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Abstract. We study near-critical behavior in the configuration model. Let Dn be the de-
gree of a random vertex and νn = E[Dn(Dn−1)]/E[Dn]; we consider the barely supercritical
regime, where νn → 1 as n→∞, but νn − 1� n−1/3(E[D3

n])2/3.
Let D∗

n denote the size-biased version of Dn. We prove that there is a unique giant com-
ponent of size nρn EDn(1 + o(1)), where ρn denotes the survival probability of a branching
process with offspring distribution D∗

n−1. This extends earlier results of Janson and Luczak,
as well as those of Janson, Luczak, Windridge and House, to the case where the third mo-
ment of Dn is unbounded.

We further study the size of the largest component in the critical regime, where νn− 1 =
O(n−1/3(ED3

n)2/3), extending and complementing results of Hatami and Molloy.

1. Introduction

In recent years, the critical and near-critical behaviour of random graphs has received
considerable attention. Here we study random graphs with given vertex degrees. (See
Section 2.1 for precise definitions and assumptions.) In a random graph with given degrees
on n vertices, we let Dn denote the degree of a random vertex; we consider asymptotics as
n → ∞. The fundamental theorem by Molloy and Reed [46] (see also [47; 43; 36; 10; 40],
and Section 2 below) says that, under suitable technical assumptions, there exists w.h.p.
(meaning ‘with high probability’, i.e., with probability tending to 1 as n → ∞) a giant
component of size Θ(n) if and only if limn→∞ EDn(Dn − 2) > 0.

The purpose of the present paper is to study near-critical behaviour in greater detail; we
assume EDn(Dn−2)→ 0 so we know that the order v(C1) of the largest component is op(n),
and we want to find more precise asymptotics of v(C1).

Hatami and Molloy [24] identified the critical window ; they showed that (under weak
technical conditions) if EDn(Dn − 2) = O

(
n−1/3(ED3

n)2/3
)
, then v(C1) is of the order

n2/3(ED3
n)−1/3, while v(C1) is larger if EDn(Dn − 2) � n−1/3(ED3

n)2/3, and smaller if
EDn(Dn − 2) < 0 with |EDn(Dn − 2)| � n−1/3(ED3

n)2/3. (See also Remark 2.16 for
related work identifying the scaling limits of clusters in the critical window.) This paral-
lels the well-known critical behaviour of the random graph G(n, p) with p = (1 + εn)/n, or
G(n,M) with M = (1 + εn)n/2, where it was shown by Bollobás [7] and  Luczak [44] that
the critical window is characterized by εn = O(n−1/3); see also [8] and [39].

Here we are mainly concerned with the barely supercritical regime, where EDn(Dn−2)→
0, with EDn(Dn− 2) > 0 and outside the critical window just defined. We find (under weak
technical conditions) precise asymptotics of v(C1), up to a factor 1 +op(1), in this regime. In
the case when the degree distribution Dn has a bounded (4+ε)-th moment, these asymptotics
were found by Janson and Luczak [36]; this result was extended to the case when the third
power D3

n is uniformly integrable by Janson, Luczak and Windridge [38]. In this paper, we
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only assume that the second moment ED2
n exists and is uniformly bounded. Our study

reveals that there is a kind of phase transition. Roughly speaking, as long as the asymptotic
degree distribution has a finite third moment (to be precise, as long as D3

n is uniformly
integrable, the case studied in [36] and [38]), the size of the largest component is proportional
to nE(Dn(Dn−2)). However, when the degree distribution has heavier tails, then the largest
component is smaller; typically (but not always) of the order nE(Dn(Dn−2))/ED3

n. Precise
results are given in Theorems 2.6–2.9 below, where Theorem 2.8 corresponds to the important
example when the third moment of the degree distribution converges. Also, Example 2.15
discusses power-law degree sequences with possibly unbounded third moment of the degree
distribution. (The same difference between the cases ED3

n = O(1) and ED3
n → ∞ is also

evident in the result on the critical window by Hatami and Molloy [24] cited above.)
As said above, our results (Theorem 2.6 in particular) show that in the barely supercritical

phase, the size of the largest component is concentrated within a factor 1 + op(1), i.e.,
normalized by dividing by a suitable constant, the size converges in probability to 1. As
a complement, we also show (Theorem 2.12) that this is not true in the critical window
identified by Hatami and Molloy [24], and further investigated in [18; 19; 41; 51]. Inside
the critical window, the size after normalization will converge in distribution, at least along
subsequences, but the limit will not be constant; in fact any such limit will be unbounded.
Again, this is precisely as in the well-known case of G(n, p), see [45; 1], so this provides
another reason to regard the window defined above as the critical window, at least on the
supercritical side. (We conjecture that the size of the largest component is concentrated also
in the subcritical case, but, as far as we know, this has not yet been proved.)

It is well known that the process of exploration of the component containing a given ver-
tex can be approximated by a Galton–Watson branching process; this gives, for example,
a heuristic argument for the condition limn→∞ EDn(Dn − 2) > 0 above. (See further Re-
mark 2.5.) Indeed, in our main theorem (Theorem 2.6), we express the size of the largest
component in terms of the survival probability of the approximating Galton–Watson process.
In our case, with EDn(Dn − 2) → 0, we have to consider one Galton–Watson process for
each n, so the question of asymtotics of the survival probability of an asymptotically critical
sequence of branching processes arises. This was studied by e.g. [3] and [27]; we give some
further general results (needed to prove our results for random graphs) in Section 3.

Our proofs, however, do not use the branching process approximation directly; instead,
they are based on extending the method of [36], where the exploration process is considered
one vertex at a time, yielding a kind of random walk with drift (closely related to the
branching process), which is then analysed. Molloy and Reed [46, 47] and Hatami and
Molloy [24] use similar methods, but there are several differences; for example, we use a
continuous-time version of the exploration process, which gives us additional independence,
and we use a different method to obtain bounds for the random fluctuations.

2. Model, assumptions and main results

2.1. The configuration model. Given a positive integer n and a degree sequence, i.e., a
sequence of n positive integers (d1, d2, . . . , dn), we let G(n, (di)i∈[n]) be a simple graph (i.e.,
without loops or multiple edges) with the set [n] = {1, . . . , n} of vertices, chosen uniformly
at random subject to vertex i having degree di, for i ∈ [n]. We tacitly assume that there is
any such graph at all, so, for example,

∑
i∈[n] di must be even.

We follow the standard path of studying G(n, (di)i∈[n]) using the configuration model,
defined as follows, see e.g. [8; 25]. Given a degree sequence (di)i∈[n] with

∑
i∈[n] di even,

we start with dj free half-edges adjacent to vertex j, for j ∈ [n]. The random multigraph
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G∗(n, (di)
n
1 ) is constructed by successively pairing, uniformly at random, free half-edges into

edges, until no free half-edges remain. (In other words, we create a uniformly random
matching of the half-edges.) Loops and multiple edges may occur in G∗(n, (di)i∈[n]), but we
can obtain G(n, (di)i∈[n]) by conditioning G∗(n, (di)i∈[n]) on being simple (that is, without
loops or multiple edges). Moreover, our condition (A2) below implies that the probability of
obtaining a simple graph is bounded away from 0 as n→∞; see [29; 33; 2].

We assume that we are given such a degree sequence (di)i∈[n] for each n (at least in a
subsequence), and we consider asymptotics as n → ∞. The degrees di = d(n)

i may depend
on n, but for simplicity we do not show this in the notation.

2.2. Basic assumptions and notation. All unspecified limits are as n → ∞. We use
standard notation for asymptotics. In particular, an � bn, where an and bn are sequences
of positive numbers, means that an/bn is bounded above and below by positive constants;
equivalently, an = O(bn) and bn = O(an). In contrast, an ∼ bn means the stronger an/bn → 1.
Furthermore, an � bn means an/bn →∞. Also, given two real numbers x, y, x∧y will denote
min{x, y}, and x ∨ y will denote max{x, y}.

For random variables Xn, and positive numbers an, Xn = op(an) means Xn/an
p−→ 0, i.e.,

P(|Xn| > εan) → 0 for every ε > 0. Also, Xn = Op(an) means that Xn/an is bounded in
probability, i.e., for every ε > 0 there exists C < ∞ such that P(|Xn| > Can) < ε for all n
(or, equivalently, for all large n).

We let ∆n := maxi∈[n] di denote the maximum degree in G(n, (di)i∈[n]) and G∗(n, (di)i∈[n]).
For k ∈ Z, we denote by

nk := #{i : di = k} (2.1)

the number of vertices of degree k, so that n =
∑∞

k=1 nk. Furthermore, let

`n :=
∑
i∈[n]

di =
∞∑
k=1

knk (2.2)

be the total number of half-edges; thus the number of edges is `n/2.
Let Dn be the degree of a randomly chosen vertex in G(n, (di)i∈[n]) or G∗(n, (di)i∈[n]); the

distribution of Dn is given by

P(Dn = k) = nk/n. (2.3)

Let

µn := EDn =
∞∑
k=1

knk/n = `n/n, (2.4)

νn :=
EDn(Dn − 1)

EDn

=

∑∞
k=1 k(k − 1)nk∑∞

k=1 knk
=

∑∞
k=1 k(k − 1)nk

`n
. (2.5)

Thus µn is the average degree; νn can be interpreted as the expected number of new half-edges
found when the endpoint of a random half-edge is explored, see (2.16) and Remark 2.5.

As stated in Section 1, we will study near-critical behaviour; we assume νn → 1 and, for
the most part, also that νn > 1 (and not too small); this is thus a subcase of the critical case
so v(C1) = op(n). We define

εn := νn − 1 =
EDn(Dn − 2)

EDn

. (2.6)

Our basic assumptions are as follows: (See also the remarks below, and additional condi-
tions in the theorems.)
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(A1) Dn, the degree of a randomly chosen vertex, converges in distribution to a random
variable D with a finite and positive mean µ := ED. In other words, there exists a
probability distribution (pk)

∞
k=0 such that

nk
n
→ pk, k ≥ 0, (2.7)

and µ =
∑∞

k=0 kpk ∈ (0,∞). (Thus pk = P(D = k).)
(A2) The second moment ED2

n is uniformly bounded: ED2
n = O(1).

(A3) We have P(D /∈ {0, 2}) > 0. Equivalently, p0 + p2 < 1.
(A4) νn → 1. Equivalently, see (2.6),

εn → 0. (2.8)

Assuming (A1), this is also equivalent to

EDn(Dn − 2)→ 0. (2.9)

Remark 2.1. The assumption (A1) that Dn converges in distribution is mainly for con-
venience. By (A2), the sequence Dn is always tight, so every subsequence has a further
subsequence that converges in distribution to some D; moreover ED <∞ follows from (A2)
and ED > 0 follows from (A3), provided the latter is reformulated as lim infn→∞ P(Dn /∈
{0, 2}) > 0. It follows, using standard subsequence arguments, that results such as The-
orem 2.6 that do not use D (explicitly or implicitly) in the statement hold also without
(A1).

Remark 2.2. (A2) implies uniform integrability of Dn and thus, together with (A1),

µn → µ, (2.10)

Furthermore, it is easy to see that, assuming (A1), (A2) is equivalent to νn = O(1). In
particular, (A2) is implied by (A4); however, we list (A2) separately for emphasis and for
easier comparison with conditions in other papers.

By Fatou’s lemma, (A2) also implies ED2 <∞.

Remark 2.3. Condition (A2) is weaker than the condition

(A2′) D2
n are uniformly integrable.

As is well known, (A2′) is, assuming (A1), equivalent to ED2
n → ED2 < ∞, and thus also

to ED2 <∞ and

νn → ν :=
ED(D − 1)

ED
. (2.11)

In this case, (A4) is thus equivalent to ν = 1, or, equivalently, ED(D−2) = 0, or ED2 = 2µ.
On the other hand, if (A1), (A2) and (A4) are satisfied but (A2′) is not, then (by Fatou’s

lemma) ED2 < 2µ, ED(D − 2) < 0 and ν < 1.
We will not need (A2′) in the present paper, except when explicitly stated; it is satisfied

in most examples.

Remark 2.4. (A3) rules out the degenerate case when D ∈ {0, 2} a.s.; for examples of
exceptional behaviour in this case, see [36, Remark 2.7].

Since ED(D−2) ≤ 0, see Remark 2.3, (A3) is equivalent to P(D = 1) > 0. Furthermore, if
D2
n are uniformly integrable, so ED(D−2) = 0, see Remark 2.3, then (A3) is also equivalent

to P(D > 2) > 0.
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2.3. The size-biased distribution. Let D∗n denote the size-biased distribution of Dn, i.e.,

P(D∗n = k) =
k

E[Dn]
P(Dn = k), (2.12)

and let D̃n := D∗n − 1, i.e.,

P(D̃n = k − 1) = P(D∗n = k) =
k P(Dn = k)

EDn

=
knk
nµn

, k ≥ 1. (2.13)

For any non-negative function f ,

E f(D∗n) =
EDnf(Dn)

EDn

; (2.14)

and thus

E f(D̃n) =
EDnf(Dn − 1)

EDn

; (2.15)

in particular

E D̃n = E(D∗n − 1) =
E(Dn(Dn − 1))

EDn

= νn = 1 + εn. (2.16)

Similarly, let D∗ have the size-biased distribution of D, and let D̃ := D∗ − 1. Thus

E D̃ = ν = 1. Since Dn
d−→ D by (A1) and EDn → ED by (2.10), it follows that

D∗n
d−→ D∗ and D̃n

d−→ D̃.
Note that (A3) implies that (and, given (A1), is equivalent to)

lim
n→∞

P(D̃n 6= 1) = P(D̃ 6= 1) = P(D∗ 6= 2) > 0. (2.17)

Let ρn be the survival probability of a Galton–Watson process with offspring distribution

D̃n, starting from one individual. By (2.16) and basic branching process theory, ρn > 0 ⇐⇒
εn > 0, and, in this case ρn is the unique solution in (0, 1] to

1− ρn = E(1− ρn)D̃n =
∞∑
k=1

knk
nµn

(1− ρn)k−1. (2.18)

We study the asymptotics of ρn in Section 3.

Remark 2.5. We can interpret D∗n as the degree of a vertex chosen randomly by choosing a

uniformly random half-edge, and D̃n as the number of additional half-edges at that vertex.
Consequently, the initial stages of the exploration of a component of G(n, (di)i∈[n]), starting
from a random vertex, can be approximated by a Galton–Watson process with offspring

distribution D̃n, except that the first generation has distributionDn. The survival probability
ρn is thus closely connected to the probability that this modified Galton–Watson process is
infinite, which approximates the probability that the chosen vertex lies in a large component.
(In the supercritical case, this is asymptotically the same as the probability of the chosen
vertex lying in the largest component.) To be precise, the modified Galton–Watson process
has survival probability E(1 − (1 − ρn)Dn) ∼ µnρn, which agrees with the factor µnρn in
Theorem 2.6 below, giving the proportion of vertices in the largest component.
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2.4. Main results. Our results in this section hold for both the random simple graph
Gn := G(n, (di)i∈[n]) and the random multigraph G∗n := G∗(n, (di)i∈[n]). We first prove
our theorems for G∗n; they then hold for Gn, as is standard, by conditioning on G∗n being
simple. To be precise, (A2) implies that lim infn→∞ P(G∗n is simple) > 0, see [29; 33], and
thus the results below (which all say that certain events have small probabilities) transfer
immediately from G∗n to Gn, except Theorem 2.12(ii), which is of a different kind and requires
a special argument (given in Section 6.3).

In order to state our results, choose either Gn or G∗n; let C1 denote the largest connected
component, and let C2 denote the second largest component. (For definiteness, we choose the
component at random if there is a tie, and we define C2 := ∅ if there is only one component.)

For a component C, we write v(C) and e(C) to denote the number of vertices and edges in
C, respectively. Our main theorem is the following precise and general result concerning the
supercritical case:

Theorem 2.6. Suppose that (A1)–(A4) are satisfied, in particular εn = o(1). Suppose also
that εn � n−1/3(ED3

n)2/3. Then

v(C1) = µnρnn(1 + op(1)), (2.19)

v(C2) = op(ρnn). (2.20)

Furthermore, e(C1) = (1 + op(1))v(C1) = µnρnn(1 + op(1)) and e(C2) = op(ρnn).

Remark 2.7. Let vk(C1) denote the number of vertices of degree k in C1. It can be seen
from our proof of Theorem 2.6 that vk(C1) = µnρnP(D∗n = k)n(1 + op(1)).

In particular, Theorem 2.6 leads to the following special cases.
Define, recalling Remark 2.4

κ := E D̃(D̃ − 1) =
E[D(D − 1)(D − 2)]

E[D]
≥ 0. (2.21)

Note that κ =∞ if and only if ED3 =∞. Furthermore, if D2
n are uniformly integrable (i.e.,

(A2′) holds), then P(D > 2) > 0 by Remark 2.4, and thus κ > 0. In this case, we also have
E[D(D − 2)] = 0, see Remark 2.3, and thus we also have the alternative formula

κ =
ED3 − 3ED2 + 2ED

ED
=

ED3 − 3E[D(D − 2)]− 4ED
ED

=
ED3

µ
− 4. (2.22)

The next three theorems are easy consequences of Theorem 2.6, under our assumptions.

Theorem 2.8. Suppose that (A1)–(A4) are satisfied, and that D3
n is uniformly integrable.

(Thus, ED3
n → ED3 <∞.) Suppose further that εnn

1/3 →∞. Then

v(C1) =
2µ

κ
εnn(1 + op(1)) =

2nE
(
Dn(Dn − 2)

)
κ

(1 + op(1)), (2.23)

v(C2) = op(εnn), (2.24)

where κ ∈ (0,∞) is given by (2.21). Furthermore, e(C1) = (1 + op(1))v(C1) and e(C2) =
op(εnn).

Theorem 2.9. Suppose that (A1)–(A4) are satisfied, and that ED3 = ∞. (Thus ED3
n →

∞.) Suppose further that εn � n−1/3(ED3
n)2/3. Then

v(C1) = op(εnn). (2.25)

Furthermore, e(C1) = (1 + op(1))v(C1) = op(εnn).
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The results in Theorems 2.8–2.9 are more or less best possible of this type: in intermediate
cases, where ED3 <∞ but lim supED3

n > ED3, neither (2.23) nor (2.25) holds in general,
see Remark 3.3. To be precise, it follows from Examples 3.7 and 3.9 below that ED3

n = O(1)
is neither necessary nor sufficient for (2.23). Similarly, it follows from Examples 3.7 and 3.8
that ED3

n → ∞ is not sufficient for (2.25) and ED3 = ∞ is not necessary for (2.25). In
such intermediate cases, partial answers are given by the following inequalities. Define, in
analogy with (2.21),

κn := E[D̃n(D̃n − 1)] =
E[Dn(Dn − 1)(Dn − 2)]

E[Dn]
. (2.26)

Note that, since εn > 0, by (2.6) we have E[Dn(Dn − 2)] > 0, which in turn implies κn > 0.
Furthermore, by Fatou’s lemma and (2.9),

lim inf
n→∞

κn =
lim infn→∞ E[Dn(Dn − 2)2] + limn→∞ E[Dn(Dn − 2)]

ED
(2.27)

≥ E[D(D − 2)2]

ED
> 0.

Thus κn is bounded away from 0, and it follows that

κn � ED3
n. (2.28)

Theorem 2.10. Suppose that (A1)–(A4) are satisfied. Suppose also that εn � n−1/3(ED3
n)2/3.

(i) Then

v(C1) ≥
2µnεn
κn

n(1 + op(1)). (2.29)

(ii) If ED3
n = O(1), then there exists constant c, C > 0 such that w.h.p.

cεnn ≤ v(C1) ≤ Cεnn. (2.30)

(iii) If εn∆n = o(ED3
n), then there exists constants c, c′, C, C ′ > 0 such that w.h.p.

c′
εnn

ED3
n

≤ c
εnn

κn
≤ v(C1) ≤ C

εnn

κn
≤ C ′

εnn

ED3
n

. (2.31)

The lower bounds in (iii) are clearly less precise than the more general (2.29), but are
given as companions to the upper bounds. A weaker and less precise version of the lower
bound (2.29) was given by Hatami and Molloy [24, Theorem 1.3].

Remark 2.11. We see from Theorems 2.8–2.10 that in the barely supercritical regime, for
a given sequence εn, the giant component is smaller in cases where ED3 =∞ than in cases
where ED3

n is bounded. (In both cases, the size of the giant component is by Theorem 2.6
roughly nρn.) The barely supercritical behaviour of the largest connected component when
E[D3

n] = O(1) is similar to that in the Erdős-Rényi random graph.

The condition εn � n−1/3(ED3
n)2/3 in the theorems above is best possible and characterizes

supercritical behaviour in the sense that, if εn is smaller, then, unlike (2.19), v(C1) is not
concentrated, as is shown by the following theorem for the critical window. Part (i) is proved
by Hatami and Molloy [24, Theorem 1.1] under very similar conditions, including a slightly
stronger assumption than (2.32).

Theorem 2.12. Suppose that (A1)–(A4) hold and εn = O(n−1/3(ED3
n)2/3). Suppose further

that
∆n = o

(
(nED3

n)1/3
)
. (2.32)

Then the following hold:
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(i) v(C1) = Op

(
n2/3(ED3

n)−1/3
)
. In other words, for any δ > 0 there exists K = K(δ) such

that
P
(
v(C1) > Kn2/3(ED3

n)−1/3
)
< δ. (2.33)

(ii) Moreover, for any K <∞,

lim inf
n→∞

P
(
v(C1) > Kn2/3(ED3

n)−1/3
)
> 0. (2.34)

Both (i) and (ii) hold with v(C1) replaced by e(C1).

Theorem 2.12 says that v(C1)/
(
n2/3(ED3

n)−1/3
)

is bounded in probability, but not w.h.p.
bounded by any fixed constant. In particular, v(C1) normalized in this way converges in
distribution, at least along suitable subsequences, but it does not converge to a constant
along any subsequence; hence the limit in distribution (along a subsequence) is really random
and not deterministic. Moreover, Theorem 2.12(ii) shows that any subsequential limit has
unbounded support. (The result by Hatami and Molloy [24, Theorem 1.1(a)] shows that any
subsequential limit is strictly positive a.s.) This is in contrast to the supercritical case in
Theorem 2.6. (This contrast is well known in the classical Erdős–Rényi case G(n, p), see e.g.
Aldous [1], who describes the limit distribution explicitly.)

Remark 2.13. Condition (2.32) can be written as

max
i
d3i = o

(∑
i∈[n]

d3i

)
. (2.35)

It thus says that no single vertex gives a significant contribution to
∑

i∈[n] d
3
i . See [24, Section

1.2] and Example 6.3 below for counterexamples in the case when (2.32) does not hold. Note
also that always nED3

n =
∑

i∈[n] d
3
i ≥ ∆3

n, so ∆n ≤ (nED3
n)1/3. Hence, (2.32) is only a weak

restriction. (Hatami and Molloy [24] use a slightly stronger assumption, which, roughly,
amounts to assuming ∆n = O((nED3

n)1/3/ log n).)

Remark 2.14. If εn � n−1/3(ED3
n)2/3, so we are on the upper boundary of the critical

window in Theorem 2.12, then, using (2.32), εn∆n = o(ED3
n) and thus Theorem 3.1(iv) ap-

plies to a Galton–Watson process with offspring distribution D̃n starting with one individual
(as in the proof of Theorem 2.10(iii)), and yields ρn � εn/ED3

n � n−1/3(ED3
n)−1/3. Thus

Theorem 2.12 shows that the giant component is of order Op(nρn) in this case too, although
v(C1)/(nρn) does not converge to a constant.

Example 2.15 (Power-law degrees). Many real-world networks are claimed to have power-
law degree sequences, see e.g., [25, Chapter 1] and the references therein. As a result, various
random graph models have been proposed that can yield such graphs, the configuration model
being one of the most popular. Let γ > 1 and assume that, in addition to the assumptions
above, for some constants C, c > 0,

P(Dn > k) ≤ Ck−γ, k ≥ 1, (2.36)

P(Dn > k) ≥ ck−γ, 1 ≤ k < ε−1/(γ−2)n . (2.37)

(The upper limit ε
−1/(γ−1)
n in (2.37) could be reduced by any fixed constant factor. Note

that some limit is required, since Dn is discrete and (2.36) implies ∆n = O(n1/γ).) Then, in
Theorem 3.1(i) and Example 3.4 below, we show that ρn � εn when γ > 3 (so ED3

n = O(1)),
while

ρn � ε1/(γ−2)n (2.38)

when γ ∈ (2, 3). Theorem 2.6 applies and yields that, for γ > 3, and using the form in

Theorem 2.8, v(C1) = 2n
κ
E
(
Dn(Dn − 2)

)
(1 + op(1)), while, for γ ∈ (2, 3), v(C1) � nε

1/(γ−2)
n .
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Remark 2.16. The critical regime as in Theorem 2.12 has attracted considerable attention,
see e.g., [18; 19; 41; 51] for results on the sizes of the largest connected components. Riordan
[51] investigates the scaling behavior of near-critical clusters under the assumption that all
degrees are uniformly bounded. Dhara et al. [18] perform an analysis under conditions that
are close to ours when ED3

n → ED3, but focus on the scaling limit of critical clusters when
νn = 1 + λn−1/3 + o(n−1/3) (also for percolation on the configuration model, where the
dependence on λ is identified as the multiplicative coalescent, see also Aldous [1] for the
Erdős–Rényi setting and [22; 30; 26] for percolation on random graphs with given degrees).

In the case where ED3 = ∞, and in the same vein as Example 2.15, often stronger
assumptions are made and our results in Theorem 2.12 in this case are closest in spirit to
those in [24] in that they only depend on the scaling of εn and E[D3

n]. Order the degrees
such that d1 ≥ d2 ≥ · · · ≥ dn. Joseph [41] assumes that (di)i∈[n] are an i.i.d. sample from
a distribution whose distribution function satisfies 1 − F (x) = cx−γ(1 + o(1)) for x large.

In this case, (din
−1/γ)i≥1 jointly converge in distribution to (c′Γ

−1/γ
i )i≥1, where (Γi)i≥1 form

a Poisson point process. Dhara et al. [18] instead take di such that din
−1/γ → ci, and, in

particular, ED3
n ∼ n3/γ−1∑

i≥1 c
3
i , where it is assumed that

∑
i≥1 c

3
i <∞, while

∑
i≥1 c

2
i =∞

(as is the case when ci � i−1/γ with γ ∈ (2, 3)). In this case, Theorem 2.12 suggests that the
largest critical components should scale like

n2/3(ED3
n)−1/3 � n2/3(n3/γ−1)−1/3 = n(γ−1)/γ. (2.39)

The results in [19; 41] confirm this scaling, and show that the sizes of the largest connected
components, rescaled by n−(γ−1)/γ, converge to a limiting sequence, while the critical window
is of order n−(γ−2)/γ. Interestingly, the description of this limit looks quite different in [41]
compared to [19], which is probably due to the fact that Joseph [41] also averages out over
the randomness in the degrees. Interestingly, our results are also used in Dhara et al. [17] to
study the barely supercritical regime of percolation on the configuration model for γ ∈ (1, 2),
where the percolation parameter tends to zero with the graph size to observe near-critical
behaviour.

2.5. Complexity of large components. The structure of components has received sub-
stantial attention in the literature, in particular, the existence of multicyclic components,
i.e., components C with e(C) > v(C). The detailed scaling limit results in [18; 19; 41; 51]
resolve this question completely in the critical case. We investigate this question in the
barely supercritical setting in Section 7 and find the asymptotic complexity of the largest
component C1, see Theorems 7.1 and 7.4–7.5. Here, for power-law degrees as in Example
2.15, the width of the critical window is tightly related to the growth of the complexity of the
barely supercritical clusters. As can be expected, the complexity of C1 interpolates between
tight, as in the critical case, and linear in n as in the strictly supercritical regime (as shown
in [47]).

2.6. Discussion. In this section, we discuss our results and pose further questions.

CLT for the giant component. It would be of interest to extend Theorem 2.6 to a statement
about the fluctuations of v(C1) around µnρnn. In the light of central limit results for the
processes that characterize the component sizes (see, e.g., Lemma 6.4), it is tempting to
conjecture that a CLT holds for v(C1). From our methodology, however, this does not follow
easily. A related question involves proving a CLT for the complexity k(C1) in the barely
supercritical regime. (Cf. [49] for the Erdős–Rényi case.)
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Related random graphs. Often, one can deduce results for rank-1 inhomogeneous random
graphs (see [9] for the definition) from those derived for the configuration model conditioned
on simplicity. Examples of such graphs are the Poissonian or Norros–Reittu random graph
[48], the generalized random graph model [11], and the expected degree or Chung–Lu random
graph [13; 14; 15; 16]. In each of these models, edges are present independently: an edge
between i, j ∈ [n] is present with probability pij, where pij is close to wiwj/`n for appro-
priately chosen vertex weights (wi)i∈[n], and `n =

∑
i∈[n]wi denotes the total weight. When

the weight sequence satisfies conditions similar to (A1)–(A4), then also the random vertex
degrees do, and thus results carry over rather easily from the configuration model to these
models.

In slightly more detail, by [31], in the case where E[D2
n]→ E[D2], the above three random

graph models are asymptotically equivalent, so that proving a result for one immediately
establishes it for any of the others as well. Furthermore, when conditioned on the degree
sequence, the generalized random graph is a uniform random graph with that degree sequence
[11]. We already know that Theorem 2.6 holds for uniform random graphs whose vertex
degrees obey conditions (A1)–(A4), so that, by conditioning on the degree sequence, in
order to deduce the same for rank-1 inhomogeneous random graphs, it suffices to prove that
(A1)–(A4) indeed hold (with convergence in probability) for the degrees for the generalized
random graph in the critical case. This proof is standard, and can, for example, be found in
[4] or [25, Section 7.7]. The critical case of these models was studied in [5; 6].

3. The branching process survival probability

Our proofs of Theorems 2.6 and 2.8–2.10 will use some estimates of the survival probability
of barely supercritical Galton–Watson processes. In this section, we state and prove these
estimates in a general form, for general Galton–Watson processes with offspring distribution
Xn. We will return to the setting of the configuration model in the later sections, where we

apply the results stated below with offspring distribution Xn = D̃n. We will write ρn for the
survival probability of a branching process with offspring distribution Xn, starting with one
individual. We also define αn := − log(1− ρn).

Relation (3.5) below was conjectured and supported by a heuristic argument by Ewens
[21]; Eshel [20] gave counter-examples but also a proof of (3.5) under some conditions. More
general sufficient conditions were given by Hoppe [27] and Athreya [3]; both also gave a
necessary and sufficient condition for (3.5) in terms of the probability generating function
of the offspring distribution Xn. (The necessary and sufficient conditions in [27] and [3] are
stated differently, but they can be seen to be equivalent, using integration by parts.) Here
we give further results, stated in a form more suitable for our purposes, but note that there
are overlaps with earlier ones in the literature. In particular, Theorem 3.1(ii) follows easily
from results in both [27] and [3]. Furthermore, (3.3) was given by [27, Corollary 3.3] (in an
equivalent formulation).

Theorem 3.1 (Survival probability of a near-critical branching process.). Let Xn be a se-
quence of non-negative integer-valued random variables such that E[Xn] = 1 + εn, where
εn > 0 and εn → 0 as n → ∞. Suppose also that lim infn P(Xn 6= 1) > 0. Let ρn be the
survival probability of a branching process with offspring distribution Xn, starting with one
individual, i.e., the unique solution in (0, 1] to

1− ρn = E[(1− ρn)Xn ]. (3.1)

Then ρn → 0 and, more precisely,
ρn = O(εn). (3.2)
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Furthermore,

ρn ≥
2εn

EXn(Xn − 1)
(3.3)

and

εn � E
(
Xn ∧ (ρnX

2
n)
)
. (3.4)

Moreover:

(i) If EX2
n = O(1), then ρn � εn.

(ii) If Xn
d−→ X for some random variable X and E[X2

n]→ E[X2] <∞, then,

ρn ∼
2εn

E[X(X − 1)]
. (3.5)

(iii) If Xn
d−→ X for some random variable X with E[X2] =∞, then

ρn = o(εn). (3.6)

(iv) If ∆n are numbers such that Xn ≤ ∆n a.s. and εn∆n = o(EX2
n), then

ρn �
εn

E[Xn(Xn − 1)]
� εn

EX2
n

. (3.7)

Proof. We first show that ρn = o(1) as n→∞. (For a more general result on continuity of the
survival probability as a functional of the offspring distribution, see [12, Lemma 4.1].) To see
this, assume, for a contradiction, that there exists a subsequence nl such that ρnl

→ ρ > 0.
Since EXn = O(1), the sequence Xn is tight, so there exists a further subsequence with

Xn
d−→ X along the subsequence, for some non-negative integer-valued random variable X.

Furthermore, by the Skorohod coupling theorem [42, Theorem 4.30], we may assume that
the variables Xn are defined on a probability space where the convergence is almost sure.
Then, by dominated convergence, along the subsequence, E[(1− ρn)Xn ]→ E[(1− ρ)X ], and
so, by (3.1),

1− ρ = E[(1− ρ)X ]. (3.8)

In other words, ρ is the survival probability of a branching process with offspring distribution
X. On the other hand, by Fatou’s lemma, EX ≤ limEXn = 1, so this branching process is
critical or subcritical; furthermore, P(X 6= 1) ≥ lim infn P(Xn 6= 1) > 0 which excludes the
case X = 1 a.s. Consequently, the survival probability ρ = 0, a contradiction. Hence ρn → 0
as n→∞.

Note that αn = − log(1− ρn) > 0, and that ρn → 0 implies

αn ∼ ρn. (3.9)

Also let

F (x) := e−x − 1 + x; (3.10)

note that F (x) ∼ x2/2 as x→ 0. Then (3.1) can be written

E e−αnXn = E(1− ρn)Xn = 1− ρn = e−αn , (3.11)

and thus

EF (αnXn) = E
(
e−αnXn − 1 + αnXn

)
= e−αn − 1 + αn(1 + εn) = F (αn) + αnεn. (3.12)

Hence,

E
F (αnXn)

α2
n

=
F (αn)

α2
n

+
εn
αn

=
1

2
+ o(1) +

εn
αn
. (3.13)
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Suppose now that (3.2) fails. Then there exists a subsequence with εn/ρn → 0 and thus,
by (3.9) and (3.13),

E
F (αnXn)

α2
n

→ 1

2
. (3.14)

As above, by considering a subsubsequence, we may also assume that Xn → X a.s. for some
random variable X, and then a.s., since αn → 0,

F (αnXn)

α2
n

→ X2

2
. (3.15)

By Fatou’s lemma, (3.15) and (3.14) yield

1
2
EX2 ≤ lim inf

n→∞
E
F (αnXn)

α2
n

=
1

2
. (3.16)

Furthermore, since the function F (x)/x is increasing on [0,∞), (3.14) implies that, for any
K > 0,

lim sup
n→∞

E
(
Xn1l{Xn≥K}

)
≤ lim sup

n→∞
E
KF (αnXn)

F (αnK)
= lim

n→∞

Kα2
n/2

F (αnK)
=

1

K
. (3.17)

Hence, still along the subsequence, the random variables Xn are uniformly integrable, and,
since EXn → 1 and Xn → X a.s., we have EX = 1. However, this together with (3.16) yields
Var(X) = 0, so X = 1 a.s., which as above is excluded by our assumption lim infn P(Xn 6=
1) > 0. This contradiction shows that (3.2) holds.

Next, for any integer m ≥ 0 and ρ ∈ [0, 1], (1− ρ)m ≤ 1−mρ+
(
m
2

)
ρ2. Hence,

1− ρn = E(1− ρn)Xn ≤ E
(

1−Xnρn +
Xn(Xn − 1)

2
ρ2n

)
= 1− (1 + εn)ρn +

E(Xn(Xn − 1))

2
ρ2n (3.18)

and (3.3) follows, recalling ρn > 0.
To show (3.4), note that (3.2) and (3.9) show that αn = O(εn) and thus εn/αn is bounded

below. Furthermore, F (x) � x2 ∧ x for x ≥ 0, and thus, by (3.13),

εn
αn
� εn
αn

+
1

2
� E

F (αnXn)

α2
n

� E
(
(α−1n Xn) ∧X2

n

)
. (3.19)

Hence, using (3.9) again,

εn � E
(
Xn ∧ (αnX

2
n)
)
� E

(
Xn ∧ (ρnX

2
n)
)
. (3.20)

(i): An immediate consequence of (3.2) and (3.3).
(ii): As above, we may assume Xn → X a.s. (now for the full sequence), and thus (3.15).

Since Xn
d−→ X and EX2

n → EX2 < ∞, the sequence X2
n is uniformly integrable. Fur-

thermore, 0 ≤ F (x) ≤ x2/2 for x ≥ 0 and thus 0 ≤ F (αnXn)/α2
n ≤ X2

n/2, so the sequence
F (αnXn)/α2

n is also uniformly integrable, which together with (3.15) implies

E
F (αnXn)

α2
n

→ 1
2
EX2. (3.21)

Moreover, the uniform integrability of X2
n also implies EX = limn→∞ EXn = 1. Using (3.21)

in (3.13), we thus find

εn
αn

= E
F (αnXn)

α2
n

− 1

2
+ o(1) = 1

2

(
EX2 − 1

)
+ o(1) = 1

2
E(X(X − 1)) + o(1). (3.22)
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As noted above, E(X(X − 1)) = VarX > 0 and thus (3.22) yields, recalling (3.9),

εn
ρn
∼ εn
αn
∼ 1

2
E(X(X − 1)). (3.23)

A rearrangement yields (3.5).
(iii): We may again assume that (3.15) holds a.s., which now by Fatou’s lemma implies

(cf. (3.16))

E
F (αnXn)

α2
n

→∞. (3.24)

Thus εn/αn →∞ by (3.13). This yields (3.6), again using (3.9).
(iv): Note first that (3.2) and (3.3) imply that 1/E[Xn(Xn − 1)] = O(1), i.e., that

E[Xn(Xn − 1)] is bounded below. Since Xn(Xn − 1) ≤ X2
n ≤ 1 + 2Xn(Xn − 1), it follows

that E[Xn(Xn − 1)] � EX2
n, and thus the final “�” in (3.7) holds.

A lower bound for ρn is given by (3.3), and it remains only to show a matching upper
bound. By (3.4), there exists a constant C such that E(Xn ∧ (ρnX

2
n)) < Cεn. Let βn :=

Cεn/EX2
n. Then βn∆n = Cεn∆n/EX2

n = o(1) by assumption, so for large n we have
βn∆n ≤ 1 and then βnXn ≤ 1 a.s. so Xn ∧ (βnX

2
n) = βnX

2
n a.s. and

E
(
Xn ∧ (βnX

2
n)
)

= βn EX2
n = Cεn > E

(
Xn ∧ (ρnX

2
n)
)
. (3.25)

Hence, ρn < βn for large n, and thus ρn = O(βn) = O(εn/EX2
n). �

Remark 3.2. The assumption lim inf P(Xn 6= 1) > 0 is essential: if Xn
d−→ X = 1, almost

anything can happen. For a simple example, let Xn ∈ {0, 1, 2} with P(Xn = 0) = qn,
P(Xn = 2) = pn and P(Xn = 1) = 1 − pn − qn where pn > qn > 0 and pn → 0. Then
εn = pn − qn and, by (3.1) and a simple calculation (we have equality in (3.18) and thus in
(3.3)), ρn = 1− qn/pn = εn/pn. Thus (3.2) fails. Moreover, ρn = 1− qn/pn may converge to
any number in [0, 1], or may oscillate. (See also the examples in [27].)

Remark 3.3. If EX2
n → ∞ but Xn

d−→ X with EX2 < ∞, it is not necessarily the
case that (3.6) holds, but it is still possible; see Examples 3.7 and 3.8 below. Similarly,

if EX2
n → C < ∞ and Xn

d−→ X but EX2 < C, then (3.5) may or may not hold; see
Examples 3.7 and 3.9.

We consider several examples illustrating various possible behaviours. See also the exam-
ples by Hoppe [27].

Example 3.4 (Power laws). Let 1 < β < 2 and assume that for some constants C, c > 0,

P(Xn > x) ≤ Cx−β, x > 0, (3.26)

P(Xn > x) ≥ cx−β, 1 ≤ x < ε−1/(β−1)n . (3.27)

Here, due to the size-biasing in (2.13), β is related to γ in Example 2.15 by β = γ−1. Then,
by an integration by parts (or an equivalent Fubini argument), for any r > 0,

E
(
Xn ∧ (rX2

n)
)

=

∫ 1/r

0

2rxP(Xn > x) dx+

∫ ∞
1/r

P(Xn > x) dx

≤ 2Cr

∫ 1/r

0

x1−β dx+ C

∫ ∞
1/r

x−β dx

=
( 2

2− β
+

1

β − 1

)
Crβ−1. (3.28)
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Taking r = ρn, this and (3.4) yield

εn = O(ρβ−1n ). (3.29)

On the other hand, taking r = Aε
1/(β−1)
n for a (large) constant A > 1, and assuming that n

is so large that r < 1, by (3.27),

E
(
Xn ∧ (rX2

n)
)
≥ 1

r
P
(
Xn ≥

1

r

)
≥ crβ−1 = cAβ−1εn. (3.30)

Choosing A sufficiently large, this and (3.4) yield (for large n)

E
(
Xn ∧ (rX2

n)
)
> E

(
Xn ∧ (ρnX

2
n)
)

(3.31)

and thus r > ρn. Consequently, ρn = O(ε
1/(β−1)
n ), which together with (3.29) yield

ρn � ε1/(β−1)n . (3.32)

This example shows that ρn may decrease as an arbitrarily large power of εn. (Choose β
close to 1.)

Example 3.5. For an instance of Example 3.4, let 1 < β < 2, and let X be a non-negative
integer-valued random variable with EX = 1 and P(X > x) � x−β as x → ∞. Fix a

sequence εn → 0 (with εn > 0) and a sequence Mn of integers with Mn ≥ ε
−1/(β−1)
n . Let

X ′n := X ∧Mn, and define Xn by

P(Xn = k) =


P(X ′n = 0)− δn, k = 0,

P(X ′n = 1) + δn, k = 1,

P(X ′n = k), k ≥ 2,

(3.33)

where δn := εn + E(X − X ′n). Then EXn = EX ′n + δn = 1 + εn as required. Note that

E(X −X ′n) �M
−(β−1)
n = O(εn), so δn � εn; in particular δn → 0 and the definition (3.33) is

valid at least for large n (since P(X = 0) > 0 by EX = 1). Clearly, Xn
d−→ X.

Furthermore, (3.26)–(3.27) hold, and thus (3.32) holds.
Moreover, we may choose Mn arbitrarily large, and thus EX2

n � M2−β
n can be made

arbitrarily large; this shows that there is no formula similar to (3.5) giving ρn, even within
a constant factor, in terms of εn and EX2

n (or EXn(Xn − 1)).
We may also take Mn =∞; then (3.32) still holds and EX2

n =∞.

Example 3.6. Choose εn ∈ (0, 1] with εn → 0 and pn ∈ (0, 1/n] with npn → 0 and define
(for n ≥ 3) Xn by

P(Xn = k) =


1−εn+(n−2)pn

2
, k = 0,

1+εn−npn
2

, k = 2,

pn, k = n.

(3.34)

Then EXn = 1 + εn as required, Xn
d−→ X with P(X = 0) = P(X = 2) = 1

2
, and thus

EX = 1, EX2 = 2 and EX(X − 1) = 1, and

EX2
n = 2 + n2pn + o(1). (3.35)

In particular, EX2
n → EX2 if and only if n2pn → 0.

Furthermore,

EF (αnXn) =
1 + o(1)

2
F (2αn) + pnF (nαn) = α2

n(1 + o(1)) + pnF (nαn), (3.36)
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and thus (3.12) implies
αnεn = α2

n

(
1
2

+ o(1)
)

+ pnF (nαn). (3.37)

We consider several cases of this in the following examples.

Example 3.7. Choose εn and pn in Example 3.6 such that npn = o(εn). Then pnF (nαn) =
O(pnnαn) = o(εnαn), and thus (3.37) yields αnεn ∼ 1

2
α2
n and thus

ρn ∼ αn ∼ 2εn, (3.38)

just as given by (3.5). This includes cases with n2pn → 0, when Theorem 3.1(ii) applies
by (3.35), but also cases with n2pn → ∞, when EX2

n → ∞ by (3.35). (For example, take
εn = n−1/4 and pn = n−3/2.)

If we instead take pn = n−2 and εn = n−1/2, then EX2
n → 3 > EX2 by (3.35), while (3.5)

nevertheless holds by (3.38).

Example 3.8. Choose εn ≤ n−1 in Example 3.6, so ρn = O(n−1) by (3.2). Then ρnXn =
O(1), so (3.4) yields

εn � E(ρnX
2
n) = ρn EX2

n. (3.39)

If we further choose pn with npn → 0 and n2pn → ∞, then EX2
n → ∞ by (3.35), and thus

ρn = o(εn) by (3.39). (For example, take εn = n−1 and pn = n−3/2.)

Example 3.9. Choose εn = n−1 and pn = An−2 in Example 3.6, for some constant A > 0.
Thus EX2

n → 2 +A by (3.35), and E[Xn(Xn− 1)]→ 1 +A. In particular, EX2
n = O(1) and

thus Theorem 3.1(i) yields αn ∼ ρn � n−1. More precisely, (3.37) yields, after multiplication
by n2,

nαn ∼ 1
2
(nαn)2 + AF (nαn). (3.40)

As just said, nαn = αn/εn is bounded above and below, and (3.40) shows that, if nαn → a
along some subsequence, then a = 1

2
a2 + AF (a), or

a− 1
2
a2

F (a)
= A. (3.41)

Hence 0 < a < 2. Furthermore, it is easy to see (by differentiating) that F (a)/(a − 1
2
a2) is

strictly increasing on (0, 2). Hence (3.41) has a unique solution a = a(A) ∈ (0, 2) for any
A > 0, and thus nαn → a(A). Consequently, also ρn/εn = nρn → a(A), given by (3.41).

It is easily verified that 2 > a(A) > 2/(1 + A). Hence, (3.5) does not hold, and neither
does (3.5) with E[X(X − 1)] replaced by E[Xn(Xn − 1)].

4. Further preliminaries

4.1. More on ρn and αn in the barely supercritical case. Suppose that (A1)–(A4) are
satisfied, and furthermore εn > 0. (Note that the assumptions of Theorems 2.6 and 2.8–2.10
imply that εn > 0, except possibly for some small n that we may ignore.)

In what follows, ρn will denote the survival probability of a Galton–Watson process with

offspring distribution D̃n, see Section 2.3 and (2.18). As in Section 3, it will often be
convenient to work with

αn := − log(1− ρn). (4.1)

Lemma 4.1. If (A1)–(A4) are satisfied and εn > 0, then ρn → 0,

αn ∼ ρn (4.2)

and
εn � E

(
D2
n ∧ (ρnD

3
n)
)
� E

(
D2
n ∧ (αnD

3
n)
)
. (4.3)
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Proof. Theorem 3.1 applies to Xn = D̃n, with X = D̃ and with εn as in Section 2.1 by (2.16).
In particular, ρn = O(εn)→ 0 and thus, by (4.1), αn ∼ ρn. Furthermore, by (3.4),

εn � E
(
D̃n ∧ (ρnD̃

2
n)
)
≤ E

(
D∗n ∧ (ρn(D∗n)2)

)
. (4.4)

Moreover, if D∗n > 1 then D∗n ≤ 2D̃n. Thus, using (3.2) and (3.4),

E
(
D∗n ∧ (ρn(D∗n)2)

)
≤ ρn + 4E

(
D̃n ∧ (ρnD̃

2
n)
)

= O(εn). (4.5)

Combining (4.4)–(4.5) and using (2.14), we find

εn � E
(
D∗n ∧ (ρn(D∗n)2)

)
=

1

EDn

E
(
Dn(Dn ∧ (ρnD

2
n))
)
� E

(
D2
n ∧ (ρnD

3
n)
)
, (4.6)

proving the first part of (4.3); the second follows from αn ∼ ρn. �

Note also that (2.18) implies, by (2.14),

(1− ρn)2 = E(1− ρn)D
∗
n =

E
(
Dn(1− ρn)Dn

)
EDn

=
E
(
Dn(1− ρn)Dn

)
µn

, (4.7)

which can be rewritten as

E
(
Dne−αnDn

)
= µne−2αn . (4.8)

In the case ED3
n → ED3 < ∞, i.e., when D3

n are uniformly integrable, we have E D̃2
n →

E D̃2 by (2.15); hence (3.5) applies and yields, using (2.15) again and the notation (2.21),
where now κ > 0 by (3.5) or Remark 2.4,

αn ∼ ρn ∼
2εn

E(D̃(D̃ − 1))
=

2εnµ

E(D(D − 1)(D − 2))
=

2εn
κ
. (4.9)

4.2. The Skorohod coupling theorem. We assume in (A1) that Dn
d−→ D. By the

Skorohod coupling theorem [42, Theorem 4.30], we may without loss of generality assume

the stronger Dn
a.s.−→ D; this will be convenient (although not really necessary) in some

proofs. (We have already used the Skorohod coupling theorem in a similar way for Xn in
Section 3, and will use it for a third set of variables in the proof of Lemma 5.7.)

4.3. A semimartingale inequality. Our proofs below will use a semimartingale inequality
to control the deviations of various random processes.

We say that a stochastic process X(t), defined on an interval [0, T ], is a semimartingale
with drift ξ(t) (with respect to a filtration (Ft)) if X(t) is adapted and

X(t) = M(t) +

∫ t

0

ξ(u) du, (4.10)

for some martingale M(t). It is proved in [28, Lemma 2.2] that, if X(t) is a bounded
semimartingale with drift ξ(t), then

E sup
s≤t≤u

|X(t)|2 ≤ 13E |X(u)|2 + 13
(∫ u

s

√
E ξ(t)2 dt

)2
≤ 13E |X(u)|2 + 13(u− s)

∫ u

s

E
[
ξ(t)2

]
dt. (4.11)

We will be using the following modification of (4.11).



COMPONENT STRUCTURE: BARELY SUPERCRITICAL CASE 17

Lemma 4.2. Let X(t) be a semimartingale with drift ξ(t), defined on [0, u]. Then

E sup
0≤t≤u

|X(t)|2 ≤ 13
∞∑
j=0

E |X(2−ju)|2 + 13

∫ u

0

tE
[
ξ(t)2

]
dt. (4.12)

Proof. Let uj := 2−ju. We have

sup
0≤t≤u

|X(t)|2 ≤
∞∑
j=0

sup
uj+1≤t≤uj

|X(t)|2, (4.13)

since X(t) is a.s. right-continuous at 0 (and everywhere) by (4.10). We take the expectation,
and note that by (4.11),

E sup
uj+1≤t≤uj

|X(t)|2 ≤ 13E |X(uj)|2 + 13(uj − uj+1)

∫ uj

uj+1

E
[
ξ(t)2

]
dt

≤ 13E |X(uj)|2 + 13

∫ uj

uj+1

tE
[
ξ(t)2

]
dt. (4.14)

The result follows by (4.13) and (4.14). �

Inequality (4.12) will yield better estimates than inequality (4.11) in cases when process
(X(t)) takes relatively small values near time 0 (so that

∑∞
j=0 E |X(2−ju)|2 is finite and not

too large) but has quite significant drift (so that
∫ u
0
tE
[
ξ(t)2

]
dt is significantly smaller than

u
∫ u
0
E
[
ξ(t)2

]
dt).

5. The supercritical case

As explained in Section 2.4, it suffices to prove Theorems 2.6 and 2.8–2.10 for the multi-
graph G∗n, since the simple graph case follows by conditioning on simplicity. We thus consider
the random multigraph G∗n := G∗(n, (di)

n
1 ) constructed by the configuration model.

5.1. A more general theorem. We follow the structure of proof in [36]. We explore the
clusters of the multigraph given by the configuration model one by one, using the cluster
exploration strategy introduced in [36, Section 4]. We regard each edge as consisting of two
half-edges, each half-edge having one endpoint. We label the vertices as sleeping or awake,
and the half-edges as sleeping, active or dead. The sleeping and active half-edges are called
living half-edges. (During the exploration, the endpoint of a sleeping half-edge is sleeping,
while the endpoint of an active or dead half-edge is awake.)

We start with all vertices and half-edges sleeping. We pick a vertex, make it awake and
label its half-edges as active. We then take any active half-edge, say x, and find its partner
half-edge y in the graph; we label these two half-edges as dead; further, if the endpoint of y
is sleeping, we label it awake and all the other half-edges at this vertex active. We repeat
the above steps as long as there is an active half-edge available. When there is no active
half-edge left, then we have obtained the first component. We then pick another vertex, and
reveal its component, and so on, until all the components have been found.

We apply this procedure to G∗n, revealing its edges during the process. This means that,
initially, we only observe the vertex degrees and the half-edges, but not how they are joined
into edges. Hence, each time we need a partner of an edge, it is uniformly distributed over
all living half-edges, and the dead half-edges correspond to the half-edges that have already
been paired. We choose our pairings by giving the half-edges i.i.d. random maximal lifetimes
with distribution Exp(1). In other words, each half-edge dies spontaneously at rate 1 (unless
killed earlier), and the probability that, if not killed, it survives until time t is e−t. Each time
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we need to find the partner of a half-edge x, we then wait until the next living half-edge 6= x
dies, and take that one. This gives the following algorithm for simultaneously constructing
and exploring the components of G∗(n, (di)

n
1 ):

C1 Select a sleeping vertex and declare it awake and all of its half-edges active. To be
precise, we choose the vertex by choosing a half-edge uniformly at random among all
sleeping half-edges. The process stops when there is no sleeping half-edge left; the
remaining sleeping vertices are all isolated and we have explored all other components.

C2 Pick an active half-edge (which one does not matter) and kill it, i.e., change its status
to dead.

C3 Wait until the next half-edge dies (spontaneously). This half-edge is paired to the one
killed in the previous step C2 to form an edge of the graph. If the vertex it belongs
to is sleeping, then we declare this vertex awake and all of its other half-edges active.
Repeat from C2 if there is any active half-edge; otherwise from C1.

The components are created between the successive times C1 is performed: the vertices in
the component created between two successive such times are the vertices awakened during
the corresponding interval.

We let Sn(t) and An(t) be the numbers of sleeping and active half-edges, respectively, at
time t ≥ 0, and let Ln(t) = Sn(t) + An(t) denote the number of living half-edges. Further,
we let Vn,k(t) denote the number of sleeping vertices of degree k at time t, and let Vn(t) be
the number of sleeping vertices at time t; thus

Vn(t) =
∞∑
k=0

Vn,k(t), Sn(t) =
∞∑
k=0

kVn,k(t). (5.1)

These (random) functions are right-continuous by definition. We denote left limits by, for
example, Sn(t−).

Let T1 < T2 be random times when C1 are performed. Then the exploration starts
on new components at times T1 and T2, and the components found between T1 and T2
in total have Vn(T1−) − Vn(T2−) vertices and Sn(T1−) − Sn(T2−) half-edges, and hence
[Sn(T1−) − Sn(T2−)]/2 edges. Note also that An(t−) = 0 when C1 is performed, and
An(t) ≥ 0 for every t.

We also introduce variants of (Sn(t), An(t), Vn(t))t≥0 obtained by ignoring the effect of

C1. Let Ṽn,k(t) denote the number of vertices of degree k such that all of their k half-edges

have their exponential maximal life times greater than t. Then Ṽn,k(t) has a Bin(nk, e
−kt)

distribution, and the (Ṽn,k(t))
∞
k=1 are independent random variables for any fixed t. Let

Ṽn(t) :=
∞∑
k=0

Ṽn,k(t), S̃n(t) :=
∞∑
k=0

kṼn,k(t), (5.2)

and

Ãn(t) := Ln(t)− S̃n(t) = An(t)− (S̃n(t)− Sn(t)). (5.3)

It is obvious that S̃n(t) ≥ Sn(t); moreover, S̃n(t)−Sn(t) increases only when C1 is performed,
and it is not difficult to show that, see [36, Lemma 5.3 and (5.7)],

0 ≤ S̃n(t)− Sn(t) = An(t)− Ãn(t) < − inf
s≤t

Ãn(s) + ∆n, (5.4)

where, as before, ∆n := max1≤i≤n di is the maximum vertex degree.
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In order to explain the argument used to prove Theorem 2.6 more clearly, and to explain
the connections to the previous versions of this argument used in [36], we give the argu-
ment in a general form (that includes the two versions in [36]), using certain parameters

and functions, τ, βn, γn, ĝ(t), ĥ(t), ψn(t). We assume that these satisfy certain regularity and
asymptotic conditions (B1)–(B8) below, and then prove a general result, Theorem 5.4. The

sequences βn, γn are near-critical scaling parameters, while ĝ(t), ĥ(t), ψn(t) are asymptotic

approximations for the processes Ṽn(t), S̃n(t), Ãn(t) introduced above to study the explo-
ration process. The choices of these parameters and functions used in the proofs of [36,
Theorems 2.3 and 2.4] are described in Remarks 5.5 and 5.6. In order to prove Theorem 2.6,
we instead make the choices in (5.17)–(5.21) below. (The reader who only wants a proof of
Theorem 2.6 can thus assume these choices throughout.) We verify in Section 5.2 that the
choices in (5.17)–(5.21) actually satisfy the assumptions (B1)–(B8).

Assumptions (B1)–(B8) are as follows.

(B1) τ > 0 is fixed.
(B2) (βn) and (γn) are sequences of positive numbers such that γn = O(βn).

(B3) ĝ, ĥ : [0,∞) → R are continuous functions; ĝ is strictly positive on (0,∞) and ĥ is
strictly increasing on (0,∞).

(B4) (ψn) is a sequence of continuous functions on [0, 2τ ] such that:
(a) ψn(0) = 0;
(b) ψn(τ) = o(1);
(c) for some τ ′ > 0, ψn(t) ≥ 0 on [0, τ ′];
(d) for any compact interval [a, b] ⊂ (0, τ), lim infn→∞ infa≤t≤b ψn(t) > 0;
(e) for every t > τ , lim supn→∞ ψn(t) < 0;
(f) (ψn) is equicontinuous at τ , i.e., if tn → τ , then ψn(tn)→ 0.

(B5)

sup
t≤2τ

∣∣∣∣ 1

nγn
Ãn(βnt)− ψn(t)

∣∣∣∣ p−→ 0.

(B6)

sup
t≤2τ

∣∣∣∣ 1

nβn

(
Ṽn(0)− Ṽn(βnt)

)
− ĝ(t)

∣∣∣∣ p−→ 0;

(B7)

sup
t≤2τ

∣∣∣∣ 1

nβn

(
S̃n(0)− S̃n(βnt)

)
− ĥ(t)

∣∣∣∣ p−→ 0;

(B8)
∆n

nγn
→ 0.

Note that (B6) and (B7) imply that necessarily ĝ(0) = ĥ(0) = 0.

Remark 5.1 (Some intuition behind (B1)–(B8)). In all our applications, we will take βn =
αn ∼ ρn. We see that βn arises in two ways in our conditions. The first is the time scale on
which the giant is found as all our processes are evaluated at time βnt. The second as the

scaling of S̃n and Ṽn, which scale like nβn. The fact that these are the same is a sign that

S̃n(t) is close to linear for small t. Further, nγn is the size of Ãn, which will be proved to be

close to An. Since Ãn is the difference of two processes that both run on scale nβn and are
positive, it follows that γn = O(βn) should hold due to possible cancellations. In Remark
5.9, we will intuitively explain how γn, which is the scale of the number of active vertices,
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arises and how our conditions on εn can be interpreted in terms of the concentration of the

process (Ãn(βnt))t≥0.

Remark 5.2. In the case when ψn = ψ does not depend on n, (B4) says simply that ψ is
continuous with ψ(0) = ψ(τ) = 0, ψ > 0 on (0, τ) and ψ < 0 on (τ, 2τ). In general, (B4)
should be interpreted as an asymptotic version of this. In particular, for any ε > 0 with
ε < τ , we have ψn(τ − ε) > 0 and ψn(τ + ε) < 0 for all large n; it follows that, at least
for large n, ψn has a zero tn > 0 such that tn → τ . Furthermore, every zero of ψn is o(1),
τ + o(1) or ≥ τ .

Remark 5.3. If, at least for all large n, ψn is concave on [0, 2τ ] (which is the case in our
main application), then (B4) can be replaced by the simpler

(B4′) ψn is continuous and concave on [0, 2τ ] and such that ψn(0) = 0, ψn(τ) = o(1), ψn(2τ) =
O(1) and lim infn→∞ ψn(τ/2) > 0;

in fact, (B4′) is easily seen to imply (B4) (with, e.g., τ ′ = τ/2), at least for large n, which
suffices.

We now state a general theorem concerning the largest and second largest component sizes
under assumptions (B1)–(B8). Recall that, for a component C, we write v(C) and e(C) to
denote the number of vertices and edges in the component, respectively. (In Lemma 5.8 we
extend this notation to the case where C is a union of several components.)

Theorem 5.4. Under assumptions (B1)–(B8),

v(C1) = nβnĝ(τ) + op(nβn), (5.5)

e(C1) = nβnĥ(τ)/2 + op(nβn). (5.6)

Furthermore, v(C2), e(C2) = op(nβn).

The proof of Theorem 5.4 follows [36, Sections 5 and 6] with minor modifications, omitting
some details (and repeating others). Before giving the details, we offer some intuition behind
its statement. Suppose that we are able to show (as we will later) that (Sn(t), An(t), Vn(t))t≥0
are close to (S̃n(t), Ãn(t), Ṽn(t))t≥0. By Remark 5.2 and (B5), there is a large component
whose exploration commences within time op(βnτ) and ends at time βnτ(1+op(1)); this turns
out to be the largest component. Moreover, by (B6), the number of vertices in this component

is nβnĝ(τ)(1 + op(1)); and, by (B7), the number of half-edges is close to nβnĥ(τ)(1 + op(1)).

Remark 5.5. We note that [36, Theorem 2.3] is one example of Theorem 5.4, with τ = − ln ξ,

βn = γn = 1, ψn(t) = ψ(t) = H(e−t), ĝ(t) = 1− g(e−t), ĥ(t) = h(1)− h(e−t) = µ(1− e−2t) +
ψ(t); in this case, (B5), (B6), (B7) are [36, (5.6), (5.2), (5.3)]. (Here, ψn(t) is not always
concave.)

Remark 5.6. Similarly, [36, Theorem 2.4] is another instance of Theorem 5.4, now with
βn = EDn(Dn − 2) → 0 as in [36], γn = β2

n, ψn(t) = ψ(t) = t − βt2/2, τ = 2/β, ĝ(t) = µt,

ĥ(t) = 2µt; for (B5), (B6), (B7), see [36, (6.7), Lemma 6.3 and the Taylor expansions in the
proof of Lemma 6.4]. Note that (B8) holds, since n2/3γn → ∞ and ∆n = o(n1/3), because
D3
n is uniformly integrable. (Warning: βn here has a different meaning than β and βn in [36,

Theorem 2.4 and (2.11)].)

We will see later that also Theorem 2.6 follows from Theorem 5.4.
The proof of Theorem 5.4 will use the following lemmas; the second generalizes [36, Lem-

mas 5.6 and 6.4].
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Lemma 5.7. Assume (B1)–(B8) and let Tn be random times such that Tn
p−→ τ . Then

sup
0≤t≤Tn

1

nγn

∣∣∣S̃n(βnt)− Sn(βnt)
∣∣∣ = sup

0≤t≤Tn

1

nγn

∣∣∣Ãn(βnt)− An(βnt)
∣∣∣ p−→ 0. (5.7)

Proof. We may replace Tn by Tn ∧ (2τ), since w.h.p. Tn ∧ (2τ) = Tn; hence we may assume
that Tn ≤ 2τ . Furthermore, using the Skorohod coupling theorem, we may assume that
Tn

a.s.−→ τ . We note next that this implies

inf
0≤t≤Tn

ψn(t)→ 0 (5.8)

a.s., and thus in probability. In fact, if (5.8) fails at some point in the probability space, and
Tn → τ , then there exists tn, at least for some subsequence of n, with 0 ≤ tn ≤ Tn = τ +o(1)
and ψn(tn) < −ε, for some ε < 0. (Recall that ψn(0) = 0, so the infimum is never positive.)
We may select a further subsequence with tn → t′ ∈ [0, τ ]; this contradicts (B4). (Consider
the cases t′ = 0, t′ = τ and 0 < t′ < τ separately, and use (B4)(c), (B4)(f), (B4)(d).)

By (5.8) and (B5),

inf
0≤t≤Tn

1

nγn
Ãn(βnt)

p−→ 0, (5.9)

and thus, by (5.4) and (B8),

sup
0≤t≤Tn

1

nγn

∣∣∣S̃n(βnt)− Sn(βnt)
∣∣∣ = sup

0≤t≤Tn

1

nγn

∣∣∣An(βnt)− Ãn(βnt)
∣∣∣

≤ − inf
0≤t≤Tn

1

nγn
Ãn(βnt) +

∆n

nγn

p−→ 0. (5.10)

�

In what follows we consider several random times. They generally depend on n but we
simplify the notation and denote them by T1, T

′
1, . . . as an abbreviation of T1n, . . .

Lemma 5.8. Let T ′1 and T ′2 be two (random) times when C1 are performed, with T ′1 ≤ T ′2,

and assume that T ′1/βn
p−→ t1 and T ′2/βn

p−→ t2 where 0 ≤ t1 ≤ t2 ≤ τ . If C̃ is the union of
all components explored between T ′1 and T ′2, then, under assumptions (B1)–(B8),

v(C̃) = nβn
(
ĝ(t2)− ĝ(t1)

)
+ op(nβn),

e(C̃) =
1

2
nβn

(
ĥ(t2)− ĥ(t1)

)
+ op(nβn).

In particular, if t1 = t2, then v(C̃) = op(nβn) and e(C̃) = op(nβn).

Proof. Taking, for j = 1, 2, Tn = T ′j/βn + τ − tj in (5.7), we see that

sup
0≤t≤T ′j

∣∣S̃n(t)− Sn(t)
∣∣ = op

(
nγn
)
. (5.11)

Since further 0 ≤ Ṽn(t)− Vn(t) ≤ S̃n(t)− Sn(t), see (5.1), we have also

sup
0≤t≤T ′j

∣∣Ṽn(t)− Vn(t)
∣∣ = op

(
nγn
)
. (5.12)
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Since C̃ consists of the vertices awakened in the interval [T ′1, T
′
2), by (5.12), (B6) and (B3),

as well as γn = O(βn),

v(C̃) = Vn(T ′1−)− Vn(T ′2−) = Ṽn(T ′1−)− Ṽn(T ′2−) + op(nγn)

= nβn
(
ĝ(T ′2/βn)− ĝ(T ′1/βn) + op(1)

)
= nβn

(
ĝ(t2)− ĝ(t1) + op(1)

)
.

Similarly, using (5.11) and (B7),

2e(C̃) = Sn(T ′1−)− Sn(T ′2−) = S̃n(T ′1−)− S̃n(T ′2−) + op(nγn)

= nβn
(
ĥ(T ′2/βn)− ĥ(T ′1/βn) + op(1)

)
= nβn

(
ĥ(t2)− ĥ(t1) + op(1)

)
. �

Proof of Theorem 5.4. Note that (5.7) (with Tn = τ) and (B5) show that

sup
t≤τ

∣∣∣∣ 1

nγn
An(βnt)− ψn(t)

∣∣∣∣ p−→ 0. (5.13)

Hence, using (B4)(d), for every ε > 0, w.h.p. An(t) > 0 on [βnε, βn(τ − ε)], so no new
components are started during that interval. On the other hand, if 0 < ε < τ , then by (5.3),
(B5) and (5.7),

1

nγn

[(
S̃n(βn(τ + ε))− Sn(βn(τ + ε))

)
−
(
S̃n(βnτ)− Sn(βnτ)

)]
=

1

nγn

[(
An(βn(τ + ε))− Ãn(βn(τ + ε))

)
−
(
An(βnτ)− Ãn(βnτ)

)]
≥ − 1

nγn
Ãn(βn(τ + ε))− 1

nγn

(
An(βnτ)− Ãn(βnτ)

)
= −ψn(τ + ε) + op(1).

This is w.h.p. positive, since lim supn→∞ ψn(τ + ε) < 0 by (B4)(e), and then C1 is performed
at least once between βnτ and βn(τ + ε).

Consequently, if T1 is the last time C1 is performed before βnτ/2 and T2 is the next time,
then w.h.p. 0 ≤ T1 ≤ βnε and βn(τ − ε) ≤ T2 ≤ βn(τ + ε). Since ε can be chosen arbitrarily

small, this shows that T1/βn
p−→ 0 and T2/βn

p−→ τ .
Let C ′ be the component explored between T1 and T2. By Lemma 5.8 (with t1 = 0 and

t2 = τ), C ′ has

v(C ′) = nβn(ĝ(τ) + op(1)) (5.14)

vertices and

e(C ′) = 1
2
nβn(ĥ(τ) + op(1)) (5.15)

edges.
It remains to prove that all other components have only op(nβn) edges (and thus vertices)

each. (This implies C1 = C ′.) We argue as in [36, pp. 213–214 (end of Section 6)]. We fix
a small ε > 0 and say that a component is large if it has at least εnβn edges, and thus at
least 2εnβn half-edges. If ε is small enough, then w.h.p. C ′ is large by (5.15), and further

(ĥ(τ) − ε)nβn < 2e(C ′) < (ĥ(τ) + ε)nβn. Let Eε be the event that 2e(C ′) < (ĥ(τ) + ε)nβn
and that the total number of half-edges in large components is at least (ĥ(τ) + 2ε)nβn.

It follows by Lemma 5.8 applied to T0 = 0 and T1 that the total number of vertices and
half-edges in components found before C ′ is op(nβn). Thus there exists a sequence β′n of
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constants such that β′n = o(βn) and w.h.p. at most nβ′n vertices are awakened and at most
nβ′n half-edges are made active before T1, when the first large component is found.

Let us now condition on the final graph obtained through our component-finding algo-
rithm. It follows from our specification of C1 that, given G∗(n, (di)

n
1 ), the components ap-

pear in our process in size-biased order (with respect to the number of edges), obtained by
picking half-edges uniformly at random (with replacement, for simplicity) and taking the
corresponding components, ignoring every component that already has been taken. We have
seen that w.h.p. this finds components containing at most nβ′n vertices and half-edges be-
fore a half-edge in a large component is picked. Therefore, starting again at T2, w.h.p. we
find at most nβ′n half-edges in new components before a half-edge is chosen in some large
component; this half-edge may belong to C ′, but if Eε holds, then with probability at least
ε1 := 1 − (ĥ(τ) + ε)/(ĥ(τ) + 2ε) > 0 it does not, and therefore it belongs to a new large
component. Consequently, with probability at least ε1 P(Eε) + o(1), the algorithm finds a
second large component at a time T3, and less than nβ′n vertices and half-edges between T2
and T3. In this case, let T4 be the time this second large component is completed. If no such
second large component is found, let for definiteness T3 = T4 = T2.

The number of half-edges found between T2 and T3 is, using S̃n(t) ≥ Sn(t), (5.7) with
Tn = T2/βn, (B2) and (B7) together with the fact that T2/βn ≤ 2τ w.h.p.,

Sn(T2−)− Sn(T3−) ≥ S̃n(T2−)− (S̃n(T2−)− Sn(T2−))− S̃n(T3−)

= S̃n(T2−)− S̃n(T3−) + op(nγn)

≥ S̃n(T2−)− S̃n((2βnτ) ∧ T3−) + op(nγn)

= nβn
(
ĥ((2τ) ∧ (T3/βn))− ĥ(T2/βn)

)
+ op(nβn).

Since, by the definitions above, this is at most nβ′n = o(nβn), it follows that ĥ((2τ) ∧
(T3/βn)) − ĥ(T2/βn) ≤ op(1). Furthermore, T2 ≤ T3 and T2/βn

p−→ τ , and thus w.h.p.
T2/βn ≤ 2τ . Hence, using (B3), it follows that (2τ) ∧ (T3/βn) − τ = op(1), and thus

T3/βn
p−→ τ . Consequently, (5.7) applies to Tn = T3/βn, and, since no C1 is performed

between T3 and T4, using also (B8) again,

sup
t≤T4

∣∣S̃n(t)− Sn(t)
∣∣ ≤ sup

t≤T3

∣∣S̃n(t)− Sn(t)
∣∣+ ∆n = op(nγn). (5.16)

Let t0 ∈ (τ, 2τ); then by (B4)(e), for some δ > 0, ψn(t0) < −2δ for all large n, and thus

(B5) shows that w.h.p. Ãn(βnt0) ≤ −nγnδ and thus

S̃n(βnt0)− Sn(βnt0) = An(βnt0)− Ãn(βnt0) ≥ −Ãn(βnt0) ≥ nγnδ.

Hence (5.16) shows that w.h.p. T4 < βnt0. Since t0 − τ can be chosen arbitrarily small, and

further T2 ≤ T3 ≤ T4 and T2/βn
p−→ τ , it follows that T4/βn

p−→ τ .
Finally, by Lemma 5.8 again, this time applied to T3 and T4, the number of edges found

between T3 and T4 is op(nβn). Hence, w.h.p. there is no large component found there,
although the construction gave a large component with probability at least ε1 P(Eε) + o(1).
Consequently, ε1 P(Eε) = o(1) and thus P(Eε) = o(1).

Recalling the definition of Eε, we see that w.h.p. the total number of half-edges in large
components is less than (ĥ(τ)+2ε)nβn; since w.h.p. at least (ĥ(τ)−ε)nβn of these belong to
C ′, see (5.15), there are at most 3εnβn half-edges, and therefore at most 3

2
εnβn + 1 vertices,

in any other component.
Choosing ε small enough, this shows that w.h.p. C1 = C ′, and further v(C2) ≤ e(C2) + 1 ≤

3
2
εnβn + 1. This completes the proof of Theorem 5.4. �
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5.2. Proof of Theorems 2.6–2.10. Now suppose that we are given a sequence of degree
distributions Dn satisfying the conditions (A1)–(A4) and εn > 0. We choose the parameters
in (B1)–(B8) as follows, where ρn as before is the survival probability of a Galton–Watson

process with offspring distribution D̃n, see (2.18); recall that ρn > 0 since εn > 0. (Note
that αn in (5.18) is the same as in (4.1).) Also recall that µ = ED. Define

τ := 1 (5.17)

βn := αn = − log(1− ρn) (5.18)

ĝ(t) := µt, ĥ(t) := 2µt, (5.19)

γn := E(Dn(1 ∧ αnDn)2), (5.20)

ψn(t) := γ−1n
(
µne−2αnt − E

(
Dne−αntDn

))
. (5.21)

Recall that, by Lemma 4.1, ρn → 0 and βn = αn → 0.

Remark 5.9 (Intuition behind (B1)–(B8) continued). Recall by (B5) that nγn is the size of

Ãn(αnt). See (5.51), where we show that E[Ãn(αnt)] = `ne−2αnt + O(1) −
∑∞

k=0 knke
−αntk,

which by Taylor expansion is indeed of the order nγn = nE(Dn(1 ∧ αnDn)2). This explains
how γn in (5.20) arises.

Let us next relate this to the condition εn � n−1/3(ED3
n)−2/3. Every time when An hits

zero, a connected component is explored. Since An(αnt) ≈ Ãn(αnt) by Lemma 5.7, one
can therefore expect that the size of the barely supercritical component is well concentrated

precisely when the hitting time of zero of Ãn is. This follows when the process t 7→ Ãn(αnt)

is well concentrated (and its limit has a unique first zero). Now, Ãn(αnt) = Ln(αnt) −
S̃n(αnt), and both processes turn out to have similar variances, the one for S̃n(αnt) being

easier to compute since S̃n(t) =
∑∞

k=0 kṼn,k(t) with Ṽn,k(t) independent Bin(nk, e
−kt) random

variables. Thus,

Var(S̃n(αnt)) =
∑
k≥0

k2nke
−kαnt(1− e−kαnt) ≤ nE[D2

n(1 ∧ (αnDn))] � nεn, (5.22)

where we crucially rely on (4.3). This suggests that the process t 7→ Ãn(αnt) is well
concentrated precisely when nεn � (nγn)2. The latter turns out to be the case when
εn � n−1/3(ED3

n)−2/3. Indeed, by Cauchy–Schwarz, ε2n = O
(
γn ED3

n

)
(see also Lemma

5.19), so that nεn/(nγn)2 = ε4n/(γ
2
nnε

3
n) = O ((ED3

n)2/(nε3n)). This explains the barely su-
percriticality condition εn � n−1/3(ED3

n)−2/3 that we assume throughout this paper. While
the above arguments only prove the one-way bounds that we need in the proof, the fact that
we observe critical behavior when εn = O(n−1/3(ED3

n)−2/3) (see Theorem 2.12) suggests that
the above inequalities are in fact asymptotically sharp.

We next show that under the conditions of Theorem 2.6, these parameters satisfy (B1)–
(B8) (possibly except for some small n that we may ignore). This will take a series of
lemmas.

Lemma 5.10. Assume (A1)–(A4) and εn > 0. Then the parameters defined in (5.17)–(5.21)
satisfy (B1), (B2), (B3) and (B4′), and thus also (B4), at least for n large. Furthermore,

β2
n = α2

n = O(γn). (5.23)

Proof. (B1): Trivial.
(B2): Since εn > 0, we have ρn > 0 and thus αn > 0 and γn > 0. Furthermore, by (5.20),

γn ≤ E(Dn(αnDn)) = αn ED2
n = O(αn). (5.24)
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(B3): Trivial by (5.19).
(B4′): By the definition (5.21) and (4.8), ψn(0) = 0 and ψn(τ) = ψn(1) = 0.
ψn(t) is trivially continuous. (Recall that each Dn is a discrete random variable taking

only a finite number of different values.)
We next show that ψn is concave on [0, 2τ ] = [0, 2] for large n. (It is not always concave

on (0,∞), nor does it have to be concave on [0, 2] for small n, as can be seen by simple
counterexamples with Dn ∈ {1, 3}.) By (5.21),

γnα
−2
n ψ′′n(t) = 4µne−2αnt − E

(
D3
ne−αntDn

)
. (5.25)

For every t ∈ [0, 2] we have

E
(
D3
ne−αntDn

)
= E

(
Dn(Dn − 2)2e−αntDn

)
+ 4E

(
D2
ne−αntDn

)
− 4E

(
Dne−αntDn

)
≥ E

(
Dn(Dn − 2)2e−2αnDn

)
+ 4E

(
D2
ne−2αnDn

)
− 4EDn. (5.26)

For the first term on the right-hand side of (5.26) we may assume, by the Skorohod coupling

(see Section 4.2), that Dn
a.s.−→ D and thus Dn(Dn− 2)2e−2αnDn

a.s.−→ D(D− 2)2; thus Fatou’s
lemma yields

lim inf
n→∞

E
(
Dn(Dn − 2)2e−2αnDn

)
≥ E

(
D(D − 2)2

)
. (5.27)

Next, using (4.3),

E
(
D2
n

(
1− e−2αnDn

))
≤ 2E

(
D2
n(1 ∧ αnDn)

)
= O(εn) = o(1) (5.28)

and thus, using also (2.9),

E
(
D2
ne−2αnDn

)
= E

(
D2
n

)
+O(εn) = E

(
Dn(Dn − 2)

)
+ 2EDn +O(εn) = 2µ+ o(1). (5.29)

Combining (5.26)–(5.29) and EDn = µn → µ, we obtain

lim inf
n→∞

inf
t∈[0,2]

E
(
D3
ne−αntDn

)
≥ E

(
D(D − 2)2

)
+ 8µ− 4µ (5.30)

and thus by (5.25) and (A3),

lim sup
n→∞

sup
t∈[0,2]

γnα
−2
n ψ′′n(t) ≤ −E

(
D(D − 2)2

)
< 0. (5.31)

Consequently, for n large, ψ′′n(t) < 0 on [0, 2], and thus ψn is concave in this interval.
Next we verify (5.23). In fact, if Dn 6= 0, then 1 ∧ αnDn ≥ αn and thus the definition

(5.20) implies
γn ≥ E(Dnα

2
n) = α2

nµn. (5.32)

Thus α2
n/γn ≤ 1/µn = O(1), since µn → µ > 0.

We now complete the proof of (B4′). We can write the definition (5.21) as

γnψn(t) = E
(
Dn(1− e−αntDn)

)
− µn

(
1− e−2αnt

)
. (5.33)

Since ψn(1) = 0, we thus have

γnψn(2) = γnψn(2)− 2γnψn(1)

= −E
(
Dn(1− 2e−αnDn + e−2αnDn)

)
+ µn

(
1− 2e−2αn + e−4αn

)
= −E

(
Dn(1− e−αnDn)2

)
+ µn

(
1− e−2αn

)2
. (5.34)

Consequently, using (5.32),

γnψn(2) ≤ µn
(
1− e−2αn

)2 ≤ 4µnα
2
n ≤ 4γn, (5.35)

and, by (5.20),

−γnψn(2) ≤ E
(
Dn(1− e−αnDn)2

)
≤ E

(
Dn(1 ∧ αnDn)2

)
= γn. (5.36)
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Consequently, −1 ≤ ψn(2) ≤ 4 and thus |ψn(2)| ≤ 4.
Similarly,

2γnψn(1
2
) = 2γnψn(1

2
)− γnψn(1)

= E
(
Dn(1− 2e−αnDn/2 + e−αnDn)

)
− µn

(
1− 2e−αn + e−2αn

)
= E

(
Dn(1− e−αnDn/2)2

)
− µn

(
1− e−αn

)2
. (5.37)

Denote the two terms on the right-hand side of (5.37) by A1 and A2. Since 1− e−x � 1∧ x,

A1 � E
(
Dn(1 ∧ (αnDn))2

)
= γn. (5.38)

In order to show that lim infn→∞ ψn(1
2
) > 0, it thus remains only to show that A1 is not

cancelled by A2. First, αn → 0 and thus A2 ∼ µnα
2
n ∼ µα2

n. Furthermore, since 1 − e−x ≥
xe−x for x ≥ 0,

A1 ≥
α2
n

4
E
(
D3
ne−αnDn

)
. (5.39)

Thus, using (5.30) and (A3),

lim inf
n→∞

A1

A2

≥ lim inf
n→∞

E
(
D3
ne−αnDn

)
4µ

≥
E
(
D(D − 2)2

)
+ 4µ

4µ
> 1. (5.40)

Since A1, A2 ≥ 0, it follows that A1 − A2 � A1, and thus (5.37)–(5.38) yield

2γnψn(1
2
) � A1 � γn, (5.41)

which verifies lim infn→∞ ψn(1
2
) > 0. This completes the proof of (B4′). �

Remark 5.11. Note, for later use, that we have shown that, for large n at least, ψn is
concave on [0, 2] with ψn(0) = ψn(1) = 0 and, by (5.36), ψn(2) ≥ −1; hence 0 ≥ ψ′n(1) ≥ −1,
and thus 0 ≤ ψn(t) ≤ 1 − t for t ∈ [0, 1] and 1 − t ≤ ψn(t) ≤ 0 for t ∈ [0, 2], so |ψn(t)| ≤ 1
for t ∈ [0, 2].

We next show that (B5), (B6), (B7) hold if we replace the random processes Ãn, Ṽn and

S̃n by their expectations, at least under the extra assumption that nγn →∞.

Lemma 5.12 (Asymptotics of means of S̃n(t), Ãn(t), Ṽn(t)). Assume (A1)–(A4), εn > 0,
and additionally that nγn → ∞. Then, with parameter values as in (5.17)–(5.21), for any
fixed t0,

sup
t≤t0

∣∣∣∣ 1

nβn

(
E[S̃n(0)]− E[S̃n(βnt)]

)
− ĥ(t)

∣∣∣∣ = o(1), (5.42)

sup
t≤t0

∣∣∣∣ 1

nβn

(
E Ṽn(0)− E Ṽn(βnt)

)
− ĝ(t)

∣∣∣∣ = o(1), (5.43)

sup
t≤t0

∣∣∣∣ 1

nγn
E[Ãn(βnt)]− ψn(t)

∣∣∣∣ = o(1). (5.44)

Proof. We have, using

ED2
n =

1

n

∑
k

k2nk = EDn(Dn − 1) + EDn = µnνn + µn = µn(2 + εn), (5.45)
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βn = αn, and the definition (3.10),

1

nβn

(
E[S̃n(0)]− E[S̃n(βnt)]

)
=

1

nαn

∞∑
k=1

k
(
E[Ṽn,k(0)]− E[Ṽn,k(αnt)]

)
=

1

nαn

∞∑
k=1

knk(1− e−αntk) =
1

αn
E
(
Dn(1− e−αntDn)

)
= tED2

n +
1

αn
E
(
Dn(1− e−αntDn − αntDn)

)
= tµn(2 + εn)− 1

αn
E
(
DnF (αntDn)

)
. (5.46)

We now estimate the last term, noting that

0 ≤ F (x) ≤ x ∧ x2. (5.47)

Thus, for all t ∈ [0, t0],

0 ≤ 1

αn
E
(
DnF (αntDn)

)
≤ E

(
Dn(t0Dn ∧ (αnt

2
0D

2
n))
)
≤ (t0 + t20)E

(
D2
n ∧ (αnD

3
n)
)
. (5.48)

By (4.3), this is O(εn) = o(1), and (5.42) follows from (5.46) by the definition (5.19) of ĥ(t).
The proof of (5.43) is similar, and easier, as there is one fewer power of k involved.
To prove (5.44), note first that Ln(t) is a death process where individuals die at rate 1,

except that when someone dies, another is immediately killed (by C2), so the number of
living individuals drops by 2, except when the last is killed; moreover Ln(0) = `n− 1, where
we recall from (2.2) that `n = nµn is the total number of half-edges. We can couple Ln(t)
with a similar process L̄n(t) starting at L̄n(0) = `n so that both processes jump whenever
the smaller jumps, and then

|Ln(t)− L̄n(t)| ≤ 1 (5.49)

for all t, cf. [36, Proof of Lemma 6.1]. Then 1
2
L̄n(t) is a standard death process with intensity

2, starting at `n/2, and thus E L̄n(t) = `ne−2t. Hence,∣∣ELn(t)− `ne−2t
∣∣ =

∣∣ELn(t)− E L̄n(t)
∣∣ ≤ 1 (5.50)

for all t ≥ 0. Consequently, uniformly in all t ≥ 0,

E[Ãn(αnt)] = E[Ln(αnt)]− E[S̃n(αnt)] = `ne−2αnt +O(1)−
∞∑
k=0

knke
−αntk (5.51)

and thus, by (5.21) and the assumption nγn →∞,

1

n
E Ãn(αnt) = µne−2αnt − E

(
Dne−αntDn

)
+O

(
n−1
)

= γnψn(t) + o(γn), (5.52)

which proves (5.44). �

Remark 5.13. In the case when D3
n is uniformly integrable, or equivalently ED3

n → ED3 <
∞, the sequence (α−2n Dn) ∧ D3

n is uniformly integrable (since D3
n is), and converges a.s. to

D3 if we assume Dn
a.s.−→ D, as we may by Section 4.2; consequently, using (5.20),

γn
α2
n

= E((α−2n Dn) ∧D3
n)→ ED3 <∞. (5.53)
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Thus, in this case, γn � α2
n. In other words, we could have defined γn as α2

n or, e.g., µnα
2
n

in this case, instead of by (5.20) (provided we modify ψn accordingly). Moreover, a simple
calculation using (4.9), which we omit, shows that, with κ given by (2.21)–(2.22),

ψn(t) :=
κµ

2ED3
(t− t2) + o(1), (5.54)

uniformly on each compact interval; thus we may in this case as an alternative take ψn(t) :=
κµ

2ED3 (t− t2), independently of n. (Cf. Remark 5.2 and, with a simple change of time scale,
Remark 5.6.)

On the other hand, if ED3 =∞, then, assuming again Dn
a.s.−→ D, we have α−2n Dn∧D3

n
a.s.−→

D3 since αn → 0. Thus Fatou’s lemma yields, instead of (5.53), γn/α
2
n → ED3 =∞, i.e.,

α2
n = o(γn). (5.55)

Moreover, in this case it is, using (5.55), easy to see that if we define

ϕn(t) := E
(
Dn(1− e−tαnDn)

)
− 2αnµnt, (5.56)

then
ψn(t) := ϕn(t)/γn + o(1) (5.57)

uniformly on each compact interval; thus we may in this case as an alternative take ψn(t) :=
ϕn(t)/γn.

In both these cases we can thus use simpler versions of γn and ψn; however, we prefer not
to do so; instead we use definitions (5.20)–(5.21), which work in all cases.

Remark 5.14. Typically, as in Example 2.15, E
(
Dn((αnDn) ∧ (αnDn)2)

)
� E

(
Dn(1 ∧

(αnDn)2)
)

and then, by (5.20) and (4.3),

γn = E
(
Dn(1 ∧ (αnDn)2)

)
� E

(
Dn(αnDn ∧ (αnDn)2)

)
� αnεn. (5.58)

In this case, we could have used γn := αnεn instead of the choice (5.20) (provided we modify
ψn accordingly).

We next show that the random variables Ãn(t), Ṽn(t) and S̃n(t) are so well concentrated
for all t that we may replace them in conditions (B5), (B6), (B7) by their expectations. For
later use, we state the next estimates in a more general form than needed here; we then give
its simpler consequence in Lemma 5.16.

Lemma 5.15 (Concentration of S̃n(t), Ãn(t), Ṽn(t)). Assume (A1)–(A4). Then there exists
a constant C such that, for any u ≥ 0,

E
[
sup
t≤u
|S̃n(t)− E S̃n(t)|2

]
≤ CnE

(
D2
n(1 ∧ uDn)

)
, (5.59)

E
[
sup
t≤u
|Ṽn(t)− E Ṽn(t)|2

]
≤ CnE

(
D2
n(1 ∧ uDn)

)
, (5.60)

E
[
sup
t≤u
|Ãn(t)− E Ãn(t)|2

]
≤ CnE

(
D2
n(1 ∧ uDn)

)
+ C. (5.61)

The final “ + C” in (5.61) is probably an artefact of our proof, but it is harmless for our
purposes.

Proof. The process Ṽn,k(t) is a simple death process where each individual dies with rate

k; it follows that Ṽn,k(t) is a semimartingale with drift −kṼn,k(t). Consequently, S̃n(t) =∑∞
k=0 kṼn,k(t) is a semimartingale with drift −

∑∞
k=0 k

2Ṽn,k(t), and S̃n(t)−E S̃n(t) is a semi-

martingale with drift ξ(t) := −
∑∞

k=0 k
2(Ṽn,k(t)− E Ṽn,k(t)).
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We have, noting that Ṽn,k(t) are independent and Ṽn,k(t) ∼ Bin(nk, e
−kt) for each k,

E |S̃n(t)− E S̃n(t)|2 =
∞∑
k=0

Var(kṼn,k(t)) =
∞∑
k=0

k2 Var(Ṽn,k(t))

=
∞∑
k=0

k2nke
−kt(1− e−kt) ≤

∞∑
k=0

nkk
2
(
kt ∧ (kt)−1

)
. (5.62)

Similarly

E |ξ(t)|2 =
∞∑
k=0

Var(k2Ṽn,k(t)) =
∞∑
k=0

k4 Var(Ṽn,k(t)) =
∞∑
k=0

k4nke
−kt(1− e−kt)

≤
∞∑
k=0

nkk
4e−kt(1 ∧ kt). (5.63)

Hence, for some constant C1,

∞∑
j=0

E |S̃n(2−ju)− E S̃n(2−ju)|2 ≤
∞∑
k=0

nkk
2

∞∑
j=0

(
2−jku ∧ (2−jku)−1

)
.

≤ C1

∞∑
k=0

nkk
2(ku ∧ 1) (5.64)

and ∫ u

0

tE
[
ξ(t)

]2
dt ≤

∞∑
k=0

nkk
4

∫ u

0

e−kt(t ∧ kt2) dt ≤
∞∑
k=0

nkk
2(1 ∧ (ku)3).

Consequently, Lemma 4.2 yields

E
[
sup
t≤u
|S̃n(t)− E S̃n(t)|2

]
≤ C2

∞∑
k=0

nkk
2(1 ∧ ku) + C3

∞∑
k=0

nkk
2(1 ∧ (ku)3)

≤ C4

∞∑
k=0

nkk
2(1 ∧ ku) = C4nE

(
D2
n(1 ∧ (uDn)

)
. (5.65)

This yields (5.59).
We obtain (5.60) similarly; the estimates are the same, but with smaller powers of k, which

can only help us.
Moreover, by a similar argument (but without having to sum over k), or by [36, Lemma

6.1] (with a modification for u > 1),

E
[
sup
t≤u

∣∣L̄n(t)− E L̄n(t)
∣∣2] ≤ C5n(u ∧ 1), (5.66)

and thus, by (5.49),

E
[
sup
t≤u
|Ln(t)− ELn(t)|2

]
≤ C6n(u ∧ 1) + C7. (5.67)

By definition, Ãn(t) = Ln(t)− S̃n(t), and thus (5.61) follows by combining (5.67) and (5.59),
noting that ED2

n(uDn ∧ 1) ≥ P(Dn = 1)(u ∧ 1) and P(Dn = 1) → P(D = 1) > 0 by
Remark 2.4. �
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Lemma 5.16 (Concentration of S̃n(t), Ãn(t), Ṽn(t)). Assume (A1)–(A4) and εn > 0. Let,
as above, βn = αn = − log(1− ρn), as in (5.18). Then, for any fixed t0,

sup
t≤t0

∣∣∣S̃n(βnt)− E S̃n(βnt)
∣∣∣ = Op

(
(nεn)1/2

)
, (5.68)

sup
t≤t0

∣∣∣Ṽn(βnt)− E Ṽn(βnt)
∣∣∣ = Op

(
(nεn)1/2

)
, (5.69)

sup
t≤t0

∣∣∣Ãn(βnt)− E Ãn(βnt)
∣∣∣ = Op

(
(nεn)1/2 + 1

)
. (5.70)

Proof. Taking u = αnt0, we obtain by (4.3),

E
(
D2
n(1 ∧ uDn)

)
≤ (1 ∨ t0)E

(
D2
n(1 ∧ αnDn)

)
= O(εn). (5.71)

Thus the right-hand sides of (5.59)–(5.60) and (5.61) are O(nεn) and O(nεn+1), respectively;
hence (5.68)–(5.70) follow using Markov’s inequality. �

The final three lemmas provide further estimates of the quantities βn = αn and γn as set
in (5.18) and (5.20).

Lemma 5.17. Assume (A1)–(A4) and εn > 0. If αn∆n = O(1), then

ρn ∼ αn �
εn

ED3
n

, (5.72)

γn � αnεn �
ε2n

ED3
n

. (5.73)

Proof. We have αnDn ≤ αn∆n = O(1), and thus

(1 ∧ αnDn) � αnDn. (5.74)

Hence (4.3) implies
εn � E(αnD

3
n) (5.75)

and (5.72) follows, recalling (4.2).
Furthermore, (5.74) and (5.20) yield, using (5.75),

γn � E(α2
nD

3
n) = αn E(αnD

3
n) � αnεn, (5.76)

showing (5.73). �

Lemma 5.18. Assume (A1)–(A4) and εn > 0. If

(nεn)1/2 = o(nγn), (5.77)

then (B8) holds, i.e.,

∆n = o(nγn). (5.78)

Proof. Suppose first that αn∆n ≤ 1. Then, using (5.73),

∆n

nγn
≤ 1

nγnαn
= O

( εn
nγ2n

)
= O

( nεn
(nγn)2

)
, (5.79)

and thus (5.78) follows from (5.77) in this case.
Suppose next that αn∆n ≥ 1. Since P(Dn = ∆n) ≥ 1/n, we have by (4.3)

εn � E
(
D2
n(1 ∧ (αnDn))

)
≥ 1

n
∆2
n(1 ∧ (αn∆n)) =

∆2
n

n
. (5.80)

Consequently, ∆n = O
(
(nεn)1/2

)
, and thus (5.77) implies (5.78) in this case too. �
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Lemma 5.19. Assume (A1)–(A4) and εn > 0. Then

ε2n = O
(
γn ED3

n

)
. (5.81)

Proof. The Cauchy–Schwarz inequality yields, using (5.20),(
E
(
D2
n(1 ∧ αnDn)

))2 ≤ E
(
Dn(1 ∧ αnDn)2

)
E
(
D3
n

)
= O

(
γn ED3

n

)
. (5.82)

Hence the result follows by (4.3). �

Proof of Theorem 2.6. First note that (B1)–(B4) hold for the parameter values in (5.17)–
(5.21) by Lemma 5.10.

Next, by Lemma 5.19,

nεn
(nγn)2

=
ε4n

γ2nnε
3
n

= O

(
(ED3

n)2

nε3n

)
, (5.83)

which is o(1) by the assumption. Hence (5.77) holds. Consequently, Lemma 5.18 shows that
(5.78) holds. In other words, (B8) holds.

Since ∆n ≥ 1, (5.78) implies

nγn →∞, (5.84)

and thus Lemma 5.12 applies and shows (5.42)–(5.44).
Moreover, (5.77) and (5.84) imply that the right-hand sides of (5.68)–(5.70) are op(nγn).

Furthermore, γn = O(αn) by (B2), see (5.24). Hence Lemmas 5.12 and 5.16 yield (B5), (B6)
and (B7).

We have verified (B1)–(B8), so Theorem 5.4 applies and the result follows, recalling (5.17),

(5.19), (2.10) and (4.2). Note that ĝ(τ) = ĥ(τ)/2, so the asymptotics for v(C1) and e(C1) are
the same. �

Proof of Theorem 2.8. By assumption, ED3
n = O(1) and εnn

1/3 → ∞, so Theorem 2.6
applies; thus (2.19) holds. Furthermore, as said in Section 4.1, Theorem 3.1(ii) applies with
Xn = D̃n and yields (4.9), which together with (2.10) yields the first equality in (2.23); the
second equality then follows by (2.6). Similarly, (2.20) and (4.9) (or (3.2)) yield (2.24). �

Proof of Theorem 2.9. Again, Theorem 2.6 applies. Moreover, by (2.15), we have E D̃2 =
E
(
D(D − 1)2

)
/ED =∞, and so Theorem 3.1(iii) applies, yielding ρn = o(εn). �

Proof of Theorem 2.10. Theorem 2.6 applies.
(i): Follows from (2.19), (3.3) for Xn = D̃n and (2.26).

(ii): Now, by (2.15), E D̃2
n ≤ ED3

n/EDn = O(1). Hence Theorem 3.1(i) applies and yields
ρn � εn; consequently (2.19) implies (2.30).

(iii): By (2.28) and (2.26), ED3
n = O(κn) = O

(
E[D̃n(D̃n − 1)]

)
= O

(
E[D̃2

n]
)
. Thus, the

assumption implies εn∆n = o
(
E[D̃2

n]
)
. Hence, Theorem 3.1(iv) applies and (2.31) follows by

(2.26) and (2.28). �

6. The critical case

We define, for convenience and for comparison with Hatami and Molloy [24],

Rn := ED3
n. (6.1)

The basic condition for the critical case in Theorem 2.12 is thus, as in [24],

εn = O
(
n−1/3R2/3

n

)
. (6.2)
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Remark 6.1. Our Rn is not exactly the same as R defined by Hatami and Molloy [24],
which equals our EDn(Dn − 2)2/EDn = κn − εn, see (2.26) and (2.6), but the two values
are equivalent in the sense Rn � RHatamiMolloy, see (2.28) and (2.27); hence the two values
are equivalent for our purposes.

Note that, as said in Remark 2.13, Rn ≥ 1
n
∆3
n and hence always

∆n ≤ (nRn)1/3. (6.3)

Note also that in Theorem 2.12 we impose the slightly stronger condition (2.32), i.e.,

∆n = o
(
(nRn)1/3

)
. (6.4)

Furthermore, by (A2),

Rn = ED3
n ≤ ∆n ED2

n = O(∆n). (6.5)

Hence, (6.4) implies ∆3
n = o(nRn) = o(n∆n) and thus ∆2

n = o(n) and

∆n = o
(
n1/2

)
, (6.6)

and thus also, by (6.5),

Rn = o
(
n1/2

)
. (6.7)

In Theorem 2.12 we assume both (6.2) and (6.4), and it follows from (6.2) and (6.7) that
εn = o(1), so (A4) follows from the other conditions. (However, for emphasis we keep it in
the statements in Theorem 2.12 and below.)

Note also that, using (5.45) and (2.10), Rn ≥ ED2
n → 2µ > 0, so Rn is bounded below

and R−1n = O(1).
We continue to work with the configuration model and the multigraph G∗n as in the pre-

ceding section. In Section 6.3 we give additional arguments for the graph case.

6.1. Proof of Theorem 2.12(i). The idea is to use Theorem 2.6 for the supercritical case
and a kind of monotonicity in εn; it is intuitively clear that a larger εn ought to result in
a larger largest component, and thus the supercritical case will provide an upper bound for
the critical case. The formal details are as follows.

Proof of Theorem 2.12(i). Let ω(n)→∞ slowly, so slowly that, cf. (6.7) and (6.4),

ω(n)Rn = o
(
n1/2

)
, (6.8)

ω(n)∆n ≤ (nRn)1/3. (6.9)

Let mn := bn2/3R
2/3
n ω(n)2/3c. Change the degree sequence (di)i∈[n] to (d̂i)i∈[n] by replacing

2mn vertices of degree 1 by mn vertices of degree 0 and mn vertices of degree 2. This is
possible (at least for large n) because n1/n = P(Dn = 1)→ P(D = 1) > 0, see Remark 2.4,
and thus, using (6.8),

mn ≤ n2/3(Rnω(n))2/3 = o(n) = o(n1). (6.10)

We denote the variables for the modified degree sequence by D̂n and so on. Note that
the modification does not change the sum of vertex degrees, so E D̂n = EDn = µn, but it

increases E[Dn(Dn − 1)] by 2mn/n ∼ 2n−1/3R
2/3
n ω(n)2/3. Thus, using (6.2) and ω(n)→∞,

ε̂n = εn + 2mn/n ∼ 2n−1/3R2/3
n ω(n)2/3. (6.11)

Similarly, Rn = ED3
n is increased to

R̂n = E D̂3
n = Rn +

6mn

n
= Rn + o(1) ∼ Rn, (6.12)
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where we have used (6.10) to see that the difference is insignificant. Furthermore, it is easily
seen that (A1)–(A4) still hold (with the same D), using (6.10) and (6.11) for (A1) and (A4).

Since (6.11) and (6.12) imply ε̂n � n−1/3R̂
2/3
n , and (6.11) and (6.9) imply ε̂n∆n = o(Rn),

Theorem 2.10(iii) applies to the modified degree sequence and yields, w.h.p.,

v(Ĉ1) ≤ C ′
ε̂nn

Rn

= o
(
n2/3R−1/3n ω(n)

)
. (6.13)

In particular, w.h.p.

v(Ĉ1) ≤ n2/3R−1/3n ω(n). (6.14)

We can obtain G∗(n, (d̂i)i∈[n]) from G∗(n, (di)i∈[n]) by merging mn pairs of vertices of degree
1 into vertices of degree 2, and adding mn vertices of degree 0 to keep the total number of
vertices. Any connected set C of vertices in G∗(n, (di)i∈[n]) then corresponds to a connected

set of at least v(C)/2 vertices in G∗(n, (d̂i)i∈[n]). Consequently, v(Ĉ1) ≥ 1
2
v(C1) and thus

(6.14) implies, w.h.p.,

v(C1) ≤ 2v(Ĉ1) ≤ 2n2/3R−1/3n ω(n). (6.15)

Since ω(n) → ∞ arbitrarily slowly, (6.15) implies v(C1) = Op(n2/3R
−1/3
n ). (If not, we

could find δ > 0 and K = K(n) → ∞ such that, at least along a subsequence, P
(
v(C1) ≥

K(n)n2/3R
−1/3
n

)
≥ δ. We choose ω(n) with ω(n) ≤ K(n)/2 to obtain a contradiction. See

also [32].) This completes our proof of (2.33). �

Remark 6.2. In our proof we needed only the simple, deterministic bound v(C1) ≤ 2v(Ĉ1).
Actually, when Theorem 2.12(i) is proved, it implies together with Theorem 2.10(iii) that

w.h.p. v(C1) � v(Ĉ1), i.e., that the giant component Ĉ1 for the modified sequence w.h.p. is
much larger than C1 for the original sequence; the reason is that, in the merging described
above, the giant component typically absorbs many small components.

Example 6.3. Consider a critical example with εn = O(n−1/3), Rn = O(1) and ∆n =
o(n1/3). For example (as in [24]), we can let 3/4 of all vertices have degree 1 and the
rest degree 3. Alternatively, we can take the Erdős–Rényi graph G(n, 1/n) and condition
on the degree sequence, as described for general rank-1 inhomogeneous random graphs in
Section 2.6. Then v(C1) is typically of order n2/3, see Theorem 2.12 and [24].

Let mn be integers with n1/3 � mn � n1/2. Modify the degree sequence (di)i∈[n] to (d̂i)i∈[n]
by merging mn vertices of degree 1 to a single vertex of degree mn, and adding mn−1 vertices
of degree 0. Then it is easily seen that ε̂n � m2

n/n, R̂n ∼ m3
n/n and ∆̂n = mn. Thus (6.2)

holds for the modified sequence but not (6.4). Furthermore,

v(Ĉ1) ≥ v(C1)−mn (6.16)

so v(Ĉ1) is typically also of order (at least) n2/3. Hence, (2.33) fails.

6.2. Proof of Theorem 2.12(ii) in the multigraph case. In this section, we consider
only the multigraph case. Unlike all other results in this paper, the graph case does not
follow immediately by conditioning. We treat the graph case in the next section.

We use the cluster exploration process and notation from Section 5.1. Let

t1 :=
(
nRn

)−1/3
, (6.17)

and note that t1 = O(n−1/3) = o(1) and, by (6.7), t1 � n−1/2 and thus nt1 → ∞ and
nt21 →∞. Furthermore, let

σ2
n := Var S̃n(t1). (6.18)
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Lemma 6.4. Assume (A1)–(A4) and (6.4).

(i) Then

σ2
n ∼

(
nRn

)2/3
. (6.19)

Moreover, S̃n(t1) is asymptotically normal:(
S̃n(t1)− E S̃n(t1)

)
/σn

d−→ N(0, 1). (6.20)

(ii) Let σ2
L,n := 4nt1µn. Then Ln(t1) is asymptotically normal, with(

Ln(t1)− ELn(t1)
)
/σL,n

d−→ N(0, 1). (6.21)

Furthermore, lim supσ2
L,n/σ

2
n < 1.

(iii) For any b > 0, there exists c(b) > 0 such that

P
(
Ãn(t1)− E Ãn(t1) > bσn

)
≥ c(b) + o(1). (6.22)

Proof. (i): We have, see Section 5.1 and in particular (5.2), S̃n(t) =
∑

i∈[n] diIi(t), where

Ii(t) is the indicator that no half-edge at vertex i has died spontaneously up to time t. These
indicators are independent and Ii(t) ∼ Be(e−dit). Hence, as in (5.62) but written slightly
differently, noting that t1di ≤ t1∆n = o(1) by (6.17) and (6.4),

Var S̃n(t1) =
∑
i∈[n]

d2i Var Ii(t1) =
∑
i∈[n]

d2i e
−dit1

(
1− e−dit1

)
∼
∑
i∈[n]

d3i t1 = t1nRn =
(
nRn

)2/3
,

which is (6.19). Similarly, with Yi := diIi(t1) and using (6.4),∑
i∈[n]

E |Yi − EYi|3 =
∑
i∈[n]

d3i E |Ii(t1)− E Ii(t1)|3 ≤
∑
i∈[n]

d3i Var Ii(t1) ≤
∑
i∈[n]

d4i t1

= t1nED4
n ≤ t1n∆nRn = o(nRn) = o

(
σ3
n

)
. (6.23)

Consequently, the central limit theorem with Lyapounov’s condition [23, Theorem 7.2.2]
applies and yields (6.20).

(ii): We use the modified process L̄n(t) defined just before (5.50). Then 1
2
L̄n(t) ∼

Bin
(
1
2
`n, e

−2t) for every t ≥ 0. In particular, recalling from (2.2) and (2.4) that `n = nµn,

Var L̄n(t1) = 4 · 1
2
`ne−2t1

(
1− e−2t1

)
∼ 4`nt1 = σ2

L,n. (6.24)

Since nt1 → ∞, we have σ2
L,n → ∞, and the central limit theorem for the binomial distri-

bution yields
(
L̄n(t1) − E L̄n(t1)

)
/σL,n

d−→ N(0, 1). Since |Ln(t1) − L̄n(t1)| ≤ 1 by (5.49),
(6.21) follows.

Furthermore,
σ2
n

σ2
L,n

=
σ2
n

4nt1µn
∼ (nRn)2/3

4n(nRn)−1/3µn
=

Rn

4µn
=

ED3
n

4EDn

. (6.25)

Consequently, using (5.30) (with t = 0),

lim inf
n→∞

σ2
n

σ2
L,n

=
lim inf ED3

n

4ED
≥

E
(
D(D − 2)2

)
+ 4µ

4µ
> 1. (6.26)

(iii): By (ii), there exists δ > 0 such that, for large n, σL,n < (1 − 2δ)σn. Let a := δ−1b
and let Φ be the usual standard normal distribution function. Then, by (6.20) and (6.21),

P
(
S̃n(t1)− E S̃n(t1) < −aσn

)
→ Φ(−a), (6.27)

P
(
Ln(t1)− ELn(t1) < −(1 + δ)aσL,n

)
→ Φ(−(1 + δ)a). (6.28)
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Hence, with probability at least c + o(1), where c := Φ(−a) − Φ(−(1 + δ)a) > 0, we have

S̃n(t1)− E S̃n(t1) < −aσn and Ln(t1)− ELn(t1) ≥ −(1 + δ)aσL,n, and thus, recalling (5.3),

Ãn(t1)− E Ãn(t1) > aσn − (1 + δ)aσL,n > aσn − (1 + δ)(1− 2δ)aσn > δaσn = bσn. (6.29)

�

Remark 6.5. Presumably, S̃n(t1) and Ln(t1) are asymptotically jointly normal, which would

imply that Ãn(t1) is asymptotically normal and yield a more direct proof of (6.22). However,
it seems more technical to prove joint asymptotic normality here, so instead we prefer the
more elementary argument above.

Lemma 6.6. Assume (A1)–(A4) and (6.2) and (6.4). Then, uniformly for t ≤ t1,

E S̃n(t) = nµn − 2tnµn +O(σn), (6.30)

ELn(t) = nµne−2t +O(1) = nµn − 2tnµn +O(σn), (6.31)

E Ãn(t) = O(σn). (6.32)

Proof. Similarly to the proof of Lemma 5.12, Vn,k(t) ∼ Bin(nk, e
−kt) and thus, using (5.45),

E S̃n(t) =
∞∑
k=0

k EVn,k(t) =
∞∑
k=0

knke
−kt =

∞∑
k=0

knk
(
1− kt+O(k2t2)

)
= nEDn − tnED2

n +O(t2nED3
n)

= nµn − tnµn(2 + εn) +O(t21nRn), (6.33)

which yields (6.30) by (6.2), (6.17) and (6.19).
Furthermore, by (5.50),

ELn(t) = nµne−2t +O(1) = nµn − 2tnµn +O(nt21 + 1), (6.34)

and (6.31) follows because, by (6.17) and (6.19),

nt21 + 1 ∼ nt21 = n1/3R−2/3n ∼ σnR
−1
n = O(σn). (6.35)

Finally, (6.32) follows from (6.30) and (6.31). �

Lemma 6.7. Assume (A1)–(A4) and (6.2) and (6.4). Then,

E
[
sup
t≤t1

∣∣Ãn(t)
∣∣2] = O(σ2

n). (6.36)

Proof. By Lemma 5.15, together with (6.17) and (6.19),

E
[
sup
t≤t1
|Ãn(t)− E Ãn(t)|2

]
≤ CnE

(
D2
n(1 ∧ t1Dn)

)
+ C

≤ Cnt1 E
(
D3
n

)
+ C = Cnt1Rn + C = O(σ2

n). (6.37)

Furthermore, supt≤t1 |E Ãn(t)| = O(σn) by (6.32), and (6.36) follows. �

For ease of notation, let Nk := Ṽn,k(t1), the (random) number of vertices of degree k such

that none of their half-edges dies spontaneously by time t1. Thus S̃n(t1) =
∑

k kNk, see
(5.2). Let further

Zn :=
∞∑
k=0

k2(nk −Nk) ≥ 0. (6.38)
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Lemma 6.8. Assume (A1)–(A4) and (6.2) and (6.4). Then, there exists a constant C8 such
that w.h.p.

Zn ≤ C8σ
2
n. (6.39)

Proof. Nk ∼ Bin(nk, e
−kt1) and thus, using (6.17) and (6.19),

EZn =
∞∑
k=0

k2nk
(
1− e−kt1

)
≤

∞∑
k=0

k3nkt1 = t1nRn = O(σ2
n). (6.40)

Furthermore, using also (6.4),

VarZn =
∞∑
k=0

k4 VarNk ≤
∞∑
k=0

k4nk
(
1− e−kt1

)
≤

∞∑
k=0

k5nkt1

= t1nED5
n ≤ t1n∆2

nRn = o
(
(nRn)4/3

)
= o(σ4

n). (6.41)

Now (6.39) follows by (6.40)–(6.41) and Chebyshev’s inequality. �

We condition on Ft1 , the σ-field generated by all events up to time t1. Note that Ft1
determines Nk, and thus S̃n(t1) and Zn, and also Ln(t1) and Ãn(t1).

Lemma 6.9. Assume (A1)–(A4) and (6.2) and (6.4). For any fixed B < ∞ and all t ∈
[0, Bt1],

E
(
S̃n(t1 + t) | Ft1

)
= S̃n(t1)− 2tnµn + tZn +O(σn), (6.42)

E
(
Ln(t1 + t) | Ft1

)
≥ Ln(t1)− 2tnµn +O(σn), (6.43)

E
(
Ãn(t1 + t) | Ft1

)
≥ Ãn(t1)− tZn +O(σn). (6.44)

Proof. We have, in analogy with (6.33), using (6.38),

E
(
S̃n(t1 + t) | Ft1

)
=
∞∑
k=0

kNke
−kt =

∞∑
k=0

kNk

(
1− kt+O(k2t2)

)
= S̃n(t1)− t

( ∞∑
k=0

k2nk − Zn
)

+O

(
t2
∞∑
k=0

k3nk

)
= S̃n(t1)− tnED2

n + tZn +O
(
t2nRn

)
. (6.45)

Then (6.42) follows by (5.45) and estimates as in the proof of Lemma 6.6, using (6.2), (6.17),
(6.19) and the assumption t = O(t1).

For Ln we use again the coupling with L̄n. As 1
2
L̄n(t) is a standard death process with

intensity 2,

E
(
Ln(t1 + t) | Ft1

)
= E

(
L̄n(t1 + t) | Ft1

)
+O(1) = L̄n(t1)e

−2t +O(1)

= Ln(t1)− 2tLn(t1) +O(1 + nt2). (6.46)

Then (6.43) follows, since Ln(t1) < `n = nµn, using again (6.35).
Finally, (6.44) follows from (6.42) and (6.43). �
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Lemma 6.10. Assume (A1)–(A4). For any fixed B <∞ and all t ∈ [0, Bt1],

E
[

sup
t≤Bt1

∣∣∣S̃n(t1 + t)− E
(
S̃n(t1 + t) | Ft1

)∣∣∣2 ∣∣∣ Ft1] = O(σ2
n), (6.47)

E
[

sup
t≤Bt1

∣∣∣Ln(t1 + t)− E
(
Ln(t1 + t) | Ft1

)∣∣∣2 ∣∣∣ Ft1] = O(σ2
n), (6.48)

E
[

sup
t≤Bt1

∣∣∣Ãn(t1 + t)− E
(
Ãn(t1 + t) | Ft1

)∣∣∣2 ∣∣∣ Ft1] = O(σ2
n). (6.49)

Proof. Conditioned on Ft1 , the process S̃n(t1 + t) is exactly as S̃n(t), but starting with Nk

vertices of degree k instead of nk. Hence the arguments in (5.62)–(5.65) in the proof of
Lemma 5.15 hold in this case too and, since Nk ≤ nk, we obtain, for any u ≥ 0,

E
[
sup
t≤u

∣∣∣S̃n(t1 + t)− E
(
S̃n(t1 + t) | Ft1

)∣∣∣2 ∣∣∣ Ft1] ≤ C4nE
(
D2
n(uDn ∧ 1)

)
≤ C4nuED3

n.

The result (6.47) follows by taking u = Bt1, using again (6.1), (6.17) and (6.19).
Similarly, as in (5.67), or by [36, Lemma 6.1] after conditioning on Ft1 , we obtain, since

t1 = o(1),

E
[

sup
t≤Bt1

∣∣∣Ln(t1 + t)− E
(
Ln(t1 + t) | Ft1

)∣∣∣2 ∣∣∣ Ft1] = O(nt1 + 1). (6.50)

Furthermore, as said above, nt1 →∞ and R−1n = O(1), and thus, cf. (6.35),

nt1 + 1 � nt1 = n2/3R−1/3n � σ2
nR
−1
n = O(σ2

n). (6.51)

Hence, (6.50) yields (6.48). Finally, (6.49) follows by combining (6.47) and (6.48). �

Lemma 6.11. Assume (A1)–(A4) and (6.2) and (6.4). For any fixed B > 1, there is some
p(B) > 0 such that with probability at least p(B) + o(1),

Ãn(t) > 0 for all t ∈ [t1, Bt1]. (6.52)

Proof. Fix B > 1. Let b > 0 be another fixed number, to be determined later. Consider the
event

E(b) :=
{
Ãn(t1)− E Ãn(t1) > bσn and Zn ≤ C8σ

2
n

}
, (6.53)

with C8 as in Lemma 6.8. By (6.22) and (6.39), P(E(b)) ≥ c(b) + o(1), where c(b) > 0 is
independent of n. Define also the family of events {E1(C) : C > 0}, with E1(C) given by

E1(C) :=
{

sup
t≤Bt1

∣∣∣Ãn(t1 + t)− E
(
Ãn(t1 + t) | Ft1

)∣∣∣ ≤ Cσn

}
. (6.54)

Further, let

E(b, C) := E(b) ∩ E1(C). (6.55)

Note that E(b) ∈ Ft1 . Hence, by Lemma 6.10 and Chebyshev’s inequality, there exists a
constant C9 such that

P(E1(C) | E(b)) ≥ 1− C9σ
2
n

(Cσn)2
= 1− C9

C2
. (6.56)

Consequently, if we choose C := 2C
1/2
9 , then

P(E(b, C)) = P(E1(C) | E(b))P(E(b)) ≥ 3
4
P(E(b)) ≥ 3

4
c(b) + o(1). (6.57)
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On the event E(b, C), we have by (6.54), (6.44), (6.53), (6.32) and (6.17), for any t ∈
[0, Bt1],

Ãn(t1 + t) ≥ E
(
Ãn(t1 + t) | Ft1

)
− Cσn ≥ Ãn(t1)− tZn +O(σn)

> bσn + E Ãn(t1)− C8tσ
2
n +O(σn)

= bσn +O(σn). (6.58)

The implicit constants here depends on B but not on b; thus the final error term O(σn) ≥
−C10(B)σn for some C10(B). Hence we may for any B choose b = b(B) := C10(B), and the
result follows, with p(B) = 3

4
c(b(B)). �

We can obtain results for Ṽn similar to the results for S̃n above (in Lemmas 6.4, 6.6, 6.9,
and 6.10) by the same arguments. However, we have no need for such results involving
conditioning and uniform estimates; the following simple results are enough.

Lemma 6.12. Assume (A1)–(A4) and (6.4). Fix B > 0. For any t ∈ [0, Bt1],

Ṽn(t) = n− nµnt+Op

(
nt21 +

√
nt1
)

= n− nµnt+ op(nt1). (6.59)

Proof. Recall that Ṽn(t) =
∑

k Ṽn,k(t) where Ṽn,k(t) are independent and Ṽn,k(t) ∼ Bin
(
nk, e

−kt).
Hence,

E Ṽn(t) =
∞∑
k=0

nke
−kt =

∞∑
k=0

nk
(
1− kt+O(k2t2)

)
= n− nµnt+O(nt2) (6.60)

and

Var Ṽn(t) =
∞∑
k=0

nke
−kt(1− e−kt

)
≤

∞∑
k=0

nkkt = nµnt = O(nt). (6.61)

The first equality in (6.59) follows from (6.60)–(6.61). The second follows because nt21 =
o(nt1) and

√
nt1 = o(nt1). �

Lemma 6.13. Assume (A1)–(A4) and (6.4), and define V ′n(t) := Ṽn(t) − Vn(t) ≥ 0. Fix
B > 1. Then

V ′n(t1)− V ′n(Bt1) ≤ Op(t1σn) = op(nt1). (6.62)

Proof. V ′n,k(t) := Ṽn,k(t) − Vn,k(t) is the number of vertices of degree k that are awake at
time t, but their k half-edges all have maximal life times larger than t. This number may
increase when C1 is performed, and it decreases when a half-edge at one of these vertices
dies spontaneously (and C3 is performed). Consequently, conditioning of Ft1 , for any t ≥ 0,

E
(
(V ′n,k(t1)− V ′n,k(t1 + t))+ | Ft1

)
≤ ktV ′n,k(t1).

Summing over k yields, using (5.2),

E
(
(V ′n(t1)− V ′n(t1 + t))+ | Ft1

)
≤ t
(
S̃n(t1)− Sn(t1)

)
. (6.63)

By (5.4) and Lemma 6.7, noting that ∆n = O(σn) by (6.3) and (6.19),

S̃n(t1)− Sn(t1) < sup
t≤t1
|Ãn(t)|+ ∆n = Op(σn). (6.64)

In other words, for every ε > 0 there exist K(ε) independent of n such that

P
(
S̃n(t1)− Sn(t1)) > K(ε)σn

)
≤ ε. (6.65)
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Furthermore, for any fixed K, (6.63) implies

E
(
(V ′n(t1)− V ′n(t1 + t))+ | S̃n(t1)− Sn(t1) ≤ Kσn

)
= O(tσn). (6.66)

It follows by (6.66), Markov’s inequality and (6.65) that, for any t > 0,

(V ′n(t1)− V ′n(t1 + t))+ = Op(tσn). (6.67)

Now take t = (B − 1)t1. �

Proof of Theorem 2.12(ii). Note that the assumptions include (6.2) and (6.4). Recall also

that An(t) ≥ Ãn(t) for all t, see (5.4). Hence by Lemma 6.11, for every B > 1, there

exists p(B) > 0 such that with probability at least p(B) + o(1), An(t) ≥ Ãn(t) > 0 for all
t ∈ [t1, Bt1]. By the discussion in Section 5.1, this means that C1 is not performed during
the interval [t1, Bt1] and thus all vertices awakened during this interval belong to the same
component, say C. The number of these vertices is Vn(t1) − Vn(Bt1). Consequently, with
probability at least p(B) + o(1),

v(C1) ≥ v(C) ≥ Vn(t1)− Vn(Bt1). (6.68)

Furthermore, by Lemmas 6.13 and 6.12,

Vn(t1)− Vn(Bt1) = Ṽn(t1)− Ṽn(Bt1) + V ′n(Bt1)− V ′n(t1) ≥ Ṽn(t1)− Ṽn(Bt1) + op(nt1)

= nµn(B − 1)t1 + op(nt1) = nµ(B − 1)t1 + op(nt1). (6.69)

Hence, Vn(t1)− Vn(Bt1) >
(
µ(B − 1)− 1

)
nt1 w.h.p.

Finally, given any K > 0, choose B such that µ(B − 1) = K + 1. Then (6.68) and (6.69)
thus show that, with probability at least p(B) + o(1), recalling (6.17),

v(C1) ≥ Vn(t1)− Vn(Bt1) > Knt1 = Kn2/3R−1/3n , (6.70)

which completes the proof of (2.34). �

6.3. Proof of Theorem 2.12(ii) in the graph case. Unlike the other results in this
paper, Theorem 2.12(ii) says that a certain event asymptotically has a positive but possibly
small probability. In order to obtain the same result for the simple random graph Gn from
the result for G∗n, we have to show that this event has a large intersection with the event
Es := {G∗n is simple}.

Recall that (A2) implies P(Es) ≥ cs + o(1) for some cs > 0. In fact, (6.6) and (A4) imply,
see e.g. [29, Corollary 1.4] or [2, Theorem 1.1],

P(Es) = e−νn/2−ν
2
n/4 + o(1) = e−3/4 + o(1), (6.71)

so we take cs := e−3/4.
We claim the following:

Lemma 6.14. Assume (A1)–(A4) and (6.4). Then the asymptotic normality (6.20) and
(6.21) hold also conditioned on Es. (The expectations in (6.20) and (6.21) are still for the
configuration model, without conditioning.)

We postpone the proof of the lemma.

Proof of Theorem 2.12(ii) in the graph case. Note that, given Lemma 6.14, we obtain also
(6.22) conditioned on Es by the argument in the proof of Lemma 6.4. That is, for any b > 0,
there exists c(b) > 0 such that

P
(
Ãn(t1)− E Ãn(t1) > bσn | Es

)
≥ c(b) + o(1). (6.72)
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Consider now Lemma 6.11. It follows, similarly to the first part of the proof of Lemma 6.11,
that P(E(b) | Es) ≥ c(b)+o(1). Hence, P(E(b)∩Es) ≥ c(b)cs +o(1). Since Es /∈ Ft1 , we modify
the next part of the proof of Lemma 6.11. By (6.56),

P
(
E1(C) ∩ Es | E(b)

)
≥ P

(
E1(C) | E(b)

)
+ P

(
Es | E(b)

)
− 1

≥ 1− C9

C2
+ P

(
Es ∩ E(b)

)
− 1

≥ csc(b)−
C9

C2
+ o(1) ≥ 1

2
csc(b) + o(1), (6.73)

for a suitable choice of C. The rest of the proof of Lemma 6.11 works as before. We obtain,
using (6.73),

P
(
E(b, C) ∩ Es

)
= P

(
E(b) ∩ E1(C) ∩ Es

)
≥ 1

2
csc(b)

2 + o(1). (6.74)

Hence we conclude, using (6.58) as before, that, for any B > 1,

P
(
{Ãn(t) > 0: t ∈ [t1, Bt1]} ∩ Es

)
≥ p(B) + o(1) (6.75)

for some (new) p(B) > 0, where t1 is as in (6.17). Finally, the proof of Theorem 2.12(ii)

above yields, cf. (6.70), P({v(C1) ≥ Kn2/3R
−1/3
n } ∩ Es) ≥ p(B) + o(1), and thus P(v(C1) ≥

Kn2/3R
−1/3
n | Es) ≥ p(B)+o(1), which completes the proof of Theorem 2.12(ii) for the simple

random graph Gn. �

It remains only to prove Lemma 6.14. This could be done by the method used for similar
results in [37] and [38], see also [35], but we prefer an alternative, simpler, argument.

Proof of Lemma 6.14. Consider the conditional analogue of (6.20); the proof of conditional
(6.21) is identical.

Let a ∈ R and let Ea := {
(
S̃n(t1)− E S̃n(t1)

)
/σn ≤ a}; thus, by (6.20),

P(Ea)→ Φ(a). (6.76)

Let T ′ denote the first time that a connected component is completely explored after time
t1. Let B > 1. If T ′ > Bt1, then the component C explored until T ′ has at least Vn(t1) −
Vn(T ′−) ≥ Vn(t1)− Vn(Bt1) vertices, and hence, using Lemmas 6.12 and 6.13,

v(C1) ≥ v(C) ≥ Vn(t1)− Vn(Bt1) = nµn(B − 1)t1 + op(nt1). (6.77)

It follows from Theorem 2.12(i) that, for any δ > 0 and any fixed B such that µ(B − 1) >
K(δ), we have P(T ′ > Bt1) < δ + o(1). Consequently, if Bn → ∞, then P(T ′ > Bnt1) < 2δ
for any δ > 0 and all large n, and thus T ′ ≤ Bnt1 w.h.p. Note that (6.17) and (6.7) imply
that

t1Rn = n−1/3R2/3
n = o(1), (6.78)

and that, since 1 = O(Rn), we also have t1 = o(1). We may thus fix a sequence Bn → ∞
such that Bnt1 = o(1) and Bnt1Rn = o(1).

Let T ′′ be the first time that the number of sleeping half-edges Sn(t) drops below `n/2.
(Recall that Sn(0) = `n = nµn.) At time Bnt1, the expected number of times that C3 has
been performed is at most Bnt1`n = o(`n), and corresponding to a few of these times also
C1 was performed; it follows easily that the expected number of sleeping half-edges at Bnt1
is `n − o(`n), and thus w.h.p. T ′′ > Bnt1.

Let BT ′ denote the event that all the components explored by time T ′ are simple.
The probability that vertex i is awakened no later than time (Bnt1)∧T ′′ by using C1 or C3

is O(Bnt1di), and, in the event that it is awakened, the probability that two of its half-edges
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will form a loop is O(d2i /`n) and the probability that it will be joined by a multiple edge to
a vertex j awakened later is O(d2i d

2
j/`

2
n). Consequently,

P
(
BcT ′ ∩ {T ′ ≤ Bnt1} ∩ {T ′′ > Bnt1}

)
≤ O(Bnt1)

∑
i∈[n]

di

[d2i
`n

+
d2i
`n

∑
j∈[n]

d2j
`n

]
= O(t1BnRn) = o(1), (6.79)

and thus P(BcT ′) = o(1), i.e., BT ′ holds w.h.p.
Then, we condition on the σ-algebra FT ′ of all randomness up to time T ′, and note that
Ea and BT ′ are FT ′−measurable to obtain

P(Ea ∩ Es) = P(Ea ∩ Es ∩ BT ′) + o(1) = E[1lEa∩BT ′ P(Es | FT ′)] + o(1). (6.80)

The configuration model multigraph can be partitioned into the connected components found
until time T ′ and those that are found afterwards. The multigraph consisting of all the con-
nected components found after time T ′ is again (conditioned on FT ′) a configuration model,
now with a random number ñ = n(1− o(1)) vertices and degrees that are a (random) subset

of size ñ from [n]. We denote this degree sequence by (d̃i)i∈[ñ]. In particular, conditional on
FT ′ ,

P(Es | FT ′) = 1lBT ′P(G(ñ, (d̃i)i∈[ñ]) simple). (6.81)

By the discussion above (6.79), the probability that the event {T ′ ≤ Bnt1 ≤ T ′′} occurs and
that vertex i is part of one of the connected components found before time T ′ is O(Bnt1di).
Hence,

E
[(∑

i∈[n]

d2i −
∑
i∈[ñ]

d̃2i

)
1l{T ′≤Bnt1<T ′′}

]
≤ O(Bnt1)

∑
i∈[n]

d3i = O(nt1BnRn) = o(n). (6.82)

Consequently, using Markov’s inequality and recalling that T ′ ≤ Bnt1 ≤ T ′′ w.h.p., we obtain∑
i∈[ñ]

d̃2i =
∑
i∈[n]

d2i − op(n) =
(
1 + op(1)

)∑
i∈[n]

d2i . (6.83)

Similarly, or as a consequence,
∑

i∈[ñ] d̃i =
(
1 + op(1)

)∑
i∈[n] di.

Thus, with ν̃n denoting νn in (2.5) for the (random) degree sequence (d̃i)i∈[ñ], and noting

that νn =
∑

i d
2
i /
∑

i di − 1 and ν̃n =
∑

i d̃
2
i /
∑

i d̃i − 1 we obtain

ν̃n = νn + op(1) = 1 + op(1). (6.84)

Consequently, (6.71) yields

P(G(ñ, (d̃i)i∈[ñ]) simple) = e−ν̃n/2−ν̃
2
n/4 + op(1) = e−3/4 + op(1) = P(Es) + op(1), (6.85)

and, since BT ′ holds w.h.p., (6.81) yields

P(Es | FT ′) = P(Es) + op(1). (6.86)

Finally, (6.80) and (6.86) yield, together with (6.76),

P(Ea ∩ Es) = E[1lEa∩BT ′ P(Es)] + o(1) = P(Ea ∩ BT ′)P(Es) + o(1) = Φ(a)P(Es) + o(1), (6.87)

and thus P(Ea | Es) → Φ(a), which completes the proof of the lemma, and thus of the
theorem. �
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7. The complexity

Define the complexity of a component C by k(C) := e(C)− v(C) + 1; this is the number of
independent cycles in C. The estimates in Theorem 2.6 show only that k(C1) = op(v(C1)).
(This is in contrast to the strongly supercritical case ED(D− 2) > 0, when v(C1) = cvn

(
1 +

op(1)
)

and e(C1) = cen
(
1 + op(1)

)
for two positive constants cv and ce, see e.g. [36, Theorem

2.3], and it is easily verified that ce > cv so k(C1) also is linear in n.) We can use our methods
to obtain a much sharper result. As before, we write αn = − log(1 − ρn), where ρn is the
survival probability of a branching process with offspring distribution D̃n = D∗n−1, with D∗n
the size-biased version of Dn.

Theorem 7.1. Suppose that (A1)–(A4) are satisfied, in particular εn = o(1). Suppose also
that εn � n−1/3(ED3

n)2/3. Then

k(C1) = nχn
(
1 + op(1)

)
, (7.1)

where

χn :=
1

2
µn
(
1− (1− ρn)2

)
− E

(
1− (1− ρn)Dn

)
(7.2)

=
1

2
µn
(
1− e−2αn

)
− E

(
1− e−αnDn

)
(7.3)

= Eh(αnDn)− 1
2
EDnh(2αn), (7.4)

with

h(x) :=
(

1 +
x

2

)
e−x − 1 +

x

2
=

1

2

∑
n≥3

(−1)n−1
n− 2

n!
xn. (7.5)

Moreover, nχn →∞, χn = O(α2
nεn) = O(ε3n) and

χn � αnγn � E
(
(αnDn) ∧ (αnDn)3

)
. (7.6)

Remark 7.2. The expression (7.2) is what would be intuitively expected from the branching
process approximation: if we multiply by n, then the first term is the number of edges
(`n/2 = nµn/2) times the approximate probability that one of the endpoints of an edge
attaches to the largest component, and the second term is the approximate probability that
a random vertex attaches to the largest component. Indeed, it follows from Theorem 2.6
that the two terms approximate e(C1)/n and v(C1)/n within a factor 1+op(1). However, the
two terms in (7.2) differ only by a factor 1 + o(1), so there is a significant cancellation and
we need a different argument to show the result.

Remark 7.3. By (7.5) and simple calculus, h(0) = h′(0) = 0 and h′′(x) = 1
2
xe−x, so h(x) is

positive and convex on (0,∞). Moreover, h(x) ∼ 1
12
x3 as x→ 0 and h(x) ≤ 1

12
x3 for x ≥ 0.

Although the expressions in (7.2)–(7.3) are simpler, there is (as said in Remark 7.3) a lot of
cancellation, and (7.4) better highlights the order of χn.

We postpone the proof of Theorem 7.1 and state first some consequences for the most
important cases.

Theorem 7.4. Suppose that (A1)–(A4) are satisfied, and that D3
n is uniformly integrable.

Suppose further that εnn
1/3 →∞. Then

k(C1) =
κµ

12
nρ3n
(
1 + op(1)

)
=

2µ

3κ2
nε3n
(
1 + op(1)

)
, (7.7)

where κ ∈ (0,∞) is given by (2.21).
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This extends the result for the Erdős–Rényi random graph G(n, p). There, in the barely
supercritical case k(C1) ∼ 2

3
nε3n (see, with more details, [49] and, for ε ≤ n1/12, [34]), which

corresponds to the case D ∼ Po(1) (when µ = κ = 1), of Theorem 7.4 by conditioning on
the vertex degrees as in Section 2.6. The order of the complexity in (7.7) interpolates nicely
between the known cases of εn = ε > 0 independently of n, where k(C1) is of order n, and
the critical case εn = O(n−1/3), where k(C1) converges in distribution [18].

Theorem 7.5. Suppose that (A1)–(A4) are satisfied, and that ED3 = ∞. (Thus ED3
n →

∞.) Suppose further that εn � n−1/3(ED3
n)2/3. Then

k(C1) = op(nε3n). (7.8)

Example 7.6 (Power-law degrees). Consider again the power-law example in Example 2.15,

with 2 < γ < 3. It follows from (7.6), (5.58) and (2.38) that χn � αγn � ε
γ/(γ−2)
n . Again, this

interpolates nicely between the known cases of εn = ε > 0 independently of n, where k(C1)
is of order n, and the critical case εn = O(n−(γ−2)/γ), where k(C1) converges in distribution.
The latter is shown in [19] under stronger power-law assumptions on the degrees, including
that din

−1/γ → ci with
∑

i≥1 c
3
i < ∞, while

∑
i≥1 c

2
i = ∞, such as for ci � i−1/γ with

γ ∈ (2, 3). (Recall Remark 2.16, where this is discussed in more detail.)

Example 7.7. Suppose that (A1)–(A4) are satisfied, ED3 =∞, and, furthermore, ρn∆n =
O(1). Then Lemma 5.17 applies and yields together with (7.6)

χn � αnγn � ε3n/(ED3
n)2, (7.9)

showing that (7.8) in this case can be sharpened to k(C1) � nε3n/(ED3
n)2 w.h.p.

Lemma 7.8. Suppose that (A1)–(A4) are satisfied and that εn � n−1/3(ED3
n)2/3. Then

nαnγn →∞.

Proof. We consider only n such that εn > 0; this holds at least for all large n.
First, if αn∆n ≤ 1, then Lemma 5.17 and the assumptions yield

nαnγn � n
ε3n

(ED3
n)2
→∞. (7.10)

On the other hand, if αn∆n > 1, then by (B8), which was verified in the proof of Theo-
rem 2.6, 1 < αn∆n = o(αnnγn), and thus nαnγn →∞ in this case too. �

Proof of Theorem 7.1. Let N(t) be the number of times up to time t that a new cycle is
created. Thus, if T is a time when C1 is performed, then N(T ) is the sum of the complexities
of the components explored up to T .

During the exploration process, we create a new cycle each time C3 is performed and the
half-edge that dies is an active half-edge, i.e, each time an active half-edge dies spontaneously.
This happens with rate An(t). Consequently,

M(t) := N(t)−
∫ t

0

An(u) du (7.11)

is a martingale, with M(0) = 0.
Let T1 and T2 be as in the proof of Theorem 5.4, so w.h.p. C1 is explored between T1 and

T2. Thus w.h.p. k(C1) = N(T2)−N(T1). Recall that, since βn is set to αn, T1/αn
p−→ 0 and

T2/αn
p−→ τ = 1, and note that T2 is a stopping time.
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Recall that (B1)–(B8) were verified in the proof of Theorem 2.6. By (B5) and Lemma 5.7,

sup
t≤T2/αn

∣∣∣∣ 1

nγn
An(αnt)− ψn(t)

∣∣∣∣ p−→ 0. (7.12)

Consequently, using also that ψn(t) is uniformly bounded on [0, 2] by Remark 5.11, and that

T2/αn
p−→ 1 so that T2/αn ≤ 2 w.h.p.,∫ T2

0

An(u) du = αn

∫ T2/αn

0

An(αnu) du = nγnαn

∫ T2/αn

0

ψn(u) du+ op
(
nγnαn

)
= nαnγn

∫ 1

0

ψn(u) du+ op
(
nαnγn

)
. (7.13)

Let

Ψn :=

∫ 1

0

ψn(t) dt, (7.14)

and note that by Remark 5.11 and (B4)(d), Ψn � 1. Define also the stopping time T by∫ T

0

An(u) du = nαnγn
(
Ψn + 1

)
. (7.15)

By (7.13), T2 ≤ T w.h.p.
All jumps in the martingale M(t) are +1, so the quadratic variation (see e.g. [42, Theorem

26.6]) is

[M,M ]t =
∑
u≤t

(
∆M(u)

)2
=
∑
u≤t

∆M(u) = N(t). (7.16)

Hence, for the stopped martingale M(t ∧ T ), using (7.11) and the definition (7.15) of T , as
well as [50, Corollary 3 to Theorem II.6.27, p. 73],

E
(
M(T2 ∧ T )2

)
= E[M,M ]T2∧T = EN(T2 ∧ T ) = E

∫ T2∧T

0

An(u) du+ EM(T2 ∧ T )

≤ nαnγn
(
Ψn + 1

)
+ 0 = O

(
nαnγn

)
.

Hence it follows that, using also Lemma 7.8,

M(T2 ∧ T ) = Op

(
(nαnγn)1/2

)
= op

(
nαnγn

)
. (7.17)

By (7.11), (7.13), (7.17) and T2 ∧ T = T2 w.h.p.,

N(T2) =

∫ T2

0

An(u) du+M(T2) = nαnγnΨn + op
(
nαnγn

)
. (7.18)

Furthermore, for any fixed δ > 0, T1 < δαn w.h.p. and thus N(T1 ∧ T ) ≤ N(T ∧ (δαn)).
Hence, again since M is a martingale,

EN
(
T1 ∧ T

)
≤ EN

(
T ∧ (δαn)

)
= E

∫ T∧(δαn)

0

An(u) du. (7.19)

Furthermore, by (7.12) and Remark 5.11,∫ T∧(δαn)

0

An(u) du ≤
∫ δαn

0

An(u) du = αn

∫ δ

0

An(αnt) dt

= nαnγn

(∫ δ

0

ψn(t) dt+ op(1)
)
≤ nαnγn

(
δ + op(1)

)
. (7.20)
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It follows from (7.19) and (7.20), by dominated convergence justified by (7.15), that(
nαnγn

)−1 EN(T1 ∧ T ) ≤ δ + o(1). (7.21)

Since δ ∈ (0, 1) is arbitrary, it follows that EN(T1 ∧ T ) = o(nαnγn), and thus w.h.p.
N(T1) = N(T1 ∧ T ) = op(nαnγn). Consequently, recalling (7.18), w.h.p.

k(C1) = N(T2)−N(T1) = nαnγn
(
Ψn + op(1)

)
= nαnγnΨn

(
1 + op(1)

)
, (7.22)

which shows (7.1) with

χn = αnγnΨn. (7.23)

Recalling Ψn � 1, we have χn � αnγn and thus nχn → ∞ by Lemma 7.8. Furthermore,
(7.6) follows from (5.20). It follows from (7.6) and (4.3) that

χn � E
(
(αnDn) ∧ (αnDn)3

)
≤ E

(
(αnDn)2 ∧ (αnDn)3

)
� α2

nεn, (7.24)

i.e., χn = O(α2
nεn); furthermore αn ∼ ρn = O(εn) by (3.2).

It remains to evaluate χn in (7.23) and show that it agrees with (7.2)–(7.4). By (7.14),
(5.21) and Fubini’s theorem,

χn = αnγnΨn = αn

∫ 1

0

(
µne−2αnt − E

(
Dne−αntDn

))
dt

=
1

2
µn
(
1− e−2αn

)
− E

(
1− e−αnDn

)
, (7.25)

which shows (7.3). By the definition (4.1) of αn, this is the same as (7.2). Furthermore, the
equality of (7.4) and (7.3) follows by a simple calculation using (4.8). �

Proof of Theorem 7.4. Under the assumptions in Theorem 7.4, γn ∼ α2
n ED3 by (5.53) and

Ψn =

∫ 1

0

ψn(t) dt→ κµ

12ED3
(7.26)

as a consequence of (5.54). Hence (7.7) follows from (7.1), (7.23) and (4.9). �

Proof of Theorem 7.5. As in the proof of Theorem 2.9, (3.6) yields αn = o(εn). Hence, (7.24)
implies χn = o(ε3n), and (7.8) follows. �
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[7] Béla Bollobás, The evolution of random graphs. Trans. Amer. Math. Soc. 286 (1984),
no. 1, 257–274.
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