνπ1 =

∫
Z
gπ1 dν = lim

n→∞

∫
Z
gπ1 dµ̃n = lim

n→∞

∫
R+

g d(µ̃n)π1 =

∫
R+

g dλ.

(5.5)
Consequently, the marginal νπ1 of ν equals λ on R+ = [0,∞). By symmetry,
the same holds for νπ2 . However, note that each marginal also may have a
point mass at {∞}; this point mass may even be infinite, in which case the
marginal is not σ-finite. (We shall see that this causes no serious problem.)

Let ε > 0. Since Wi ∈ L1(R2
+) and Cc(R2

+) is dense in L1(R2
+), there exist

W i ∈ Cc(R2
+) such that ‖Wi −W i‖L1(R2

+) < ε, i = 1, 2. Then

‖W πi
i −W

πi
i ‖�,µ̃n 6 ‖W

πi
i −W

πi
i ‖L1(µ̃2n)

= ‖Wi −W i‖L1(λ2) < ε, (5.6)

and thus by (5.2) and the triangle inequality, recalling that µ̃n = µ̂kn for
some kn > n,

‖W π1
1 −W

π2
2 ‖�,µ̃n < δ + 1/n+ 2ε. (5.7)

Extend each Wi and W i trivially (i.e., by 0) to [0,∞]2.
Let N be such that supp(W i) ⊆ [0, N ] × [0, N ] for i = 1, 2. Then

supp(W
πi
i ) ⊆ KN ×KN , and thus W

πi
i ∈ Cc(Z2).

Let f, g ∈ C[0,1](KN ). We can extend f and g to functions in Cc,[0,1](Z);
moreover, there exist sequences fm and gm in Cc,[0,1](Z) such that

fm(x1, x2)→

{
f(x1, x2), (x1, x2) ∈ KN ,

0, otherwise,
(5.8)
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as m→∞, and similarly for gm. Then, by (5.7) and (2.9), for any m and
n,∣∣∣∣∫

Z2

(
W 1(x1, y1)−W 2(x2, y2)

)
fm(x1, x2)gm(y1, y2) dµ̃n(x1, x2) dµ̃n(y1, y2)

∣∣∣∣
6 δ + 2ε+ 1/n. (5.9)

The integrand in (5.9) is a continuous function with compact support in Z2,

and by Lemma 4.1, µ̃n × µ̃n
v−→ ν × ν. Hence, we can take the limit as

n→∞ in (5.9) and obtain, with zi = (xi, yi),∣∣∣∣∫
Z2

(
W

π1
1 (z1, z2)−W

π2
2 (z1, z2)

)
fm(z1)gm(z2) dν(z1) dν(z2)

∣∣∣∣ 6 δ + 2ε.

(5.10)

Now let m→∞; by (5.8) and dominated convergence (noting that W
π1
1 −

W
π2
2 ∈ L1(ν × ν)), the integral in (5.10) converges to∫

KN×KN

(
W

π1
1 (z1, z2)−W

π2
2 (z1, z2)

)
f(z1)g(z2) dν(z1) dν(z2). (5.11)

Since f, g ∈ C[0,1](KN ) are arbitrary, (5.10) and Lemma 4.2 thus yield

‖W π1
1 −W

π2
2 ‖�,KN ,ν 6 δ + 2ε. (5.12)

Furthermore, W
π1
1 and W

π2
2 vanish off KN ×KN , and thus

‖W π1
1 −W

π2
2 ‖�,[0,∞]2,ν = ‖W π1

1 −W
π2
2 ‖�,KN ,ν 6 δ + 2ε. (5.13)

Consequently, on [0,∞]2, using the analogue of (5.6) for ν,

‖W π1
1 −W

π2
2 ‖�,ν 6 ‖W

π1
1 −W

π2
2 ‖�,ν + ‖W π1

1 −W
π1
1 ‖�,ν + ‖W π2

2 −W
π2
2 ‖�,ν

6 δ + 4ε. (5.14)

Since ε > 0 is arbitrary, this yields

‖W π1
1 −W

π2
2 ‖�,[0,∞]2,ν 6 δ = δ�(W1,W2). (5.15)

If ν({∞} × [0,∞)) and ν([0,∞) × {∞}) are finite, then the projections
νπ1 and νπ2 are σ-finite measures on [0,∞]. In this case, (5.15) shows
that if we take the trivial extensions of W1 and W2 to [0,∞]2, then ν is a
coupling measure such that the special coupling (π1, π2) yields equality in
(5.1). (Recall that δ�(W1,W2) 6 ‖W π1

1 −W
π2
2 ‖�,ν by the definition (2.8).)

In general, the projections are not σ-finite, since they may have infinite
atoms at∞, but we may easily modify the construction. Let S̃ := R+∪R′+,
where R+ and R′+ are two disjoint copies of [0,∞), with variables denoted

x and x′, respectively. Define a map ϕ : Z → S̃ × S̃ by

ϕ(x, y) =


(x, y), x, y <∞,
(x, x′), y =∞,
(y′, y), x =∞.

(5.16)

This means that the lines R+ × {∞} and {∞} × R+ are mapped to the
diagonals in R+ × R′+ and R′+ × R+, respectively. Let ν̃ := νϕ . Then there

is no problem with the projections: ν̃ := νϕ is a σ-finite measure on S̃ × S̃,
and the marginals ν̃i := ν̃πi are σ-finite measures on S̃; moreover, ν̃i = λ
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on R+ ⊂ S̃. Hence, we can define S̃i := (S̃, ν̃i) and let W̃i be the trivial

extension of Wi to S̃i; then ν̃ is a coupling measure. Moreover,

‖W̃ π1
1 − W̃

π2
2 ‖�,S̃×S̃,ν̃ = ‖W π1

1 −W
π2
2 ‖�,[0,∞]2,ν . (5.17)

One way to see (5.17) is to define ψ : S̃ → [0,∞] by ψ(x) = x and ψ(x′) =∞,

and let ψ⊗2 := ψ ⊗ ψ : S̃2 → [0,∞]2. Then it follows from (5.16) that
ψ⊗2 ◦ ϕ is the identity embedding Z → [0,∞]2. Hence, ψ⊗2 is measure-

preserving (S̃ × S̃, ν̃) → ([0,∞] × [0,∞], ν). Furthermore, W̃i = Wψ
i and

thus W̃ πi
i = (Wψ

i )πi = Wψ◦πi
i = W πi◦ψ⊗2

i , and thus

‖W̃ π1
1 −W̃

π2
2 ‖�,S̃×S̃,ν̃ = ‖W̃ π1◦ψ⊗2

1 −W̃ π2◦ψ⊗2

2 ‖�,S̃×S̃,ν̃ = ‖W π1
1 −W

π2
2 ‖�,[0,∞]2,ν ,

showing (5.17).
Finally, (5.17) and (5.15) show that

‖W̃ π1
1 − W̃

π2
2 ‖�,S̃×S̃,ν̃ = ‖W π1

1 −W
π2
2 ‖�,[0,∞]2,ν 6 δ�(W1,W2), (5.18)

and thus equality holds by the definition (2.8). �

Remark 5.2. The analogue of Theorem 5.1 for δ1 holds too. The proof is
essentially the same, with the difference that we do not need f, g, fm, gm;
we proceed directly from the L1 version of (5.7) to the L1 version of (5.13)
using Lemma 4.1 and the fact that |W π1

1 −W
π2
2 | ∈ Cc(Z2).

Similarly, Theorem 5.1 holds for δp too, for any p > 1, provided W1,W2 ∈
Lp and W1,W2 > 0.

As a special case, we obtain the following characterisation of equivalent
graphons on Borel spaces, for example R+; again this extends a result by
Bollobás and Riordan [3, Corollary 2.7].

Theorem 5.3. Let (W1, S1) and (W2, S2) be graphons with δ�(W1,W2) = 0,
and assume that Si = (Si,Fi, µi) are σ-finite Borel spaces, i = 1, 2. Then

there exist trivial extensions (W̃i, S̃i) of (Wi, Si) and a coupling (ϕ1, ϕ2) of

S̃1 and S̃2 such that W̃ϕ1
1 = W̃ϕ2

2 a.e. The coupling may be assumed to be
special.

Proof. An immediate consequence of Theorem 5.1 and (2.4). �

Remark 5.4. In the standard case of graphons on probability spaces, Borgs,
Chayes and Lovász [6] proved a similar result using pull-backs in the opposite
direction, viz. that W1

∼= W2 if and only if there exists a graphon W on some
probability space S and mesure preserving maps ϕi : Si → S such that
Wi = Wϕi a.e. See also [18, Theorem 8.4] with an alternative proof. (For
this result, no assumption on the probability spaces S1 and S2 is needed, so
it yields a general characterisation of equivalence.)

We conjecture that this result too extends (in some form) to the σ-finite
case, but we leave this as an open problem.

We can elaborate Theorem 5.3 as follows, cf. the corresponding result [18,
Theorem 8.3] for graphons on probability spaces.

Definition 5.5. Two graphons (W1, S1) and (W2, S2) are elementarily equiv-
alent if one of the following conditions holds:
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(i) W1 = Wϕ
2 a.e. for some measure-preserving map ϕ : S1 → S2, or

conversely.
(ii) W1 is a trivial extension of W2, or conversely.

Note that (i) includes the case of two a.e. equal graphons on the same
measure space.

Theorem 5.6. Let W and W ′ be two graphons. Then the following are
equivalent:

(i) W ∼= W ′.
(ii) δ�(W,W ′) = 0.
(iii) δ1(W,W

′) = 0.
(iv) There exists a finite sequence of graphons W = W0, . . . ,WN = W ′

such that Wi−1 and Wi are elementarily equivalent for i = 1, . . . , N .

The equivalence (ii)⇐⇒ (iii) is [4, Proposition 2.6].

Proof. (i)⇐⇒ (ii) holds by definition.
(ii) =⇒ (iv): By [4, Lemma 4.1], W = Wϕ1

1 and W ′ = Wϕ2
2 for some

graphonsW1 andW2 on Borel measure spaces S1 and S2. Then δ�(W1,W2) =
δ�(W,W ′) = 0. Hence Theorem 5.3 shows the existence of trivial extensions

W̃i of Wi and a coupling (ψ1, ψ2) such that W̃ψ1
1 = W̃ψ2

2 a.e. Consequently,

W,W1, W̃1, W̃
ψ1
1 , W̃ψ2

2 , W̃2,W2,W
′ is a sequence where every graphon is el-

ementarily equivalent to the next.
(iv) =⇒ (iii): It is clear by the definitions in Section 2 that δ1(W,W

′) = 0
whenever W and W ′ satisfy one of the two cases in Definition 5.5. The result
follows by the triangle inequality.

(iii) =⇒ (ii): Immediate by (2.12). �

Theorem 5.7. Let p > 1 and let W and W ′ be two non-negative graphons
in Lp. Then the conditions (i)–(iv) in Theorem 5.6 are also equivalent to

(v) δp(W,W
′) = 0.

Proof. (iv) =⇒ (v): Immediate, as the proof of (iv) =⇒ (iii) above.
(v) =⇒ (iv): As the proof of (ii) =⇒ (iv) above, now using Remark 5.2.
Alternatively, we can prove (v) =⇒ (iii) directly as follows. Using Propo-

sition 2.3, we may assume that W1 and W2 are defined on R+.
Let ε > 0. Since δp(W,W

′) = 0, there exists by [4, Proposition 4.3(c)
and Remark 4.4] a measure-preserving bijection ϕ : R+ → R+ such that
‖W − (W ′)ϕ‖Lp < ε.

Also, let M > 0. Let IM := [0,M ] and A := IM ∪ ϕ−1(IM ). Then,
λ(A) 6 λ(IM ) + λ(ϕ−1(IM )) = 2M and thus, by Hölder’s inequality,

‖(W − (W ′)ϕ)1A×A‖L1 6 ‖W − (W ′)ϕ‖Lp(λ2(A×A))1−1/p < ε(2M)2−2/p.
(5.19)

Moreover,

‖W1(A×A)c‖L1 6 ‖W1(IM×IM )c‖L1 (5.20)

and

‖(W ′)ϕ1(A×A)c‖L1 6 ‖(W ′)ϕ1(ϕ−1(IM )×ϕ−1(IM ))c‖L1 = ‖(W ′1(IM×IM )c)
ϕ‖L1

= ‖W ′1(IM×IM )c‖L1 . (5.21)
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Consequently, by the triangle inequality and (5.19)–(5.21),

δ1(W,W
′) 6 ‖W − (W ′)ϕ‖L1

< ε(2M)2−2/p + ‖W1(IM×IM )c‖L1 + ‖W ′1(IM×IM )c‖L1 . (5.22)

Letting first ε→ 0 and then M →∞, we obtain δ1(W,W
′) = 0. �

Theorem 5.6 has an important consequence. In order to state it generally,
let a property of a graphon be anything that is determined uniquely by the
graphon; i.e., any function Φ from the set of all graphons to some arbitrary
set X.

Theorem 5.8. Let Φ be a property of graphons such that Φ(W1) = Φ(W2)
whenever W1 and W2 are elementarily equivalent graphons. Then Φ(W ) =
Φ(W ′) whenever W and W ′ are two equivalent graphons, and consequently,
Φ is well-defined on the set of equivalence classes of graphons.

Proof. Obvious by Theorem 5.6(i) =⇒ (iv). �

Note that it does not matter whether the property depends continuously
on the graphon or not.

Example 5.9. We give some examples of applications of Theorem 5.8. In all
of them, it is immediately verified that two elementarily equivalent graphons
give the same result. In the first examples, the property Φ is binary (true
or false); the last examples are real parameters. Another example, with a
more complicated Φ, follows in the proof of Theorem 5.10.

(i) If the graphon W is a.e. non-negative, then so is every graphon equiv-
alent to W .

(ii) If the graphon W is a.e. [0, 1]-valued, then so is every graphon equiv-
alent to W .

(iii) For any p > 0, the Lp-norm ‖W‖Lp ∈ [0,∞] is the same for any
two equivalent graphons, and is thus well-defined for every equivalence
class of graphons.

(iv) Let h(p) := −p log p − (1 − p) log(1 − p) for p ∈ [0, 1], and define the
entropy of a [0, 1]-valued graphon W by

E(W ) :=

∫
S×S

h(W (x, y)) dµ(x) dµ(y) ∈ [0,∞]. (5.23)

Then E(W ) is the same for any two equivalent [0, 1]-valued graphons,
and is thus well-defined for every equivalence class of such graphons.

For the entropy (5.23) in the standard case of graphons on prob-
ability spaces, see e.g. [1], [18, Appendix D.2], [16] and the further
references given there. We leave it as an open problem whether results
in these references can be extended to the present setting, at least
under suitable conditions.

As another application, we obtain a new (simpler) proof of [4, Theorem
2.21]. (The statement is slightly expanded here.)

Theorem 5.10 ([4]). Let W1 and W2 be two graphons. Then the following
are equivalent.

(i) W1
∼= W2.
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(ii) The random graph processes (G̃t(W1))t>0 and (G̃t(W2))t>0 have the
same distribution, up to vertices that stay isolated for all t.

(iii) The random graph processes (Gt(W1))t>0 and (Gt(W2))t>0 have the
same distribution.

(iv) The random graphs G̃t(W1) and G̃t(W2) have the same distribution,
up to isolated vertices, for every t > 0.

(v) The random graphs Gt(W1) and Gt(W2) have the same distribution,
for every t > 0.

Note that a trivial extension of a graphon in general adds permanently
isolated vertices to G̃t, so the result would not be true without the provisions
for them in (ii) and (iv).

Proof. (i) =⇒ (ii). By Theorem 5.8 (taking Φ(W ) to be the distribution of

the process (G̃t(W ))t), it suffices to consider the case of two elementarily
equivalent graphons, which is obvious for both cases in Definition 5.5.

(ii) =⇒ (iii) =⇒ (v) and (ii) =⇒ (iv) =⇒ (v) are trivial.
(v) =⇒ (i). We can couple the random graphs for each fixed t such

that Gt(W1) = Gt(W2) a.s., and thus WGt(W1) = WGt(W2) a.s. Moreover,

(3.6) shows that δs�
(
WGt(Wi),Wi

)
→ 0 in probability as t→∞, for i = 1, 2.

Consequently,

δs�(W1,W2) = 0. (5.24)

This implies by (2.23) that W2
∼= Υu(W1) for some u > 0. Using (3.5) and

the assumption (v), this in turn implies

Gt(W1)
d
= Gt(W2)

d
= Gt(Υu(W1))

d
= Gu1/2t(W1). (5.25)

However, this equality implies (except in the trivial case W1 = 0) that u = 1,
for example by considering the expected number of edges, see (3.4). Hence
W2
∼= Υ1(W1) = W1. �

Example 5.11 (trivial extensions are necessary in Theorems 5.1 and 5.3).
Define W (x, y) := e−x−y1{x > 0}1{y > 0} for real x, y. Let a ∈ (0,∞] and
let S1 := [−a,∞), S2 := [0,∞), both with Lebesgue measure. Define the
graphons (W1, S1) and (W2, S2) by W1 = W and W2 = W . Then W1 is a
trivial extension of W2, and thus δ�(W1,W2) = 0. Nevertheless, there exists
no coupling (ϕ1, ϕ2) : S → (S1, S2) such that ‖Wϕ1

1 −W
ϕ2
2 ‖� = 0 and thus,

by (2.4), Wϕ1
1 = Wϕ2

2 a.e. In fact, suppose that such a coupling exists, and
let Di(x) :=

∫
Si
Wi(x, y) dλ(y), x ∈ Si. Then, for a.e. x ∈ S, since µϕi = λ,

Dϕ1
1 (x) =

∫
S1

W1(ϕ1(x), y) dλ(y) =

∫
S
W1(ϕ1(x), ϕ1(z)) dµ(z)

=

∫
S
Wϕ1

1 (x, z) dµ(z) =

∫
S
Wϕ2

2 (x, z) dµ(z) = Dϕ2
2 (x), (5.26)

where the final equality follows by symmetry. However,

µ{x ∈ S : Dϕ1
1 (x) = 0} = λ{y ∈ S1 : D1(y) = 0} = a, (5.27)

while, similarly, µ{x ∈ S : Dϕ2
2 (x) = 0} = 0. This is a contradiction.
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6. Completeness

Borgs, Chayes, Cohn and Holden [4, Corollary 2.13] show that the set of
(equivalence classes of) [0, 1]-valued graphons is complete for the δ� metric.
Their proof is based on their characterisation of compactness for ([0, 1]-
valued) graphons, see Section 7. We discuss completeness further in this
swection, and give a new, more direct, proof of their result; we also extend
the result somewhat. (Whether our proof is simpler or not is a matter of
taste and background.) We also investigate in more detail why a restriction
such as [0, 1]-valued is needed; the set of all graphons is not complete and
we give several examples that illustrate that.

6.1. Completeness for the cut norm. We begin by studying convergence
in the cut norm ‖ · ‖� for graphons on a fixed σ-finite measure space.

We say that a set A of integrable functions (possibly defined on different
measure spaces) is uniformly integrable if it satisfies

(UI1) supF∈A
∫
S |F |dµ <∞, and

(UI2) supF∈A
∫
|F |>B |F | dµ→ 0 as B →∞.

This is a standard notion for probability spaces, where furthermore (UI2)
implies (UI1). (For infinite measure spaces, the notion is much less used and
when used, the definitions vary between different authors.) Note also that
assuming (UI1), (UI2) is equivalent to

(UI2′) supE⊆S:µ(E)6δ supF∈A
∫
E |F | dµ→ 0 as δ → 0.

We say that a set A is semiuniformly integrable if it satisfies (UI2). (For
a finite measure space, semiuniformly integrable is thus equivalent to uni-
formly integrable, but in general it is weaker.)

Recall that a subset of a Banach space is relatively weakly compact if it is
a subset of a weakly compact set. Recall also that a set is relatively weakly
compact if and only if it is sequentially weakly compact, i.e., every sequence
in the set has a convergent subsequence. (The Eberlein–Šmulian theorem
[15, Theorem V.6.1].) Moreover, let (S, µ) be a σ-finite measure space, and
let Sn be an increasing sequence of subsets of S with finite measures such
that S =

⋃
n Sn. Then a subset A of L1(S, µ) is relatively weakly compact

if and only if (UI1)–(UI2) hold together with

(WC3) supF∈A
∫
S\Sn

|F |dµ→ 0 as n→∞.

This is (one form of) the Dunford–Pettis theorem; see [14, Theorem 3.2.6]
and [15, Theorem IV.8.9] for two slightly different formulations, and note
[15, Corollary IV.8.10].

The Dunford–Pettis theorem is perhaps best known in the case of a prob-
ability space. In that case, and more generally for any finite measure space
(S, µ), (WC3) is trivial; thus, the theorem then says that a subset of L1(S, µ)
is relatively weakly compact if and only it is uniformly integrable.

We say that a set A in a metric space is relatively complete if every Cauchy
sequence in A converges to some limit (which does not have to belong to A).
It is easy to see that A is relatively complete if and only if A is complete.

We now give our main result on completeness for the cut norm. Although
we only are interested in symmetric functions, the theorem and its proof
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hold for general (integrable) functions on a product S1 × S2; such functions
appear for example in the study of bipartite graphs.

Theorem 6.1. Let (S, µ) be a σ-finite measure space. Any uniformly inte-
grable set of graphons in L1(S2, µ2) is relatively complete for the cut norm.

Proof. Step 1: µ(S) < ∞. First, consider the case when (S, µ) is a finite
measure space. Let (Wn) be a Cauchy sequence for the cut norm, with {Wn}
uniformly integrable. By the comments before the theorem, the set {Wn} is
relatively weakly compact in L1(S × S), and thus sequentially weakly com-
pact; hence, there exists a subsequence W ′n = Wkn and some V ∈ L1(S×S)
such that W ′n → V weakly in L1(S×S) as n→∞. Clearly, V is symmetric
and thus a graphon.

In particular, whenever T,U ⊆ S,∫
T×U

W ′n dµ2 →
∫
T×U

V dµ2. (6.1)

Hence, for every m, recalling the definition (2.2),∣∣∣∫
T×U

(W ′m−V ) dµ2
∣∣∣ = lim

n→∞

∣∣∣∫
T×U

(W ′m−W ′n) dµ2
∣∣∣ 6 lim sup

n→∞
‖W ′m−W ′n‖�.

(6.2)
Taking the supremum over all measurable subsets T and U , we obtain

‖W ′m − V ‖� 6 lim sup
n→∞

‖W ′m −W ′n‖�. (6.3)

Since W ′n is a Cauchy sequence, the right-hand side of (6.3) tends to 0 as
m→∞, and thus ‖W ′m − V ‖� → 0.

We have shown that the original sequence has a subsequence that con-
verges to V for the cut norm. Since the sequence is Cauchy, the full sequence
(Wn) converges to the same limit, i.e., ‖Wn − V ‖� → 0 as n→∞.

Moreover, note that since W ′n → V weakly in L1,

‖V ‖L1 6 sup
n
‖W ′n‖L1 6 sup

n
‖Wn‖L1 . (6.4)

Step 2: µ(S) = ∞. In general, let S =
⋃
N SN , where SN is an increasing

sequence of subsets of S with finite measure. Let again (Wn) be a uniformly
integrable Cauchy sequence for the cut norm. Consider the restrictions

W
(N)
n := Wn|SN×SN

. Then

‖W (N)
m −W (N)

n ‖�,SN
= ‖Wm −Wn‖�,SN

6 ‖Wm −Wn‖�, (6.5)

and thus, for each N , (W
(N)
n )n is a Cauchy sequence for the cut norm on

SN ×SN . Furthermore, these restrictions are uniformly integrable, since the
graphons Wn are.

Hence, the first part applies to SN , and shows that for each N there exists
some graphon V (N) on SN such that

‖Wn − V (N)‖�,SN
= ‖W (N)

n − V (N)‖�,SN
→ 0 as n→∞. (6.6)

If M < N , then (6.6) implies ‖Wn − V (N)‖�,SM
→ 0 as n→∞, and

thus ‖V (M) − V (N)‖�,SM
= 0, so V (M) = V (N)|SM×SM

a.e. Consequently,
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there exists a symmetric measurable function V on S ×S such that V (N) =
V |SN×SN

a.e. for every N . Moreover, (6.4) implies that∫
S2
N

|V | =
∫
S2
N

|V (N)| 6 sup
n
‖W (N)

n ‖L1 6 sup
n
‖Wn‖L1 , (6.7)

which is finite by (UI1). Consequently, by monotone convergence,∫
S2

|V | 6 sup
n
‖Wn‖L1 <∞, (6.8)

and thus V is integrable and thus a graphon.
It remains to show that ‖Wn − V ‖� → 0. Let T,U ⊆ S, and let TN :=

T ∩ SN , UN := U ∩ SN . It follows from (6.6) that for any fixed N ,∣∣∣∫
TN×UN

(Wm − V )
∣∣∣ =

∣∣∣∫
TN×UN

(Wm − V (N))
∣∣∣ = lim

n→∞

∣∣∣∫
TN×UN

(Wm −Wn)
∣∣∣

6 lim sup
n→∞

‖Wm −Wn‖�. (6.9)

Letting N →∞, we see, by dominated convergence, that∣∣∣∫
T×U

(Wm − V )
∣∣∣ 6 lim sup

n→∞
‖Wm −Wn‖�, (6.10)

and taking the supremum over all T and U we obtain

‖Wm − V ‖� 6 lim sup
n→∞

‖Wm −Wn‖�, (6.11)

which tends to 0 as m→∞. �

Remark 6.2. In particular, a relatively weakly compact set in L1(S2, µ2)
is relatively complete for the cut norm. Moreover, a weakly compact set in
L1(S2, µ2) is complete for the cut norm ‖·‖�, since the argument in the first
part of the proof shows that a Cauchy sequence for the cut norm in a weakly
compact set converges to an element of that set. Note, however, that the
identity map is, in general, not continuous

(
L1(S2),weak

)
→
(
L1(S2), ‖·‖�

)
,

and that a weakly compact set does not have to be compact for the cut norm;
see Example 6.14.

Theorem 6.1 is related to Borgs, Chayes, Cohn and Zhao [5, Theorem
C.7], which shows that a uniformly integrable set of graphons on [0, 1] is
relatively compact (and thus relatively complete) for the cut metric, see
Corollary 7.16 below.

We assumed in Theorem 6.1 uniform integrability, i.e., (UI1) and (UI2).
None of these conditions suffices alone; Example 6.11 shows that (UI1) is
not enough and Example 6.12 shows that (UI2) is not enough for relative
completeness in the cut norm. However, if we consider only non-negative
graphons, then (UI2) suffices.

Theorem 6.3. Let (S, µ) be a σ-finite measure space. A semiuniformly
integrable set of non-negative graphons in L1(S2, µ2) is relatively complete
for the cut norm.
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Proof. If (Wn) is a Cauchy sequence for the cut norm on S, then
∫
S×SWn

converges; hence, if every Wn > 0, then

C1 := sup
n
‖Wn‖L1 = sup

n

∫
S×S

Wn <∞, (6.12)

so {Wn} satisfies (UI1). Consequently, if {Wn} also is semiuniformly in-
tegrable, then it is uniformly integrable and Theorem 6.1 implies that the
sequence converges. �

In particular, these results yield results for Lp-bounded sets of graphons.
(This too is related to results in [5, in particular Theorem 2.13] for the cut
metric in the case S = [0, 1].)

On a finite measure space, for example a probability space, it is well-
known, and easy to see by Hölder’s inequality, that a set that is bounded in
Lp for some p > 1 is uniformly integrable, and thus Theorem 6.1 applies; thus
the set is relatively complete for the cut norm. In particular, a uniformly
bounded set of graphons on a finite measure space is relatively complete
for the cut norm. This fails for infinite measure spaces, see Examples 6.12
and Example 6.13. Nevertheless, an Lp-bounded set, for 1 < p 6 ∞, is
semiuniformly integrable, which leads to the following results. (We shall see
in Example 6.11 that the results do not hold for p = 1.)

Theorem 6.4. Let (S, µ) be a σ-finite measure space. Let 1 < p 6∞ and
C <∞ and letW(p, C) be the set of graphons W on (S, µ) with ‖W‖Lp 6 C.

(i) The set of non-negative graphons in W(p, C) is complete for the cut
norm. Hence, a set of non-negative graphons on S that is bounded in
Lp is relatively complete for the cut norm.

In particular, the set of [0, 1]-valued graphons on S is complete for
the cut norm.

(ii) If C1 < ∞, then the set of graphons W in W(p, C) such that also
‖W‖L1 6 C1 is complete for the cut norm. Hence, a set of graphons
on S that is bounded in both L1 and Lp is relatively complete for the
cut norm.

(iii) If µ is a finite measure, then W(p, C) is complete for the cut norm.
Hence, a set of graphons on a finite measure space that is bounded in
Lp is relatively complete for the cut norm.

Before giving the proof, we give a simple lemma. It is certainly known,
but we have not found an explicit reference so for completeness, we give a
proof. (Part (ii) follows in the case S = [0, 1] from the more advanced [5,
Theorem 2.13], and the proof uses similar ideas as there.)

Lemma 6.5. Let (S, µ) be a σ-finite measure space and let Wn and W be
graphons on S such that ‖Wn −W‖� → 0 as n→∞.

(i) If each Wn > 0, then W > 0 a.e.
(ii) If 1 6 p 6∞ and each Wn ∈ Lp(S, µ), then ‖W‖Lp 6 supn ‖Wn‖Lp.

In other words, the set of non-negative graphons on S and, for any p > 1
and C, the set of graphons W on S with ‖W‖Lp 6 C are closed for the cut
norm.
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Proof. First, consider the case when (S, µ) is a probability space. There
exists a sequence (Ai)

∞
i=1 of measurable subsets of S such that if F∞ is the

σ-field generated by {Ai}, then W is (F ×F)-measurable; see e.g. the proof
of [18, Lemma 7.3].

Let FN be the sub-σ-field generated by {A1, . . . , AN}. Then FN × FN
is an increasing sequence of σ-fields on S × S and their union generates
F∞ ×F∞, so the martingale limit theorem yields

E
(
W | FN ×FN

) a.s.−→ E
(
W | F∞ ×F∞

)
= W as N →∞. (6.13)

Furthermore, each FN is finite, and generated by some partition PN :=
{BNj : 1 6 j 6 mN} of S. The conditional expectation E

(
W | FN ×FN

)
is

constant on each “rectangle” BNi×BNj , and equals there, provided the rec-
tangle has positive measure, the average (µ(BNi)µ(BNj))

−1 ∫
BNi×BNj

W dµ2.

The same holds for each Wn, and consequently, the assumption ‖Wn −
W‖� → 0 implies that

E
(
Wn | FN ×FN

) a.s.−→ E
(
W | FN ×FN

)
as n→∞, (6.14)

for each fixed N .
For (i), we note that if Wn > 0, then E

(
Wn | FN × FN

)
> 0 and thus

(6.14) and (6.13) yield W > 0 a.s. Similarly, for (ii), if C := supn ‖Wn‖Lp ,
then ‖E

(
Wn | FN × FN

)
‖Lp 6 C and (6.14) and (6.13) yield ‖W‖Lp 6 C,

using Fatou’s lemma twice if p <∞ (and directly if p =∞).
This completes the proof if µ(S) = 1. If µ(S) < ∞, we replace µ by

µ/µ(S) and the result follows from the case just treated.
In general, S =

⋃
m Sm, where Sm is an increasing sequence of subsets

with finite measure. Since ‖Wn − W‖� → 0 implies ‖Wn − W‖�,Sm →
0, it follows from the finite measure case that for every m, in case (i),
W > 0 a.e. on Sm × Sm and in case (ii), ‖W‖Lp(Sm) 6 supn ‖Wn‖Lp(Sm) 6
supn ‖Wn‖Lp . The conclusions follow, for (ii) using monotone convergence
when p <∞. �

Proof of Theorem 6.4. Note first that, as said above, W(p, C) is semiuni-
formly integrable. In fact, if 1 < p < ∞ and W ∈ W(p, C), then we have∫
|W |>B |W | dµ 6 B

1−pCp and (UI2) follows; if p =∞, take B = C in (UI2).

(i): The set of non-negative graphons in W(p, C) is relatively complete
by Theorem 6.3 and closed by Lemma 6.5. Hence the set is complete.

For the final sentence, note that the set of [0, 1]-valued graphons equals
the set of non-negative graphons in W(∞, 1).

(ii): The setW(p, C)∩W(1, C1) of graphons W on S such that ‖W‖Lp 6
C and ‖W‖L1 6 C1 is uniformly integrable, since (UI1) is assumed and
(UI2) follows from the Lp-bound as seen above. Hence,W(p, C)∩W(1, C1) is
relatively complete for the cut norm by Theorem 6.1. Furthermore,W(p, C)
and W(1, C1) are closed by Lemma 6.5(ii). Hence, W(p, C) ∩ W(1, C1) is
complete.

(iii): If µ is a finite measure, then W(p, C) is L1-bounded by Hölder’s
inequality, and thus, as said before the theorem, W(p, C) is uniformly inte-
grable. Hence the result follows by Theorem 6.1 and Lemma 6.5, or from
(ii). (Alternatively, it follows that W(p, C) is weakly compact in L1; hence
the result follows by Remark 6.2.) �
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6.2. Completeness for the cut metric. It is time to turn to our main
interest, the cut metric δ� defined in Section 2.4. We repeat that part
(iv) of the following theorem was originally proved in [4, Corollary 2.13].
Furthermore, for the special case of graphons on [0, 1], (i) follows from Borgs,
Chayes, Cohn and Zhao [5, Theorem C.7], and (iii) and (v) follow from
[5, Theorem 2.13]. (These theorems in [5] show much stronger results on
compactness, see Corollaries 7.16–7.17 below.)

Theorem 6.6. (i) Any uniformly integrable set of graphons is relatively
complete for the cut metric.

(ii) A semiuniformly integrable set of non-negative graphons is relatively
complete for the cut metric.

(iii) If 1 < p 6 ∞ and C < ∞, then the set of non-negative graphons
W with ‖W‖Lp 6 C is complete for the cut metric. Hence, a set of non-
negative graphons that is bounded in Lp is relatively complete for the cut
metric.

(iv) The set of [0, 1]-valued graphons is complete for the cut metric.
(v) If 1 < p 6 ∞ and C,C1 < ∞, then the set of graphons W with

‖W‖Lp 6 C and ‖W‖L1 6 C1 is complete for the cut metric. Hence, a set
of graphons that is bounded in both L1 and Lp is relatively complete for the
cut metric.

We first prove a general lemma that will enable us to reduce various parts
to the corresponding claims for the cut norm.

Lemma 6.7. Suppose that (Wn) is a sequence of graphons that is a Cauchy
sequence for the cut metric. Then there exists a sequence (W ′n) of graphons
on R+ with Wn

∼= W ′n such that (W ′n) is a Cauchy sequence for the cut norm
‖ · ‖�,R+.

Proof. By Proposition 2.3, we may replace the graphons by equivalent graphons
on (R+, λ), and we may thus assume that every Wn is defined on R+.

First, suppose that δ�(Wn,Wn+1) < 2−n for all n. By Proposition 2.4,
this implies the existence of measure-preserving bijections ϕn : R+ → R+

such that

‖Wn −Wϕn
n+1‖� < 2−n. (6.15)

Let ψn := ϕn−1◦· · ·◦ϕ1 (with ψ1 the identity); this is a measure-preserving

bijection R+ → R+. Then ψn+1 = ϕn ◦ ψn, and thus W
ψn+1

n+1 = Wϕn◦ψn
n+1 =

(Wϕn
n+1)

ψn . Hence, (6.15) implies

‖Wψn
n −Wψn+1

n+1 ‖� = ‖Wψn
n − (Wϕn

n+1)
ψn‖� = ‖(Wn −Wϕn

n+1)
ψn‖�

= ‖Wn −Wϕn
n+1‖� < 2−n. (6.16)

Consequently, the sequence (Wψn
n ) is a Cauchy sequence for the cut norm

‖ · ‖� on R+, so we may take W ′n := Wψn
n .

In general, we can select a subsequence nk such that

δ�
(
Wnk

,Wm

)
< 2−k for all k > 1 and m > nk. (6.17)

In particular, δ�(Wnk
,Wnk+1

) < 2−k, so the case just treated applies to
the subsequence (Wnk

) and shows the existence of graphons W ′nk
∼= Wnk
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defined on R+ such that ‖W ′nk
−W ′nk+1

‖� < 2−k. Moreover, for any m ∈
(nk, nk+1), (6.17) implies δ�(W ′nk

,Wm) = δ�(Wnk
,Wm) < 2−k, and thus

Proposition 2.4 shows that there exists a measure-preserving bijection ϕm
such that ‖W ′nk

−Wϕm
m ‖� < 2−k; let W ′m := Wϕm

m . It follows that (W ′n) is
a Cauchy sequence for the cut norm. (Actually, for our purposes it would
be enough to consider the subsequence W ′nk

; the full statement and the last
part of the proof is only for completeness.) �

We also need a version of Lemma 6.5 for the cut metric.

Lemma 6.8. Let Wn and W be graphons such that δ�(Wn,W ) → 0 as
n→∞.

(i) If each Wn > 0, then W > 0 a.e.
(ii) If each Wn ∈ Lp(S, µ), then ‖W‖Lp 6 supn ‖Wn‖Lp.

In other words, the set of non-negative graphons and, for any C, the set of
graphons W with ‖W‖Lp 6 C are closed for the cut metric.

Proof. As above, by Proposition 2.3, we may replace the graphons by equiva-
lent graphons on (R+, λ), and assume thatW and everyWn is defined on R+,
using also Example 5.9(i)(iii). By Proposition 2.4, this implies the existence
of pull-backs W ′n := Wϕn

n
∼= Wn such that ‖W−W ′n‖� < δ�(W,Wn)+1/n→

0 as n→∞. Now apply Lemma 6.5. �

Remark 6.9. By considering suitable subsequences, it follows that the con-
clusion in Lemma 6.8(ii) can be improved to ‖W‖Lp 6 lim infn ‖Wn‖Lp .

Proof of Theorem 6.6. (i): Suppose that (Wn) is a sequence of graphons
(possibly defined on different measure spaces) that is uniformly integrable
and a Cauchy sequence for the cut metric.

By Lemma 6.7, there exist W ′n
∼= Wn such that W ′n are defined on R+ and

the sequence (W ′n) is a Cauchy sequence for the cut norm ‖·‖� on R+. Note
that replacing Wn by the equivalent W ′n preserves uniform integrability; this
follows from Theorem 5.8 applied to (UI1) and (UI2) with explicit bounds.

Hence, Theorem 6.1 shows that there exists a graphon W on R+ such
that W ′n converges to W in cut norm as n→∞. This implies

δ�(Wn,W ) 6 ‖W ′n −W‖� → 0 as n→∞, (6.18)

and thus Wn →W in the cut metric.
(ii): Argue as in the proof of (i), now using Theorem 6.3.
(iii): Argue as in the proof of (i), now using Theorem 6.4(i) and Lemma 6.8.

(Alternatively, note that (6.12) holds in this case too, and use (v).)
(iv): This is just a special case of (iii).
(v): The set is uniformly integrable, as seen in the proof of Theorem 6.4,

so it is relatively complete for the cut metric by (i). Moreover, the set is
closed by Lemma 6.8. (Alternatively, one could use Theorem 6.4(ii).) �

Theorem 6.6 is our main result about completeness. Note, however, that
the conditions there are not necessary. In particular, as shown in Exam-
ple 6.15, (semi)uniform integrability is not necessary for convergence and
completeness in cut metric.

On the other hand, some conditions are needed, and we give a number
of (counter) examples to illustrate that. In particular, Example 6.11 shows



28 SVANTE JANSON

that the set of all non-negative graphons is not complete, and also that
Theorem 6.6(iii) does not hold for p = 1; furthermore, Example 6.12 shows
that Theorem 6.6(ii) and (iii) do not hold without the assumption that the
graphons are non-negative, even if we assume uniform boundedness (i.e.,
p =∞).

Remark 6.10. For a given measure space (S, µ), the cut norm is equivalent
to the injective tensor product norm in L1⊗̌L1, which is given by taking
the supremum over all g, h : S → [−1, 1] in (2.5), see e.g. [25, Chapter
3] or [18, Remark 4.2]. Hence every Cauchy sequence for the cut norm
converges in the completed injective tensor product L1(S)⊗̌L1(S). However,
the limit may lie outside L1(S × S). In fact, L1(S × S) is a dense subspace
of L1(S)⊗̌L1(S), but typically (e.g. for S = [0, 1] or R+) the norms are
not equivalent, as is witnessed e.g. by Vn in Example 6.12 below, and thus
L1(S×S) ( L1(S)⊗̌L1(S). Hence there exists Cauchy sequences for the cut
norm (and thus also for the cut metric) with limits not in L1(S × S). It is
also easy to see that such sequences can be made symmetric, i.e., graphons.

On an abstract level, the failure of completeness in general for the cut
norm is thus almost obvious. The examples below give some simple concrete
examples. (In these examples, the Cauchy sequences thus have limits in
L1(S)⊗̌L1(S) \ L1(S × S).)

See further e.g. [25] and note, in contrast, that the completed projective
tensor product L1(S)⊗̂L1(S) equals L1(S × S).

One might be tempted to extend the definition of graphons to include all
symmetric elements of L1(S)⊗̌L1(S). However, we doubt that this is useful.
In particular, we do not see any way to define random graphs generalizing
the construction in Section 3.2 unless W is a function.

We say that a graphon W on S = [0, 1] or R+ is a step graphon if there is
a partition of S into a finite number of intervals Ii (the steps) such that W
is constant on each Ii×Ij . (Note that the definition in [18] is more general.)

Example 6.11 (An L1-bounded set of non-negative graphons on [0, 1] that
is not relatively complete). This example is essentially the same as Borgs,
Chayes, Cohn and Zhao [5, Proposition 2.12b] but stated differently; for
completeness we give full details.

Note that for each n > 1 there exists a step graphon Un on [0, 1] with
steps of equal measure, values in {0, 1}, and∫

Un = 1
2 , ‖Un − 1

2‖� < 4−n. (6.19)

One way to see this is to consider the Erdős–Rényi random graphG(N,M)
with M = N2/4 for large even N . Then, as N →∞, the graphon WG(N,M)

converges in probability to the constant graphon 1
2 . Consequently, we may

take Un = WG where G is a realization of G(N,N2/4) for some large
N = N(n). (If N is chosen large enough, most realizations will do.) Alterna-
tively we may take WG where G is a realization of G(N, 12), or a sufficiently
large deterministic quasi-random graph such as a Paley graph, adjusted (ar-
bitrarily) to have exactly N2/4 edges.

We construct inductively a sequence of step graphons Wn on [0, 1], with
values in {0, 2n}. Let W0 = 1. Given Wn, denote its steps by In,i. On each
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rectangle (actually square) In,i × In,j where Wn is non-zero, and thus equal
to 2n, let Wn+1 be a scaled copy of 2n+1Un+1; on the other rectangles, where
Wn = 0, let Wn+1 = 0. In other words: Let Un have mn steps of length m−1n ,
and let Mn :=

∏n
i=1mi. Then, let Ūn(x, y) := Un({Mn−1x}, {Mn−1y}) and

Wn := 2n
∏n
j=1 Ūj .

It is easily seen that ‖Wn−Wn+1‖� < 2−n, so (Wn) is a Cauchy sequence
for the cut norm, and thus for the cut metric. However, Wn does not
converge in the cut metric (and thus also not in the cut norm). To see this,
suppose that δ�(Wn,W )→ 0 for some graphon W . Then W > 0 a.e. We do
not assume that W is defined on [0, 1], but we may and shall assume that is
defined on R+, see Proposition 2.3. We also extend each Wn trivially to R+,
adding another step In,0 = (1,∞). Then, by Proposition 2.4, there exist
measure-preserving bijections ϕn : R+ → R+ such that ‖Wn −Wϕn‖� <
δ�(Wn,W ) + 1/n→ 0.

For any N > 1, on each rectangle IN,i × IN,j where WN = 0, we have
Wn = 0 for all n > N . Call such rectangles good (for N). Then, on each
good rectangle Q = IN,i × IN,j , for n > N ,∫

Q
Wϕn =

∫
Q

(Wϕn −Wn) 6 ‖Wϕn −Wn‖� → 0. (6.20)

Let AN be the union of all good rectangles for a given N , and let BN :=
R2
+ \ AN ; note that λ2(BN ) = 2−N since 1 =

∫
WN = 2Nλ2(BN ). Given

any ε > 0, we can find N such that if B is a set with λ2(B) < 2−N , then∫
BW < ε. This implies that

∫
BN

Wϕn =
∫
ϕn⊗ϕn(BN )W < ε for every n.

Furthermore, (6.20) implies that
∫
AN

Wϕn → 0 as n→∞. Since∫
R2
+

W =

∫
R2
+

Wϕn =

∫
AN

Wϕn +

∫
BN

Wϕn , (6.21)

it follows by letting n→∞ that
∫
R2
+
W 6 ε. Since ε is arbitrary, this implies∫

W = 0 (and thus W = 0 a.e.).
On the other hand, we have

∫
Wn = 1 for each n, and it follows from

δ�(Wn,W )→ 0 that
∫
W = 1, a contradiction.

This shows that (Wn) is a Cauchy sequence for the cut metric that does
not converge.

Note that ‖Wn‖L1 = 1, so this example shows that we cannot take p = 1
in Theorem 6.4(i)–(iii) or Theorem 6.6(iii),(v).

Example 6.12 (the set of [−1, 1]-valued graphons on R+ is not complete).
Let S = R+. For n > 1, let Vn be a graphon on [0, 1] with values in {±1},
and thus ‖Vn‖L1 = 1, such that ‖Vn‖� < 2−n. For example, we can take
Vn := 2Un − 1 with Un as in Example 6.11.

Let Ṽn(x, y) := V (x − n + 1, y − n + 1) when (x, y) ∈ (n − 1, n]2 and 0

otherwise, i.e., Ṽn is Vn translated to (n−1, n]2. Finally, let Wn :=
∑n

k=1 Ṽk.
Then

‖Wn −Wn−1‖� = ‖Ṽn‖� = ‖Vn‖� < 2−n, (6.22)

and thus (Wn) is a Cauchy sequence for the cut norm.
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However, there is no graphon W such that ‖Wn −W‖� → 0. In fact,
suppose that this holds for some W . Then, for any integer N ,

‖Wn −W‖�,[0,N ] = ‖(Wn −W )1[0,N ]2‖� 6 ‖Wn −W‖� → 0 (6.23)

as n→∞. On the other hand, for N > n, Wn = WN on [0, N ]2. Hence,
‖WN −W‖�,[0,N ] = 0, and thus W = WN a.e. on [0, N ]2. Consequently,∫

[0,N ]2
|W | =

∫
[0,N ]2

|WN | =
N∑
k=1

∫
[0,N ]2

|Ṽk| = N. (6.24)

Letting N →∞, we see that
∫
|W | =∞, which contradicts our assumption

that W is a graphon and thus integrable. Consequently, the uniformly
bounded Cauchy sequence (Wn) does not converge in the cut norm.

We have so far considered the cut norm; we now show that the same
properties hold for the cut metric. It follows from (6.22) that (Wn) also is
a Cauchy sequence for the cut metric.

Suppose that δ�(Wn,W ) → 0 for some graphon W . We may suppose
that W too is defined on R+. Then, by Proposition 2.4, there exist measure-
preserving bijections ϕn : R+ → R+ such that

‖Wn −Wϕn‖� < δ�(Wn,W ) + 1/n→ 0 (6.25)

as n→∞. Taking the restrictions to [0, N ] × [0, N ], we see that for any
n > N ,

‖WN−Wϕn |[0,N ]×[0,N ]‖� = ‖(Wn−Wϕn)|[0,N ]×[0,N ]‖� 6 ‖Wn−Wϕn‖� → 0
(6.26)

and thus, by Lemma 6.5(ii), for every N > 1,

‖WN‖L1 6 sup
n
‖Wϕn |[0,N ]×[0,N ]‖L1 6 sup

n
‖Wϕn‖L1 = ‖W‖L1 . (6.27)

However, ‖WN‖L1 = N by (6.24), a contradiction.
Consequently, (Wn) is also for the cut metric a Cauchy sequence that

does not converge.

Example 6.13 (An Lp-bounded set that is not relatively complete). Let

Vn be as in Example 6.12 and let V ∗n := 2−2nΥ
(2)
22n

(Vn), see (2.19). Define

now Ṽn(x, y) := V ∗n (x − 2n, y − 2n) on (2n, 2n+1]2 and 0 elsewhere, and let

again Wn :=
∑n

k=1 Ṽk. We have, as in (6.22),

‖Ṽn‖� = ‖V ∗n ‖� = 2−2n‖Υ(2)
22n

(Vn)‖� = ‖Vn‖� < 2−n. (6.28)

Furthermore, for any p > 1,∫
|Ṽn|p =

∫
|V ∗n |p = 2−2pnλ([0, 2n])2 = 22(1−p)n; (6.29)

in particular, ‖Ṽn‖L1 = 1, and the same argument as in Example 6.12 (now
using [0, 2N+1]2) shows that (Wn) is a Cauchy sequence in cut norm and cut
metric that does not converge to any graphon.

Moreover, for any p > 1, by (6.29),∫
|Wn|p =

n∑
k=1

∫
|Ṽk|p 6

∞∑
k=1

2−2(p−1)n <∞, (6.30)
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and thus the sequence (Wn) is Lp-bounded for every p > 1.

Example 6.14 (weak convergence does not imply convergence in cut norm
or cut metric). Let hn := sgn(sin(2nπx)) on S = [0, 1] (the Rademacher
functions). Define

Wn(x, y) :=


hn(x), 0 < x < 1

2 < y < 1,

hn(y), 0 < y < 1
2 < x < 1,

0, otherwise.

(6.31)

Then hn → 0 weakly in L1([0, 1]) as n→∞, and it follows easily that
Wn → 0 weakly in L1(S2). However, if Tn := {x ∈ (0, 12) : hn(x) > 0}, then

‖Wn − 0‖� = ‖Wn‖� >
∫
Tn×( 12 ,1)

Wn =
1

8
. (6.32)

Hence Wn 6→ 0 in the cut norm.
Moreover, it is easily seen that for n > 2, Wn is the pull-back Wϕn

2 of W2

by the measure-preserving map ϕn defined by ϕn(x) = 1
2{2

n−1x} for x 6 1
2 ,

ϕ(x) = x for x > 1
2 . Hence, Wn

∼= W2 and, trivially, Wn → W2 6= 0 for the
metric δ�. Consequently, Wn 6→ 0 also for the cut metric δ�.

It follows that the set {Wn}n>1∪{0} is weakly compact, but discrete and
thus not compact for both the cut norm and the cut metric.

We can get a similar example with [0, 1]-valued graphons by considering

W̃n := (Wn + 1)/2.

Example 6.15 (uniform integrability is not necessary I). Similarly to the
construction of Un in Example 6.11, we can for each n find a step graphon
Vn on [0, 1] with steps of equal measure, values in {0, 1}, and

‖Vn − 1
n‖� < 4−n. (6.33)

For example, we can take Vn as WG for a realization of G(N, 1/n) for a
sufficiently large N = N(n).

If we further define Wn := nVn, then by (6.33), Wn is {0, n}-valued and

‖Wn − 1‖� < n4−n < 2−n. (6.34)

Hence, Wn → 1 as n→∞ for the cut norm, and thus also for the cut metric.
However, since Wn is {0, n}-valued, for any B and all n > B,∫

Wn>B
Wn =

∫
[0,1]2

Wn → 1, (6.35)

where we also used (6.34). Hence, (UI2) does not hold for {Wn}, so the set
is not uniformly integrable, and not even semiuniformly integrable.

Consequently, the set {Wn}n>1 ∪ {1} is compact and complete for both
the cut norm on [0, 1] and the cut metric, but not uniformly integrable.

Note that in this example, the graphons are all non-negative and defined
on [0, 1], but unbounded.

Example 6.16 (uniform integrability is not necessary II). We obtain a
related example, where the graphons are [−1, 1]-valued but defined on R+,
by letting Vn be as in Example 6.12 and taking the stretched graphons

Wn := Υ
(2)
n Vn. Then, cf. (2.20), ‖Wn‖L1 = n and ‖Wn‖� < n2−n, so
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Wn → 0 in cut norm and thus in cut metric, but Wn is not uniformly
integrable, since (UI1) does not hold.

Note that in this example, in contrast to Example 6.15, the graphons are
uniformly bounded, but take negative values and are defined on an infinite
measure space.

Remark 6.17. We cannot combine the assertions of Examples 6.15 and
6.16. First, a uniformly bounded set of graphons defined on [0, 1] is automat-
ically uniformly integrable. Secondly, a sequence of non-negative graphons
that converges in the cut norm or cut metric is bounded in L1; hence, if it
also is uniformly bounded, then it is uniformly integrable.

6.3. Completeness for δ1 and δp. Our main interest is the cut metric δ�,
but we also give a simple corresponding result for δ1 and δp.

Theorem 6.18. (i) The set of all graphons is complete for the metric δ1.
(ii) For any p > 1, and any C < ∞, the set of non-negative graphons W

in Lp such that ‖W‖L1 6 C is complete for the metric δp.

Proof. Both parts follow by the same argument as in the proof of Theo-
rem 6.6, using [4, Remark 4.4] to see that a δp-version of Lemma 6.7 holds
for p > 1, and (instead of Theorem 6.1) the fact that L1(R2

+) and Lp(R2
+)

are complete; for (ii) also the fact that if Wn → W in Lp and ‖Wn‖L1 6 C
for all n, then ‖W‖L1 6 C. �

The L1-boundedness in (ii) is necessary in general, as is seen by the fol-
lowing example.

Example 6.19 (the set of non-negative graphons is not complete for δp,
p > 1). Let f(x) := 1/(x+1) and define the graphon W on R+ by W (x, y) :=
f(x)f(y). Let further Wn := W1[0,n]2 . Then, for every p > 1, f ∈ Lp(R+)

and thus W ∈ Lp(R2
+) and Wn → W in Lp, and thus in δp. Hence (Wn)

is a Cauchy sequence of graphons for δp. However, W /∈ L1, so W is not
a graphon. Furthermore, Wn cannot have any other limit V that is a non-
negative graphon. To see this, suppose that V is a non-negative graphon
and that δp(Wn, V )→ 0. We may, as usual, assume that V is defined on R+.
By [4, Proposition 4.3(c) and Remark 4.4], there exist measure-preserving
bijections ϕn : R+ → R+ such that ‖Wn − V ϕn‖Lp → 0. Consequently,

‖W − V ϕn‖Lp 6 ‖W −Wn‖Lp + ‖Wn − V ϕn‖Lp → 0 (6.36)

as n→∞. Hence V ϕn →W in Lp, but this implies

‖W‖L1 6 sup
n
‖V ϕn‖L1 = ‖V ‖L1 <∞, (6.37)

a contradiction.

Remark 6.20. If we only consider non-negative Lp graphons on probability
spaces as in [5], then the set of all of them is complete for δp, for any p > 1;
this follows since a Cauchy sequence (Wn) has

sup
n
‖Wn‖L1 6 sup

n
‖Wn‖Lp = sup

n
δp(Wn, 0) <∞ (6.38)

and thus Wn converges by Theorem 6.18(ii).
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7. Compactness

Borgs, Chayes, Cohn and Holden [4, Theorem 2.12] prove a partial char-
acterisation of relatively compact sets for the cut metric. Their theorem is
stated in terms on convergent (sub)sequences, but it implies immediately
a statement on relative compactness, viz. the case of uniformly bounded
graphons in Theorem 7.7 below. (In fact, [4, Theorem 2.12] is equivalent
to this compactness result together with the completeness result in Theo-
rem 6.6(iv).)

We give a new proof of their result and extend it in several ways; in par-
ticular, we give extensions from uniformly bounded to uniformly integrable
graphons, and from non-negative to signed graphons. (Recall, however, that
uniform integrability is not needed for convergence, and thus not for com-
pactness, not even for graphons on [0, 1], see Example 6.15.)

We begin with some definitions.
We say, as in [4, Definition 2.11] that a set W of graphons has uniformly

regular tails if for every ε > 0, there exists M < ∞ such that for every
graphon (W,S, µ) ∈ W, there exists a set U ⊆ S such that µ(U) 6M and

‖W −W1U×U‖L1 < ε. (7.1)

Similarly, we say that a set W of graphons has uniformly cut regular tails if
for every ε > 0, there exists M <∞ such that for every graphon (W,S, µ) ∈
W, there exists a set U ⊆ S such that µ(U) 6M and

‖W −W1U×U‖� < ε. (7.2)

I.e., we relax the L1-norm in (7.1) to the cut norm. For non-negative
graphons the two notions are equivalent, as shown in the following simple
lemma. (Example 7.11 shows that the notions differ in general.)

Lemma 7.1. (i) Any set of graphons with uniformly regular tails has uni-
formly cut regular tails.

(ii) A set of non-negative graphons has uniformly regular tails if and only
if it has uniformly cut regular tails.

Proof. (i): By (2.3).
(ii): If W > 0, then also W −W1U×U > 0 and thus ‖W −W1U×U‖� =

‖W −W1U×U‖L1 . �

We say that a set W of graphons is upper cut regular if for every ε > 0,
there exists B <∞ such that for every graphon (W,S, µ) ∈ W, there exists
a graphon V on S such that |V | 6 B and

‖W − V ‖� < ε. (7.3)

Note that the corresponding notion with ‖ · ‖L1 in (7.3) is equivalent to
(UI2). Hence a semiuniformly integrable set is upper cut regular.

Remark 7.2. Borgs, Chayes, Cohn and Zhao [5, Definition C.2] give, for
graphons on [0, 1], a definition of what they call uniformly upper regular
sequences of graphons and use this for (essentially) a characterisation of
sequential compactness in [5, Theorems C.13 and C.5]. Our definition of
upper cut regular is quite different, but it is used for a similar purpose. It
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seems interesting to investigate the relation between these notions, but we
have not yet done so, and leave it as an open problem.

Recall that if A is a set in a metric space (X, d), then an ε-net for A is a
subset Y ⊆ X such that for every x ∈ A there exists y ∈ Y with d(x, y) < ε.
The set A is totally bounded if for every ε > 0 there exists a finite ε-net for
A. (We may here further assume that the ε-net is a subset of A, but we find
it more convenient not to do so.) Recall also that A is compact if and only
if it is complete and totally bounded; it follows that A is relatively compact
if and only if it is relatively complete and totally bounded.

We can now characterise totally bounded sets of graphons. Note that
condition in (iii) below is a combination of the two conditions in (ii).

Theorem 7.3. Let W be a set of graphons. Then the following are equiva-
lent.

(i) W is totally bounded for the cut metric.
(ii) W is upper cut regular and has uniformly cut regular tails.
(iii) For every ε > 0 there exists M < ∞ and B < ∞ such that for every

graphon (W,S, µ) ∈ W there exists a set U ⊆ S with µ(U) 6M and a
graphon V on S such that |V | 6 B1U×U and ‖W − V ‖� < ε.

We postpone the proof to the next section, and give first some conse-
quences of the theorem. We consider two different simplifying assumptions
in the following two subsections.

7.1. Compactness, the semiuniformly integrable case. In this sub-
section, we consider for simplicity only sets of graphons that are semiuni-
formly integrable, for example sets that are uniformly integrable or uni-
formly bounded. Such sets are always upper cut regular, as said above,
since we may take V := W1|W |6B in (7.3) for some large B. Hence, Theo-
rem 7.3 implies the following.

Corollary 7.4. A semiuniformly integrable set W of graphons is totally
bounded for the cut metric if and only if it has uniformly cut regular tails. �

We combine Corollary 7.4 with results on completeness in Section 6 to
obtain results on compactness.

Theorem 7.5. A uniformly integrable set of graphons is relatively compact
for the cut metric if and only if it has uniformly cut regular tails.

Proof. By Theorem 6.6(i) and Corollary 7.4. �

Theorem 7.6. A semiuniformly integrable set of non-negative graphons is
relatively compact for the cut metric if and only if it has uniformly cut
regular tails.

Proof. By Theorem 6.6(ii) and Corollary 7.4. �

Borgs, Chayes, Cohn and Holden [4, Theorem 2.12] give a similar result
(for uniformly bounded graphons) using uniformly regular tails instead of
uniformly cut regular tails; we obtain a (reformulation of) their result as a
corollary, where we furthermore extend their result from uniformly bounded
graphons to semiuniformly integrable graphons.
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Theorem 7.7 (Mainly [4, Theorem 2.12]). Let W be a semiuniformly in-
tegrable set of graphons. (For example a uniformly bounded set, or a set
bounded in Lp for some p > 1.)

(i) If W has uniformly regular tails, then W is relatively compact for the
cut metric.

(ii) The converse holds if all graphons in W are non-negative.

We prove first a simple lemma.

Lemma 7.8. A set of graphons that is semiuniformly integrable and has
uniformly regular tails is uniformly integrable.

Proof. Denote the set by W. By the definition (UI2) of semiuniformly in-
tegrable, there exists B < ∞ such that

∫
|W |>B |W | < 1 for every W ∈ W.

Furthermore, take ε = 1 in the definition of uniformly regular tails. Thus,
there exists M < ∞ such that if W ∈ W is defined on (S, µ), then there
exists U ⊆ S with µ(U) 6M and ‖W −W1U×U‖L1 < 1. Consequently,

‖W‖L1 = ‖W −W1U×U‖L1 +

∫
U×U

|W |

6 1 +

∫
|W |>B

|W |+
∫
U×U

B 6 1 + 1 +M2B. (7.4)

Hence, (UI1) holds, so W is uniformly integrable. �

Proof of Theorem 7.7. (i): By Lemma 7.8, W is uniformly integrable, and
W has uniformly cut regular tails, so W is relatively compact by Theo-
rem 7.5.

(ii): If W is relatively compact, then it is totally bounded, and Theo-
rem 7.3 shows that it has uniformly cut regular tails, and the result follows
by Lemma 7.1(ii). �

Example 7.9 below shows that a semiuniformly integrable set of graphons
with uniformly cut regular tails does not have to be relatively compact.
Note that Theorems 7.5, 7.6 and 7.7(i) strengthen the assumption in three
different ways (uniformly integrable, non-negative and uniformly regular
tails, respectively), and that we thus need these stronger assumptions.

Furthermore, Example 7.10 shows that uniform integrability is not enough
to imply relative compactness, even for [0, 1]-valued graphons; hence the first
condition in Theorems 7.5–7.7 does not suffice to imply the other conditions.

Example 7.11 shows that a compact set of signed graphons does not have
to have uniformly regular tails, so Theorem 7.7(ii) does not hold without
assuming non-negativity.

Example 7.9 (A semiuniformly integrable set with uniformly cut regular
tails that is not relatively compact). The sequence (Wn) in Example 6.12 is
a Cauchy sequence for the cut metric, and thus it is totally bounded; hence it
has uniformly cut regular tails by Theorem 7.3. Furthermore, the sequence
is uniformly bounded and is thus semiuniformly integrable. Nevertheless,
the sequence does not converge, so there can be no convergent subsequence
and thus the {Wn} is not relatively compact.



36 SVANTE JANSON

Thus, we cannot replace uniformly integrable by semiuniformly integrable
in Theorem 7.5, non-negative by arbitrary (signed) in Theorem 7.6, or uni-
formly regular tails by uniformly cut regular tails in Theorem 7.7.

Example 7.10 (A uniformly integrable sequence that is not relatively com-
pact). Let Wn be the graphon on R+ given by Wn := n−21[0,n]×[0,n]. The
graphons Wn are [0, 1]-valued and thus uniformly bounded; furthermore,
‖Wn‖L1 = 1 so the set {Wn} is also L1-bounded and thus uniformly inte-
grable.

However, ‖Wn‖∞ → 0 as n→∞, and it follows by Remark 6.9 that
if δ�(Wn,W ) → 0 for some subsequence, then ‖W‖∞ = 0, so W = 0
a.e.; however, this is impossible since δ�(Wn, 0) =

∫
Wn = 1. Henc, no

subsequence converges, and thus {Wn} is not relatively compact.
By Theorem 7.3, {Wn} cannot have uniformly cut regular tails.

Example 7.11 (convergence does not imply uniformly regular tails without
non-negativity). Let Vn be as in Example 6.12 and both stretch and rescale
them to Wn := n−1Υn(Vn). Then, see (2.20),

‖Wn‖L1 = n−1‖Υn(Vn)‖L1 = ‖Vn‖L1 = 1, (7.5)

while
‖Wn‖� = n−1‖Υn(Vn)‖� = ‖Vn‖� < 2−n. (7.6)

By (7.6), Wn → 0 in cut norm and thus in cut metric; hence the set {Wn}
is relatively compact for the cut metric, and {Wn} ∪ {0} is compact.

It follows from Theorem 7.3 (or directly from the definition) that the
graphons Wn have uniformly cut regular tails.

However, Wn do not have uniformly regular tails. In fact, |Wn| 6 n−1,
and thus for any M and any set U with λ(U) 6M ,

‖Wn1U×U‖L1 6 n−1λ2(U × U) 6M2/n; (7.7)

hence, by (7.5),

‖Wn −Wn1U×U‖L1 > 1−M2/n. (7.8)

Since 1 −M2/n > 1
2 for all large n, (7.8) shows that the graphons do not

have uniformly regular tails.
Hence, uniformly regular tails is not necessary for compactness.
Note also that |Wn| 6 n−1 6 1, and thus the graphons Wn are all uni-

formly bounded. By this and (7.5), they are also uniformly integrable.

7.2. Compactness, the standard case of probability spaces. Finally,
we consider the standard setting of graphons defined on probability spaces.
(Or, equivalently, graphons defined on [0, 1].) In this setting, it is well-
known, and of fundamental importance, that the set of all [0, 1]-valued
graphons is compact, as proved by Lovász and Szegedy [24]. This was ex-
tended to Lp-bounded and uniformly integrable sets of graphons on proba-
bility spaces by Borgs, Chayes, Cohn and Zhao [5, Theorems 2.13 and C.7].
We recover these results as corollaries.

Note first that a graphon W defined on a probability space obviously is
also equivalent to graphons defined on other spaces; one example is a trivial
extension of W , and the following lemma, the proof of which is postponed
to the next section, shows that this is essentially the only possibility.
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Lemma 7.12. Let W = (W,S, µ) be a graphon. Then the following are
equivalent.

(i) W ∼= W ′ for some graphon W ′ defined on a probability space.
(ii) W is a.e. equal to a trivial extension of a graphon defined on a measure

space (S′, µ′) with µ′(S′) 6 1.
(iii) There exists a set U ⊆ S with µ(U) 6 1 such that W (x, y) = 0 a.e. on

(S × S) \ (U × U).
(iv) There exists a function f : S → [0, 1] with

∫
f dµ 6 1 such that

f(x)f(y)W (x, y) = W (x, y) a.e.

Furthermore, for two graphons W1 and W2 defined on probability spaces,
the definition by [4], see Section 2.4, of the cut distance δ�(W1,W2) is the
same as the usual definition for probability spaces in e.g. [3; 5; 7; 18; 22].
Moreover, the next lemma shows that when considering limits of sequences
of graphons on probability spaces, it does not matter whether we require
also the limit to be defined on a probability space or allow it to be defined
on an arbitrary σ-finite measure space. In particular, completeness and
compactness properties of a set W of graphons on probability spaces do not
depend on whether we considerW as a subset of the set of all such graphons,
or of all graphons on σ-finite measure spaces (We are more careful than
usually in the statement and talk explicitly about equivalence classes, since
as just noted, a graphon on a probability space is equivalent to graphons on
other measure spaces.)

Lemma 7.13. If Wn are graphons defined on probability spaces, and W
is a graphon such that Wn → W in the cut metric, then there exists an
equivalent graphon W ′ ∼= W that is defined on a probability space. In other
words, for the cut metric, the set of equivalence classes of graphons defined
on probability spaces is a closed subset of the set of equivalence classes of all
graphons defined on σ-finite measure spaces.

We postpone the proof of this lemma too to next section.
We record also a trivial fact.

Lemma 7.14. Any set of graphons defined on probability spaces has uni-
formly regular tails, and thus uniformly cut regular tails.

Proof. Take M = 1 and U = S in the definition. �

We return to compactness properties.

Theorem 7.15. Let W be a set of graphons defined on probability spaces.
Then W is totally bounded for the cut metric if and only if it is upper cut
regular.

Hence, W is relatively compact if and only if it is upper cut regular and
relatively complete.

Proof. By Lemma 7.14 and Theorem 7.3. �

Corollary 7.16 ([5, Theorem C.7]). A uniformly integrable set of graphons
defined on probability spaces is relatively compact for the cut metric.

Proof. A uniformly integrable set is upper cut regular, as said in Section 7.1,
so the result follows by Theorems 7.15 and 6.1. (Or by Lemma 7.14 and
Theorem 7.5.) �
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Corollary 7.17 ([5, Theorem 2.13]). Let 1 < p <∞ and C <∞. Then the
set of all graphons W defined on probability spaces such that ‖W‖Lp 6 C is
compact for the cut metric.

Proof. Denote this set by W. As remarked in Section 6, the set W is uni-
formly integrable, and thus it is relatively compact by Corollary 7.16, so
it remains only to show that W is closed, i.e., that if Wn is a sequence of
graphons inW and Wn →W in cut metric, then W ′ ∈ W for some W ′ ∼= W .
This follows by Lemmas 6.8 and 7.13. �

Remark 7.18. Borgs, Chayes, Cohn and Zhao [5, Section 2.5] give a defi-
nition of Lp upper regular sequences of graphons (defined on [0, 1]), similar
to their definition of uniformly upper regular sequences mentioned in Re-
mark 7.2 above. They use this in criteria for sequential compactness with a
limit in Lp. As in Remark 7.2, we leave it as an open problem to investigate
the relation with our notions and results.

8. Proofs of Theorem 7.3 and Lemmas 7.12–7.13

We first prove a couple of technical lemmas. The first yields alternative
(but equivalent) characterisations of the properties uniformly [cut] regular
tails.

Lemma 8.1. (i) A set W of graphons has uniformly regular tails if for
every ε > 0, there exists M <∞ such that for every graphon (W,S, µ) ∈ W,
there exists a measurable function f : S → [0, 1] such that

∫
f dµ 6M and

‖W − (f ⊗ f)W‖L1 < ε. (8.1)

(ii) A setW of graphons has uniformly cut regular tails if for every ε > 0,
there exists M <∞ such that for every graphon (W,S, µ) ∈ W, there exists
a measurable function f : S → [0, 1] such that

∫
f dµ 6M and

‖W − (f ⊗ f)W‖� < ε. (8.2)

Proof. We prove (ii); the same proof works for (i).
If (7.2) holds, then take f := 1U .
Conversely, suppose that (8.2) holds. Define U := {x : f(x) > 1

2}. Then
µ(U) 6 2‖f‖L1 6 2M . Moreover,

1U c(x)W (x, y) =
∞∑
k=0

1U c(x)
(
f(x)f(y)

)k(
1− f(x)f(y)

)
W (x, y) (8.3)

and thus, using (2.6) and (8.2),∥∥1U c(x)W (x, y)
∥∥
� 6

∞∑
k=0

∥∥∥1U c(x)
(
f(x)f(y)

)k(
1− f(x)f(y)

)
W (x, y)

∥∥∥
�

6
∞∑
k=0

sup
x

(
1U c(x)f(x)k

)
sup
y

(
f(y)k

)∥∥∥(1− f(x)f(y)
)
W (x, y)

∥∥∥
�

<

∞∑
k=0

2−kε = 2ε. (8.4)
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By symmetry also
∥∥1U c(y)W (x, y)

∥∥
� < 2ε, and thus∥∥W − 1U×UW

∥∥
� 6

∥∥1U c(x)W (x, y)
∥∥
� +

∥∥1U (x)1U c(y)W (x, y)
∥∥
�

6
∥∥1U c(x)W (x, y)

∥∥
� +

∥∥1U c(y)W (x, y)
∥∥
�

< 4ε. (8.5)

Consequently, (7.2) holds, with (M, ε) replaced by (2M, 4ε). �

We say that two sets of graphons are equivalent if every graphon in one
of the sets is equivalent to some graphon in the other set.

Lemma 8.2. Let W and W ′ be two equivalent sets of graphons.

(i) If W has uniformly regular tails, then so has W ′, and conversely.
(ii) If W has uniformly cut regular tails, then so has W ′, and conversely.

A special case of (i) is given in [4, Lemma 6.1].

Proof. Again, the same proof works for both parts; we choose (ii).
We show that for every ε and M , if W and W ′ are two equivalent graphons

and one of them satisfies (8.2) for some f as in Lemma 8.1, there so does
the other. The result then follows by Lemma 8.1.

By Theorem 5.6, it suffices to consider the case when W and W ′ are
elementarily equivalent. The case of a trivial extension is trivial, and thus
it suffices to consider the case of a pull-back W ′ = Wϕ for some measure-
preserving map ϕ : (S1,F1, µ1)→ (S2,F2, µ2).

First, if (8.2) holds, then using (2.7),

‖Wϕ − (fϕ ⊗ fϕ)Wϕ‖�,µ1 = ‖W − (f ⊗ f)W‖�,µ2 < ε, (8.6)

and fϕ : S1 → [0, 1] with
∫
fϕ dµ1 =

∫
f dµ2 6M .

Conversely, suppose that ‖Wϕ − (f ⊗ f)Wϕ‖�,µ1 < ε for some f : S1 →
[0, 1] with

∫
S1
f 6 M . Let F ′ := ϕ−1(F2) := {ϕ−1(A) : A ∈ F2}, and

let f ′ := E(f | F ′). (Although conditional expectations usually are defined
for probability spaces only, there is no problem to extend the definition to
σ-finite measure spaces, for example by considering a partition S =

⋃
k Sk

into subsets Sk ∈ F ′ with finite measure.) Since f ′ is measurable for F ′ =
ϕ−1(F2), f

′ = gϕ for some g : S2 → [0, 1] with∫
S2

g dµ2 =

∫
S1

gϕ dµ1 =

∫
S1

f ′ dµ1 =

∫
S1

f dµ1 6M. (8.7)

Furthermore, Wϕ is (F ′ × F ′)-measurable, and thus E
(
(f ⊗ f)Wϕ | F ′ ×

F ′
)

= (f ′ ⊗ f ′)Wϕ. Consequently,

‖W − (g ⊗ g)W‖�,µ2 = ‖
(
W − (g ⊗ g)W

)ϕ‖�,µ1
= ‖Wϕ − (f ′ ⊗ f ′)Wϕ‖�,µ1
= ‖E

(
Wϕ − (f ⊗ f)Wϕ | F ′ ×F ′

)
‖�,µ1

6 ‖Wϕ − (f ⊗ f)Wϕ‖�,µ1 < ε (8.8)

where the last but one inequality easily follows from (2.5). �
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Proof of Theorem 7.3. (i) =⇒ (ii). First, note that Lemma 8.2 shows that if
we replaceW by an equivalent set of graphons, then (ii) is preserved. Thus,
using Proposition 2.3 we may assume that every graphon W inW is defined
on R+.

Let ε > 0. By assumption, there exists a finite ε-net {Wi}Ni=1 for W; we
may assume that also every Wi is defined on R+. Thus, if W ∈ W, then
there exists Wi such that δ�(W,Wi) < ε, and thus by Proposition 2.4 a
measure-preserving bijection ϕ : R+ → R+ such that

‖W −Wϕ
i ‖� < ε. (8.9)

Next, every Wi is integrable, and thus we may find a set Ui of finite
measure such that ‖Wi − Wi1Ui×Ui‖� 6 ‖Wi − Wi1Ui×Ui‖L1 < ε and a
number Bi such that if W i := Wi1|Wi|6Bi

, then ‖Wi − W i‖� 6 ‖Wi −
W i‖L1 < ε. Let M := maxi6N µ(Ui) and B := maxi6N Bi.

If (8.9) holds, then let U := ϕ−1(Ui). Then Wϕ
i 1U×U = Wϕ

i 1ϕUi×Ui
=

(Wi1Ui×Ui)
ϕ and thus

‖W −W1U×U‖�
6 ‖W −Wϕ

i ‖� + ‖(Wi −Wi1Ui×Ui)
ϕ‖� + ‖(Wϕ

i −W )1U×U‖�
< ε+ ‖Wi −Wi1Ui×Ui‖� + ε < 3ε. (8.10)

Similarly,

‖W−Wϕ
i ‖� 6 ‖W−W

ϕ
i ‖�+‖(Wi−W i)

ϕ‖� < ε+‖Wi−W i‖� < 2ε. (8.11)

Since λ(U) = λ(Ui) 6 M and |Wϕ
i | 6 Bi 6 B, it follows that W has

uniformly cut regular tails and is upper cut regular.
(ii) =⇒ (iii). Given ε > 0, let M and B be as in the definitions of

uniformly cut regular tails and upper cut regular; thus if W = (W,S, µ) ∈
W, there exist U ⊆ S with µ(U) 6 M such that (7.2) holds and a graphon
V on S with |V | 6 B such that (7.3) holds. Let V ′ := V 1U×U . Then
|V ′| 6 B1U×U and

‖W − V ′‖� 6 ‖W −W1U×U‖� + ‖(W − V )1U×U‖�
6 ‖W −W1U×U‖� + ‖W − V ‖� < 2ε. (8.12)

Thus (iii) follows.
(iii) =⇒ (i). Let ε > 0 and let M and B be as in (iii). LetW(M,B) be the

set of all graphons (V, S, µ) with |V | 6 B and µ(S) = M . If W , U and V are
as in (iii), then V is a trivial extension of the restriction VU := V |U×U , which
is defined on U with µ(U) 6M , and thus there exists a trivial extension V ′U
of VU to a measure space (S′, µ′) with µ′(S′) = M . Then V ′U ∈ W(M,B);
furthermore,

δ�(W,V ′U ) = δ�(W,VU ) = δ�(W,V ) 6 ‖W − V ‖� < ε. (8.13)

Next, the mapping Ψ : V 7→
(
Υ

(1)
M−2V + B

)
/(2B) maps W(M,B) bijec-

tively onto the set of [0, 1]-valued graphons defined on probability spaces, see
(2.18), and Ψ is a homeomorphism for the cut metric. (In fact, δ�(V, V ′) =
2BM2δ�(Ψ(V ),Ψ(V ′)) for all V, V ′ ∈ W(M,B).) As is well-known from the
standard theory of graphons on probability spaces (or on [0, 1]), the latter
set is compact for the cut metric [24]. Consequently, W(M,B) is compact
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for the cut metric and thus totally bounded. Hence, there exists a finite
ε-net {Vi}Ni=1 for W(M,B).

We have shown in (8.13) that if W ∈ W, then there exists a graphon V ′U ∈
W(M,B) such that δ�(W,V ′U ) < ε; furthermore, since {Vi} is an ε-net for
W(M,B), there exists Vi such that δ�(V ′U , Vi) < ε. Hence, δ�(W,Vi) < 2ε,
and it follows that {Vi}N1 is a finite 2ε-net for W. Since ε is arbitrary, W is
totally bounded. �

Proof of Lemma 7.12. (ii)⇐⇒ (iii). Clear by the definition of trival exten-
sion.

(iii) =⇒ (iv). Take f := 1U .
(iv) =⇒ (iii). Take U := {x : f(x) = 1}.
(ii) =⇒ (i). If W is a trivial extension of (W ′, S′, µ′) with µ′(S′) 6 1,

then W ′ has a trivial extension W ′′ defined on a probability space, and
W ∼= W ′ ∼= W ′′.

(i) =⇒ (iv). This follows by the same proof as for Lemma 8.2, with
M = 1 and ’< ε’ replaced by ’= 0’ (or, equivalently, for all ε simultaneously),
recalling (2.4). �

Proof of Lemma 7.13. As usual, we may by Proposition 2.3 replace the
graphons by equivalent graphons on (R+, λ) and assume that W and ev-
ery Wn is defined on R+. By Proposition 2.4, this implies the existence of
pull-backs W ′n := Wϕn

n
∼= Wn such that ‖W−W ′n‖� < δ�(W,Wn)+1/n→ 0

as n→∞.
By Lemma 7.12, there exist sets Un ⊂ R+ with λ(Un) 6 1 such that

W ′n = W ′n1Un×Un a.e. Hence,

‖W−W1Un×Un‖� 6 ‖W−W ′n‖�+‖1Un×Un(W ′n−W )‖� 6 2‖W−W ′n‖� → 0,
(8.14)

as n→∞.
The unit ball of L∞(R+) = L1(R+)∗ is weak-∗ compact and metrizable

(since L1(R+) is separable) [15, Theorems V.4.2 and V.5.1]. Hence, by

considering a subsequence, we may assume that 1Un

w∗−→ f for some f ∈
L∞(R+) with |f | 6 1; furthermore, this implies f : R+ → [0, 1]. For any
T ⊂ R+ with λ(T ) < ∞,

∫
T f =

∫
R+

1T f = lim
∫
R+

1T1Un 6 1; hence, by

monotone convergence,
∫
R+
f 6 1.

Moreover. it follows, since L1(R+) ⊗ L1(R+) is dense in L1(R2
+), that

1Un×Un = 1Un ⊗ 1Un

w∗−→ f ⊗ f in L∞(R2
+). Hence, for any measurable sets

T,U ⊆ R+,∫
T×U

W1Un×Un =

∫
R2
+

W1T×U1Un×Un

→
∫
R2
+

W1T×U (f ⊗ f) =

∫
T×U

(f ⊗ f)W. (8.15)

On the other hand, (8.14) implies∫
T×U

(
W1Un×Un −W

)
→ 0. (8.16)
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Consequently,
∫
T×U (f ⊗ f)W =

∫
T×U W for all T,U ⊆ S, and thus, by

(2.2), ‖(f ⊗ f)W −W‖� = 0, so by (2.4), (f ⊗ f)W = W a.e. The result
follows by Lemma 7.12(iv) =⇒ (i). �

This completes the proof of the results in Section 7.
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variable functions and the uniqueness of graph limits. Geom. Funct.
Anal. 19 (2010), no. 6, 1597–1619.

[7] Christian Borgs, Jennifer T. Chayes, László Lovász, Vera T. Sós &
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[11] John B. Conway, A Course in Functional Analysis. 2nd ed., Springer-

Verlag, New York, 1990.



GRAPHONS AND CUT METRIC ON σ-FINITE MEASURE SPACES 43

[12] Claude Dellacherie & Paul-André Meyer, Probabilités et potentiel.
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